
Spe
tral gap and logarithmi
 Sobolev 
onstant of Kawasaki dynami
s

under a mixing 
ondition revisited

N. Can
rini

1

, F. Martinelli

2

C. Roberto

3

1

Dipartimento di Energeti
a, Universit�a dell'Aquila, Italy and INFM Unit�a di Roma \La Sapienza"

e-mail: ni
oletta.
an
rini�roma1.infn.it

2

Dipartimento di Matemati
a, Universit�a di Roma Tre, Italy

e-mail: martin�mat.uniroma3.it

3

D�epartement de Math�ematiques, Laboratoire de Statistique et Probabilit�es, Universit�e Paul{

Sabatier, Toulouse, Fran
e

e-mail: roberto�
i
t.fr

Abstra
t. We 
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onservative sto
hasti
 spin ex
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anoni
al Gibbs measure of a latti
e gas model. We assume that the 
orresponding grand


anoni
al measure satis�es a suitable strong mixing 
ondition. We dis
uss the main ideas we used

to reprove the well known results of Lu and Yau, and of Yau stating that the inverse of the spe
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gap and the logarithmi
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2
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1. Introdu
tion

In the last years the problem of 
omputing the relaxation time of sto
hasti
 Monte Carlo algorithm

for 
lassi
al spin models on Z

d

has been intensively studied. We will fo
us our attention on lat-

ti
e gases with Kawasaki dynami
s. The latti
e gases 
an be des
ribed as follows. Let Q

L

be a


ube of width L in Z

d

. At ea
h latti
e site of Q

L

we asso
iate an o

upation number of parti
le

�(x) 2 f0; 1g. The equilibrium states are des
ribed by the Gibbs measures on Q

L

, 
hara
terized

by a Hamiltonian and a boundary 
ondition. There are two ensembles of interest the grand 
anon-

i
al one with temperature and 
hemi
al potential as external �xed variables and the 
anoni
al one

where the 
hemi
al potential is substituted by the number of parti
les. In Kawasaki dynami
s

ea
h parti
le performs a random walk with the following properties. Jumps to o

upied sites are

suppressed so that there is at most one parti
le per site; no 
reation or annihilation of parti
les is

allowed so that the total number of parti
les is 
onserved; jump rates are determined by nearby

parti
les a

ording to some �xed lo
al rules su
h that the 
anoni
al Gibbs measure is reversible.

The models just des
ribed are intera
ting random walk and have a natural interpretation as dis-


retizations of intera
ting Brownian motions. The limiting 
ase of zero intera
tion is known as

symmetri
 simple ex
lusion pro
ess, where the dynami
s is given by the symmetri
 random walk

and the invariant measures are simply a produ
t of Bernoulli measures.

It is well known that the fundamental ingredients to study the relaxation time are the spe
tral gap

(SG) of the generator and the logarithmi
 Sobolev 
onstant (LSC). By the SG one obtains the time

of 
onvergen
e to equilibrium in L

2

norm (with respe
t to the 
anoni
al Gibbs measure), while the

LSC allows to 
onvert the L

2


onvergen
e into a stronger statement.

The fundamental results of [LY℄ and [Y℄ on SG and LSC state that, under a suitable mixing 
ondi-

tion on the grand 
anoni
al Gibbs measure, the inverse of the SG and the LSC in a box of side L

s
ale like L

2

. The mixing 
ondition for the two dimensional Ising model holds for any temperature

above the 
riti
al one. While in the phase 
oexisten
e region, at least for the two dimensional Ising

model with periodi
 or free boundary 
ondition, the SG be
omes exponentially small in the side

of the box [CCM℄. The di�usive s
aling L

2

for the relaxation time of Kawasaki dynami
s, proved

in [LY℄ and [Y℄, is a key stone in the study of the hydrodynami
al limit of the Ising model [VY℄

and its proof required the development of a rather sophisti
ated te
hnology whi
h posed new, non

trivial, problems on the theory of 
anoni
al Gibbs measures and their a

urate 
omparison with

the grand 
anoni
al ones (see also [BZ1℄, [BZ2℄, [CM1℄, [BCO℄, and [CZ℄).

Unfortunately the proofs given in [LY℄ and parti
ularly in [Y℄ are quite diÆ
ult to study and the

appli
ation of their te
hniques to other related problems, for example latti
e gases with random

intera
tion in the so{
alled GriÆths phase, seems to require a 
onsiderable e�ort. With this mo-

tivation in [CM2℄ and [CMR℄ the results of [LY℄ and [Y℄ are reproved by di�erent means in a way

that looks, at least to us, intuitevely more appealing and natural to apply in other 
ontexts. In

parti
ular in [CM3℄, the te
hniques developed in [CM2℄ as been applied to the bond dilute Ising

model below the per
olation threshold. Anyway we must note that our proofs would never found

their way without some very ni
e ideas we have found in [LY℄ and [Y℄.

In this note we illustrate in simple terms the strategy behind the proofs in [CM2℄ and [CMR℄.
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2. Notation and results

In this se
tion we �rst de�ne the setting in whi
h we will work (spin model, Gibbs measure,

dynami
s), then we de�ne the basi
 mixing 
ondition on the Gibbs measure and subsequently state

the main theorem on this work.

2.1 The latti
e and the 
onfiguration spa
e

The latti
e. We 
onsider the d dimensional latti
e Z

d

with sites x = (x

1

; : : : ; x

d

) and norms

jxj

p

= (

d

X

i=1

jx

i

j

p

)

1=p

p � 1 and jxj = jxj

1

= max

i2f1;:::;dg

jx

i

j :

The asso
iated distan
e fun
tions are denoted by d

p

(�; �) and d(�; �). By Q

L

we denote the 
ube of

all x = (x

1

; : : : ; x

d

) 2 Z

d

su
h that x

i

2 f0; : : : ; L�1g. If x 2 Z

d

, Q

L

(x) stands for Q

L

+x. We also

let B

L

be the ball (w.r.t d(�; �)) of radius L 
entered at the origin, i.e. B

L

= Q

2L+1

((�L; : : : ;�L)).

If � is a �nite subset of Z

d

we write � �� Z

d

. The 
ardinality of � is denoted by j�j. F is the set

of all nonempty �nite subsets of Z

d

. [x; y℄ is the 
losed segment with endpoints x and y. The edges

of Z

d

are those e = [x; y℄ with x; y nearest neighbors in Z

d

. We denote by E

�

the set of all edges

su
h that both endpoints are in �.

Given � � Z

d

we de�ne its interior and exterior boundaries as respe
tively, �

�

� = fx 2 � :

d(x;�




) � 1g and �

+

� = fx 2 �




: d(x;�) � 1g, and more generally we de�ne the boundaries of

width n as �

n

� = fx 2 � : d(x;�




) � ng, �

+

n

� = fx 2 �




: d(x;�) � ng.

Regular sets. A �nite subset � of Z

d

is said to be l{regular, l 2 Z

+

, if � is the union of a �nite

number of 
ubes Q

l

(x

i

) where x

i

2 lZ

d

. We denote the 
lass of all su
h sets by F

l

. Noti
e that any

set is 1{regular i.e. F

l=1

= F.

The 
on�guration spa
e. Our 
on�guration spa
e is 
 = S

Z

d

, where S = f0; 1g, or 


V

= S

V

for

some V � Z

d

. The single spin spa
e S is endowed with the dis
rete topology and 
 with the


orresponding produ
t topology. Given � 2 
 and � � Z

d

we denote by �

�

the natural proje
tion

over 


�

. If U , V are disjoint, �

U

�

V

is the 
on�guration on U [ V whi
h is equal to � on U and �

on V . Given V 2 F we de�ne the number of parti
les N

V

: 
 7! N as

N

V

(�) =

X

x2V

�(x) (2:1)

mag

while the density is given by �

V

= N

V

=jV j.

If f is a fun
tion on 
, �

f

denotes the smallest subset of Z

d

su
h that f(�) depends only

on �

�

f

. f is 
alled lo
al if �

f

is �nite. The l{support of a fun
tion �

(l)

f

, l 2 Z

+

, is the smallest

l{regular set V su
h that �

f

� V . F

�

stands for the ��algebra generated by the set of proje
tions

f�

x

g, x 2 �, from 
 to f0; 1g, where �

x

: � 7! �(x). When � = Z

d

we set F = F

Z

d and F 
oin
ides
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with the Borel ��algebra on 
 with respe
t to the topology introdu
ed above. By kfk

1

we mean

the supremum norm of f .

2.2 The intera
tion and the Gibbs Measures.

potential De�nition 2.1. A �nite range, translation{invariant potential f�

�

g

�2F

is a 
olle
tion of real,

lo
al fun
tions on 
 with the following properties

(1) �

�

= �

�+x

for all � 2 F and all x 2 Z

d

(2) For ea
h � the support of �

�


oin
ides with �

(3) There exists r > 0 su
h that �

�

= 0 if diam� > r. r is 
alled the range of the intera
tion.

(4) k�k :=

P

�30

k�

�

k

1

< 1

Given a 
olle
tion of real numbers � = f�

x

g

x2Z

d and a potential �, we de�ne �

�

as

�

�

�

(�) =

�

(h+ �

x

)�(x) if � = fxg

�

�

(�) otherwise

where h is the 
hemi
al potential (one body part of �).

Given a potential � (�

�

) and V 2 F, we de�ne the Hamiltonian H

�

V

: 
 7! R by

H

�

V

(�) = �

X

�:�\V 6=;

�

�

(�)

For �; � 2 
 we also let H

�;�

V

(�) = H

�

V

(�

V

�

V




) and � is 
alled the boundary 
ondition. For ea
h

V 2 F, � 2 
 the (�nite volume) 
onditional Gibbs measure on (
;F), are given by

d�

�;�

V

(�) =

(

�

Z

�;�

V

�

�1

exp[�H

�;�

V

(�) ℄ if �(x) = �(x) for all x 2 V




0 otherwise.

(2:2)

finvolmea

where Z

�;�

V

is the proper normalization fa
tor 
alled partition fun
tion. Noti
e that in (2.2) we have

absorbed in the intera
tion � the usual inverse temperature fa
tor � in front of the Hamiltonian.

In most notation we will drop the supers
ript � if that does not generate 
onfusion. Moreover,

whenever we 
onsider �

�

instead of �, we will write H

�;�

V

for the �nite volume Hamiltonian and

�

�;�

V

for the 
orresponding �nite volume Gibbs measure.

Given a measurable bounded fun
tion f on 
, �

V

(f) denotes the fun
tion � 7! �

�

V

(f) where

�

�

V

(f) is just the average of f w.r.t. �

�

V

. Analogously, for any event X, �

�

V

(X) := �

�

V

(1I

X

), where

1I

X

is the 
hara
teristi
 fun
tion of X. �

�

V

(f; g) stands for the 
ovarian
e or trun
ated 
orrelation

(with respe
t to �

�

V

) of f and g. The set of measures (2.2) satis�es the DLR 
ompatibility 
onditions

�

�

�

(�

V

(X)) = �

�

�

(X) 8X 2 F 8V � � �� Z

d

(2:3)

DLR

21=di
embre=2000 [4℄ 2.3



Gibbs De�nition 2.2. A probability measure � on (
;F) is 
alled a Gibbs measure for � if

�(�

V

(X)) = �(X) 8X 2 F 8V 2 F (2:4)

DLRi

see e.g. [G℄.

We introdu
e the 
anoni
al Gibbs measures on (
;F) de�ned as

�

�

�;N

= �

�

�

(� jN

�

= N) N 2 f0; 1; : : : ; j�jg (2:5)


ano

2.3 The dynami
s

We 
onsider the so{
alled Kawasaki dynami
s in whi
h parti
les (spins with �(x) = +1) 
an jump

to nearest neighbor empty (�(x) = 0) lo
ations, keeping the total number of parti
les 
onstant.

For � 2 
, let �

xy

be the 
on�guration obtained from � by ex
hanging the spins �(x) and �(y).

Let t

xy

� = �

xy

and de�ne (T

xy

f)(�) = f(t

xy

�). The sto
hasti
 dynami
s we want to study is

determined by the Markov generators L

V

, V �� Z

d

, de�ned by

(L

V

f)(�) =

X

[x;y℄2E

V




xy

(�) (r

xy

f)(�) � 2 
 ; f : 
 7! R (2:6)

gnrt

where r

xy

= T

xy

� 1I. The nonnegative real quantities 


xy

(�) are the transition rates for the

pro
ess.

The general assumptions on the transition rates are

(1) Finite range. 


xy

(�) depends only on the spins �(z) with d(fx; yg; z) � r

(2) Detailed balan
e. For all � 2 
 and [x; y℄ 2 E

Z

d

exp

�

�H

fx;yg

(�)

�




xy

(�) = exp

�

�H

fx;yg

(�

xy

)

�




xy

(�

xy

) (2:7)

dbal

(3) Positivity and boundedness. There exist positive real numbers 


m

(�) 


M

(�) su
h that




m

� 


xy

(�) � 


M

8x; y 2 Z

d

; � 2 
 : (2:8)

bounded

We denote by L

�

V;N

the operator L

V

a
ting on L

2

(
; �

�

V;N

) (this amounts to 
hoosing � as the

boundary 
ondition and N as the number of parti
les). Assumptions (1), (2) and (3) guarantee

that there exists a unique Markov pro
ess whose generator is L

�

V;N

, and whose semigroup we denote

by (T

V;N;�

t

)

t�0

. L

�

V;N

is a bounded operator on L

2

(
; �

�

V;N

) and �

�

V;N

is its unique invariant measure.

Moreover �

�

V;N

is reversible with respe
t to the pro
ess, i.e. L

�

V;N

is self{adjoint on L

2

(
; �

�

V;N

).

A �rst fundamental quantity asso
iated with the dynami
s of a reversible system is the spe
tral

gap of the generator, i.e.

gap(L

�

V;N

) = inf spe
 (�L

�

V;N

� 1I

?

)
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where 1I

?

is the subspa
e of L

2

(
; �

�

V;N

) orthogonal to the 
onstant fun
tions. We let E to be the

Diri
hlet form asso
iated with the generator L

�

V;N

,

E

�

V;N

(f; f) = hf; �L

�

V;N

fi

L

2

(
;�

�

V;N

)

=

1

2

X

[x;y℄2E

V

�

�

V;N

�




xy

(r

xy

f)

2

�

(2:9)

dir

and Var

�

V;N

the varian
e relative to the probability measure �

�

V;N

. Then the gap 
an also be


hara
terized as

g

�

V;N

:= gap(L

�

V;N

) = inf

f2L

2

(
;�

�

V;N

);

Var

�

V;N

(f) 6=0

E

�

V;N

(f; f)

Var

�

V;N

(f)

: (2:10)

gap

A se
ond relevant quantity is the logarithmi
 Sobolev 
onstant 


�

V;N

de�ned as the smallest 
onstant


 su
h that

Ent

�

V;N

(f

2

) �




2

E

�

V;N

(f; f) (2:11)


sob

for all non negative fun
tions f with �

�

V;N

(f

2

) = 1, where Ent

�

V;N

(f

2

) = �

�

V;N

(f

2

ln f

2

). For

the 
onne
tion between spe
tral gap, logarithmi
 Sobolev 
onstant and speed of relaxation to

equilibrium we refer the reader to [DiSa℄.

2.4 Definition of the mixing 
ondition and main results.

In order to formulate our basi
 mixing 
ondition on the two (or more) body part of the intera
tion

� we �x positive numbers C;m; l with l 2 N. We then say that a 
olle
tion of real numbers

� := f�

x

g

x2Z

d is l{regular if, for all i 2 Z

d

and all x 2 Q

l

(x

i

), x

i

2 lZ

d

, �

x

= �

x

i
.

De�nition of property USMT (C;m; l). For any l{regular set �, any l{regular �, any boundary


ondition � and any pair of bounded lo
al fun
tions f and g

j�

�;�

�

(f; g)j � C sup

�

�

�;�

�

(jf j) sup

�

�

�;�

�n�

(l)

f

(jgj)

X

x2�

�

r

�

(l)

f

X

y2�

�

r

�

(l)

g

e

�mjx�yj

provided that d(�

(l)

f

;�

(l)

g

) � l.

Remark. The expert reader may have noti
ed that our 
ondition is di�erent, and in prin
iple

stronger, than the one used in [LY℄ and [Y℄ be
ause we require the exponential de
ay of 
ovarian
es

uniformly in the 
hemi
al potential even when the latter varies over the atoms of a partition of �

while in the above mentioned papers the 
hemi
al potential is assumed to be 
onstant over �. In two

dimension, followig the ideas of [MOS℄, one 
an prove [BCO℄ that the two 
onditions are equivalent.

In higher dimension one 
an 
onstru
t examples in whi
h a kind of phase transition o

urs along

the interfa
e between two subsets with di�erent 
hemi
al potential, even if for all l{regular sets �

the 
ovarian
es de
ay exponentially fast uniformly w.r.t. 
onstant 
hemi
al potentials.

We are �nally in a position to formulate the results on the SG and on the LSC of the generator of

Kawasaki dynami
s in a �nite volume

21=di
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main Theorem 2.3. Assume that there exist positive numbers C;m; l, with l 2 N, su
h that property

USMT (C;m; l) holds. Then there exist positive 
onstants 


1

; 


2

su
h that




1

L

�2

� gap(L

�

Q

L

;N

) � 


2

L

�2

(2:12)

main:lb

and




1

L

2

� 


�

Q

L

;N

� 


2

L

2

(2:13)

main:lbs

for all boundary 
ondition � and parti
les number N .

A ni
e 
onsequen
e of the estimate (2.12) is an inverse polynomial bound on the time de
ay to

equilibrium in L

2

�

d�

�

�;N

�

of lo
al observables (see [CM2℄ for the proof).

lo
al Corollary 2.4. Assume that there exist positive numbers C;m; l, with l 2 N, su
h that property

USMT (C;m; l) holds. Then for any � 2 (0; 1) and any lo
al fun
tion f with 0 2 �

f

there exists a

positive 
onstant C

f;�

su
h that for any integer L multiple of l and any integer N 2 f1; : : : ; (2L)

d

g

Var

�

�;N

�

e

tL

�

�;N

f

�

� C

f;�

1

t

���

where � := B

L

and � =

1

2

in d = 1, � = 1 for d > 1.

Remark. The expe
ted de
ay is t

�

d

2

, exa
tly as for the simple ex
lusion, i.e. � = 0 
ase, has been

proved in [BZ2℄, at least for fun
tions f that have non zero grand 
anoni
al 
ovarian
e with the

number of parti
les. We refer to [JLQY℄ where a very sharp result of this kind for the zero{range

pro
ess is obtained. Noti
e that the power � that appears in our bound 
oin
ides with

d

2

in one

and two dimensions but not in higher dimensions.

2.5 The main ideas of the proof.

We 
on�ne ourselves with the proof of the upper bound of the inverse of the spe
tral gap (ISG) and

of the logarithmi
 Sobolev 
onstant (LSC) sin
e the lower bounds are easily proved by plugging a

suitable test fun
tion (a slowly varying fun
tion of the lo
al density) inside the de�nition of the

spe
tral gap (2.10) or inside the logarithmi
 Sobolev inequality (2.11).

To illustrate better our strategy we dis
uss the two proofs in parallel even if, to obtain the upper

bound of the logarithmi
 Sobolev inequality, we use the Poin
ar�e bound

Var(f) � k L

2

E(f; f) (2:14)

poin


For simpli
ity we 
arry out the dis
ussion in two dimensions but the extension to higher dimensions

is straightforward (see [CM2℄ or [CMR℄). The proof is based on a re
ursive analysis, introdu
ed

in [M℄ for Glauber dynami
s, on the behavior of the ISG and of the LSC when the linear size

of the volume under 
onsideration is doubled. The method works as follows. Let g(L)

�1

and


(L) the largest (over the boundary 
onditions and number of parti
les) among the ISG and LSC

21=di
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respe
tively, in a square of side L with given boundary 
onditions and �xed number of parti
les.

We look for a re
ursive inequality of the form

g(2L)

�1

�

3

2

g(L)

�1

+ kL

2


(2L) �

3

2


(L) + kL

2

(2:15)

ri
o

where

g(L) = min

N;�

g

�

Q

L

;N

and 


s

(L) = max

N;�




�

Q

L

;N

Inequality (2.15), upon iteration, prove the bounds g(L)

�1

� k

0

L

2

and 
(L) � k

0

L

2

.

For this purpose let � be a square of side 2L and divide it into two (almost) halves �

1

and L

2

in su
h a way that the overlap between �

1

and �

2

is a thin layer of width ÆL, Æ � 1. Although

the trun
ated 
orrelations in the grand 
anoni
al Gibbs measure de
ay exponentially fast, due to

the 
onservation of the number of parti
les whi
h introdu
es a global 
onstraint in the system, the

dynami
s does not separate into two weakly dependent 
omponents as happens in the 
ase of the

non 
onservative Glauber dynami
s (see e.g. [M℄ or more re
ently [Ce℄). Note that even at in�nite

temperature (� = 0) the dynami
s does not fa
torize. More pre
isely, the relaxation time in a

volume with linear size 2L is related to the relaxation time of the modi�ed dynami
s in whi
h the

two re
tangles do not ex
hange parti
les but feel ea
h other only through the transition rates and

the relaxation time of the pro
ess of ex
hange of parti
les between the two halves of Q

2L

. Su
h a

simple observation suggests to try to separate the two e�e
ts whi
h are, a priori, strongly interla
ed

and to analyze them separately.

Denote by � the 
anoni
al Gibbs measure �

�

�;N

and de�ne the two �-algebras F

1

:= F

�




1

and F

2

:=

F

�




2

namely the �-algebras generated by the latti
e gas variables outside �

1

and �

2

respe
tively.

Let n

0

and n

1

be the random varaiables 
ounting the number of parti
les in �

1

\ �

2

and � n �

2

respe
tively and let Var

�

(f jn

0

; n

1

) and Ent

�

(f

2

jn

0

; n

1

) be the varian
e of f and the entropy of f

2

w.r.t. the 
anoni
al measure 
onditioned on n

0

; n

1

. Then, using the formula of the \
onditional

varian
e" and of the \
onditional entropy", we 
an write

Var

�

(f) = �(Var

�

(f jn

0

; n

1

)) + Var

�

(�(f jn

0

; n

1

)) (2:16)

var

Ent

�

(f

2

) = �(Ent

�

(f

2

jn

0

; n

1

) + Ent

�

(�(f

2

jn

0

; n

1

)) (2:17)

ent

The se
ond term in (2.16) and (2.17) 
an in turn be expanded as

Var

�

(�(f jn

0

; n

1

)) = �(Var

�

(�(f jn

0

; n

1

) jn

0

)) + Var

�

(�(f jn

0

)) (2:18)

varb

Ent

�

(�(f jn

0

; n

1

)) = �(Ent

�

(�(f

2

jn

0

; n

1

) jn

0

)) + Ent

�

(�(f

2

jn

0

)) (2:19)

entb

Bound of the �rst terms in the r.h.s. of (2.16) and (2.17). If the two �-algebras F

1

and F

2

were

weakly dependent in the sense that for some � = �(L)� 1

jj�

2

(g) � �(g)jj

1

� � jjgjj

1

8g 2 L

1

(
;F

�




1

; �) (2:20)

weak1
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where �

i

:= �(� j F

i

); i = 1; 2, then it follows that (almost fa
torization of the varian
e)

Var

�

(f) � (1 + �) �(Var

�

1

(f) + Var

�

2

(f)) f 2 L

2

(�) (2:21)

fa
tvar

while if

k�(g j F

2

)� �(g)k

1

� � �(g) (2:22)

weak2

for all non{negative fun
tions g measurable w.r.t. F

1

then it follows that (almost fa
torization of

the entropy)

Ent

�

(f

2

) � (1 + �) �

�

Ent

�

1

(f

2

) + Ent

�

2

(f

2

)

�

(2:23)

fa
tent

Inequalities (2.20) and (2.22) mean that there is a weak dependen
e on the boundary 
onditions,

for more details on (2.21) see [M℄, [CM2℄ and more re
ently [BCC℄ while for more details on (2.23)

see [Ce℄. Noti
e that in the �rst term in the r.h.s of (2.16) and of (2.17) we need to bound the

varian
e and the entropy with respe
t to a multi 
anoni
al measure in whi
h the number of parti
les

in ea
h atom of the partition fR

1

:= � n �

1

; R

2

:= �

1

\ �

2

; R

3

:= � n �

2

g is frozen. As shown in

[CM1℄ su
h a new measure has better 
han
es to satisfy the \weak dependen
e" 
onditions (2.20)

and (2.22) than the original measure � pre
isely be
ause of the extra 
onservation laws. The �rst

step is thus to prove, using property USMT, that the multi 
anoni
al measure �(� jn

0

; n

1

) satis�es


onditions (2.20) and (2.22) so that (2.21) and (2.23) for this measure hold see [CM2℄ and [CMR℄.

Then we may bound the �rst term in the r.h.s of (2.16) and of (2.17) by the largest among the

ISG and of LSC respe
tively of ea
h of the three sets times the Diri
hlet form of the Kawasaki

dynami
s. Noti
e that for ea
h of the three sets the linear dimension in one dire
tion has been (at

least) almost halved. Thus the �rst of the r.h.s. of (2.16) 
an be bounded by

(1 + �) max

�;N;i

(g

�

R

i

;N

)

�1

E

�

(f; f) (2:24)

var1

while the �rst term on the r.h.s. of (2.17) by

(1 + �) max

�;N;i




�

R

i

;N

E

�

(f; f) (2:25)

ent1

It is thus 
lear that the these terms are responsible for the �rst terms in the r.h.s. of (2.15).

We note here, for the expert reader, that the importan
e in the 
ase of the entropy of su
h an

inequality resides in the fa
t that one is spared from the 
umbersome 
omputation of quantities

like [r

xy

�(f

2

)

1

2

℄

2

.

Bound of the se
ond term on the r.h.s. of (2.16) and (2.17). Let us examine the terms in (2.18); the

ne
essary steps are almost identi
al for all of them and therefore, for shortness, we treat only the

se
ond one. We have to bound the varian
e with respe
t to the distribution of a one dimensional

dis
rete random variable, the number of parti
les n

0

. Although su
h a distribution is diÆ
ult

to 
ompute exa
tly, one has a suÆ
iently good 
ontrol to be able to establish, a sharp Poin
ar�e

inequality with respe
t to the Diri
hlet form of a reversible Metropolis birth and death pro
ess

Var

�

(g(n

0

)) � k(N) �

�

(

d

dn

0

g)

2

�

(2:26)

var2
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for any g depending only on n

0

. Following the same reasoning for the se
ond term in (2.19) we

have to bound the entropy w.r.t. to the distribution of n

0

, one 
an establish a sharp logarithmi


Sobolev inequality with respe
t to the Diri
hlet form of a reversible Metropolis birth and death

pro
ess

Ent

�

(g

2

(n

0

)) � k(N) �

�

(

d

dn

0

g)

2

�

(2:27)

ent2

for any g depending only on the number of parti
les n

0

and

d

dn

0

is the dis
rete derivative. Physi
ally

the birth and death pro
ess 
orresponds to the 
reation of an extra parti
le e.g. in R

1

and the


ontemporary annihilation of a parti
le in e.g. R

2

that is to the ex
hange of parti
les among the

three sets. Sin
e ea
h parti
le moves , essentially, by a sort of perturbed random walk, and on

average it has to travel a distan
e O(L), it is not surprising that these terms are responsible for the

L

2

terms in (2.15). To estimate k(N) = O(N) in the 
ase of ISG Cheeger's 
onstant is used (see

[LS℄), while in the 
ase of LSC Hardy inequality (see [Mi℄ and [An℄); on the other hand the bound of

the dis
rete gradient of g = �(f jn

0

) in the 
ase of ISG or �(f

2

jn

0

) in the 
ase of LSC is te
hni
al:

USMT, equivalen
e of ensembles, some ideas of [LY℄ and [Y℄ and 
on
entration inequalities (see

[CMR℄) in the parti
ular 
ase of LSC are used. In parti
ular (2.26) 
an be bounded by

C

�

L

2

E

�

(f; f) + � Var

�

(f)

and (2.27) by

C

�

Var

�

(f

2

) + C

�

L

2

E

�

(f; f) + � Ent

�

(f

2

)

Putting together the bounds above we have for the varian
e

Var(f) � [(1 + �) max

�;N;i

(g

�

R

i

;N

)

�1

+ C

�

L

2

℄ E

�

(f; f)

and, by the Poin
ar�e bound (2.14), for the entropy

Ent(f

2

) � [(1 + �)max

�;N;i




�

R

i

;N

+ C

�

L

2

℄ E(f; f)

On
e su
h a step has been 
arried out it is not too diÆ
ult to 
omplete the s
ale redu
tion from

2L to L by one more iteration and obtain the re
ursive bounds (2.15).

3. Open problems

A natural problem is to estimate the relaxation time to equilibrium in the low temperature end low

density part of the one phase region. In this region USMT holds but not uniformly in the 
hemi
al

potential if it varies over the atoms of a partition. As su
h uniformity is one of the main ingredients

of the above proofs, the te
hniques above dis
ussed 
annot be easily extended to this 
ase.
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