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1. Introdution

In the last years the problem of omputing the relaxation time of stohasti Monte Carlo algorithm

for lassial spin models on Z

d

has been intensively studied. We will fous our attention on lat-

tie gases with Kawasaki dynamis. The lattie gases an be desribed as follows. Let Q

L

be a

ube of width L in Z

d

. At eah lattie site of Q

L

we assoiate an oupation number of partile

�(x) 2 f0; 1g. The equilibrium states are desribed by the Gibbs measures on Q

L

, haraterized

by a Hamiltonian and a boundary ondition. There are two ensembles of interest the grand anon-

ial one with temperature and hemial potential as external �xed variables and the anonial one

where the hemial potential is substituted by the number of partiles. In Kawasaki dynamis

eah partile performs a random walk with the following properties. Jumps to oupied sites are

suppressed so that there is at most one partile per site; no reation or annihilation of partiles is

allowed so that the total number of partiles is onserved; jump rates are determined by nearby

partiles aording to some �xed loal rules suh that the anonial Gibbs measure is reversible.

The models just desribed are interating random walk and have a natural interpretation as dis-

retizations of interating Brownian motions. The limiting ase of zero interation is known as

symmetri simple exlusion proess, where the dynamis is given by the symmetri random walk

and the invariant measures are simply a produt of Bernoulli measures.

It is well known that the fundamental ingredients to study the relaxation time are the spetral gap

(SG) of the generator and the logarithmi Sobolev onstant (LSC). By the SG one obtains the time

of onvergene to equilibrium in L

2

norm (with respet to the anonial Gibbs measure), while the

LSC allows to onvert the L

2

onvergene into a stronger statement.

The fundamental results of [LY℄ and [Y℄ on SG and LSC state that, under a suitable mixing ondi-

tion on the grand anonial Gibbs measure, the inverse of the SG and the LSC in a box of side L

sale like L

2

. The mixing ondition for the two dimensional Ising model holds for any temperature

above the ritial one. While in the phase oexistene region, at least for the two dimensional Ising

model with periodi or free boundary ondition, the SG beomes exponentially small in the side

of the box [CCM℄. The di�usive saling L

2

for the relaxation time of Kawasaki dynamis, proved

in [LY℄ and [Y℄, is a key stone in the study of the hydrodynamial limit of the Ising model [VY℄

and its proof required the development of a rather sophistiated tehnology whih posed new, non

trivial, problems on the theory of anonial Gibbs measures and their aurate omparison with

the grand anonial ones (see also [BZ1℄, [BZ2℄, [CM1℄, [BCO℄, and [CZ℄).

Unfortunately the proofs given in [LY℄ and partiularly in [Y℄ are quite diÆult to study and the

appliation of their tehniques to other related problems, for example lattie gases with random

interation in the so{alled GriÆths phase, seems to require a onsiderable e�ort. With this mo-

tivation in [CM2℄ and [CMR℄ the results of [LY℄ and [Y℄ are reproved by di�erent means in a way

that looks, at least to us, intuitevely more appealing and natural to apply in other ontexts. In

partiular in [CM3℄, the tehniques developed in [CM2℄ as been applied to the bond dilute Ising

model below the perolation threshold. Anyway we must note that our proofs would never found

their way without some very nie ideas we have found in [LY℄ and [Y℄.

In this note we illustrate in simple terms the strategy behind the proofs in [CM2℄ and [CMR℄.
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2. Notation and results

In this setion we �rst de�ne the setting in whih we will work (spin model, Gibbs measure,

dynamis), then we de�ne the basi mixing ondition on the Gibbs measure and subsequently state

the main theorem on this work.

2.1 The lattie and the onfiguration spae

The lattie. We onsider the d dimensional lattie Z

d

with sites x = (x

1

; : : : ; x

d

) and norms

jxj

p

= (

d

X

i=1

jx

i

j

p

)

1=p

p � 1 and jxj = jxj

1

= max

i2f1;:::;dg

jx

i

j :

The assoiated distane funtions are denoted by d

p

(�; �) and d(�; �). By Q

L

we denote the ube of

all x = (x

1

; : : : ; x

d

) 2 Z

d

suh that x

i

2 f0; : : : ; L�1g. If x 2 Z

d

, Q

L

(x) stands for Q

L

+x. We also

let B

L

be the ball (w.r.t d(�; �)) of radius L entered at the origin, i.e. B

L

= Q

2L+1

((�L; : : : ;�L)).

If � is a �nite subset of Z

d

we write � �� Z

d

. The ardinality of � is denoted by j�j. F is the set

of all nonempty �nite subsets of Z

d

. [x; y℄ is the losed segment with endpoints x and y. The edges

of Z

d

are those e = [x; y℄ with x; y nearest neighbors in Z

d

. We denote by E

�

the set of all edges

suh that both endpoints are in �.

Given � � Z

d

we de�ne its interior and exterior boundaries as respetively, �

�

� = fx 2 � :

d(x;�



) � 1g and �

+

� = fx 2 �



: d(x;�) � 1g, and more generally we de�ne the boundaries of

width n as �

n

� = fx 2 � : d(x;�



) � ng, �

+

n

� = fx 2 �



: d(x;�) � ng.

Regular sets. A �nite subset � of Z

d

is said to be l{regular, l 2 Z

+

, if � is the union of a �nite

number of ubes Q

l

(x

i

) where x

i

2 lZ

d

. We denote the lass of all suh sets by F

l

. Notie that any

set is 1{regular i.e. F

l=1

= F.

The on�guration spae. Our on�guration spae is 
 = S

Z

d

, where S = f0; 1g, or 


V

= S

V

for

some V � Z

d

. The single spin spae S is endowed with the disrete topology and 
 with the

orresponding produt topology. Given � 2 
 and � � Z

d

we denote by �

�

the natural projetion

over 


�

. If U , V are disjoint, �

U

�

V

is the on�guration on U [ V whih is equal to � on U and �

on V . Given V 2 F we de�ne the number of partiles N

V

: 
 7! N as

N

V

(�) =

X

x2V

�(x) (2:1)

mag

while the density is given by �

V

= N

V

=jV j.

If f is a funtion on 
, �

f

denotes the smallest subset of Z

d

suh that f(�) depends only

on �

�

f

. f is alled loal if �

f

is �nite. The l{support of a funtion �

(l)

f

, l 2 Z

+

, is the smallest

l{regular set V suh that �

f

� V . F

�

stands for the ��algebra generated by the set of projetions

f�

x

g, x 2 �, from 
 to f0; 1g, where �

x

: � 7! �(x). When � = Z

d

we set F = F

Z

d and F oinides
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with the Borel ��algebra on 
 with respet to the topology introdued above. By kfk

1

we mean

the supremum norm of f .

2.2 The interation and the Gibbs Measures.

potential De�nition 2.1. A �nite range, translation{invariant potential f�

�

g

�2F

is a olletion of real,

loal funtions on 
 with the following properties

(1) �

�

= �

�+x

for all � 2 F and all x 2 Z

d

(2) For eah � the support of �

�

oinides with �

(3) There exists r > 0 suh that �

�

= 0 if diam� > r. r is alled the range of the interation.

(4) k�k :=

P

�30

k�

�

k

1

< 1

Given a olletion of real numbers � = f�

x

g

x2Z

d and a potential �, we de�ne �

�

as

�

�

�

(�) =

�

(h+ �

x

)�(x) if � = fxg

�

�

(�) otherwise

where h is the hemial potential (one body part of �).

Given a potential � (�

�

) and V 2 F, we de�ne the Hamiltonian H

�

V

: 
 7! R by

H

�

V

(�) = �

X

�:�\V 6=;

�

�

(�)

For �; � 2 
 we also let H

�;�

V

(�) = H

�

V

(�

V

�

V



) and � is alled the boundary ondition. For eah

V 2 F, � 2 
 the (�nite volume) onditional Gibbs measure on (
;F), are given by

d�

�;�

V

(�) =

(

�

Z

�;�

V

�

�1

exp[�H

�;�

V

(�) ℄ if �(x) = �(x) for all x 2 V



0 otherwise.

(2:2)

finvolmea

where Z

�;�

V

is the proper normalization fator alled partition funtion. Notie that in (2.2) we have

absorbed in the interation � the usual inverse temperature fator � in front of the Hamiltonian.

In most notation we will drop the supersript � if that does not generate onfusion. Moreover,

whenever we onsider �

�

instead of �, we will write H

�;�

V

for the �nite volume Hamiltonian and

�

�;�

V

for the orresponding �nite volume Gibbs measure.

Given a measurable bounded funtion f on 
, �

V

(f) denotes the funtion � 7! �

�

V

(f) where

�

�

V

(f) is just the average of f w.r.t. �

�

V

. Analogously, for any event X, �

�

V

(X) := �

�

V

(1I

X

), where

1I

X

is the harateristi funtion of X. �

�

V

(f; g) stands for the ovariane or trunated orrelation

(with respet to �

�

V

) of f and g. The set of measures (2.2) satis�es the DLR ompatibility onditions

�

�

�

(�

V

(X)) = �

�

�

(X) 8X 2 F 8V � � �� Z

d

(2:3)

DLR
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Gibbs De�nition 2.2. A probability measure � on (
;F) is alled a Gibbs measure for � if

�(�

V

(X)) = �(X) 8X 2 F 8V 2 F (2:4)

DLRi

see e.g. [G℄.

We introdue the anonial Gibbs measures on (
;F) de�ned as

�

�

�;N

= �

�

�

(� jN

�

= N) N 2 f0; 1; : : : ; j�jg (2:5)

ano

2.3 The dynamis

We onsider the so{alled Kawasaki dynamis in whih partiles (spins with �(x) = +1) an jump

to nearest neighbor empty (�(x) = 0) loations, keeping the total number of partiles onstant.

For � 2 
, let �

xy

be the on�guration obtained from � by exhanging the spins �(x) and �(y).

Let t

xy

� = �

xy

and de�ne (T

xy

f)(�) = f(t

xy

�). The stohasti dynamis we want to study is

determined by the Markov generators L

V

, V �� Z

d

, de�ned by

(L

V

f)(�) =

X

[x;y℄2E

V



xy

(�) (r

xy

f)(�) � 2 
 ; f : 
 7! R (2:6)

gnrt

where r

xy

= T

xy

� 1I. The nonnegative real quantities 

xy

(�) are the transition rates for the

proess.

The general assumptions on the transition rates are

(1) Finite range. 

xy

(�) depends only on the spins �(z) with d(fx; yg; z) � r

(2) Detailed balane. For all � 2 
 and [x; y℄ 2 E

Z

d

exp

�

�H

fx;yg

(�)

�



xy

(�) = exp

�

�H

fx;yg

(�

xy

)

�



xy

(�

xy

) (2:7)

dbal

(3) Positivity and boundedness. There exist positive real numbers 

m

(�) 

M

(�) suh that



m

� 

xy

(�) � 

M

8x; y 2 Z

d

; � 2 
 : (2:8)

bounded

We denote by L

�

V;N

the operator L

V

ating on L

2

(
; �

�

V;N

) (this amounts to hoosing � as the

boundary ondition and N as the number of partiles). Assumptions (1), (2) and (3) guarantee

that there exists a unique Markov proess whose generator is L

�

V;N

, and whose semigroup we denote

by (T

V;N;�

t

)

t�0

. L

�

V;N

is a bounded operator on L

2

(
; �

�

V;N

) and �

�

V;N

is its unique invariant measure.

Moreover �

�

V;N

is reversible with respet to the proess, i.e. L

�

V;N

is self{adjoint on L

2

(
; �

�

V;N

).

A �rst fundamental quantity assoiated with the dynamis of a reversible system is the spetral

gap of the generator, i.e.

gap(L

�

V;N

) = inf spe (�L

�

V;N

� 1I

?

)
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where 1I

?

is the subspae of L

2

(
; �

�

V;N

) orthogonal to the onstant funtions. We let E to be the

Dirihlet form assoiated with the generator L

�

V;N

,

E

�

V;N

(f; f) = hf; �L

�

V;N

fi

L

2

(
;�

�

V;N

)

=

1

2

X

[x;y℄2E

V

�

�

V;N

�



xy

(r

xy

f)

2

�

(2:9)

dir

and Var

�

V;N

the variane relative to the probability measure �

�

V;N

. Then the gap an also be

haraterized as

g

�

V;N

:= gap(L

�

V;N

) = inf

f2L

2

(
;�

�

V;N

);

Var

�

V;N

(f) 6=0

E

�

V;N

(f; f)

Var

�

V;N

(f)

: (2:10)

gap

A seond relevant quantity is the logarithmi Sobolev onstant 

�

V;N

de�ned as the smallest onstant

 suh that

Ent

�

V;N

(f

2

) �



2

E

�

V;N

(f; f) (2:11)

sob

for all non negative funtions f with �

�

V;N

(f

2

) = 1, where Ent

�

V;N

(f

2

) = �

�

V;N

(f

2

ln f

2

). For

the onnetion between spetral gap, logarithmi Sobolev onstant and speed of relaxation to

equilibrium we refer the reader to [DiSa℄.

2.4 Definition of the mixing ondition and main results.

In order to formulate our basi mixing ondition on the two (or more) body part of the interation

� we �x positive numbers C;m; l with l 2 N. We then say that a olletion of real numbers

� := f�

x

g

x2Z

d is l{regular if, for all i 2 Z

d

and all x 2 Q

l

(x

i

), x

i

2 lZ

d

, �

x

= �

x

i
.

De�nition of property USMT (C;m; l). For any l{regular set �, any l{regular �, any boundary

ondition � and any pair of bounded loal funtions f and g

j�

�;�

�

(f; g)j � C sup

�

�

�;�

�

(jf j) sup

�

�

�;�

�n�

(l)

f

(jgj)

X

x2�

�

r

�

(l)

f

X

y2�

�

r

�

(l)

g

e

�mjx�yj

provided that d(�

(l)

f

;�

(l)

g

) � l.

Remark. The expert reader may have notied that our ondition is di�erent, and in priniple

stronger, than the one used in [LY℄ and [Y℄ beause we require the exponential deay of ovarianes

uniformly in the hemial potential even when the latter varies over the atoms of a partition of �

while in the above mentioned papers the hemial potential is assumed to be onstant over �. In two

dimension, followig the ideas of [MOS℄, one an prove [BCO℄ that the two onditions are equivalent.

In higher dimension one an onstrut examples in whih a kind of phase transition ours along

the interfae between two subsets with di�erent hemial potential, even if for all l{regular sets �

the ovarianes deay exponentially fast uniformly w.r.t. onstant hemial potentials.

We are �nally in a position to formulate the results on the SG and on the LSC of the generator of

Kawasaki dynamis in a �nite volume
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main Theorem 2.3. Assume that there exist positive numbers C;m; l, with l 2 N, suh that property

USMT (C;m; l) holds. Then there exist positive onstants 

1

; 

2

suh that



1

L

�2

� gap(L

�

Q

L

;N

) � 

2

L

�2

(2:12)

main:lb

and



1

L

2

� 

�

Q

L

;N

� 

2

L

2

(2:13)

main:lbs

for all boundary ondition � and partiles number N .

A nie onsequene of the estimate (2.12) is an inverse polynomial bound on the time deay to

equilibrium in L

2

�

d�

�

�;N

�

of loal observables (see [CM2℄ for the proof).

loal Corollary 2.4. Assume that there exist positive numbers C;m; l, with l 2 N, suh that property

USMT (C;m; l) holds. Then for any � 2 (0; 1) and any loal funtion f with 0 2 �

f

there exists a

positive onstant C

f;�

suh that for any integer L multiple of l and any integer N 2 f1; : : : ; (2L)

d

g

Var

�

�;N

�

e

tL

�

�;N

f

�

� C

f;�

1

t

���

where � := B

L

and � =

1

2

in d = 1, � = 1 for d > 1.

Remark. The expeted deay is t

�

d

2

, exatly as for the simple exlusion, i.e. � = 0 ase, has been

proved in [BZ2℄, at least for funtions f that have non zero grand anonial ovariane with the

number of partiles. We refer to [JLQY℄ where a very sharp result of this kind for the zero{range

proess is obtained. Notie that the power � that appears in our bound oinides with

d

2

in one

and two dimensions but not in higher dimensions.

2.5 The main ideas of the proof.

We on�ne ourselves with the proof of the upper bound of the inverse of the spetral gap (ISG) and

of the logarithmi Sobolev onstant (LSC) sine the lower bounds are easily proved by plugging a

suitable test funtion (a slowly varying funtion of the loal density) inside the de�nition of the

spetral gap (2.10) or inside the logarithmi Sobolev inequality (2.11).

To illustrate better our strategy we disuss the two proofs in parallel even if, to obtain the upper

bound of the logarithmi Sobolev inequality, we use the Poinar�e bound

Var(f) � k L

2

E(f; f) (2:14)

poin

For simpliity we arry out the disussion in two dimensions but the extension to higher dimensions

is straightforward (see [CM2℄ or [CMR℄). The proof is based on a reursive analysis, introdued

in [M℄ for Glauber dynamis, on the behavior of the ISG and of the LSC when the linear size

of the volume under onsideration is doubled. The method works as follows. Let g(L)

�1

and

(L) the largest (over the boundary onditions and number of partiles) among the ISG and LSC
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respetively, in a square of side L with given boundary onditions and �xed number of partiles.

We look for a reursive inequality of the form

g(2L)

�1

�

3

2

g(L)

�1

+ kL

2

(2L) �

3

2

(L) + kL

2

(2:15)

rio

where

g(L) = min

N;�

g

�

Q

L

;N

and 

s

(L) = max

N;�



�

Q

L

;N

Inequality (2.15), upon iteration, prove the bounds g(L)

�1

� k

0

L

2

and (L) � k

0

L

2

.

For this purpose let � be a square of side 2L and divide it into two (almost) halves �

1

and L

2

in suh a way that the overlap between �

1

and �

2

is a thin layer of width ÆL, Æ � 1. Although

the trunated orrelations in the grand anonial Gibbs measure deay exponentially fast, due to

the onservation of the number of partiles whih introdues a global onstraint in the system, the

dynamis does not separate into two weakly dependent omponents as happens in the ase of the

non onservative Glauber dynamis (see e.g. [M℄ or more reently [Ce℄). Note that even at in�nite

temperature (� = 0) the dynamis does not fatorize. More preisely, the relaxation time in a

volume with linear size 2L is related to the relaxation time of the modi�ed dynamis in whih the

two retangles do not exhange partiles but feel eah other only through the transition rates and

the relaxation time of the proess of exhange of partiles between the two halves of Q

2L

. Suh a

simple observation suggests to try to separate the two e�ets whih are, a priori, strongly interlaed

and to analyze them separately.

Denote by � the anonial Gibbs measure �

�

�;N

and de�ne the two �-algebras F

1

:= F

�



1

and F

2

:=

F

�



2

namely the �-algebras generated by the lattie gas variables outside �

1

and �

2

respetively.

Let n

0

and n

1

be the random varaiables ounting the number of partiles in �

1

\ �

2

and � n �

2

respetively and let Var

�

(f jn

0

; n

1

) and Ent

�

(f

2

jn

0

; n

1

) be the variane of f and the entropy of f

2

w.r.t. the anonial measure onditioned on n

0

; n

1

. Then, using the formula of the \onditional

variane" and of the \onditional entropy", we an write

Var

�

(f) = �(Var

�

(f jn

0

; n

1

)) + Var

�

(�(f jn

0

; n

1

)) (2:16)

var

Ent

�

(f

2

) = �(Ent

�

(f

2

jn

0

; n

1

) + Ent

�

(�(f

2

jn

0

; n

1

)) (2:17)

ent

The seond term in (2.16) and (2.17) an in turn be expanded as

Var

�

(�(f jn

0

; n

1

)) = �(Var

�

(�(f jn

0

; n

1

) jn

0

)) + Var

�

(�(f jn

0

)) (2:18)

varb

Ent

�

(�(f jn

0

; n

1

)) = �(Ent

�

(�(f

2

jn

0

; n

1

) jn

0

)) + Ent

�

(�(f

2

jn

0

)) (2:19)

entb

Bound of the �rst terms in the r.h.s. of (2.16) and (2.17). If the two �-algebras F

1

and F

2

were

weakly dependent in the sense that for some � = �(L)� 1

jj�

2

(g) � �(g)jj

1

� � jjgjj

1

8g 2 L

1

(
;F

�



1

; �) (2:20)

weak1

21=diembre=2000 [8℄ 2.7



where �

i

:= �(� j F

i

); i = 1; 2, then it follows that (almost fatorization of the variane)

Var

�

(f) � (1 + �) �(Var

�

1

(f) + Var

�

2

(f)) f 2 L

2

(�) (2:21)

fatvar

while if

k�(g j F

2

)� �(g)k

1

� � �(g) (2:22)

weak2

for all non{negative funtions g measurable w.r.t. F

1

then it follows that (almost fatorization of

the entropy)

Ent

�

(f

2

) � (1 + �) �

�

Ent

�

1

(f

2

) + Ent

�

2

(f

2

)

�

(2:23)

fatent

Inequalities (2.20) and (2.22) mean that there is a weak dependene on the boundary onditions,

for more details on (2.21) see [M℄, [CM2℄ and more reently [BCC℄ while for more details on (2.23)

see [Ce℄. Notie that in the �rst term in the r.h.s of (2.16) and of (2.17) we need to bound the

variane and the entropy with respet to a multi anonial measure in whih the number of partiles

in eah atom of the partition fR

1

:= � n �

1

; R

2

:= �

1

\ �

2

; R

3

:= � n �

2

g is frozen. As shown in

[CM1℄ suh a new measure has better hanes to satisfy the \weak dependene" onditions (2.20)

and (2.22) than the original measure � preisely beause of the extra onservation laws. The �rst

step is thus to prove, using property USMT, that the multi anonial measure �(� jn

0

; n

1

) satis�es

onditions (2.20) and (2.22) so that (2.21) and (2.23) for this measure hold see [CM2℄ and [CMR℄.

Then we may bound the �rst term in the r.h.s of (2.16) and of (2.17) by the largest among the

ISG and of LSC respetively of eah of the three sets times the Dirihlet form of the Kawasaki

dynamis. Notie that for eah of the three sets the linear dimension in one diretion has been (at

least) almost halved. Thus the �rst of the r.h.s. of (2.16) an be bounded by

(1 + �) max

�;N;i

(g

�

R

i

;N

)

�1

E

�

(f; f) (2:24)

var1

while the �rst term on the r.h.s. of (2.17) by

(1 + �) max

�;N;i



�

R

i

;N

E

�

(f; f) (2:25)

ent1

It is thus lear that the these terms are responsible for the �rst terms in the r.h.s. of (2.15).

We note here, for the expert reader, that the importane in the ase of the entropy of suh an

inequality resides in the fat that one is spared from the umbersome omputation of quantities

like [r

xy

�(f

2

)

1

2

℄

2

.

Bound of the seond term on the r.h.s. of (2.16) and (2.17). Let us examine the terms in (2.18); the

neessary steps are almost idential for all of them and therefore, for shortness, we treat only the

seond one. We have to bound the variane with respet to the distribution of a one dimensional

disrete random variable, the number of partiles n

0

. Although suh a distribution is diÆult

to ompute exatly, one has a suÆiently good ontrol to be able to establish, a sharp Poinar�e

inequality with respet to the Dirihlet form of a reversible Metropolis birth and death proess

Var

�

(g(n

0

)) � k(N) �

�

(

d

dn

0

g)

2

�

(2:26)

var2
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for any g depending only on n

0

. Following the same reasoning for the seond term in (2.19) we

have to bound the entropy w.r.t. to the distribution of n

0

, one an establish a sharp logarithmi

Sobolev inequality with respet to the Dirihlet form of a reversible Metropolis birth and death

proess

Ent

�

(g

2

(n

0

)) � k(N) �

�

(

d

dn

0

g)

2

�

(2:27)

ent2

for any g depending only on the number of partiles n

0

and

d

dn

0

is the disrete derivative. Physially

the birth and death proess orresponds to the reation of an extra partile e.g. in R

1

and the

ontemporary annihilation of a partile in e.g. R

2

that is to the exhange of partiles among the

three sets. Sine eah partile moves , essentially, by a sort of perturbed random walk, and on

average it has to travel a distane O(L), it is not surprising that these terms are responsible for the

L

2

terms in (2.15). To estimate k(N) = O(N) in the ase of ISG Cheeger's onstant is used (see

[LS℄), while in the ase of LSC Hardy inequality (see [Mi℄ and [An℄); on the other hand the bound of

the disrete gradient of g = �(f jn

0

) in the ase of ISG or �(f

2

jn

0

) in the ase of LSC is tehnial:

USMT, equivalene of ensembles, some ideas of [LY℄ and [Y℄ and onentration inequalities (see

[CMR℄) in the partiular ase of LSC are used. In partiular (2.26) an be bounded by

C

�

L

2

E

�

(f; f) + � Var

�

(f)

and (2.27) by

C

�

Var

�

(f

2

) + C

�

L

2

E

�

(f; f) + � Ent

�

(f

2

)

Putting together the bounds above we have for the variane

Var(f) � [(1 + �) max

�;N;i

(g

�

R

i

;N

)

�1

+ C

�

L

2

℄ E

�

(f; f)

and, by the Poinar�e bound (2.14), for the entropy

Ent(f

2

) � [(1 + �)max

�;N;i



�

R

i

;N

+ C

�

L

2

℄ E(f; f)

One suh a step has been arried out it is not too diÆult to omplete the sale redution from

2L to L by one more iteration and obtain the reursive bounds (2.15).

3. Open problems

A natural problem is to estimate the relaxation time to equilibrium in the low temperature end low

density part of the one phase region. In this region USMT holds but not uniformly in the hemial

potential if it varies over the atoms of a partition. As suh uniformity is one of the main ingredients

of the above proofs, the tehniques above disussed annot be easily extended to this ase.
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