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1 Introduction

Consider a Markov process (ηt)t≥0 taking values in an infinite product space Ω :=

SZ
d
, so that ηt = (ηt(x))x∈Zd . S could be, for instance, a subset of N, and the

variable ηt(x) is sometimes thought of as the number of particles at x at time t.
Assume then that this process is reversible with respect to a probability measure µ
on Ω which is a Gibbs measure for some interaction J . A very general problem for
this class of processes is the study of the relationships between the properties of the
interaction J and the behavior of the process. Among the infinite possible ways
of constructing Markov processes of this type we single out two special categories:
(1) spin–flip processes2 also called Glauber dynamics, and (2) (nearest neighbor)
particle–exchange processes or Kawasaki dynamics. In the first case we have that
the coordinates of ηt can change only one at a time. More precisely, if LG is the
generator of the process, then

LGf(η) =
∑

η′

c(η, η′) [f(η′)− f(η)]

and c(η, η′) = 0 unless η and η′ differ in exactly one coordinate. Similarly, in a
Kawasaki dynamics the transition rate c(η, η′) is zero unless η′ can be obtained
from η by transferring one particle from x to y where x, y are nearest neighbors in
Zd.

One of the most important result concerning Glauber dynamics is a theorem as-
serting the equivalence between a mixing condition of Dobrushin and Shlosman
type [DS87] on the interaction J and the fact that the distribution of ηt converges
exponentially fast to the invariant measure µ in a rather strong sense. For a com-
prehensive account on this subject we refer the reader to the beautiful review paper
[Mar99].

For Kawasaki dynamics, which we study in this paper, the situation is more com-
plicated. In fact, even if the interaction J is zero and consequently µ is a product
measure, the process is nevertheless an “interacting” (i.e. non–product) process.
These type of processes are also called “conservative dynamics” because if we run
them in a finite volume Λ ⊂ Zd then the function t → NΛ(ηt) :=

∑

x∈Λ ηt(x) is
constant. The specific problem we want to address is: let (Pt)t≥0 be the semigroup
associated with the process, and let f be a real function on Ω. How fast does the
quantity Ptf converges to the expectation µ(f) :=

∫

Ω fdµ? Of course there are
several ways of interpreting this convergence, however, since µ is supposed to be
a reversible measure, one of the most natural quantities to study is the L2(µ)
distance. Hence we are looking at the long–time behavior of the quantity

‖Ptf − µf‖2L2(µ) = Varµ(Ptf) , (1.1)

where Varµ stands for the variance w.r.t. µ. One of the first things to realize
is that the constraint imposed by the conservation law prevents this convergence

2the term spin–flip is really appropriate when S = {−1,+1}
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from being exponentially fast even when J = 0. It is fairly easy to show (see
[Spo91], pag. 175–6) that the quantity (1.1) (with, say f(η) := η(0)) cannot be
smaller than C t−d/2. Actually t−d/2 is conjectured to be the correct long–time
asymptotics, when (J is such that) µ is somehow close to a product measure,
this conjecture being hatched from the idea that these processes are discretized
versions of diffusions in Rd. For elliptic diffusions, a standard way of proving the
t−d/2 decay is [Dav89, Sect 2.4] by means of the so called Nash inequalities stating

‖f‖2L2 ≤ C ‖f‖4/(d+2)
L1

E(f)d/(d+2)

where E is the Dirichlet form given by

E(f) :=
∫

Rd

|∇f(x)|2 dx .

Unfortunately, in the (morally) infinite dimensional framework of Kawasaki dy-
namics, this approach has been successful only for a special model called symmet-
ric simple exclusion process [BZ99a, BZ99b] where S = {0, 1} and the invariant
measure µ is Bernoulli.

It is clear, on the other side, that a piece of information that should be relevant
for this problem is the fact that, while the generator of the process has no spectral
gap in the infinite volume, if we denote with L` the generator in Zd ∩ [−`, `]d then
we have for large ` [LY93, CM00b]

gap(L`) ∼ C`−2 . (1.2)

A new approach was then developed in [JLQY99] where thanks to a combination of
(1.2) with techniques imported from the hydrodynamic limit theory it was proved
that, for the symmetric zero–range process one has

‖Ptf − µ(f)‖2L2(µ) =
C(f)

td/2
+ o(t−d/2) (1.3)

where C(f) is an explicit quantity. More recently [LY03] the same result (apart
from logarithmic corrections) has been extended to the Ginzburg–Landau process
with a potential which is a bounded perturbation of a Gaussian potential. Both the
zero–range and the Ginzburg–Landau process have an invariant measure which is
a product measure. The first results which apply to a process with a non–product
invariant measure µ were obtained in [CM00b]. Their main assumption is a mixing
condition on µ. In that paper it has been shown in a very simple way that (1.2)
supplemented with a soft spectral theoretic argument implies an almost optimal
upper bound when d = 1, 2. More precisely for all ε > 0 and for all local function
f on Ω, there exists Cε,f > 0 such that

‖Ptf − µ(f)‖2L2(µ) ≤
Cε,f

td/2−ε
. (1.4)

Their strategy, appealing for its simplicity, seems however unable to yield the
correct asymptotics in more than two dimensions.
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In the present paper we extend inequality (1.4) to arbitrary values of d, following
the original approach of [JLQY99] which the authors predicted would be powerful
enough to treat processes with non–trivial invariant measures. We stress, however,
that we are unable to prove the sharper equality (1.3). The main reason is that
we have been incapable of extending the very precise “hydrodynamical” estimates
of [JLQY99, Section 5] to the type of processes we consider in this paper, in which
the invariant measure is only assumed to satisfy a certain mixing condition.

Acknowledgements. We warmly thank Fabio Martinelli for many helpful sug-
gestions and continuous support, and Lorenzo Bertini and Claudio Landim for
many interesting conversations.

2 Notation and Results

2.1 Lattice and configuration space

The lattice. We consider the d dimensional lattice Zd whose elements are called
sites x = (x1, . . . , xd) and where we define the norms

|x|p =
[

d
∑

i=1

|xi|p
]1/p

p ≥ 1 and |x| = |x|∞ = max
i∈{1,...,d}

|xi| .

The associated distance functions are denoted by dp(·, ·) and d(·, ·). We define BL

as the ball in Zd centered at the origin with radius L with respect to the norm
| · |, i.e. BL := {x ∈ Zd : |x| ≤ L}. Let also, for y ∈ Zd, BL(y) := BL + y, and,
more generally, for A ⊂ Zd, BL(A) := BL + A = {x ∈ Zd : d(x,A) ≤ L}. If Λ is a
finite subset of Zd we write Λ b Zd. The cardinality of Λ is denoted by |Λ|. F is
the set of all nonempty finite subsets of Zd. Two sites x, y are said to be nearest
neighbors if |x− y|1 = 1. An edge of Zd is a (unordered) pair of nearest neighbors.
We denote by EΛ the set of all edges with both endpoints are in Λ and by EΛ
the set of all edges with at least one endpoint in Λ. Given Λ ⊂ Zd we define its
interior and exterior n–boundaries as respectively, ∂−n Λ = {x ∈ Λ : d(x,Λc) ≤ n},
∂+n Λ = {x ∈ Λc : d(x,Λ) ≤ n}. We also let δΛ = EΛ\EΛ.
For ` ∈ Z+, let Q` := [0, `)d ∩ Zd. A polycube is defined as a triple (Λ, `,A) where
Λ ∈ F, ` ∈ Z+, A ⊂ F are such that

(1) for all V ∈ A there exists x ∈ `Zd such that V = x+Q`

(2) A is a partition of Λ, i.e. Λ is the disjoint union of the elements of A.

The configuration space. Our configuration space is Ω = SZ
d
, where S = {0, 1},

or ΩV = SV for some V ⊂ Zd. The single spin space S is endowed with the
discrete topology and Ω with the corresponding product topology. Given η ∈ Ω
and Λ ⊂ Zd we denote by ηΛ the restriction of η to Λ. If U , V are disjoint subsets
of Zd, σUτV is the configuration on U ∪ V which is equal to σ on U and τ on V .
We denote by πx the standard projection from Ω onto S, i.e. the map η 7→ η(x).
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If Λ ∈ F, NΛ stands for the number of particles in Λ, i.e. NΛ =
∑

x∈Λ η(x). If A
is a collection of finite subsets of Zd, we define NA as

NA : Ω 3 η → (NΛ(η))Λ∈A ∈ NA .

We also define the σ–algebras

FΛ = σ{πx : x ∈ Λ} GΛ,A = σ{πx, NV : x ∈ Λ, V ∈ A} . (2.1)

When Λ = Zd we set F = FZd and F coincides with the Borel σ−algebra on Ω
with respect to the topology introduced above.

If f is a function on Ω, Sf denotes the smallest subset of Zd such that f(η) depends
only on ηSf . f is called local if Sf is finite. We introduce 3 operators

(1) the translations: ϑxf(η) := f(η′) where η′(y) = η(y − x)

(2) the spin–flip: sxη(y) :=

{

η(y) if y 6= x

1− η(y) if y = x

(3) the particle exchange: txyη(z) =











η(x) if z = y

η(y) if z = x

η(z) otherwise.

The capitalized versions of sx, txy act on functions in the obvious way

Sxf := f ◦ sx Txyf = f ◦ txy . (2.2)

The Glauber and Kawasaki “gradients” are then respectively defined as

∇xf := Sxf − f ∇xyf := Txyf − f .

We denote with ‖f‖u the supremum norm of f , i.e. ‖f‖u := supη∈Ω |f(η)| and
with osc(f) the oscillation of f , i.e. osc(f) := sup f − inf f .

2.2 The interaction and the Gibbs measures

In the following we consider a translation invariant, summable interaction J , of
finite range r, i.e. a collection of functions J = (JA)A∈F, such that JA : Ω 7→ R is
measurable w.r.t. FA, and

(H1) JA+x ◦ ϑx = JA for all A ∈ F, x ∈ Zd

(H2) JA = 0 if the diameter of A is greater than r

(H3) ‖J‖ := ∑

A∈F:A30 ‖JA‖u <∞
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Conditions (H1), (H2), (H3) will always be assumed without explicit mention. The
Hamiltonian (HΛ)Λ∈F associated with J is defined as

HΛ : Ω 3 σ →
∑

A∈F:A∩Λ6=∅
JA(σ) ∈ R .

Clearly ‖HΛ‖u ≤ |Λ|‖J‖. For σ, τ ∈ Ω we also let Hτ
Λ(σ) := HΛ(σV τV c) and τ is

called the boundary condition. For each Λ ∈ F, τ ∈ Ω the (finite volume) Gibbs
measure on (Ω,F), are given by

µτ
Λ(σ) :=

(

Zτ
Λ

)−1
exp[−Hτ

Λ(σ)] 1I{τΛc}(σΛc) , (2.3)

where Zτ
Λ is the proper normalization factor called partition function, and 1I is the

indicator function. In the future we are going to consider an interaction J with an
explicit additional chemical potential λ. In particular we will consider a chemical
potential on a polycube (Λ, `,A) such that λ is constant in each cube x+Q` ∈ A.
For this reason, given such a polycube, and given λ ∈ RA we define

HA,λ := HΛ −
∑

V ∈A
λVNV λ ∈ RA . (2.4)

The associated finite volume Gibbs measures are denoted by µτ
A,λ.

Given a bounded measurable function f on Ω, µτ
Λf denotes expectation of f w.r.t.

µτ
Λ, while, when the superscript is omitted, µΛf stands for the function σ 7→ µσ

Λ(f)
which is measurable w.r.t. FΛc . Analogously, if X ∈ F , µV (X) := µV (1IX). µ(f, g)
stands for the covariance (with respect to µ) of f and g. The variance of f is
(accordingly) denoted by µ(f, f) or, alternatively, by Varµ(f).

The set of measures (2.3) satisfies the DLR compatibility conditions

µΛ(µV (X)) = µΛ(X) ∀X ∈ F ∀V ⊂ Λ b Zd . (2.5)

A probability measure µ on (Ω,F) is called a Gibbs measure if

µ(µV (X)) = µ(X) ∀X ∈ F ∀V ∈ F . (2.6)

Our main assumption on the interaction J is an exponential mixing property for
the finite volume Gibbs measures µτ

A,λ, uniform in the chemical potential λ. More
precisely we assume that:

(USM) There exist Γ0,m, `0 ∈ (0,∞), and for every local function f on Ω there
is Af > 0 which depends only on |Sf | and ‖f‖u, such that for all polycubes
(Λ, `,A) with ` ≥ `0 for all pairs of local functions f, g we have

|µτ
A,λ(f, g)| ≤ Γ0Af Ag e

−md(Sf ,Sg) ∀λ ∈ RA, ∀τ ∈ Ω . (2.7)

Condition (USM) is easily implied, except for the uniformity in λ, by the Do-
brushin and Shlosman’s complete analyticity condition (IIIc) in [DS87]. As for the
necessity of assuming this uniformity in λ we refer the reader to the remark after
the “Definition of property (USMT)” in [CM00b].
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By standard arguments it is not hard to check that (USM) implies that there exists
Γ = Γ(d, r, ‖J‖,Γ0) such that if d(Sf , Sg) > r then for all λ ∈ RA

|µτ
A,λ(f, g)| ≤
≤ µτ

A,λ(|f |)µτ
A,λ(|g|)

{

exp
[

Γ
∑

x∈∂−r Sf

∑

y∈∂−r Sg

e−m|x−y|
]

− 1
}

∀τ ∈ Ω . (2.8)

This inequality becomes effective when Sf and Sg are “far apart” enough, in
which case it can be written in a simpler form. More precisely there exists Γ1 =
Γ1(d, r, ‖J‖,Γ0,m) such that if

(

|∂−r Sf ∩ Λ| ∧ |∂−r Sg ∩ Λ|
)

e−md(Sf ,Sg)/3 ≤ Γ−11 (2.9)

then

|µτ
A,λ(f, g)| ≤ µτ

A,λ(|f |)µτ
A,λ(|g|) e−md(Sf ,Sg)/2 ∀λ ∈ RA, ∀τ ∈ Ω . (2.10)

From (2.6) the following well known fact easily follows

Proposition 2.1. Under hypothesis (USM) there is exactly one Gibbs meassure
for J which we denote with µ.

We introduce the (multi–)canonical Gibbs measures on (Ω,F): let (Λ, `,A) be a
polycube3 and let M = (MV )V ∈A be a possible choice for the number of particles
in each cube V ∈ A, i.e.

M ∈ MA
` where M` := {0, 1, . . . , `d} .

Then we define (remember (2.1))

ντA,M := µτ
Λ( · |NA =M) (2.11)

GA := µ(· | GΛc,A) . (2.12)

We have, for f ∈ L1(µ)

νσA,NA(σ)
(f) = GA(f)(σ) µ–a.e.

in this way we can write the “multicanonical DLR equations” as

µW (f) = µW (GA(f)) if Λ ⊂W .

In the special case where A = {Λ} consists of a single element we (slightly) im-
properly write

ντΛ,N := ντ{Λ},N GΛ := G{Λ} .

3multi–canonical measures can obviously be defined on an arbitrary partition of Λ
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2.3 The dynamics

We consider the so–called Kawasaki dynamics, a Markov process with generator
LV , where V b Zd and

(LV f)(σ) =
∑

e∈EV

ce(σ) (∇ef)(σ) σ ∈ Ω , f : Ω 7→ R . (2.13)

The nonnegative real quantities ce(σ) are the transition rates for the process. The

general assumptions on the transition rates are

(K1) Finite range. ce is measurable w.r.t. FBr(e).

(K2) Detailed balance. For all e ∈ EZd we have ∇e

[

ce e
−He

]

= 0.

(K3) Positivity and boundedness. There exist positive real numbers cm, cM such
that cm ≤ ce(σ) ≤ cM for all e ∈ EZd and σ ∈ Ω.

We denote by Lτ
V,N the operator LV acting on L2(Ω, ντV,N ). Assumptions (1), (2)

and (3) guarantee that there exists a unique Markov process whose generator is
Lτ

V,N , and whose semigroup we denote by (P V,N,τ
t )t≥0. Lτ

V,N is a bounded operator

on L2(Ω, ντV,N ) and ντV,N is its unique invariant measure. Moreover ντV,N is reversible

with respect to the process, i.e. Lτ
V,N is self–adjoint on L2(Ω, ντV,N ). With (Pt)t≥0

we denote the infinite volume semigroup which is reversible w.r.t. µ, while L stands
for the generator of (Pt)t≥0.

A fundamental quantity associated with the dynamics of a reversible system is the
spectral gap of the generator, i.e.

gap(Lτ
V,N ) = inf spec (−Lτ

V,N ¹ 1⊥)

where 1⊥ is the subspace of L2(Ω, ντV,N ) orthogonal to the constant functions.

If Q is a probability measure on (Ω,F), V ⊂ Zd, and X ⊂ EZd we let4

EQ,V (f) :=
1

2

∑

e∈EV

Q
[

ce (∇ef)
2
]

EQ,X(f) :=
1

2

∑

e∈X
Q
[

ce (∇ef)
2
]

. (2.14)

When Q equals the unique infinite volume Gibbs measure µ, we (may) omit it as
a subscript. Analogously we omit the subscript V when V = Zd, so we let for
simplicity

EV := Eµ,V EX := Eµ,X E := Eµ,Zd (2.15)

The Dirichlet form associated with the generator Lτ
V,N is then given by EντV,N ,V (f).

The gap can also be characterized as

gap(Lτ
V,N ) = inf

f∈L2(ντV,N ) : f⊥1

EντV,N ,V (f)

ντV,N (f, f)
. (2.16)

4again with some abuse of notation
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2.4 Main result

Constants. Throughout this paper we tacitly assume to have chosen once and
for all a value of the dimension d of the lattice Zd, an interaction J of finite
range r satisfying (H1), (H2), (H3), a set of transition rates (ce)e∈E

Zd
satisfying

(K1), (K2), (K3). Our main result and most of the results contained in this work
hold when the interaction J is such that the mixing hypothesis (USM) is also
satisfied. With the word “constant” we denote any quantity which depends solely
on the paramenters which have been fixed by means of these hypotheses, namely
d, r, ‖J‖, cm, cM ,Γ0,m, `0. Analogously “for x large enough” means for x larger
than some constant. For simplicity we write things like “Assume (USM). Then for
all ε > 0 there is C > 0 such that . . . ” without reiterating that C depends not
only on ε, but in principle, on all the paramenters mentioned above.

Theorem 2.2. Assume (USM). Then for all ε > 0 and for all local functions f
on Ω there is A(ε, f) ∈ (0,∞) such that

µ
[(

Ptf − µf
)2] ≤ A(ε, f)

td/2−ε
∀t > 0

Remarks 2.3.

(a) This result has been proved for d = 1, 2 in [CM00b], so we are going to consider
only the case d ≥ 3.

(b) One might want to be more ambitious and study, instead of the quadratic
fluctuations of Ptf , the convergence to the invariant measure in some stronger
sense, say L∞(µ). We refer the reader to the introduction of [JLQY99] where
it is explained how, for these kind of models, the long time behavior of the
quantity |Ptf(η)− µ(f)| has a nontrivial dependence on the starting point η,
which makes pointwise estimates a much harder problem.

3 Outline of the proof of Theorem 2.2

Let d ≥ 3, let, as usual, µ be the unique infinite volume Gibbs measure for the
interaction J , and define 〈f, g〉 := µ(fg), ‖f‖ := µ(f 2)1/2. Let f be a local function
such that µf = 0, let ft := Ptf and let Kt := b

√
tc. In the following it will be

convenient to average over spatial translations, hence we define

Rjf := |Bj |−1
∑

x∈Bj

ϑxf .

Then we write

µ
[(

Ptf − µf
)2]

= ‖ft‖2 ≤ 2‖ft −RKtft‖2 + 2‖RKtft‖2 . (3.1)
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The second term in (3.1) is by far the easier. In fact, since Ps is a contraction in
L2(µ), we have, for all s, t > 0

‖RKtfs‖2 = ‖PsRKtf‖2 ≤ ‖RKtf‖2 =
1

|BKt |2
∑

x,y∈BKt

µ(ϑxf ϑyf)

=
1

|BKt |2
∑

x,y∈BKt

µ((ϑx−yf)f) ≤
1

|BKt |
∑

z∈B2Kt

µ((ϑzf)f)

so, using our mixing assumption (2.10), we obtain that there is A1 = A1(f) > 0
such that

‖RKtfs‖2 ≤ A1 t
−d/2 ∀s, t > 0 . (3.2)

Thus, letting ϕ(t) := ‖ft −RKtft‖2, what we need to do is to show that

ϕ(t) ≤ A2 t
−d/2+ε . (3.3)

Inequality (3.3) is implied, by iteration, by the following statement

∃δ < 4−d/2 such that ∀t ≥ 0 ϕ(t) ≤ δϕ(t/4) +A3 t
−d/2+ε . (3.4)

In order to prove (3.4) we write, using (3.2)

ϕ(t) ≤ 2‖ft −RKt/4
ft‖2 + 2‖RKtft −RKt/4

ft‖2

≤ 2‖ft −RKt/4
ft‖2 + 4‖RKt/4

ft‖2 + 4‖RKtft‖2 (3.5)

≤ 2‖ft −RKt/4
ft‖2 +A′1 t

−d/2 .

Let then
ψ(t,K) := ‖ft −RKft‖2 t ≥ 0, K ∈ Z+ .

We claim that in order to prove (3.4) it is sufficient to show that for some A4 =
A4(ε, f) we have

∃δ < 4−d/2 s.t. ∀K ≤ Kt

∫ 2t

t
ψ(s,K) ds ≤ δ

2

∫ 2t

t
ψ(s/2,K) ds+

A4

td/2−1−ε
. (3.6)

In fact, since ψ(·,K) is nonincreasing (3.6) implies

ψ(2t,K) ≤ δ

2
ψ(t/2,K) +

A4

td/2−ε

and, using (3.5), we find

ϕ(t) ≤ 2ψ(t,Kt/4) +
A′1
td/2

≤ δψ(t/4,Kt/4) +
A′1
td/2

+
A′4

td/2−ε
≤ δϕ(t/4) +

A3

td/2−ε
.

Hence the theorem follows from (3.6).
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3.1 Proof of statement (3.6)

LetK ≤ Kt, let (BL2 , `,A) be a polycube, and choose two more integers L,L1 such
that ` ≤ L < L1 < L2. We anticipate5 that we are going to choose ` = L ∼

√
t,

L1 ∼
√
t log t and L2 ∼

√
t (log t)2 (precise definitions in (3.23)). Let Λ1 := BL1 ,

Λ2 := BL2 , and define

gt := Pt(f −RKf) gx,t := ϑxgt . (3.7)

Thanks to translation invariance, we have, since µ gx,t = µf = 0,

ψ(t,K) =
1

|BL|
∑

x∈BL

µ(g2x,t) . (3.8)

For simplicity we define the following orthogonal projections in L2(µ)

Q1 = µ( · | FΛ1) Q2 = µ( · | FΛ2) QA = µ( · |NA) .

Then, since GAQA = QAGA = QA, we have

µ(g2x,t) = ‖gx,t‖2 = ‖(I −Q1)gx,t‖2 + ‖Q1gx,t‖2

= ‖(I −Q1)gx,t‖2 + ‖GAQ1gx,t‖2 + ‖(1−GA)Q1gx,t‖2

= ‖(I −Q1)gx,t‖2 + ‖QAQ1gx,t‖2

+ ‖(I −QA)GAQ1gx,t‖2 + ‖(I −GA)Q1gx,t‖2 .

(3.9)

On the other side, since QAQ2 = QA and Q2Q1 = Q1

‖QAQ1gx,t‖ ≤ ‖QAQ2gx,t‖+ ‖QA(Q1 −Q2)gx,t‖
≤ ‖QAgx,t‖+ ‖(Q2 −Q1)gx,t‖ = ‖QAgx,t‖+ ‖Q2(I −Q1)gx,t‖
≤ ‖QAgx,t‖+ ‖(I −Q1)gx,t‖ .

(3.10)

From (3.9), (3.10) we get

µ(g2x,t) ≤ 3µ [Var(gx,t | FΛ1)] + 2µ
[

µ(gx,t |NA)2
]

+ µ
[

Var(GAQ1gx,t |NA)
]

+ µ [GA(Q1gx,t, Q1gx,t) ]
(3.11)

where Var(f | ·) stands for the conditional variance of f (w.r.t. µ). We now proceed
to estimate each of the four terms in (3.11) and we are going to prove that (3.6)
holds.

First term in (3.11). In Section 4 we generalize the so–called “cutoff estimate”
(Proposition 3.1 of [JLQY99]) to the case where the measure µ is no longer a
product measure, but it satisfies our mixing condition (USM). The result is (more
or less) the same as in [JLQY99].

5for those readers who do not like proceeding on a “need-to-know” basis
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Proposition 3.1. Assume (USM). Then there exists C > 0 such that, for all local
functions g on Ω, for all t ≥ 1 such that Sg ⊂ B3b

√
tc, and for all L ∈ Z+, we have

µ [Var(Ptg | FBL
)] ≤ C e−L/

√
t µ(g2) . (3.12)

If we apply this result to the first term of (3.11) we find, for all x ∈ BL,

µ [Var(gx,t | FΛ1)] ≤ C e−L1/
√
t ‖gx‖2 if Sg ⊂ B3b

√
tc−L . (3.13)

Second term in (3.11). This term keeps track of the fluctuation of the number of
particles in the various blocks which make up the polycube (Λ2, `,A). We use the
following result whose proof appears in section 7. The integral of the second term
in (3.11) can be estimated as follows:

Proposition 3.2. Assume (USM). Then, for all ε > 0, for all local function f
on Ω, there exists A = A(f, ε) such that: for all polycubes (Λ, `,A) for all positive
integers K,L, taking into account definitions (3.7), and for all t > 0 we have

∫ t

0

1

|BL|
∑

x∈BL

µ
[

µ(gx,s |NA)2
]

ds ≤ AK2

Ld

[

Lε |A| log `+ t

L2

]

. (3.14)

Third term in (3.11). Since Var(f) ≤ osc(f)2/2, we get

µ
[

Var(GAQ1gx,t |NA)
]

≤ 1

2
sup

M∈M
A
`

sup
σ,τ∈Ω

[

νσA,M (Q1gx,t)− ντA,M (Q1gx,t)
]2
. (3.15)

In order to estimate the difference appearing in the RHS of (3.15) we use the
following result which will be proved in Section 5 (see Corollary 5.7):

Proposition 3.3. Assume (USM). Then there exists C > 0 such that for all poly-
cubes (BL, `,A), for all functions f on Ω such that Sf ⊂ BL, and for all M ∈ MA

` ,
we have

sup
σ,τ∈Ω

|νσA,M (f)− ντA,M (f)| ≤ ‖f‖u
[

C Ld−1 (log `)
3/2

`d

]bd(Sf ,Bc
L)/[(3d+4)`]c−2

(3.16)

From (3.15) and (3.16) (applied to the polycube (Λ2, `,A)) and thanks to the fact
that Q1gx,t is measurable w.r.t. FBL1

, we get

µ
[

Var(GAQ1gx,t |NA)
]

≤ ‖f‖2u
[

C Ld−1
2

(log `)3/2

`d

]2b(L2−L1)/[(3d+4)`]c−4
. (3.17)

Fourth term in (3.11). In Section 6 we prove a Poincaré inequality for the multi–
canonical measure, more precisely
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Proposition 3.4. Assume (USM). Then for all γ ∈ (0, (d− 1)−1) there exists Cγ

such that for all polycubes (BL, `,A) with L ≤ `1+γ we have, for all local functions
f ,

µ [GA(f, f) ] ≤ Cγ `
2 EBL

(f) . (3.18)

Choose γ := γ0 := [2(d− 1)]−1. If L2 ≤ `1+γ0 we can apply Proposition 3.4 to our
polycube (Λ2, `,A). In this way we can estimate the fourth term in (3.11) as

µ [GA(Q1gx,t , Q1gx,t) ] ≤ Cγ0 `
2 EΛ2(Q1gx,t) . (3.19)

In order to find a suitable upper bound to the Dirichlet form appearing in the RHS
of (3.19) we proceed as follows: given an edge e of Zd we have, for all f ∈ L2(µ)
‖∇eQ1f‖ ≤ ‖∇ef‖+ ‖∇e(I −Q1)f‖ ≤ ‖∇ef‖+ ‖(I −Q1)f‖+ ‖Te(I −Q1)f‖

≤ ‖∇ef‖+ ‖(I −Q1)f‖
(

1 + ‖e−∇eHe‖1/2u

)

≤ ‖∇ef‖+ ‖(I −Q1)f‖
(

1 + e‖J‖
)

.

Thanks to Proposition 3.1 (applied to the sigma–algebra FBL1
), and using the fact

that Sgx ⊂ BL(Sg), we obtain that for some constant C1

‖∇eQ1gx,t‖2 ≤ 2‖∇egx,t‖2 + C1 e
−L1/

√
t ‖gx‖2 if Sg ⊂ B3b

√
tc−L . (3.20)

From (2.14), (3.19), (3.20) we get that there is C2 > 0 such that

µ [GA(Q1gx,t, Q1gx,t) ] ≤ C2 `
2
[

E(gx,t) + e−L1/
√
t‖gx‖2

]

if Sg ⊂ B3b
√
tc−L .

(3.21)
For any zero mean function f in the domain of E we have

µ(f2) ≥ −
∫ t

0

d

ds
µ(f2s )ds = 2

∫ t

0
E(fs)ds ≥ 2tE(ft) ,

hence

E(gx,t) = E(P3t/4 gx,t/4) ≤
2µ(g2x,t/4)

3t
.

From (3.21) it follows that if Sg ⊂ B3b
√
tc−L, then

1

|BL|
∑

x∈BL

µ [GA(Q1gx,t, Q1gx,t) ] ≤ C3

[`2

t
ψ(t/4,K) + e−L1/

√
t ‖g‖2

]

. (3.22)

End of proof of Theorem 2.2. To conclude the proof we choose appropriate values
for `, L, L1, L2 and collect the various pieces together. Choose then a real number
α such that 5C3 α

2 < 4−d/2, and let6

` = L := 2bα
√
tc+1 L1 := b(d/2)

√
t log tc 2L2+1 := ` (2b(log t)2c+1) . (3.23)

Inequality (3.6) then follows from (3.8), (3.11), (3.13) (3.14), (3.15), (3.17), (3.22),
and this proves the theorem.

6the following (apparently?) paranoic definitions are due to the fact that ` must be an odd

integer which divides 2L2 + 1.
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4 Cutoff estimate and proof of Proposition 3.1

In this section we prove Proposition 3.1. We observe that the factor 3 appearing
in the assumption Sg ⊂ B3b

√
tc is completely arbitrary. By redefining the constant

C one can replace this 3 with any number. We follow the strategy of Proposition
3.1 in [JLQY99], with suitable modifications required by the fact that, in our case,
µ is not a product measure.

Lemma 4.1. Assume (USM) and let, for j ∈ N,

Aj := µ(· | FBj ) Dj := EBj\EBj−r Dj := Dj ∪ δBj .

Then, there exists a constant C > 0 such that for all ϑ > 0, and for all local
functions g on Ω, we have (remember (2.15))

|µ(AjgLg) | ≤ EBj−r(g) + ϑC EDj
(g) +

C

ϑ
µ[ (Aj+rg −Ajg)

2 ] .

Proof. We let 〈f, g〉 := µ(fg), ‖f‖ := µ(f 2)1/2, and we define, for x ∈ Zd, e ∈ EZd

hje :=
e−∇eHe

Aj(e−∇eHe)
hjx :=

e−∇xH{x}

Aj(e
−∇xH{x})

U j
e := 1− hje .

A straightforward computation shows that if e = {x, y} ⊂ Bj then we have (re-
member (2.2))

∇eAjf = Aj(∇ef) + TeAj [fU
j
e ] . (4.1)

In the special case in which e ⊂ Bj−r we have hje = 1, thus, (4.1) reduces to

∇eAjf = Aj(∇ef) . (4.2)

If instead e = {x, y} ∈ δBj then the formula is slightly more complicated. Assume
x ∈ Bj , y ∈ Bc

j , and let qe(σ) = 1I{σ(x)6=σ(y)}. Then

∇eAjf = qe
{

Aj [∇ef(1 + hjy)] +Aj [fV
j
xy] + SxAj [fW

j
xy]

}

(4.3)

where

V j
xy := hjy qxy − (1− qxy)

W j
xy := 1− hjx qxy − qxy Sy (h

j
x/h

j
y) .

It is easy to verify that
AjV

j
xy = AjW

j
xy = 0 .

By definition we have

µ(Ajg (−Lg)) = E(Ajg, g) =
1

2

∑

e: e∩Bj 6=∅
µ
(

ce∇e(Ajg)∇eg
)

,

so, letting, Ye := µ
(

ce∇e(Ajg)∇eg
)

, we can write

|µ(Ajg (−Lg))| ≤ X1 +X2 +X3
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where

X1 :=
1

2

∣

∣

∣

∑

e⊂Bj−r

Ye

∣

∣

∣
X2 :=

1

2

∣

∣

∣

∑

e∈Dj

Ye

∣

∣

∣
X3 :=

1

2

∣

∣

∣

∑

e∈δBj

Ye

∣

∣

∣
.

For what concerns those edges e ⊂ Bj−r which contribute to X1 we observe that
ceAj(f) = Aj(cef). From this equality, from the fact that Aj is an orthogonal
projection in L2(µ), and from (4.2), it follows that, for each e ⊂ Bj−r

Ye = µ
(

ceAj(∇eg)∇eg
)

= ‖Aj(
√
ce∇eg)‖2 ≤ ‖

√
ce∇eg‖2 = µ[ce (∇eg)

2]

hence
X1 ≤ EBj−r(g) . (4.4)

In order to estimate X2 we use (4.1) and we get (cm, cM are the minimum and
maximum transition rates)

X2 ≤
cM
2

∑

e∈Dj

µ[(Aj |∇eg|)2] +
cM
2

∑

e∈Dj

µ
[

|∇eg| |TeAj(gU
j
e )|

]

.

Using xy ≤ (ϑx2 + ϑ−1y2)/2 in the second term, we get

X2 ≤
cM
cm

(

1 +
ϑ

2

)

EDj (g) +
cM
4ϑ

∑

e∈Dj

µ
[

Te
(

Aj(g U
j
e )

)2
] .

Since ‖J‖ <∞, there exists C0 > 0 such that for all edged e and all sites x

µ(Tef) ≤ C0 µ(f) µ(Sxf) ≤ C0 µ(f) ∀f > 0 . (4.5)

In this way we obtain

X2 ≤
cM
cm

(

1 +
ϑ

2

)

EDj (g) +
cMC0
4ϑ

∑

e∈Dj

‖Aj(g U
j
e )‖2 . (4.6)

The term X3 can be estimated using (4.3) and (4.5) as

X3 ≤
cM
cm

C1 ϑ EδBj (g) +
cMC1
ϑ

∑

e∈δBj

[

‖Aj(gV
j
e )‖2 + ‖Aj(gW

j
e )‖2

]

(4.7)

where C1 is some positive constant. Collecting the terms in (4.4), (4.6), (4.7), we
find that there exists a constant C2 > 0 such that

|µ(Ajg (−Lg))| ≤ EBj−r(g) + C2 ϑEDj
(g)

+
C2
ϑ

[

∑

e∈Dj

‖Aj(gU
j
e )‖2 +

∑

e∈δBj

‖Aj(gV
j
e )‖2 +

∑

e∈δBj

‖Aj(gW
j
e )‖2

]

. (4.8)

In order to estimate the three sums which appear in (4.8) we use the following
elementary Hilbert space inequality.

230



Proposition 4.2. Let (V, 〈·, ·〉) be a Hilbert space, and let (ui)
n
i=1 be a finite se-

quence of elements of V . Define

M := max
i=1,...,n

n
∑

j=1

|〈ui, uj〉| .

Then, for all v ∈ V , we have

n
∑

i=1

〈v, ui〉2 ≤M ‖v‖2 . (4.9)

Proof. Since ‖v −∑n
i=1 λiui‖2 ≥ 0 for all λ ∈ Rn, we find, letting λi = ϑ〈v, ui〉,

ϑ2
n
∑

i,j=1

〈v, ui〉〈v, uj〉〈ui, uj〉 − 2ϑ
n
∑

i=1

〈v, ui〉2 + ‖v‖2 ≥ 0 ∀ϑ ∈ R

which, since 〈v, ui〉〈v, uj〉 ≤ (〈v, ui〉2 + 〈v, uj〉2)/2, implies

ϑ2M
n
∑

i=1

〈v, ui〉2 − 2ϑ
n
∑

i=1

〈v, ui〉2 + ‖v‖2 ≥ 0 ∀ϑ ∈ R

and the result follows.

Consider now the first sum in the RHS of (4.8)

∑

e∈Dj

‖Aj(gU
j
e )‖2 = µ

[

∑

e∈Dj

[Aj(gU
j
e )]

2
]

.

The idea is to use Proposition 4.2 with 〈f, g〉 replaced by Aj(fg). Thanks to the
hypothesis (USM) on the interaction J , there exists a constant C3 > 0 such that

max
e′∈Dj

∑

e∈Dj

|Aj(U
j
eU

j
e′)| ≤ C3 ∀j ∈ Z+ . (4.10)

By consequence, using (4.9), (4.10), the fact that U j
e is measurable w.r.t. FBj+r

and that Aj(U
j
e ) = 0, we get

µ
[

∑

e∈Dj

[Aj(gU
j
e )]

2
]

= µ
[

∑

e∈Dj

[Aj(Aj+rg)U
j
e )]

2
]

= µ
[

∑

e∈Dj

[Aj(Aj+rg −Ajg)U
j
e )]

2
]

≤ C3 µ
[

(Aj+rg −Ajg)
2
]

. (4.11)

From (4.8), (4.11) and the analogous inequalities for the terms

∑

e∈δBj

‖Aj(gV
j
e )‖2

∑

e∈δBj

‖Aj(gW
j
e )‖2 .

Lemma 4.1 follows.
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4.1 End of proof of Proposition 3.1

Once we have estabilished Lemma 4.1, Proposition 3.1 follows more or less in the
same way as in [JLQY99]. We include the argument for completeness.

Let `, L be two positive integers, let ϑ > 0, and let αi := ei/(ϑC) for i ∈ N, where
C is the constant which appears in Lemma 4.1. We assume C ≥ 1 otherwise we
redefine C as C ∨ 1. Given g ∈ L2(µ) we also let gt := Ptg. Define then the
function

F (t) := α`+1‖A2`rgt‖2 +
L−1
∑

j=`

αj+1‖A2(j+1)rgt −A2jrgt‖2 + αL+1‖gt −A2Lrgt‖2

and notice that it can be also written as

F (t) = αL+1‖gt‖2 +
L
∑

j=`+1

(αj+1 − αj)‖A2jrgt‖2 .

Differentiating and using to Lemma 4.1 we obtain

F ′(t) = −2αL+1E(gt)− 2
L
∑

j=`+1

(αj+1 − αj)µ(A2jrgtLgt)

≤ −2αL+1E(gt) + 2
L
∑

j=`+1

(αj+1 − αj)
[

EB(2j−1)r(gt) + ϑC ED2jr
(gt)

+
C

ϑ
‖A(2j+1)rgt −A2jrgt‖2

]

.

Using the summation by parts formula we can rewrite F ′(t) as

F ′(t) = −2αL+1

[

E(gt)− EB(2L+1)r(gt)
]

− 2α`+1EB(2`+1)r(gt)

+ 2

L
∑

j=`+1

αj+1

[

EB(2j−1)r(gt)− EB(2j+1)r(gt)
]

+ 2C
L
∑

j=`+1

(αj+1 − αj)
[

ϑED2jr
(gt) +

1

ϑ
‖A(2j+1)rgt −A2jrgt‖2

]

≤ 2
L
∑

j=`+1

αj+1

[

EB(2j−1)r(gt)− EB(2j+1)r(gt)
]

+ 2C
L
∑

j=`+1

(αj+1 − αj)
[

ϑED2jr
(gt) +

1

ϑ
‖A(2j+1)rgt −A2jrgt‖2

]

.

With our choice for αi, we have that ϑC(αi+1−αi) ≤ αi+1 if ϑC ≤ 1. Furthermore

EB(2j−1)r(gt) + ED2jr
(gt)− EB(2j+1)r(gt) ≤ 0
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hence

F ′(t) ≤ 2

ϑ2

L
∑

j=`+1

αj+1 ‖A(2j+1)rgt −A2jrgt‖2 ≤
2

ϑ2
F (t) ∀ϑ ≥ C−1 .

By consequence F (t) ≤ F (0)e2t/ϑ
2
, so, if Sg ⊂ B2`r we have

‖gt −A2Lrgt‖2 ≤ exp
[ 2t

ϑ2
− L− `

ϑC

]

‖g‖2

which, since n→ ‖Angt‖2 is nondecreasing, implies

‖gt −ALgt‖2 ≤ exp
[ 2t

ϑ2
− bL/2rc − `

ϑC

]

‖g‖2 ∀L ∈ Z+ .

Choosing now ` = 3(b
√
t/rc+1) and ϑ =

√
t/(2rC), we obtain Proposition 3.1.

5 Influence of the boundary condition on multicanonical expectations

In this section we study how the multicanonical expectation ντA,M (f) of a function
f on Ω is affected by a variation of the boundary condition τ . More precisely we
want to find an upper bound to the quantity

|ντA,M (f)− νσA,M (f)| . (5.1)

This problem has been studied, in a particular geometrical setting, in [CM00a].
Following a similar approach we are going to show how to deal with a more general
geometry.

Let then (Λ, `,A) be a polycube and let M ∈ MA
` a possible choice for the number

of particles in each element of A. In order to study how the quantity ντA,M (f)
depends on τ , we first approximate this multicanonical expectation with a grand-
canonical expectation µτ

A,λ(f) in which λ is a suitable chemical potential (re-
member (2.4)) which we assume constant in each cube of A. The value of λ is
determined by the requirement that the expectation of the number of particles in
each cube is equal to the number of particles fixed by the multicanonical mea-
sure. In other words we want µτ

A,λ(NV ) = MV for all V ∈ A. The existence of
this tilting field λ is proved in the appendix of [CM00a]. Thus there is a map
λ̂ : (A,M, τ)→ λ such that

µτ
A,λ̂(A,M,τ)

(NV ) =MV ∀V ∈ A . (5.2)

For brevity we define
µ̃τ
A,M := µτ

A,λ̂(A,M,τ)
.
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5.1 The basic estimate

The idea for estimating (5.1) is to write

|ντA,M (f)− νσA,M (f)|
≤ |ντA,M (f)− µ̃τ

A,M (f)|+ |µ̃τ
A,M (f)− µ̃σ

A,M (f)|+ |µ̃σ
A,M (f)− νσA,M (f)| .

(5.3)

The first and third term can be estimated using Proposition 5.1 below, a result
concerning the “equivalence of the ensembles”, while the second term will be taken
care of in Proposition 5.2.

Proposition 5.1. Assume (USM). There exists C > 0 such that for all polycubes
(Λ, `,A), for all M ∈ MA

` , for all functions f on Ω such that |Sf | ≤ `d/2, we have

sup
τ∈Ω

|µ̃τ
A,M (f)− ντA,M (f)| ≤ C ‖f‖u |Sf | |If | `−d (log `)

3
2 (5.4)

where If := {V ∈ A : Sf ∩ V 6= ∅}.

Proof. It is a straightforward consequence of Theorem 5.1 in [CM00a] (see aso
Theorem 4.4 in [BCO99]). We just observe that the “bad block” estimate in that
theorem is good enough for our purposes.

Proposition 5.2. Assume (USM). There exist ζ, C > 0 such that for all polycubes
(Λ, `,A), for all M ∈ MA

` , for all functions f on Ω such that Sf ⊂ Λ we have

sup
τ,σ∈Ω

|µ̃τ
A,M (f)− µ̃σ

A,M (f)| ≤ C ‖f‖u |Sf | (ζ`)2+d−d(Sf ,W )/` (5.5)

where W := {x ∈ ∂+r Λ : τ(x) 6= σ(x)}.

Proof. The proof of this statement requires some modifications of the proof of
Proposition 7.1 in [CM00a], where a different geometry is considered. We first
observe that we can assume

` ≥ ζ−1, d(Sf ,W ) ≥ (2 + d)`, |Sf | ≤ (ζ`)d(Sf ,W )/`−d−2 (5.6)

otherwise there is nothing to prove. For simplicity we enumerate (in an arbitrary

way) the set A

A = {Λ1,Λ2, . . . ,Λn} Λi = yi +Q`, yi ∈ `Zd . (5.7)

and we let Mi :=MΛi . Let λ0, λ1 ∈ Rn be defined by

µτ
A,λ0(NΛi) =Mi = µσ

A,λ1(NΛi) ∀i ∈ {1, . . . , n} . (5.8)

If we denote by h the Radon–Nikodym density of µσ
Λ,λ1

with respect to µτ
Λ,λ1

, i.e.

h :=
e
−(Hσ

A,λ1
−Hτ

A,λ1
)

µτ
Λ,λ1

[

e
−(Hσ

A,λ1
−Hτ

A,λ1
)]

(5.9)
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we can write

|µ̃τ
A,M (f)− µ̃σ

A,M (f)| ≤ |µτ
A,λ0(f)− µτ

A,λ1(f)|+ |µτ
A,λ1(f)− µσ

A,λ1(f)|
= |µτ

A,λ0(f)− µτ
A,λ1(f)|+ |µτ

A,λ1(f, h)| .
(5.10)

The covariance term in the RHS of (5.10) can be bounded using (2.10). In fact we
have

Sh ⊂W0 := ∂+r W ∩ Λ ,

and, using inequalities (5.6) it is easy to show that if the constant ζ is chosen small
enough then condition (2.9) is satisfied. Hence thanks to (2.10) and the fact that
µτ
A,λ1

(h) = 1, we find

|µτ
A,λ1(f, h)| ≤ µτ

A,λ1(|f |) e−md(Sf ,Sh)/2 . (5.11)

We are now going to show that

|µτ
A,λ0(f)− µτ

A,λ1(f)| ≤ C ‖f‖u |Sf | (ζ`)2+d−d(Sf ,W )/` (5.12)

which, together with (5.11), proves the Proposition. We start by introducing a
chemical potential λs, s ∈ (0, 1), which interpolates between λ0 and λ1

Rn 3 λs = (1− s)λ0 + sλ1 s ∈ [0, 1] .

Let then, for any local function g, and for i, j = 1, . . . , n,

ϕi(g) :=
∫ 1
0 µ

τ
A,λs

(NΛi , g) ds (5.13)

ψi(g) := µτ
A,λ1(NΛi , g) (5.14)

Bij := ϕi(NΛj ) = Bji . (5.15)

Then we have, letting Y = λ1 − λ0,

µτ
A,λ1(f)− µτ

A,λ0(f) =

∫ 1

0

d

ds
µτ
A,λs(f) ds =

n
∑

i=1

Yi ϕi(f) = 〈Y, ϕ(f)〉Rn (5.16)

and, analogously,
µτ
A,λ1(NΛi)− µτ

A,λ0(NΛi) = (BY )i . (5.17)

On the other side we have, by (5.8) and (5.9)

µτ
A,λ1(NΛi)− µτ

A,λ0(NΛi) = µτ
A,λ1(NΛi)− µσ

A,λ1(NΛi) = ψi(h) , (5.18)

by consequence, assuming that B is invertible (we prove it later) we obtain

µτ
A,λ1(f)− µτ

A,λ0(f) = 〈B−1ψ(h) , ϕ(f) 〉Rn . (5.19)

For any n × n matrix A, let ‖A‖ be the norm of A when A is interpreted as an
operator acting on (Rn, | · |∞), i.e.
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‖A‖ = max
i∈{1,...,n}

n
∑

j=1

|Aij | . (5.20)

Let G be any invertible n× n matrix. We can then write

|µτ
A,λ1(f)− µτ

A,λ0(f) | = | 〈GB−1G−1Gψ(h) , G−1ϕ(f) 〉Rn |
≤ |GB−1G−1Gψ(h)|∞ |G−1ϕ(f)|1 .

(5.21)

Write B as a sum B = D + E of its diagonal part D and its off–diagonal part E.
Assume also that G is diagonal with Gii > 0. Then we have

GBG−1 = D [I +GD−1EG−1] ,

so, if we could prove that
‖GD−1EG−1‖ ≤ 1/2 (5.22)

it would follow that B is in fact invertible and, since, in general ‖A1A2‖ ≤
‖A1‖ ‖A2‖, we obtain

GB−1G−1 = [I +GD−1EG−1]−1D−1 (5.23)

with ‖[I +GD−1EG−1]−1‖ ≤ 2. In this way we can obtain, from (5.21)

|µτ
A,λ1(f)− µτ

A,λ0(f) | ≤ 2 |D−1Gψ(h)|∞ |G−1ϕ(f)|1 . (5.24)

What is left is then to show that (5.22) holds and to estimate the two factors in
the RHS of (5.24), with a suitable choice of G. Since G and D are diagonal we let,
for simplicity,

Gi := Gii , Di := Dii i = 1, . . . , n .

We collect in the following Lemma a set of basic inequalities we are going to use
in the rest of the proof. In order to state the results we need some notation: we
introduce a distance κ on the set {1, . . . , n} as (remember (5.7))

κ(i, j) := |yi − yj |/` =
{

(d(Λi,Λj)− 1)/`+ 1 if i 6= j

0 if i = j .
(5.25)

Consider also the function ρ : R → [0,∞) defined as

ρ(a) = (1 + e−a)−1 . (5.26)

The quantity ρ(a) represents the density of particles in the measure µ with no
interaction (J = 0) and chemical potential equal to a.

µτ
A,J=0,λ(η(x)) = µ∅{x},J=0,λ(η(x)) = ρ(λ(x)) .

Keeping in mind (5.25) and (5.26) we have

Lemma 5.3. Assume (USM). There exists A > 0 such that for all λ ∈ Rn and
for all i, j = 1, . . . , n we have
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(1) e−2‖J‖ ≤
µτ
A,λ(NΛi)

ρ(λi) `d
≤ e2‖J‖ and A−1 ≤

|µτ
A,λ(NΛi , NΛi)|
ρ(λi) `d

≤ A

(2) If i 6= j then |µτ
A,λ(NΛi , NΛj )| ≤ Aρ(λi) ρ(λj) `

d−1

(3) If κ(i, j) ≥ 2 and ` ≥ A then |µτ
A,λ(NΛi , NΛj )| ≤ ρ(λi) ρ(λj) e

−md(Λi,Λj)/3

(4) For all functions f on Ω we have |µτ
A,λ(NΛi , f)| ≤ A ‖f‖u ρ(λi) `d

Proof. All inequalities except (3) are taken from Proposition 3.1 in [CM00a]. As
for statement (3) it is a direct consequence of (2.10) and the first inequality in
statement (1).

Proof of (5.22) and (5.24). If we let

ρ̄i :=

∫ 1

0
ρ(λs,i) ds

we obtain, using
∫ 1
0 ρ(λs,i) ρ(λs,j) ds ≤ ρ̄j , Lemma 5.3, and the fact that Eii = 0,

n
∑

j=1

∣

∣

∣

GiEij

Gj Di

∣

∣

∣
≤ A2

`

∑

j:κ(j,i)=1

ρ̄j
ρ̄i

Gi

Gj
+A`d

∑

j:κ(j,i)≥2

ρ̄j
ρ̄i

Gi

Gj
e−md(Λi,Λj)/3 (5.27)

Let ζ > 0, let I be a subset of {1, . . . , n}, and define G as

Gi := ρ̄i (ζ`)
κ(i,I) i = 1, . . . , n . (5.28)

A specific choice for I will be made later, since it is unnecessary at the moment.
By the triangular inequality we have

Gi

Gj
≤ ρ̄i
ρ̄j

(ζ`)κ(i,j) i, j = 1, . . . , n ,

and (5.27) becomes

n
∑

j=1

|GiD
−1
i EijG

−1
j | ≤ ζ A2 3d +A`d

∑

j:κ(j,i)≥2
(ζ`)κ(i,j) e−md(Λi,Λj)/3 , (5.29)

which, taking ζ = 3−dA−2/4 and ` large enough, implies (5.22) and, by conse-
quence, (5.24).

We turn then our attention to the two factors in the RHS of (5.24). In order
to obtain proper bounds on them we finally choose the set I and complete our
definition of the matrix G in (5.28). We define

I := {i ∈ {1, . . . , n} : d(Λi,W0) ≤ `/3} . (5.30)

At this point we would like to say that d(Λi,W0) is roughly equal to κ(i, I)`. More
precisely we have
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Lemma 5.4. For all i = 1, . . . , n we have

1

3
κ(i, I)` ≤ d(Λi,W0) ≤

[

κ(i, I) +
1

3

]

` . (5.31)

Proof of the Lemma. Let’s start with the lower bound on d(Λi,W0). We have

d(Λi,W0) ≥ inf
j∈I

d(Λi,Λj) ≥ (κ(i, I)− 1)` ,

which, when i 6∈ I can be improved as

d(Λi,W0) ≥ max{(κ(i, I)− 1)`, `/3} i ∈ Ic .

This implies
d(Λi,W0) ≥ κ(i, I) `/3 , (5.32)

which is trivially true also when i ∈ I. For the upper bound we observe that, if
x ∈ Λj for some j ∈ I, then

d(x,W0) ≤ d(Λj ,W0) + diamΛj = d(Λj ,W0) + `− 1 ≤ `/3 + (`− 1) .

Thus, if we let ΛI := ∪j∈IΛj , we have that ΛI ⊂ B`/3+`−1(W0), so

d(Λi,W0) ≤ d(Λi,ΛI) + `− 1 + `/3 = κ(i, I)`+ `/3

Estimate of |D−1Gψ(h)|∞ in (5.24). Thanks to Lemma 5.3 we can write

|D−1i Gi ψi(h)| ≤ A`−d (ζ`)κ(i,I) |µτ
A,λ1(NΛi , h)| . (5.33)

If i ∈ I we have, since µτ
A,λ1

(h) = 1

|µτ
A,λ1(NΛi , h)| ≤ µτ

A,λ1(NΛih) + µτ
A,λ1(NΛi)µ

τ
A,λ1(h) ≤ 2`d ,

so, by (5.33),
|D−1i Gi ψi(h)| ≤ 2A ∀i ∈ I . (5.34)

If instead i 6∈ I (and ` is large enough) we can use (2.10) and we get

|µτ
A,λ1(NΛi , h)| ≤ `d e−md(Λi,W0)/2 ,

which, together with (5.31) yields, for ` large enough,

|D−1i Gi ψi(h)| ≤ A (ζ`)κ(i,I) e−mκ(i,I)`/6 ≤ A ∀i ∈ Ic . (5.35)

From (5.34), (5.35), we finally get

|D−1Gψ(h)|∞ ≤ 2A . (5.36)

Estimate of |G−1ϕ(f)|1 in (5.24) and end of the proof. In order to prove (5.12) we
have to bound the last factor in (5.24), namely |G−1ϕ(f)|1. We have

|G−1ϕ(f)|1 =
n
∑

i=1

|ϕi(f)|
Gi

≤
n
∑

i=1

(ρ̄i)
−1 (ζ`)−κ(i,I)

∫ 1

0
|µτ
A,λs(NΛi , f)| ds . (5.37)
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Observe first that using Lemma 5.4,

d(Sf ,W0) ≤ d(Sf ,Λi) + d(Λi,W0) + diamΛi ≤ d(Sf ,Λi) + `κ(i, I) +
4`

3
. (5.38)

If i is such that d(Λi, Sf ) ≤ `/3 we use inequality (4) of Lemma 5.3 and we find

|ϕi(f)|
Gi

≤ A ‖f‖u `d (ζ`)4/3−d(Sf ,W0)/`+d(Sf ,Λi)/`

≤ A1 ‖f‖u (ζ`)2+d−d(Sf ,W0)/`

where we have set A1 := Aζ−d. Moreover the number of i′s such that d(Λi, Sf ) ≤
`/3 is bounded by (8/3)d |Sf |, so we have

∑

i: d(Λi,Sf )≤`/3

|ϕi(f)|
Gi

≤ A2 ‖f‖u |Sf | (ζ`)2+d−d(Sf ,W0)/` (5.39)

where A2 := A1(8/3)
d. In order to estimate the contribution of those terms with

d(Λi, Sf ) > `/3 we use (2.10) and, again, (5.38) and we obtain

|ϕi(f)|
Gi

≤ A1 ‖f‖u (ζ`)4/3+d−d(Sf ,W0)/`+d(Sf ,Λi)/` e−md(Sf ,Λi)/2 . (5.40)

Furthermore it is easy to see that, if ` is large enough, then
∑

i: d(Λi,Sf )>`/3

(ζ`)d(Sf ,Λi)/` e−md(Sf ,Λi)/2 ≤ |Sf | . (5.41)

From (5.40), (5.41) it follows that

∑

i: d(Λi,Sf )>`/3

|ϕi(f)|
Gi

≤ A1 ‖f‖u |Sf | (ζ`)4/3+d−d(Sf ,W0)/` , (5.42)

which, together (5.39) implies

|G−1ϕ(f)|1 ≤ A3 ‖f‖u |Sf | (ζ`)2+d−d(Sf ,W0)/` (5.43)

with A3 := A1 + A2. Finally from (5.24), (5.36) and (5.43), inequality (5.12)
follows, and the proof of Proposition 5.2 is completed.

Combining inequality (5.3) with Propositions 5.1 and 5.2 we obtain

Corollary 5.5. Assume (USM). There exists C > 0 such that the following holds:
let (Λ, `,A) be a polycube, and consider a pair of boundary conditions τ, σ ∈ Ω,
with W := {x ∈ ∂+r Λ : τ(x) 6= σ(x)}. Then for all functions f on Ω such that
Sf ⊂ Λ, d(Sf ,W ) ≥ (3d+ 2)` and |Sf | ≤ `d/2, for all M ∈ MA

` , we have

|ντA,M (f)− νσA,M (f)| ≤ C ‖f‖u |Sf | |If | `−d (log `)3/2 (5.44)

where If := {V ∈ A : Sf ∩ V 6= ∅}.
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5.2 Improving the basic estimate

Inequality (5.44) can be iterated and consequently improved. What follows is a
generalization of the strategy adopted in [CM00a].

Proposition 5.6. Assume (USM). There exists C > 0 such that the following
holds: let (Λ, `,A) be a polycube, and let f be a function on Ω such that Sf ⊂ Λ.
Given a pair of boundary conditions τ, σ ∈ Ω, let W := {x ∈ ∂+r Λ : τ(x) 6=
σ(x)}. Assume that there exists an increasing sequence of polycubes (Tk, `,Ak),
k = 0, . . . , n, such that

(i) Sf ⊂ T0 ⊂ T1 ⊂ · · · ⊂ Tn ⊂ Λ

(ii) d(Tn,W ) > r

(iii) d(Λ\Tk, Tk−1) ≥ (3d+ 4)`.

Then, for all M ∈ MA
` ,

|ντA,M (f)− νσA,M (f)| ≤ ‖f‖u
[

C
(log `)3/2

`d

]n n
∏

k=1

|∂+r Tk ∩ Λ| . (5.45)

Proof. Let
fk := ντA,M (f | FΛ\Tk) k = 0, . . . , n .

We denote with Mk the restriction of M to Ak. The function fk is measurable
w.r.t. F∂+r Tk∩Λ. Denoting with Ω̃ the set of all η ∈ Ω such that ηΛc = τΛc , we can
write

fk(η) = νηAk,Mk
(f) ∀η ∈ Ω̃ .

Since, by hypothesis, d(Tk,W ) ≥ d(Tn,W ) > r, we have

νσA,M (f | FΛ\Tk)(η) = ντA,M (f | FΛ\Tk)(η) = νηAk,Mk
(f) = fk(η) ∀η ∈ Ω̃ ,

By consequence (remember that osc(f) := sup f − inf f)

|ντA,M (f)− νσA,M (f)| = |ντA,M (fn)− νσA,M (fn)| ≤ osc(fn) . (5.46)

Since fk is measurable w.r.t. F∂+r Tk∩Λ

osc(fk) ≤ |∂+r Tk ∩ Λ| sup
x∈∂+r Tk∩Λ

sup
η∈Ω̃

|∇x(fk)(η)| . (5.47)

On the other side, if we let

hxk(η) :=
e−∇xHΛ(η)

νηAk,Mk
(e−∇xHΛ)

,

we have, for x ∈ ∂+r Tk ∩ Λ and η ∈ Ω̃

|∇x(fk)(η)| = |νηAk,Mk
(fk−1)− νsxηAk,Mk

(fk−1)| = |νηAk,Mk
(fk−1, h

x
k)| . (5.48)
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Define now a set T̂k−1 slightly larger than Tk−1, such that fk−1 is measurable
w.r.t. FT̂k−1

. We let T̂k−1 := B`(Tk−1)∩Λ. The reason for taking the `–boundary

of Tk−1 instead of the r–boundary, which would be enough for the measurability
requirement, is that, in this way there exists Âk−1 ⊂ Ak, such that (T̂k−1, `, Âk−1)
is a polycube. The RHS of (5.48) can be estimated as

|νηAk,Mk
(fk−1, h

x
k)| = |νηAk,Mk

(fk−1, ν
η
Ak,Mk

(hxk | FT̂k−1
)|

≤ osc(fk−1) osc
[

νηAk,Mk
(hxk | FT̂k−1

)
]

.
(5.49)

The idea, at this point, is to bound the last factor in the RHS of (5.49) using
inequality (5.44). Thanks to hypothesis (iii) the distance between Shxk

and T̂k−1
can be bounded from below as

d(Shxk
, T̂k−1) ≥ d(Λ\Tk, T̂k−1)− r ≥ (3d+ 4)`− `− r ≥ (3d+ 2)` .

So we can apply Corollary 5.5, and, since the uniform norm of hx
k is at most

exp(4‖J‖), we obtain, with a suitable redefinition of the constant C,

osc
[

νηAk,Mk
(hxk | FT̂k−1

)
]

≤ C(log `)3/2`−d . (5.50)

From (5.46), (5.47), (5.48), (5.49), (5.50), it follows that

|ντA,M (f)− νσA,M (f)| ≤ osc(f0)

n
∏

k=1

[

C `−d(log `)3/2 |∂+r Tk ∩ Λ|
]

.

On the other side, since by hypothesis Sf ⊂ T0, we have osc(f0) ≤ osc(f) ≤ 2‖f‖u,
and the Proposition is proved.

In the following Corollary we consider a particular situation where previous result
can be applied and we write down a more explicit expression for the RHS of (5.45).

Corollary 5.7. Assume (USM). Then there exists C > 0 such that the following
holds: let (Λ, `,A) be a rectangular polycube, i.e. a polycube such that Λ = I1 ×
· · · × Id, where Ii = [ai, bi) ∩ Z, and assume that |Ii| ≤ L for i = 1, . . . , n. Then,
for all functions f on Ω such that Sf ⊂ Λ, for all M ∈ MA

` , for all τ, σ ∈ Ω we
have

|ντA,M (f)− νσA,M (f)| ≤ ‖f‖u
[

C Ld−1 (log `)
3/2

`d

]bd(Sf ,W )/[(3d+4)`]c−2
(5.51)

where W := {x ∈ Zd : τ(x) 6= σ(x)}.

Proof. Let j be the smallest integer such that Sf ⊂ (Bj`+y)∩Λ for some y ∈ `Zd.
Inequality (5.51) follows (after a redefinition of C) from Proposition 5.6, if one
takes

Tk := (B[j+k(3d+4)]` + y) ∩ Λ k = 0, . . . , n

where n = bd(Sf ,W )/[(3d+ 4)`]c − 2.
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6 Poincaré inequality

In this section we prove Proposition 3.4. Our goal is to obtain a Poincaré–type
inequality for the multicanonical measures ντA,M on the polycube (BL, `,A) when
L ≤ `1+γ with γ < (d− 1)−1. This restriction on γ is really fictitious and springs
from the fact that the quantity appearing in brackets in the RHS of (5.51) must
be much smaller than one. In order to overcome this difficulty one could iterate
inequality (5.51) again and obtain a result suitable for larger values of L.

We also observe that (3.18) is weaker than the standard Poincarè inequality asso-
ciated with the measure ντA,M , for two reasons: first of all the inequality (3.18) is
averaged with respect to the infinite volume measure µ, and, moreover the Dirich-
let form in the RHS of (3.18) contains also those terms (∇xyf)

2 in which x and y
belong to different cubes of A. This weaker inequality is anyway sufficient for our
purposes.

Before starting with our proof, we want to remark that an inequality somehow
close to the one we are trying to demonstrate requires basically no effort7. Let in
fact A0, A1 be two partitions of BL such that A1 is finer than A0. Then GBc

L,A1
is also finer than GBc

L,A0 , hence we have (remember notation (2.12))

µ[GA1(f, f) ] ≤ µ[GA0(f, f) ] (6.1)

and, in particular, µ[GA(f, f) ] ≤ µ[GBL
(f, f) ]. On the other side the canonical

measure satisfies (see [LY93] and [CM00b]) a Poincaré inequality which says

ντBL,N
(f, f) ≤ C0 L

2 EντBL,N ,BL
(f) . (6.2)

As an aside, we observe that by taking the expectation of (6.2) we get

µ[GA(f, f) ] ≤ µ[GBL
(f, f) ] ≤ C0 L

2 EBL
(f) ≤ C0 `

2(1+γ) EBL
(f) . (6.3)

Unfortunately this inequality is not sufficient for our purposes, and the rest of this
section is devoted to eliminating the factor γ from the RHS of (6.3).

We use the iterative approach which was introduced in [Mar99]. We let

δ = 3(3d+ 4)`

and, following [BCC02], we define a sequence of exponentially increasing length
scales

wk := 4δ (3/2)k/d k = 0, 1, 2, . . . (6.4)

Our choice of δ represents the minimum distance which yields an exponent equal
to 1 in the RHS of (5.51). Then we define Rk as the set of all Λ in Zd such that

(1) Λ is a rectangle, Λ =
(

[a1, b1) × · · · × [ad, bd)
)

∩ Zd and ai, bi ∈ `Zd for
i = 1, . . . , n

7other than parasiting earlier work
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(2) Λ ⊂
(

[0, wk+1)× · · · × [0, wk+d)
)

∩ Zd modulo translations and permutations
of the coordinates

From (1) it follows that there is a unique B ⊂ F such that (Λ, `,B) is a polycube.
We will sometimes (improperly) write (Λ, `,B) ∈ Rk, meaning Λ ∈ Rk. The length
scales wk have been chosen in such a way that if Λ ∈ Rk then Λ can be written
as Λ = Λ1 ∪ Λ2, where Λ1 and Λ2 are two elements of Rk−1 with an overlap of
thickness δ. If we assume this fact for a moment (we will prove it in a stronger
form in Lemma 6.2) the idea of the proof becomes clear. Given a polycube (Λ, `,B)
we define Φ(B) ∈ [0,∞] as the infimum of all postive real numbers c such that

µ[GB(f, f) ] ≤ c EΛ(f) for all local functions f on Ω (6.5)

and we let
Φk := sup

(Λ,`,B)∈Rk

Φ(B) . (6.6)

Let Λ ∈ Rk and let Λ1,Λ2 ∈ Rk−1 such that Λ = Λ1 ∪ Λ2 and d(Λ\Λ1,Λ\Λ2) ≥
δ. We know that there exist B1 and B2, subsets of B, such that (Λ1, `,B1) and
(Λ2, `,B2) are polycubes. Consider the multicanonical measure ντA,M , and let Mi

be the restriction of M to Bi. Then for each local function g measurable w.r.t.
FΛ\Λ2 we have

‖ντA,M (g)− ντA,M (g | FΛ\Λ1)‖u ≤ sup
η,η′: η(x)=η′(x)=τ(x)

for all x ∈ Λc

‖νηΛ1,M1
(g)− νη′Λ1,M1

(g)‖u .

Since d(Λ\Λ1,Λ\Λ2) ≥ δ, thanks to (5.51) we obtain for all Λ ⊂ BL

‖ντA,M (g)− ντA,M (g | FΛ\Λ1)‖u ≤ ‖g‖uC
(log `)3/2

`d
Ld−1 =: α ‖g‖u (6.7)

where the last equality represents a definition of α. We can apply at this point
Lemma 3.1 in [BCC02]. We are going to reformulate this result in a more general
way than the original statement, but the proof given in [BCC02] applies word by
word.

Lemma 6.1 ([BCC02]). Let (Ω,F , µ) be a probability space, and let F1, F2 be
two sub–σ–algebras of F . Assume that for some ε ∈ [0,

√
2 − 1), p ∈ [1,∞], we

have

‖µ(g | F1)− µ(g)‖p ≤ ε ‖g‖p ∀g ∈ Lp(Ω,F2, µ)
‖µ(g | F2)− µ(g)‖p ≤ ε ‖g‖p ∀g ∈ Lp(Ω,F1, µ)

Then

Varµ(f) ≤ (1− 2ε− ε2)−1 µ[Varµ(f | F1) + Varµ(f | F2)] ∀f ∈ L2(µ) .

243



Thanks to this result, from inequality (6.7) and the one obtained by exchanging
indices 1 and 2, letting

1 + α1 := (1− 2α− α2)−1

we obtain,

ντA,M (f, f) ≤ (1 + α1) ν
τ
A,M [ντA,M (f, f | FΛ\Λ1) + ντA,M (f, f | FΛ\Λ2)] . (6.8)

After taking the expectation of this inequality w.r.t. µ, recalling the definition of
Φk (6.6), we get

µ[GB(f, f) ] ≤ (1 + α1) Φk−1 [EΛ(f) + EΛ1∩Λ2(f)] . (6.9)

If, at this point, we estimate the overlap term EΛ1∩Λ2(f) simply with EΛ(f) we
run into troubles, since we would find the iterative inequality Φk ≤ 2 (1+α1) Φk−1
which does not look very promising. The idea [Mar99] is to write several different
“copies” of inequality (6.9), where each copy corresponds to a different choice of
the subsets Λ1, Λ2. For this purpose we need the following result:

Lemma 6.2. For all k ∈ Z+, for all Λ ∈ Rk\Rk−1 there esists a collection of

polycubes (Λ
(i)
n , `,B(i)n ) where n = 1, 2 and i = 1, . . . , sk := b(3/2)k/dc, such that

for all i, j = 1, . . . , sk we have

(1) Λ = Λ
(i)
1 ∪ Λ

(i)
2 and Λ

(i)
n ∈ Rk−1 for all n = 1, 2

(2) d(Λ\Λ(i)1 ,Λ\Λ
(i)
2 ) ≥ δ

(3) If i 6= j then Λ
(i)
1 ∩ Λ

(i)
2 ∩ Λ

(j)
1 ∩ Λ

(j)
2 = ∅.

Proof. Since Λ ∈ Rk we can assume that Λ =
(

[0, b1) × · · · × [0, bd)
)

∩Zd with
bj ≤ wk+j for j = 1, . . . , d. Define

Λ
(i)
1 :=

(

[0, b1)× · · · × [0, bd−1)×
[

0 ,
⌊ bd
2`

⌋

`+ iδ
))

∩ Λ (6.10)

Λ
(i)
2 :=

(

[0, b1)× · · · × [0, bd−1)×
[⌊ bd

2`

⌋

`+ (i− 1)δ, bd

))

∩ Λ . (6.11)

It is straightforward to check that Λ
(i)
1 and Λ

(i)
1 satisfy the required properties (for

more details see [BCC02]).

From Lemma 6.2 and inequality (6.9) we get

µ[GB(f, f) ] ≤ (1 + α1) Φk−1 [EΛ(f) + EΛ(i)1 ∩Λ(i)2 (f)] i = 1, . . . , sk . (6.12)

Thanks to (3) of Lemma 6.2 we have that
∑sk

i=1 EΛ(i)1 ∩Λ(i)2 (f) ≤ EΛ(f), thus we can
averge (6.12) over i and we find

Φk ≤ Φk−1 (1 + α1) (1 + 1/sk) . (6.13)

From our assumption on L, it follows that BL ⊂ Rk1 with (say) k1 := b3d log `c,
since

wk1 ≥ δ (3/2)3 log ` ≥ δ ` ≥ 2L+ 1 .
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By consequence we can iterate (6.13) up to k = k1 and obtain an upper bound for
the Poincaré constant of the polycube (BL, `,A) as

Φ(A) ≤ Φk1 ≤ Φ0

k1
∏

i=1

(1 + α1)

(

1 +
1

sk

)

≤ Φ0 exp
[

k1α1 +
∞
∑

j=1

1

sk

]

. (6.14)

Since γ < (d − 1)−1 from the definition of α if follows that there exists `0(γ) > 0
such that if ` ≥ `0(γ) then α is bounded by a negative power of `, hence k1α1 ≤ 1.
On the other side there exists K(d) such that

∑∞
j=1 s

−1
k < K(d). Finally, for

what concerns Φ0, we observe that if (Λ, `,B) ∈ R0 then, since GΛc,B is finer than
GΛc,{Λ}, by (6.2) we get

µ[GB(f, f) ] ≤ µ[GΛ(f, f) ] ≤ C0w
2
d EΛ(f) ≤ C `2 EΛ(f) . (6.15)

From (6.14), (6.15) and what we said in between them, it follows that if ` ≥ `0(γ)
then

Φ(A) ≤ C e1+K(d) `2 .

On the other side if ` < `0(γ) we can simply use (6.2) and obtain

µ[GB(f, f) ] ≤ µ[GΛ(f, f) ] ≤ C0 L
2 EBL

(f) ≤ C0 `0(γ)
2(1+γ) EBL

(f)

hence (3.18) holds if we redefine Cγ suitably.

7 Fluctuations of the number of particles

We prove here Proposition 3.2. Consider a polycube (Λ, `,A) and fix ε > 0. For
all M ∈ MA

` , all x ∈ BL and all t ≥ 0, let

hM (σ) :=
1IM (NA(σ))
µ{NA =M} and hMx,t := ϑxPth

M .

Then, by reversibility and translation invariance, if s ≥ 0

µ(gx,sh
M ) = µ

[

Psϑx(f −RKf)h
M
]

= µ
[

(f −RKf)ϑ−xPsh
M
]

=
1

|BK |
∑

y∈BK

µ
[

(f − ϑyf)hM−x,s

]

.

Thus, using the Cauchy-Schwarz inequality and the invariance of BL under the
mapping x→ −x, we can write

1

|BL|
∑

x∈BL

µ
[

µ(gx,s |NA)2
]

=
1

|BL|
∑

x∈BL

∑

M∈M
A
`

µ{NA =M}µ(gx,shM )2

=
∑

M∈M
A
`

µ{NA =M} 1

|BL|
∑

x∈BL

µ

[

1

|BK |
∑

y∈BK

(f − ϑyf)hM−x,s

]2

≤
∑

M∈M
A
`

µ{NA =M}
[

1

|BL|
∑

x∈BL

1

|BK |
∑

y∈BK

µ[(f − ϑyf)hMx,s]2
]

. (7.1)
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Now we deal with the terms µ[(f−ϑyf)h
M
x,s]

2. For any y ∈ BK , there exists a path
(0, y1, . . . , yk = y) going from 0 to y which consists of k = |y|1 nearest neighbor
steps. Hence we can define γy = (e1, . . . , e|y|1) where each ei = (yi−1, yi) is an
(oriented) edge in BK . Finally, for any edge e = (u, v), we define def := ϑvf−ϑuf .
By the Cauchy-Schwarz inequality we have

µ[(f − ϑyf)hMx,s]2 = µ
[

∑

e∈γy
def h

M
x,s

]2
≤ |γy|

∑

e∈γy
µ(def h

M
x,s)

2 . (7.2)

In the next two Lemmas we deals with µ(def h
M
x,s)

2. In the proof it will be clear
why, at the very begining, we have subtracted RKf . This leads to having def
instead of f in (7.2).

Lemma 7.1. Assume (USM). For any α > 0, there is Cα > 0 such that for all
local functions f on Ω with Sf 3 0, for all u ∈ Zd with |u|1 = 1, and for all positive
integers L, we have

sup
τ,N

|ντBL,N
(d(0,u)f)| ≤

Cα ‖f‖u |Sf |
Lα

. (7.3)

Proof. Since

|ντBL,N
(d(0,u)f)| ≤ 2‖f‖u

∑

x∈Sf
ντBL,N

(|σ(x)− σ(x+ u)|)

one can use Lemma 10.1 of [VY97] where estimate (7.3) is proved when f is the
particular function σ(0) and the result follows.

Lemma 7.2. Assume (USM). For all local functions f on Ω, for all ε > 0 there
exists A = A(f, ε) > 0 such that if u, v are nearest neighbors in BK , e := (u, v)
and We := u+BbLεc, then for all non negative functions h with µ(h) = 1 we have

µ(def h)
2 ≤ A

[

L4εEWe(
√
h) +

1

Ld+2

]

. (7.4)

Proof. First we write µ(def h) =
∫

µ(dτ) ντWe,NWe (τ)
(def h). For simplicity, we

let ντe := ντWe,NWe (τ)
. By the entropy inequality (see for instance Chapter 1 of

[ABC+00]), for any s > 0,

ντe (def h) ≤
ντe (h)

s
log ντe

(

es def
)

+
1

s
Entντe (h) ,

where, for an arbitrary probability measure ρ on (Ω,F), and h ∈ L1(ρ) with
ρ(h) = 1, we denote by Entρ(h) the entropy of hρ with respect to ρ, i.e.

Entρ(h) := Ent(hρ | ρ) = ρ(h log h) . (7.5)

The probability measure ντe is known to satisfy [Yau96, CMR02] a logarithmic
Sobolev inequality which states that for all functions g on Ω

Entντe (g) ≤ CL2εEWe(g) (7.6)
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for some constant C. Consequently it follows from the Herbst argument [Led99,
ABC+00] that

ντe

(

es def
)

≤ exp[Cs2 ‖def‖2Lip L2ε + s ντe (def) ]

with ‖def‖2Lip :=
∑

x∈We
‖∇xdef‖2u ≤ 4|Sf | ‖f‖u =: A1(f). Thus,

ντe (def h) ≤ ντe (h)ν
τ
e (def) + s ντe (h)C A1L

2ε +
1

s
Entντe (h) . (7.7)

Optimizing over the free parameter s and using (7.6) once again we get

ντe (def h) ≤ 2[CA1L
2εντe (h) Entντe (h)]

1/2 + ντe (h) ν
τ
e (def)

≤ [A2 L
4εντe (h) Eντe (

√
h)]1/2 + ντe (h) ν

τ
e (def) .

Now, by Lemma 7.1 (with α := d+2
2ε ), there exists A3 = A3(f, ε) such that

ντe (def) ≤ A3L
−(d+2)/2. Thus, since µ(h) = 1, an integration with respect to

µ(dτ) gives

µ(def h)
2 ≤ 2A22 L

4ε

∫

µ(dτ) ντe (h)

∫

µ(dτ) Eντe (
√
h) + 2

A23
Ld+2

[

∫

µ(dτ) ντe (h)
]2

= 2A22 L
4εEWe(

√
h) + 2

A23
Ld+2

.

And the result of the Lemma follows.

Back to the inequality (7.1). Using Lemma 7.2 together with (7.2) and the fact
that |γy| = |y|1 ≤ dK for any y ∈ BK , we get that for any M ∈ MA

` , any s ≥ 0,

1

|BL|
∑

x∈BL

1

|BK |
∑

y∈BK

µ[(f − ϑyf)hMx,s]2

≤ A
1

|BL|
∑

x∈BL

1

|BK |
∑

y∈BK

|γy|
∑

e∈γy

[

L4εEWe

(

√

hMx,s
)

+
1

Ld+2

]

≤ A

[

d2
K2

Ld+2
+

L4ε

|BL| |BK |
∑

y∈BK

|γy|
∑

e∈γy

∑

x∈BL

E−x+We

(

√

hMs
)

]

.

In the last inequality we used the fact that EWe(ϑxH) = E−x+We(H) for any x and
any H, due to the translation invariance property. Then, the bound |γy| ≤ dK
and an explicit computation gives

1

|BL|
∑

x∈BL

1

|BK |
∑

y∈BK

µ[(f − ϑyf)hMx,s]2 ≤
A′

Ld

[

L4εK2 |We| E
(

√

hMs
)

+
K2

L2

]

(7.8)

for some other constant A′. It is well known (see [ABC+00, Chapter 2] for instance)
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that for any f , ∂s Ent(Psf) ≤ −4E(
√
Psf). Thus, as Ent(Psf) is non increasing,

we have
∫ t

0
E
(

√

hMs
)

ds ≤ 1

4
[Ent(hM )− Ent(hMt )] ≤ 1

4
Ent(hM ) =

1

4
log

1

µ{NA =M} ,
(7.9)

where, in last equality, we have used the definition of entropy. By consequence we
have

∑

M∈M
A
`

µ{NA =M}
∫ t

0
E
(

√

hMs
)

ds ≤ 1

4

∑

M∈M
A
`

µ{NA =M} log 1

µ{NA =M} .

(7.10)
On the other side, since x → x log(1/x) is concave, we can use Jensen inequality
and obtain

∑

M∈M
A
`

µ{NA =M} log 1

µ{NA =M} ≤ log |MA
` | = d|A| log ` . (7.11)

Proposition 3.2 then follows, after a redefinition of ε, from (7.1), (7.8), (7.9), (7.10),
and from the fact that |We| ≤ (2L+ 1)dε.

Remark 7.3. Let us briefly explain the difference with the product case. In that
case, the first term in (7.7) is null. By consequence, on can choose the boxes
|We| independent of L and so the logarithmic Sobolev constant used in the Herbst
argument is also constant.
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