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1. Introduction

In the last years the problem of computing the relaxation time of stochastic Monte Carlo algorithm
for classical spin models on Z? has been intensively studied. We will focus our attention on lat-
tice gases with Kawasaki dynamics. The lattice gases can be described as follows. Let QQr be a
cube of width L in Z?. At each lattice site of Q we associate an occupation number of particle
o(xz) € {0,1}. The equilibrium states are described by the Gibbs measures on @, characterized
by a Hamiltonian and a boundary condition. There are two ensembles of interest the grand canon-
ical one with temperature and chemical potential as external fixed variables and the canonical one
where the chemical potential is substituted by the number of particles. In Kawasaki dynamics
each particle performs a random walk with the following properties. Jumps to occupied sites are
suppressed so that there is at most one particle per site; no creation or annihilation of particles is
allowed so that the total number of particles is conserved; jump rates are determined by nearby
particles according to some fixed local rules such that the canonical Gibbs measure is reversible.
The models just described are interacting random walk and have a natural interpretation as dis-
cretizations of interacting Brownian motions. The limiting case of zero interaction is known as
symmetric simple exclusion process, where the dynamics is given by the symmetric random walk
and the invariant measures are simply a product of Bernoulli measures.

It is well known that the fundamental ingredients to study the relaxation time are the spectral gap
(SG) of the generator and the logarithmic Sobolev constant (LSC). By the SG one obtains the time
of convergence to equilibrium in L? norm (with respect to the canonical Gibbs measure), while the
LSC allows to convert the L? convergence into a stronger statement.

The fundamental results of [LY] and [Y] on SG and LSC state that, under a suitable mixing condi-
tion on the grand canonical Gibbs measure, the inverse of the SG and the LSC in a box of side L
scale like L2. The mixing condition for the two dimensional Ising model holds for any temperature
above the critical one. While in the phase coexistence region, at least for the two dimensional Ising
model with periodic or free boundary condition, the SG becomes exponentially small in the side
of the box [CCM]. The diffusive scaling L? for the relaxation time of Kawasaki dynamics, proved
in [LY] and [Y], is a key stone in the study of the hydrodynamical limit of the Ising model [VY]
and its proof required the development of a rather sophisticated technology which posed new, non
trivial, problems on the theory of canonical Gibbs measures and their accurate comparison with
the grand canonical ones (see also [BZ1], [BZ2], [CM1], [BCO], and [CZ]).

Unfortunately the proofs given in [LY] and particularly in [Y] are quite difficult to study and the
application of their techniques to other related problems, for example lattice gases with random
interaction in the so—called Griffiths phase, seems to require a considerable effort. With this mo-
tivation in [CM2] and [CMR] the results of [LY] and [Y] are reproved by different means in a way
that looks, at least to us, intuitevely more appealing and natural to apply in other contexts. In
particular in [CM3], the techniques developed in [CM2] as been applied to the bond dilute Ising
model below the percolation threshold. Anyway we must note that our proofs would never found
their way without some very nice ideas we have found in [LY] and [Y].

In this note we illustrate in simple terms the strategy behind the proofs in [CM2] and [CMR].
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2. Notation and results

In this section we first define the setting in which we will work (spin model, Gibbs measure,
dynamics), then we define the basic mixing condition on the Gibbs measure and subsequently state

the main theorem on this work.

2.1 THE LATTICE AND THE CONFIGURATION SPACE

The lattice. We consider the d dimensional lattice Z¢ with sites = (z1,...,74) and norms

d
— PP p>1 and = = ma | -
| (;_1 |zi[?) P> n |z] = |2]oo jeuax |3

The associated distance functions are denoted by d,(-,-) and d(-,-). By Q1 we denote the cube of
all z = (z1,...,24) € Z%such that z; € {0,...,L—1}. If z € Z% Q. (x) stands for Qr +z. We also
let By, be the ball (w.r.t d(-,-)) of radius L centered at the origin, i.e. By = Qar4+1((—L,...,—L)).
If A is a finite subset of Z¢ we write A CC Z?. The cardinality of A is denoted by |A|. F is the set
of all nonempty finite subsets of Z%. [z,y] is the closed segment with endpoints z and 5. The edges
of Z¢ are those e = [x,9y] with z,y nearest neighbors in Z%. We denote by £, the set of all edges
such that both endpoints are in A.

Given A C Z¢ we define its interior and exterior boundaries as respectively, 0~ A = {z € A :
d(z,A°) <1} and 9TA = {z € A°: d(z,A) < 1}, and more generally we define the boundaries of
width n as O,A = {z € A: d(z,A°) <n}, OFA ={z € A°: d(z,A) < n}.

Regular sets. A finite subset A of Z? is said to be [-reqular, | € Z, if A is the union of a finite
number of cubes Q;(z*) where z* € [Z?. We denote the class of all such sets by ;. Notice that any
set is 1-regular i.e. F;—; =F.

The configuration space. Our configuration space is 0 = SZd, where S = {0,1}, or Qy = SV for
some V C Z% The single spin space S is endowed with the discrete topology and Q with the
corresponding product topology. Given o € Q and A C Z? we denote by o, the natural projection
over Q. If U, V are disjoint, oy 7y is the configuration on U UV which is equal to ¢ on U and 7
on V. Given V € F we define the number of particles Ny : Q — N as

Ny (o) = 3 ola) (2.1)

while the density is given by py = Ny /|V|.

If f is a function on , A; denotes the smallest subset of Z¢ such that f(c) depends only
on oa,. fis called local if Ay is finite. The [-support of a function Agcl), l € Z, is the smallest
l[-regular set V" such that Ay C V. F, stands for the o —algebra generated by the set of projections
{mz}, z € A, from Q to {0,1}, where 7, : 0 = o(z). When A = Z% we set F = Fz4 and F coincides
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with the Borel o—algebra on © with respect to the topology introduced above. By || f||co we mean
the supremum norm of f.

2.2 THE INTERACTION AND THE GIBBS MEASURES.

Definition 2.1. A finite range, translation—invariant potential {®}aer is a collection of real,
local functions on Q with the following properties

(1) ®p = ®Ppy, for all A € F and all z € Z.¢

(2) For each A the support of ®, coincides with A

(3) There exists r > 0 such that ®, = 0 if diam A > r. r is called the range of the interaction.

(4) 1@l := X a0 [Palle < 00

Given a collection of real numbers A = {\; }, ¢z« and a potential ®, we define ®2 as

ron_ J(h+Xp)o(x) if A={z}
Pilo) = {{)A(o) otherwise

where h is the chemical potential (one body part of ®).
Given a potential ® (®2) and V € F, we define the Hamiltonian H:s : Q — R by

For 0,7 € Q we also let H{f’T(a) = HE(oyTve) and 7 is called the boundary condition. For each
V €T, 7 € Q the (finite volume) conditional Gibbs measure on (2, F), are given by

d/J/@,T

(0) = { (Zy") " exp[—H " (0)] ifo(z) =7(z) forallz € V° (2.9)

0 otherwise.

where Z{{,)’T is the proper normalization factor called partition function. Notice that in (2.2) we have
absorbed in the interaction ® the usual inverse temperature factor £ in front of the Hamiltonian.
In most notation we will drop the superscript @ if that does not generate confusion. Moreover,
whenever we consider ®2 instead of ®, we will write H‘T,’A for the finite volume Hamiltonian and
,u(,iA for the corresponding finite volume Gibbs measure.

Given a measurable bounded function f on €2, uy (f) denotes the function o — u$(f) where
pi-(f) is just the average of f w.r.t. xf.. Analogously, for any event X, i, (X) := pui (Ix), where
Ix is the characteristic function of X. ui,(f,g¢) stands for the covariance or truncated correlation
(with respect to u{,) of f and g. The set of measures (2.2) satisfies the DLR compatibility conditions

pilpy (X)) =pi(X) VXeF VVcAcczd (2.3)
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Definition 2.2. A probability measure p on (2, F) is called a Gibbs measure for ® if
pu(py (X)) = p(X) VX eF VV eF (2.4)
see e.g. [G].
We introduce the canonical Gibbs measures on (2, F) defined as
Viw =i INy =N) N e{0,1,... A} (2.5)
2.3 THE DYNAMICS
We consider the so—called Kawasaki dynamics in which particles (spins with o(z) = +1) can jump
to nearest neighbor empty (o(z) = 0) locations, keeping the total number of particles constant.
For o € Q, let 0™ be the configuration obtained from o by exchanging the spins o(z) and o(y).
Let t,,0 = o® and define (T,,f)(c) = f(tsyo). The stochastic dynamics we want to study is
determined by the Markov generators Ly, V CC Z¢, defined by
(Lvf)@)= D (o) (Vayf)lo) 0€Q, f: QR (26)
[Iyy]ESV
where V,, = Ty, — I. The nonnegative real quantities c,,(c) are the transition rates for the
process.
The general assumptions on the transition rates are
(1) Finite range. c4yy(0) depends only on the spins o(z) with d({z,y},z) <r
(2) Detailed balance. For all o € Q and [z,y] € Eq
exp [~ H{z}(0)] ey (0) = exp[— H{z 3 (0™)] ey (™) (2.7)
(3) Positivity and boundedness. There exist positive real numbers ¢, () car () such that
Cm < Cay(0) < cm Ve,y e 24,0 € Q. (2.8)

We denote by Li, y the operator Ly acting on L*(Q,v7, y) (this amounts to choosing 7 as the
boundary condition and N as the number of particles). Assumptions (1), (2) and (3) guarantee
that there exists a unique Markov process whose generator is L7, y, and whose semigroup we denote
by (T, )i>0- L7, y is a bounded operator on L?(Q, v, ;) and v, v is its unique invariant measure.
Moreover v{; v is reversible with respect to the process, i.e. Lj, y is self-adjoint on L?(Q, Vi N )-

A first fundamental quantity associated with the dynamics of a reversible system is the spectral
gap of the generator, i.e.

gap(L7, ) = inf spec (— L, [ T1)
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where T is the subspace of L?(, i n) orthogonal to the constant functions. We let £ to be the
Dirichlet form associated with the generator Li; v,

T T 1 T
EV,N(fa f) = (fa _LV,Nf>L2(Q,u“’/.’N) = 5 Z Vy,n [Cry (vmyf)z] (29)
[z,yl€eEv
and Vary, n the variance relative to the probability measure vi;n- Then the gap can also be

characterized as

Eyn (S f)
9v N = gap(Li, y) = inf —_—. (2.10)
v v fer? @y ), Vary n(f)
Var"'/)N (£)#0
A second relevant quantity is the logarithmic Sobolev constant c{; 5 defined as the smallest constant

¢ such that
T C T
Enty, v (f?) < 5 EVn(f f) (2.11)

for all non negative functions f with v{ x(f?) = 1, where EntJ, x(f?) = vi y(f?In f?). For
the connection between spectral gap, logarithmic Sobolev constant and speed of relaxation to
equilibrium we refer the reader to [DiSa].

2.4 DEFINITION OF THE MIXING CONDITION AND MAIN RESULTS.

In order to formulate our basic mixing condition on the two (or more) body part of the interaction
® we fix positive numbers C,m,l with [ € N. We then say that a collection of real numbers
A= { A\, }aeze is I-regular if, for all i € Z% and all z € Q;(x?), z° € IZ7, X\, = Ay

Definition of property USMT(C,m,l). For any l-regular set A, any [-regular \, any boundary
condition T and any pair of bounded local functions f and g

2 (fa9)l < Csup 2 (f) swp ™ (g Y Y el

1\\13(0
d ved, AV yeo, Al
provided that d(AY, AY) > 1.

Remark. The expert reader may have noticed that our condition is different, and in principle
stronger, than the one used in [LY] and [Y] because we require the exponential decay of covariances
uniformly in the chemical potential even when the latter varies over the atoms of a partition of A
while in the above mentioned papers the chemical potential is assumed to be constant over A. In two
dimension, followig the ideas of [MOS], one can prove [BCO] that the two conditions are equivalent.
In higher dimension one can construct examples in which a kind of phase transition occurs along
the interface between two subsets with different chemical potential, even if for all I-regular sets A
the covariances decay exponentially fast uniformly w.r.t. constant chemical potentials.

We are finally in a position to formulate the results on the SG and on the LSC of the generator of

Kawasaki dynamics in a finite volume

21/dicembre/2000 [6] 2.5



main

main.lb

main.lbs

local

poinc

Theorem 2.3. Assume that there exist positive numbers C,m,l, with [ € N, such that property
USMT(C,m,l) holds. Then there exist positive constants c1,cs such that

L7 < gap(Ly, v) < 617 (212)

and
al? <, v < el? (2.13)

for all boundary condition 7 and particles number N.

A nice consequence of the estimate (2.12) is an inverse polynomial bound on the time decay to
equilibrium in L? (dyf\’ ) of local observables (see [CM2] for the proof).

Corollary 2.4. Assume that there exist positive numbers C,m,l, with [ € N, such that property
USMT(C,m,l) holds. Then for any e € (0,1) and any local function f with 0 € Ay there exists a
positive constant C} . such that for any integer L multiple of | and any integer N € {1,...,(2L)%}

f 1
N P

ta—e

WhereA::BLanda:%indzl,azlford>1.

Remark. The expected decay is t_§, exactly as for the simple exclusion, i.e. § = 0 case, has been
proved in [BZ2], at least for functions f that have non zero grand canonical covariance with the
number of particles. We refer to [JLQY] where a very sharp result of this kind for the zero-range
process is obtained. Notice that the power a that appears in our bound coincides with % in one

and two dimensions but not in higher dimensions.

2.5 THE MAIN IDEAS OF THE PROOF.

We confine ourselves with the proof of the upper bound of the inverse of the spectral gap (ISG) and
of the logarithmic Sobolev constant (LSC) since the lower bounds are easily proved by plugging a
suitable test function (a slowly varying function of the local density) inside the definition of the
spectral gap (2.10) or inside the logarithmic Sobolev inequality (2.11).

To illustrate better our strategy we discuss the two proofs in parallel even if, to obtain the upper
bound of the logarithmic Sobolev inequality, we use the Poincaré bound

Var(f) < kL?E(f, f) (2.14)

For simplicity we carry out the discussion in two dimensions but the extension to higher dimensions
is straightforward (see [CM2] or [CMR]). The proof is based on a recursive analysis, introduced
in [M] for Glauber dynamics, on the behavior of the ISG and of the LSC when the linear size
of the volume under consideration is doubled. The method works as follows. Let g(L)~! and
¢(L) the largest (over the boundary conditions and number of particles) among the ISG and LSC
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respectively, in a square of side L with given boundary conditions and fixed number of particles.

We look for a recursive inequality of the form
g(2L)™t < Sg(L)™' + kL

(2.15)

c(2L) < Ze¢(L) +kL?

N W N W

where

g(L) = %19 gZ)L’N and cs(L) = r}rlvaTx CE)L,N

Inequality (2.15), upon iteration, prove the bounds g(L)~! < k¥'L? and ¢(L) < k'L>.

For this purpose let A be a square of side 2L and divide it into two (almost) halves Ay and Lo
in such a way that the overlap between A; and A, is a thin layer of width dL, § < 1. Although
the truncated correlations in the grand canonical Gibbs measure decay exponentially fast, due to
the conservation of the number of particles which introduces a global constraint in the system, the
dynamics does not separate into two weakly dependent components as happens in the case of the
non conservative Glauber dynamics (see e.g. [M] or more recently [Ce]). Note that even at infinite
temperature (8 = 0) the dynamics does not factorize. More precisely, the relaxation time in a
volume with linear size 2L is related to the relaxation time of the modified dynamics in which the
two rectangles do not exchange particles but feel each other only through the transition rates and
the relaxation time of the process of exchange of particles between the two halves of QQor. Such a
simple observation suggests to try to separate the two effects which are, a priori, strongly interlaced
and to analyze them separately.

Denote by v the canonical Gibbs measure vy n and define the two o-algebras Fy := Fpc and Fp 1=
Fag namely the o-algebras generated by the lattice gas variables outside A; and Aj respectively.
Let ng and n; be the random varaiables counting the number of particles in A; N Ay and A\ As
respectively and let Var, (f | no,n1) and Ent, (f? | ng,n1) be the variance of f and the entropy of f2
w.r.t. the canonical measure conditioned on ng, ni. Then, using the formula of the “conditional

variance” and of the “conditional entropy”, we can write

Var, (f) = v(Var,(f | no,n1)) + Var, (v(f | no,n1)) (2.16)
Ent, (f?) = v(Ent, (f> | no,m1) + Ent,, (v(f> | no,m1)) (2.17)

The second term in (2.16) and (2.17) can in turn be expanded as

Var, (v(f | ng,n1)) = v(Var, (v(f | no,n1) | no)) + Var, (v(f | no)) (2.18)
Ent, (v(f | no,n1)) = v(Ent, (v(f* | ng,n1) | no)) + Ent, (v(f? | ng)) (2.19)

Bound of the first terms in the r.h.s. of (2.16) and (2.17). If the two o-algebras F; and F» were
weakly dependent in the sense that for some € = ¢(L) < 1

v2(9) = v(9)lleo < €llglloo Vg € L®(Q, Fag,v) (2.20)
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where v; :=v(- | F;), i = 1,2, then it follows that (almost factorization of the variance)
Var, (f) < (1 +€) v(Var,, (f) + Var, (f)) f € L*(v) (2.21)

while if
(g [ F2) = v(9)llee < €v(g) (2.22)

for all non—negative functions g measurable w.r.t. F; then it follows that (almost factorization of
the entropy)
Ent, (f?) < (1 + €) v(Ent,, (f?) + Ent,, (%)) (2.23)

Inequalities (2.20) and (2.22) mean that there is a weak dependence on the boundary conditions,
for more details on (2.21) see [M], [CM2] and more recently [BCC] while for more details on (2.23)
see [Ce]. Notice that in the first term in the r.h.s of (2.16) and of (2.17) we need to bound the
variance and the entropy with respect to a multi canonical measure in which the number of particles
in each atom of the partition {R; := A\ A1, Ry := Ay N Ay, Rz := A\ A2} is frozen. As shown in
[CM1] such a new measure has better chances to satisfy the “weak dependence” conditions (2.20)
and (2.22) than the original measure v precisely because of the extra conservation laws. The first
step is thus to prove, using property USMT, that the multi canonical measure v(- | ng,n) satisfies
conditions (2.20) and (2.22) so that (2.21) and (2.23) for this measure hold see [CM2] and [CMR].
Then we may bound the first term in the r.h.s of (2.16) and of (2.17) by the largest among the
ISG and of LSC respectively of each of the three sets times the Dirichlet form of the Kawasaki
dynamics. Notice that for each of the three sets the linear dimension in one direction has been (at
least) almost halved. Thus the first of the r.h.s. of (2.16) can be bounded by

(1 +¢) max(gg, x) ™" E(f, f) (2.24)

YA RYA

while the first term on the r.h.s. of (2.17) by

(1+¢) maxcp, x E(f, f) (2.25)
7,N,i ’

It is thus clear that the these terms are responsible for the first terms in the r.h.s. of (2.15).

We note here, for the expert reader, that the importance in the case of the entropy of such an

inequality resides in the fact that one is spared from the cumbersome computation of quantities
like [V, v(f2)7]2.

Bound of the second term on the r.h.s. of (2.16) and (2.17). Let us examine the terms in (2.18); the
necessary steps are almost identical for all of them and therefore, for shortness, we treat only the
second one. We have to bound the variance with respect to the distribution of a one dimensional
discrete random variable, the number of particles ny. Although such a distribution is difficult
to compute exactly, one has a sufficiently good control to be able to establish, a sharp Poincaré
inequality with respect to the Dirichlet form of a reversible Metropolis birth and death process

d

Var, (g(no)) < k(N) V((d—nog)z) (2.26)
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for any g depending only on ny. Following the same reasoning for the second term in (2.19) we
have to bound the entropy w.r.t. to the distribution of ng, one can establish a sharp logarithmic
Sobolev inequality with respect to the Dirichlet form of a reversible Metropolis birth and death

process
Bty (6" (no) < KN v((-0)?)  (2:27)
o

for any g depending only on the number of particles ng and ﬁ is the discrete derivative. Physically
the birth and death process corresponds to the creation of an extra particle e.g. in R; and the
contemporary annihilation of a particle in e.g. R that is to the exchange of particles among the
three sets. Since each particle moves , essentially, by a sort of perturbed random walk, and on
average it has to travel a distance O(L), it is not surprising that these terms are responsible for the
L? terms in (2.15). To estimate k(N) = O(N) in the case of ISG Cheeger’s constant is used (see
[LS]), while in the case of LSC Hardy inequality (see [Mi] and [An]); on the other hand the bound of
the discrete gradient of g = v(f | ng) in the case of ISG or v(f? |ng) in the case of LSC is technical:
USMT, equivalence of ensembles, some ideas of [LY] and [Y] and concentration inequalities (see
[CMRY]) in the particular case of LSC are used. In particular (2.26) can be bounded by

Ce L? EV(faf) +e€ Var,,(f)

and (2.27) by
Ce Var,(f?) + Cc L? E,(f, f) + € Ent, (f?)

Putting together the bounds above we have for the variance

Var(f) < [(1+€) max(gg, x)™" + CL?]E(f, f)

IEAR]

and, by the Poincaré bound (2.14), for the entropy

Ent(fz) < [(1+e€) max cp, N + CELz]E(f,f)

T,N,i

Once such a step has been carried out it is not too difficult to complete the scale reduction from
2L to L by one more iteration and obtain the recursive bounds (2.15).

3. Open problems

A natural problem is to estimate the relaxation time to equilibrium in the low temperature end low
density part of the one phase region. In this region USMT holds but not uniformly in the chemical
potential if it varies over the atoms of a partition. As such uniformity is one of the main ingredients
of the above proofs, the techniques above discussed cannot be easily extended to this case.
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