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Abstract. We are discussing optimal bounds on the Rényi entropies in terms of the Fisher
information. In Information Theory, such relations are also known as entropic isoperimetric
inequalities.

1. Introduction

The entropic isoperimetric inequality asserts that

N(X) I(X) ≥ 2πen (1.1)

for any random vector X in Rn with a smooth density. Here

N(X) = exp
{
− 2

n

∫
p(x) log p(x) dx

}
and I(X) =

∫
|∇p(x)|2

p(x)
dx

denote the Shannon entropy power and respectively the Fisher information hidden in the
distribution of X with density p (with integration with respect to the Lebesgue measure dx
on Rn which may be restricted to the supporting set supp(p) = {x : p(x) > 0}).

This inequality was discovered by Stam [15] where it was treated in dimension one. It
is known to hold in any dimension, and the standard normal distribution on Rn plays an
extremal role in it. Later on, Costa and Cover [6] pointed out a remarkable analogy between
(1.1) and the classical isoperimetric inequality relating the surface of an arbitrary body A in
Rn to its volume voln(A). The terminology isoperimetric inequality for entropies goes back
to Dembo, Costa and Thomas [8].

As Rényi entropies have become a focus of numerous inverstigations in the recent time, it
is natural to explore more general relations of the form

Nα(X) I(X) ≥ cα,n (1.2)

for the functional

Nα(X) =
(∫

p(x)αdx
)− 2

n(α−1)
. (1.3)

It is desirable to derive (1.2) with optimal constants cα,n independent of the density p, where
α ∈ [0,∞] is a parameter called the order of the Rényi entropy power Nα(X). Another
representation

Nα(X)
n
2 =

1

‖p‖Lα−1(p(x) dx)

2010 Mathematics Subject Classification. Primary 60E, 60F.
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shows that Nα is non-increasing in α. This allows one to define the Rényi entropy power for
the two extreme values by the monotonicity to be

N∞(X) = lim
α→∞

Nα(X) = ‖p‖−
2
n∞ , (1.4)

N0(X) = lim
α→0

Nα(X) = voln(supp(p))
2
n ,

where ‖p‖∞ = ess sup p(x). As a standard approach, one may also putN1(X) = limα↓1Nα(X)
which returns us to the usual definition of the Shannon entropy power N1(X) = N(X) under
mild moment assumptions (such as Nα(X) > 0 for some α > 1).

Returning to (1.1)-(1.2), the following two natural questions arise.

Question 1. Given n, for which range An of the values of α does (1.2) hold with some
positive constant?

Question 2. What is the value of the optimal constant cα,n and can the extremizers in
(1.2) be described?

The entropic isoperimetric inequality (1.1) answers both questions for the order α = 1
with an optimal constant c1,n = 2πen. As for the general order, let us first stress that, by the
monotonicty of Nα with respect to α, the function α 7→ cα,n is also non-increasing. Hence,
the range in Question 1 takes necessarily the form An = [0, αn) or An = [0, αn] for some
critical value αn ∈ [0,∞]. The next assertion specifies these values.

Theorem 1.1. We have

An =


[0,∞] for n = 1,

[0,∞) for n = 2,

[0, n
n−2 ] for n ≥ 3.

Thus, in the one dimensional case there is no restriction on α (the range is full). In fact,
this already follows from the elementary sub-optimal inequality

N∞(X)I(X) ≥ 1, (1.5)

implying that cα,1 ≥ 1 for all α. To see this, assume that I(X) is finite and note that
p(y) = 0⇒ p′(y) = 0. Hence, applying the Cauchy inequality, we have∫ ∞

−∞
|p′(y)| dy =

∫
p(y)>0

|p′(y)|√
p(y)

√
p(y) dy

≤
(∫

p(y)>0

p′(y)2

p(y)
dy
)1/2 (∫

p(y)>0
p(y) dy

)1/2
=
√
I(X).

It follows that p has a bounded total variation not exceeding
√
I(X), so that p(x) ≤

√
I(X)

for every x ∈ R. This amounts to (1.5) according to (1.4) for n = 1.
Turning to Question 2, we will see that the optimal constants cα,1 together with the

extremizers in (1.2) may be explicitly described in the one dimensional case for every α
by using the results due to Nagy [13]. Since the transformation of these results on the
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information-theoretic language is somewhat technical, we discuss this case in detail in the
next three sections (Sections 2-4). Let us only mention here that

4 ≤ cα,1 ≤ 4π2,

where the inequalities are sharp for α =∞ and α = 0 respectively, with extremizers

p(x) =
1

2
e−|x| and p(x) =

2

π
cos2(x) 1{|x|≤π

2
}.

The situation in higher dimensions is more complicated, and only partial answers to
Question 2 will be given here. Anyway, in order to explore the behavior of the constants cα,n,
one should distinguish between the dimensions n = 2 and n ≥ 3 (which is also suggested by
Theorem 1.1). In the latter case, these constants can be shown to satisfy

4πn(n− 2)
(Γ(n2 )

Γ(n)

) 2
n ≤ cα,n ≤ 4π2n, 0 ≤ α ≤ n

n− 2
,

where the left inequality is sharp and corresponds to the critical order α = n
n−2 . With respect

to the growing dimension, these constants are asymptotically 2πen + O(1), which exhibits
nearly the same behaviour as for the order α = 1. However (which is rather surprising), the
extremizers for the critical order exist for n ≥ 5 only and are described as densities of the
(generalized) Cauchy distributions on Rn. We discuss these issues in Section 7, while Section
6 deals with dimension n = 2, where some description of the constants cα,2 will be given for
the range α ∈ [1

2 ,∞).
We end this introduction by giving an equivalent formulation of the isoperimetric inequal-

ities (1.2) in terms of functional inequalities of Sobolev type. As was noticed by Carlen [5],
in the classical case α = 1, (1.1) is equivalent to the logarithmic Sobolev inequality of Gross
[9], cf. also [4]. However, when α 6= 1, a different class of inequalities should be involved.
Namely, using the substitution p = f2/

∫
f2 (here and in the sequel integrals are understood

with respect to the Lebesgue measure on Rn), we have

Nα(X) =
(∫

f2α
)− 2

n(α−1)
(∫

f2
) 2α
n(α−1)

and

I(X) = 4

∫
|∇f |2/

∫
f2.

Therefore (provided that f is square integrable), (1.2) can be equivalently reformulated as a
homogeneous analytic inequality(∫

|f |2α
) 2
n(α−1) ≤ 4

cα,n

∫
|∇f |2

(∫
f2
)α(2−n)+n

n(α−1)
, (1.6)

where we can assume that f is smooth and has gradient ∇f (however, when speaking about
extremizers, the function f should be allowed to belong to the Sobolev class W 2

1 (Rn)). Such
inequalities were introduced by Moser [11, 12] in the following form(∫

|f |2+ 4
n

)
≤ Bn

∫
|∇f |2

(∫
f2
) 2
n
. (1.7)

More precisely, (1.7) corresponds to (1.6) for the specific choice α = 1 + 2
n . Here, the

one dimensional case is covered by Nagy’s paper with the optimal factor B1 = 4
π2 . This

corresponds to α = 3 and n = 1, and therefore c3,1 = π2 which complements the picture
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depicted above. To the best of our knowledge, the best constants Bn for n ≥ 2 are not known.
However, using the Euclidean log-Sobolev inequality and the optimal Sobolev inequality,
Beckner [2] proved that asymptotically Bn ∼ 2

πen .
Both Moser’s inequality (1.7) and (1.6) with a certain range of α enter the general frame-

work of Gagliardo-Nirenberg’s inequalities(∫
|f |r
) 1
r ≤ κn(q, r, s)

(∫
|∇f |q

) θ
q
(∫
|f |s
) 1−θ

s
(1.8)

with 1 ≤ q, r, s ≤ ∞, 0 ≤ θ ≤ 1, and 1
r = θ (1

q −
1
n) + (1 − θ) 1

s . We will make use of the

knowledge on Gagliardo-Nirenberg’s inequalities to derive information on (1.2).

In the sequel, we denote by ‖f‖r = (
∫
|f |r)

1
r the Lr-norm of f with respect to the Lebesgue

measure on Rn (and use this functional also in the case 0 < r < 1).

2. Nagy’s theorem

In the next three sections we focus on dimension n = 1, in which case the entropic isoperi-
metric inequality (1.2) takes the form

Nα(X) I(X) ≥ cα,1 (2.1)

for the Rényi entropy

Nα(X) =

(∫
p(x)αdx

)− 2
α−1

and the Fisher information

I(X) =

∫
p′(x)2

p(x)
dx = 4

∫ ( d
dx

√
p(x)

)2
dx.

In dimension one, our basic functional space is the collection of all (locally) absolutely con-
tinuous functions on the real line whose derivatives are understood in the Radon-Nikodym
sense. We already know that (2.1) holds for all α ∈ [0,∞].

According to (1.6), the family (2.1) takes now the form∫
|f |2α ≤

( 4

cα,1

)α−1
2
(∫

f ′
2
)α−1

2
(∫

f2
)α+1

2
(2.2)

when α > 1, and ∫
f2 ≤

( 4

cα,1

) 1−α
1+α
(∫

f ′
2
) 1−α

1+α
(∫
|f |2α

) 2
1+α

(2.3)

when α ∈ (0, 1).
In fact, these two families of inequalities can be seen as sub-families of the following one,

studied by Nagy [13], ∫
|f |γ+β ≤ D

(∫
|f ′|p

) β
pq
(∫
|f |γ

)1+
β(p−1)
pq

with

p > 1, β, γ > 0, q = 1 +
γ(p− 1)

p
. (2.4)
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and some constants D = Dγ,β,p depending on γ, β and p, only. For such parameters, introduce
the functions yp,γ = yp,γ(t) defined for t ≥ 0 by

yp,γ(t) =


(1 + t)

p
p−γ if p < γ,

e−t if p = γ,

(1− t)
p

p−γ 1[0,1](t) if p > γ.

To involve the parameter β, define additionally yp,γ,β implicitly as follows. Put yp,γ,β(t) = u,
0 ≤ u ≤ 1, with

t =

∫ 1

u

(
sγ(1− sβ)

)− 1
p
ds

if p ≤ γ. If p > γ, then yp,γ,β(t) = u, 0 ≤ u ≤ 1, is the solution of the above equation for

t ≤ t0 =

∫ 1

0

(
sγ(1− sβ)

)− 1
p
ds

and yp,γ,β(t) = 0 for all t > t0. With these notations, Nagy established the following result.

Theorem 2.1 [13]. Under the constraint (2.4), for any (locally) absolutely continuous
function f : R→ R,

(i)

‖f‖∞ ≤
(q

2

) 1
q
(∫
|f ′|p

) 1
pq
(∫
|f |γ

) p−1
pq
. (2.5)

Moreover, the extremizers take the form f(x) = ayp,γ(|bx+ c|) with a, b, c constants (b 6= 0).
(ii) ∫

|f |β+γ ≤
(
q

2
H
( q
β
,
p− 1

p

))β
q (∫

|f ′|p
) β
pq
(∫
|f |γ

)1+
β(p−1)
pq

(2.6)

where

H(u, v) =
Γ(1 + u+ v)

Γ(1 + u) Γ(1 + v)

( u

u+ v

)u( v

u+ v

)v
, u, v ≥ 0.

Moreover, the extremizers take the form f(x) = ayp,γ,β(|bx+c|) with a, b, c constants (b 6= 0).

Here, Γ denotes the classical Gamma function, and we use the convention that H(u, 0) =
H(0, v) = 1 for u, v ≥ 0. It was mentioned by Nagy that H is monotone in each variable.
Moreover, since H(u, 1) = (1+ 1

u)−u is between 1 and 1
e , one has 1 > H(u, v) > (1+ 1

u)−u > 1
e

for all 0 < v < 1. This gives a two-sided bound

1 ≥ H
( q
β
,
p− 1

p

)
>
(

1 +
β

q

)− q
β
>

1

e
.

3. One dimensional isoperimetric inequalities for entropies

The inequalities (2.2) and (2.3) correspond to (2.6) with parameters

p = γ = q = 2, β = 2(α− 1) in the case α > 1
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and

p = 2, β = 2(1− α), γ = 2α, q = 1 + α in the case α ∈ (0, 1),

respectively. Hence, as a corollary from Theorem 2.1, we get the following stetement which
solves Question 2 when n = 1. Note that, by Theorem 2.1, the extremal distributions (their
densities p) in (2.1) are determined in a unique way up to non-degenerate affine transfor-
mations of the real line. So, it is sufficient to indicate just one specific extremizer for each
admissible collection of the parameters. Recall the definition of the optimal constants cα,1
from (2.1).

Theorem 3.1. (i) In the case α =∞, we have

c∞,1 = 4.

Moreover, the density p(x) = 1
2 e
−|x| (x ∈ R) of the two-sided exponential distribution repre-

sents an extremizer in (2.1).
(ii) In the case 1 < α <∞, we have

cα,1 =
2π

α− 1

( 2

α+ 1

)α−3
α−1

(
Γ( 1

α−1)

Γ( α+1
2(α−1))

)2

.

Moreover, the density p(x) = a cosh(x)−
2

α−1 with a normalization constant a = b√
π

Γ( α+1
2(α−1)

)

Γ( 1
α−1

)

represents an extremizer in (2.1).
(iii) In the case 0 < α < 1,

cα,1 =
2π

1− α

( 2

1 + α

) 1+α
1−α
(Γ( 1+α

2(1−α))

Γ( 1
1−α)

)2

.

Moreover, the density p(x) = a cos(x)
2

1−α 1[−π
2
,π
2

](x) represents an extremizer in (2.1).

To prove the theorem, we need a simple technical lemma.

Lemma 3.2. (i) Given a > 0 and t ≥ 0, the (unique) solution y ∈ (0, 1] to the equation∫ 1
y

ds
s
√

1−sa = t is given by

y =
[

cosh
(at

2

)]− 2
a
.

(ii) Given a, b > 0 and c ∈ R, we have∫ ∞
−∞

cosh(|bx+ c|)−a dx =

√
π

b

Γ(a2 )

Γ(a+1
2 )

.

(iii) Given a ∈ (0, 1) and u ∈ [0, 1], we have∫ 1

u

ds

sa
√

1− s2(1−a)
=

1

1− a
arccos(u1−a).
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Remark 3.3. Since Γ(a+1
2 ) = Γ(m + 1

2) = (2m)!
4mm!

√
π for a = 2m with an integer m ≥ 1,

for such particular values of a, we have∫ ∞
−∞

cosh(|bx+ c|)−a dx =
1

b
· 4mm! (m− 1)!

(2m)!
.

Proof of Lemma 3.2. Changing the variable u =
√

1− sa, we have∫ 1

y

ds

s
√

1− sa
=

2

a

∫ √1−ya

0

du

1− u2
=

1

a
log
(1 +

√
1− ya

1−
√

1− ya
)
.

Inverting this equality leads to the desired result of item (i).
For item (ii) we use the symmetry of the cosh-function together with the change of the

variable u = bx+ c and then t = sinh(u)2 to get∫ ∞
−∞

cosh(|bx+ c|)−a =
1

b

∫ ∞
−∞

cosh(|u|)−a du

=
2

b

∫ ∞
0

cosh(u)−a du =
1

b

∫ ∞
0

t−
1
2 (1 + t)−

a+1
2 dt.

To obtain the result, we need to perform a final change of the variable v = 1
1+t . This turns

the last integral into ∫ 1

0
(1− v)−

1
2 v

a
2
−1 dv = B

(1

2
,
a

2

)
=
√
π

Γ(a2 )

Γ(a+1
2 )

,

where we used the beta function B(x, y) =
∫ 1

0 (1− v)x−1vy−1 dv = Γ(x)Γ(y)
Γ(x+y) , x, y > 0.

Finally, in item (iii), a change of the variable leads to∫ 1

u

ds

sa
√

1− s2(1−a)
=

1

1− a

∫ 1

u

ds1−a√
1− s2(1−a)

=
1

1− a

∫ 1

u1−a

dv√
1− v2

=
1

1− a
arccos(u1−a).

�

Proof of Theorem 3.1. When α =∞ as in the case (i), (2.2) with
∫
f2 = 1 becomes

‖f‖∞ ≤
( 4

c∞,1

∫
f ′

2
) 1

4
.

This corresponds to (2.5) with parameters p = q = γ = 2. Therefore, item (i) of Theorem
2.1 applies and leads to

‖f‖∞ ≤
(∫

f ′
2
) 1

4
,

that is, c∞,1 = 4. Moreover, the extremizers in (2.5) are given by

f(x) = ay2,2(|bx+ c|) = a e−|bx+c|, b 6= 0, a, c ∈ R.

But, the extremizers in (2.1) are of the form p = f2/
∫
f2 with f an extremizer in (2.5). The

desired result then follows after a change of the variable.
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Next, let us turn to the case (ii), where 1 < α < ∞. Here (2.1) is equivalent to (2.2)
and corresponds to (2.6) with p = γ = q = 2 and β = 2(α − 1). Therefore, by Theorem 2.1,

( 4
cα,1

)
α−1
2 = H( 1

α−1 ,
1
2)α−1, so that

cα,1 =
4

H( 1
α−1 ,

1
2)2

= 4
Γ(1 + 1

α−1)2 Γ(3
2)2

Γ(3
2 + 1

α−1)2

( 1
α−1 + 1

2
1

α−1

) 2
α−1
( 1
α−1 + 1

2
1
2

)
= π

( 1
α−1
α+1

2(α−1)

)2 Γ( 1
α−1)2

Γ( α+1
2(α−1))2

(α+ 1

2

) 2
α−1
(α+ 1

α− 1

)
where we used the identities Γ(3/2) =

√
π/2 and Γ(1 + z) = zΓ(z). This leads to the desired

expression for cα,1.
As for extremizers, item (ii) of Theorem 2.1 applies and asserts that the equality cases in

(2.2) are reached, up to numerical factors, for functions f(x) = y(|bx+ c|), with b 6= 0, c ∈ R,
and y : [0,∞)→ R defined implicitly for t ∈ [0,∞) by y(t) = u, 0 ≤ u ≤ 1, with

t =

∫ 1

u

(
s2(1− s2(α−1))

)− 1
2
ds =

∫ 1

u

1

s
√

1− s2(α−1)
ds.

Now, Lemma 3.2 provides the solution y(t) = (cosh((α− 1) t))−
1

α−1 . Therefore, the extrem-
izers in (2.2) are reached, up to numerical factors, for functions of the form

f(x) = (cosh(|bx+ c|))−
1

α−1 , b 6= 0, c ∈ R.

Similarly to the case (i), the extremizers in (2.1) are of the form p = f2/
∫
f2 with f an

extremizer in (2.2). Therefore, by Lemma 2.3, with some b > 0 and c ∈ R,

p(x) =
cosh(|bx+ c|)−

2
α−1∫

cosh(|bx+ c|)−
2

α−1 dx
=

b√
π

Γ( α+1
2(α−1))

Γ( 1
α−1)

cosh(bx+ c)−
2

α−1

as announced.
Finally, let us turn to item (iii), when α ∈ (0, 1). As already mentioned, (2.1) is equivalent

to (2.3) and therefore corresponds to (2.6) with p = 2, β = 2(1− α), γ = 2α and q = 1 + α.
An application of Theorem (2.1) leads to the desired conclusion after some algebra (which
we leave to the reader) concerning the explicit value of cα,1. In addition, the extremizers are
of the form p(x) = ay2(|bx + c|), with a a normalization constant, b 6= 0 and c ∈ R. Here
y = y(t) is defined implicitly by the equation

t =

∫ 1

y

1

sα
√

1− s2(1−α)
ds

for t ≤ t0 =
∫ 1

0
1

sα
√

1−s2(1−α)
ds and y(t) = 0 for t > t0. Item (iii) of Lemma 3.2 asserts that

t0 =
π

2(1− α)
and y(t) =

(
cos(1− α) t)

) 1
1−α

1[0, π
2(1−α) ](t).

This leads to the desired conclusion. �
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4. Special orders

As an illustration, here we briefly mention some explicit values of cα,1 and extremizers for
specific values of the parameter α in the one dimensional entropic isoperimetric inequality

Nα(X) I(X) ≥ cα,1 (4.1)

The order α = 0. The limit in item (iii) of Theorem 3.1 leads to the optimal constant

c0,1 = lim
α→0

cα,1 = 4π2.

Since all explicit expressions are continuous with respect to α, the limits of the extremizers
in (2.1) for α→ 0 represent extremizers in (2.1) for α = 0. Therefore, the densities

p(x) =
2b

π
cos2(bx+ c) 1[−π

2
;π
2

](bx+ c), b > 0, c ∈ R,

are extremizers in (2.1) with α = 0.

The order α = 1
2 . Direct computation leads to c 1

2
,1 = (4/3)3π2. Moreover, the extrem-

izers in (2.1) are of the form

p(x) =
8b

3π
cos4(bx+ c) 1[−π

2
;π
1

](bx+ c), b > 0, c ∈ R.

The order α = 1. This case corresponds to Stam’s isoperimetric inequality for entropies.
Here c1,1 = 2πe, and, using the Stirling formula, one may notice that indeed

c1,1 = lim
α→1

cα,1 = 2πe.

Moreover, gaussian densities can be obtain from the extremizers p(x) = cosh(bx + c)−
2

α−1

with b = b′
√
α− 1, c = c′

√
α− 1 in the limit as α ↓ 1. (Note that the limit α ↑ 1 would lead

to the same conclusion.)

The order α = 2. A direct computation leads to c2,1 = 12 with extremizers of the form

p(x) =
b

2 cosh2(bx+ c)
, b > 0, c ∈ R.

In this case, the entropic isoperimetric inequality may equivalently be stated in terms of the
Fourier transform p̂(t) =

∫
eitxp(x), t ∈ R, of the density p. Indeed, thanks to Plancherel’s

identity, we have

N2(X)−1/2 =

∫
p2 =

1

2π

∫
|p̂|2.

Therefore, the (optimal) isoperimetric inequality for entropies yields the relation∫
|p̂|2 ≤ π

√
I(X)

3

which is a global estimate on the L2-norm of p̂. In [18], Zhang derived the following pointwise
estimate: If the random variable X with density p has finite Fisher information I(X), then



10 Sergey G. Bobkov and Cyril Roberto

(see also [3] for an alternative proof)

|p̂(t)| ≤ I(X)

I(X) + t2
, t ∈ R.

The latter leads to some bounds on c2,1, namely

N2(X)−1/2 =
1

2π

∫
|p̂|2 ≤ 1

2π

∫
I(X)2

(I(X) + t2)2
dt =

1

2

√
I(X).

Hence N2(X)I(X) ≥ 4 that should be compared to N2(X)I(X) ≥ 12.

The order α = 3. Then c3,1 = π2, and the extremizers are of the form

p(x) =
b

π cosh(bx+ c)
, b > 0, c ∈ R.

The order α =∞. From Theorem 3.1, c∞,1 = 4, and the extremizers are of the form

p(x) = b e−|bx+c|, b > 0, c ∈ R.

5. Fisher information in higher dimensions

In order to perform the transition from the entropic isoperimetric inequality (1.2) to the form
of the Gagliardo-Nirenberg inequality such as (1.8) via the change of functions p = f2/

∫
f2

and back, and to justify the correspondence of the constants in the two types of inequalities,
let us briefly fix some definitions and recall some approximation properties of the Fisher
information. This is dictated by the observation that in general f in (1.8) does not need be
square integrable, and then p will not be defined as a probability density.

The Fisher information of a random vector X in Rn with density p may be defined by
means of the formula

I(X) = I(p) = 4

∫
|∇√p|2. (5.1)

This functional is well-defined and finite if and only if f =
√
p belongs to the Sobolev space

W 2
1 (Rn). There is the following characterization: A function f belongs to W 2

1 (Rn), if and
only if it belongs to L2(Rn) and

sup
h6=0

[
1

|h|
‖f(x+ h)− f(x)‖2

]
<∞.

In this case, there is a unique vector-function g = (g1, . . . , gn) on Rn with components in
L2(Rn), called a weak gradient of f and denoted g = ∇f , with the property that∫

gv = −
∫
f∇v for all v ∈ C∞0 (Rn). (5.2)

As usual, C∞0 (Rn) denotes the class of all C∞-smooth, compactly supported functions on Rn.
Still equivalently, there is a representative f̄ of f which is absolutely continuous on almost
all lines parallel to the coordinate axes and whose partial derivatives ∂xk f̄ belong to L2(Rn).
In particular, gk(x) = ∂xk f̄(x) for almost all x ∈ Rn (cf. [19], Theorems 2.1.6 and 2.1.4).
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Being applied to f =
√
p with a probability density p on Rn, the property that f ∈W 2

1 (Rn)
ensures that p has a representative p̄ which is absolutely continuous on almost all lines parallel
to the coordinate axes and such that ∂xk p̄/

√
p belong to L2(Rn). Moreover,

I(p) =
n∑
k=1

∥∥∥∂xk p̄√
p

∥∥∥2

2
.

Note that W 2
1 (Rn) is a Banach space for the norm defined by

‖f‖2W 2
1

= ‖f‖22 + ‖∇f‖22
= ‖f‖22 + ‖g1‖22 + · · ·+ ‖gn‖22 (g = ∇f).

We use the notation Nα(X) = Nα(p) when a random vector X has density p.

Proposition 5.1. Given a (probability) density p on Rn such that I(p) is finite, there
exists a sequence of densities pk ∈ C∞0 (Rn) satisfying as k →∞

a) I(pk)→ I(p), and
b) Nα(pk)→ Nα(p) for any α ∈ (0,∞), α 6= 1.

Proof. Let us recall two standard approximation arguments. Fix a non-negative function
ω ∈ C∞0 (Rn) supported in the closed unit ball B̄n(0, 1) = {x ∈ Rn : |x| ≤ 1} and such that∫
ω = 1, and put ωε(x) = ε−nω(x/ε) for ε > 0. Given a locally integrable function f on Rn,

one defines its regularization (mollification) as the convolution

fε(x) = (f ∗ ωε)(x) =

∫
ωε(x− y)f(y) dy

=

∫
f(x− εy)ω(y) dy, x ∈ Rn. (5.3)

It belongs to C∞(Rn), has gradient ∇fε = f ∗ ∇ωε, and is non-negative, when f is non-
negative. From the definiton it follows that, if f ∈ L2(Rn), then

‖fε‖2 ≤ ‖f‖2, lim
ε→0
‖fε − f‖2 = 0.

Moreover, if f ∈W 2
1 (Rn), then, by (5.2)-(5.3), we have ∇fε = ∇f ∗ ωε. Hence

‖∇fε‖2 ≤ ‖∇f‖2, lim
ε→0
‖∇fε −∇f‖2 = 0,

so that

‖∇fε‖W 2
1
≤ ‖∇f‖W 2

1
, lim

ε→0
‖fε − f‖W 2

1
= 0. (5.4)

Thus, C∞(Rn) ∩ W 2
1 (Rn) is dense in W 2

1 (Rn). To obtain a), define f =
√
p. Given

δ ∈ (0, 1
2), choose ε > 0 small enough so that ‖fε − f‖W 2

1
< δ. Take a non-negative function

w ∈ C∞0 (Rn) such that w(0) = 1 and consider a sequence ul(x) = fε(x)w(x/l). These
functions belong to C∞0 (Rn), and by the Lebesgue dominated convergence theorem, ul → fε
in W 2

1 (Rn) as l → ∞. Hence ‖u − f‖W 2
1
< δ for some u = ul which implies | ‖u‖2 − 1| < δ.

As a result, the normalized function f̃ = u/‖u‖2 satisfies

‖f̃ − f‖W 2
1
< 4δ ‖f‖W 2

1
,
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which gives | ‖∇f̃‖2 − ‖∇f‖2| < 4δ ‖f‖W 2
1

and∣∣ ‖∇f̃‖22 − ‖∇f‖22 ∣∣ < 4δ ‖f‖W 2
1

(
4δ ‖f‖W 2

1
+ ‖∇f‖2

)
≤ 16 δ ‖f‖2W 2

1
.

Equivalently, the probability density p̃ = f̃2 satisfies

|I(p̃)− I(p)| < 16 δ(1 + I(p)). (5.5)

With δ = δk → 0, we therefore obtain a sequence pk = p̃ such that I(pk) → I(p) as k → ∞,
thus proving a).

Let us see that similar functions pk may be used in b) when
∫
p(x)α dx =

∫
f(x)2α dx =∞

(which corresponds to the case where Nα(p) = 0 for α > 1 and Nα(p) = ∞ for 0 < α < 1).
Returning to the previously defined functions ul, we observe ‖ul‖2α → ‖fε‖2α as l → ∞.
Hence, it is sufficient to check that ‖fε‖2α → ‖f‖2α = ∞ for some sequence ε = εk → 0.
Indeed, since ‖f‖2 = 1, necessarily fε(x)→ f(x) as ε→ 0 for almost all points x ∈ R. This
follows from (5.3) and the Lebesgue differentiation theorem which yields

|fε(x)− f(x)| ≤
∫
ωε(x− y) |f(y)− f(x)| dy

≤ ‖ω‖∞ ε−n
∫
|y−x|<ε

|f(y)− f(x)| dy → 0 a.e.

Hence, by Fatou’s lemma, ‖f‖2α ≤ lim infε→0 ‖fε‖2α, and we are done.
Now, let us turn to the basic case where

∫
p(x)α dx < ∞, α ∈ (0,∞). To prove b), we

borrow arguments from the proof of Theorem 2.3.2 in [19]. Consider a partition {wi}∞i=0 of
unity of Rn subordinate to the covering Gi = Bn(0, i + 1) \ B̄n(0, i − 1). Here, necessarily
Bn(0,−1) = Bn(0, 0) = ∅. Every function wi is supposed to be in C∞0 (Rn) with a support
lying in Gi, to be non-negative, and all of them satisfy

∞∑
i=0

wi(x) = 1, x ∈ Rn. (5.6)

As before, let f =
√
p. Given 0 < δ < 1

2 , for each i ≥ 0 choose εi > 0 small enough such
that (wif)εi is still supported in Gi and

‖(wif)εi − wif‖W 2
1
< 2−i−1δ. (5.7)

The latter is possible due to the property (5.4) applied to wif .
By the integrability assumption on p, we have ‖wif‖2α <∞, implying

‖(wif)ε − wif‖2α → 0 as ε→ 0 (5.8)

as long as 2α ≥ 1. Since f ∈ L2(Rn), we similarly have ‖(wif)ε − wif‖2 → 0. The latter
implies that (5.8) holds in the case 2α < 1 as well, since wif is supported on a bounded set.
Therefore, in addition to (5.7), we may require that∫

|(wif)εi − wif |2α dx < (2−i−1δ)max(2α,1). (5.9)
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Now, by (5.6), f(x) =
∑∞

i=0wi(x)f(x), where the series contains only finitely many non-
zero terms. More precisely,

f(x) =
m∑
i=0

wi(x)f(x), |x| < m+ 1.

Similarly, for the function u(x) =
∑∞

i=0(wi(x)f(x))εi , we have

u(x) =
m∑
i=0

(wi(x)f(x))εi , |x| < m+ 1.

This equality shows that u is non-negative and belongs to the class C∞0 (Rn). In addition, by
(5.7),

‖u− f‖W 2
1
≤
∞∑
i=0

‖(wif)εi − wif‖W 2
1
< δ.

Hence

‖u− f‖2 < δ, (5.10)

and repeating the arguments from the previous step, we arrive at the bound (5.5) for the

density p̃ = f̃2 with f̃ = u/‖u‖2.
Next, if α ≥ 1

2 , by the triangle inequality in L2α, from (5.9) we also get ‖u− f‖2α < δ, so

| ‖u‖2α − ‖f‖2α| < δ. (5.11)

If α < 1
2 , then, applying the inequality (a1 + · · · + aN )2α ≤ a2α

1 + · · · + a2α
N (ak ≥ 0), from

(5.9) we deduce that ∫
|u− f |2α dx ≤

∞∑
i=1

∫
|u− wif |2α dx < δ.

This yields ∣∣∣ ∫ u2α dx−
∫
f2α dx

∣∣∣ < δ

and therefore, by Jensen’s inequality,

| ‖u‖2α − ‖f‖2α| < (2δ)1/(2α). (5.12)

In view of (5.10), inequalities similar to (5.11)-(5.12) hold also true for the function f̃ =

u/‖u‖2 in place of u. Applying this with δ = δk → 0, we obtain a sequence f̃k such that the

probability densities p̃ = f̃2 satisfy a)− b) for any α 6= 1. �

Corollary 5.2. For any α > 0, α 6= 1, the infimum

inf
I(p)<∞

[
Nα(p)I(p)

]
may be restricted to the class of compactly supported, C∞-smooth densities p on Rn with
finite Fisher information.
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6. Two dimensional isoperimetric inequalities for entropies

In this section we deal with dimension n = 2. As will be clarified, the entropic isoperimetric
inequality

Nα(X)I(X) ≥ cα,2 (6.1)

holds true for any α ∈ [0,∞) with a positive constant cα,2 and does not hold for α =∞ which
answers Question 1 in the introduction. In addition, we will give a certain description of the
optimal constants cα,2 in (6.1) for the range α ∈ [1

2 ,∞), thus answering partially Question 2.
When n = 2, the family of inequalities (1.6) takes now the form(∫

|f |2α
) 1

2α ≤
( 4

cα,2

)α−1
2α
(∫
|∇f |2

) θ
2
(∫

f2
) 1−θ

2
(6.2)

with θ = α−1
α when α > 1, and(∫

f2
) 1

2 ≤
( 4

cα,2

) 1−α
2
(∫
|∇f |2

) θ
2
(∫
|f |2α

) 1−θ
2α

(6.3)

with θ = 1− α when α ∈ (0, 1).
Both inequalities enters the framework of Gagliardo-Nirenberg’s inequality (1.8). The best

constants and extremizers in (1.8) are not known for all admissible parameters. The most
recent paper on this topic is due to Liu and Wang [10] (see references therein and historical
comments). The case q = s = 2 in (1.8) that corresponds to (6.2) with r = 2α goes back
to Weinstein [17] who related the best constants to the solutions of non-linear Schrödinger
equations.

We present now part of the results of [10] that are useful for us. Since we will use them
for any dimension n ≥ 2, the next statement does not deal only with the case n = 2. Also,
since all the inequalities of interest for us deal with the L2-norm of the gradient only, we may
restrict ourselves to q = 2 for simplicity, when (1.8) becomes(∫

|f |r
) 1
r ≤ κn(2, r, s)

(∫
|∇f |2

) θ
2
(∫
|f |s
) 1−θ

s
(6.4)

with parameters satisfying 1 ≤ r, s ≤ ∞, 0 ≤ θ ≤ 1, and 1
r = θ(1

2 −
1
n) + (1 − θ) 1

s . This
inequality may be restricted to the class of all smooth, compactly supported functions f ≥ 0
on Rn. Once (6.4) holds in C∞0 (Rn), this inequality is extended by a regularization and
density arguments to the Sobolev space of functions f ∈ Ls(Rn) such that |∇f | ∈ L2(Rn)
(the gradients in this space are understood in a weak sense).

The next statement relates the optimal constant in (6.4) to the solutions of the ordinary
non-linear equation

u′′(t) +
n− 1

t
u′(t) + u(t)r−1 = u(t)s−1 (6.5)

on the positive half-axis. Put

σ =

{
n+2
n−2 if n ≥ 3,

∞ if n = 2.

We denote by |x| the Euclidean norm of a vector x ∈ Rn.
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Theorem 6.1 [10]. In the range 1 ≤ s < σ, s < r < σ + 1,

κn(2, r, s) = θ−
θ
2 (1− θ)

θ
2
− 1
rM

− θ
n

s , Ms =

∫
Rn
usr,s(|x|) dx,

where the functions ur,s = ur,s(t) are defined for t ≥ 0 as follows.
(i) If s < 2, then ur,s is the unique positive decreasing solution to the equation (6.5) in

0 < t < T (for some T ), satisfying u′(0) = 0, u(T ) = u′(T ) = 0, and u(t) = 0 for all t ≥ T .

(ii) If s ≥ 2, then ur,s is the unique positive decreasing solution to (6.5) in t > 0, satisfying
u′(0) = 0 and limt→∞ u(t) = 0.

Moreover, the extremizers in (6.4) exist and have the form f(x) = aur,s(|bx + c|) with
a ∈ R, b 6= 0, c ∈ Rn.

Note that (6.2) corresponds to Gagliardo-Nirenberg’s inequality (6.4) with s = 2, r = 2α
and θ = α−1

α for α > 1, while (6.3) with α ∈ (0, 1) corresponds to (6.4) with r = 2, s = 2α
and θ = 1− α. Applying Corollary 5.2, we therefore conclude that

κ2(2, r, s) = (4/cα,2)
α−1
2α when α > 1,

κ2(2, r, s) = (4/cα,2)
1−α
2 when α ∈ (0, 1).

Together with Liu-Wang’s theorem, we immediately get the following corollary, where we put
as before

Ms =

∫
R2

us(|x|) dx = 2π

∫ ∞
0

us(t) tdt.

Corollary 6.2. (i) For any α > 1, we have

cα,2 = 4(α− 1)α
1

α−1M2,

where M2 is defined for the unique positive decreasing solution u(t) on (0,∞) to the equation

u′′(t) + u′(t)
t + u(t)2α−1 = u(t) with u′(0) = 0 and limt→∞ u(t) = 0.

(ii) For any α ∈ [1
2 , 1), we have

cα,2 = 4(1− α)α
α

1−αM2α,

where M2α is defined for the unique positive decreasing solution u(t) to u′′(t)+ 1
tu
′(t)+u(t) =

u(t)2α−1 in 0 < t < T with u′(0) = 0, u(T ) = u′(T ) = 0, and u(t) = 0 for all t ≥ T .

In both cases the extremizers in (6.1) represent densities of the form p(x) = b
M u

2(|bx+c|),
x ∈ R2, with b > 0 and c ∈ R2.

So far, we have seen that (6.1) holds for any α ∈ [0,∞). Note that the case α = 1,
which is formally not contained in the results above, is the classical isoperimetry inequality
for entropies (1.1). Let us now explain why (6.1) cannot hold for α = ∞. The functional
form for (6.1) should be the limit case of (6.2) as α→∞, when it becomes

‖f‖2∞ ≤ D
∫
|∇f |2 dx (6.6)
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with D = 4/c∞,2. To see that (6.6) may not hold with any constant D, we reproduce Example
1.1.1 in [14]. Let, for x ∈ R2,

f(x) =

{
log | log |x| | if |x| ≤ 1/e,

0 otherwise.

Then, passing to radial coordinates, we have∫
|∇f |2 = 2π

∫ 1/e

0

dr

r| log r|2
= 2π,

while f is not bounded. In fact, (6.6) is also violated for a sequence of smooth bounded
approximations of f .

7. Isoperimetric inequalities for entropies in dimension n = 3 and higher

One may exhibit two different behaviors between n = 3, 4, and n ≥ 5 in the entropic isoperi-
metric inequality

Nα(X)I(X) ≥ cα,n. (7.1)

Let us rewrite the inequality (1.6) separately for the three natural regions, namely as(∫
|f |2α

) 1
2α ≤

( 4

cα,n

)n(α−1)
4α

(∫
|∇f |2

) θ
2
(∫

f2
) 1−θ

2
(7.2)

with θ = n(α−1)
2α when 1 < α ≤ n

n−2 ,(∫
|f |2α

) θ
2α
(∫

f2
) 1−θ

2 ≤ 2
√
cα,n

(∫
|∇f |2

) 1
2

(7.3)

with θ = 2α
n(α−1) when α > n

n−2 (observe that θ ∈ (0, 1) in this case), and finally(∫
f2
) 1

2 ≤
( 4

cα,n

) n(1−α)
2[α(2−n)+n]

(∫
|∇f |2

) θ
2
(∫
|f |2α

) 1−θ
2α

(7.4)

with θ = n(1−α)
α(2−n)+n when α ∈ (0, 1).

Both (7.2) and (7.4) enter the framework of Gagliardo-Nirenberg’s inequality (1.8). As for
(7.3), we will show that such an inequality cannot hold. To that aim, we need to introduce
the limiting case θ = 1 in (7.2), which corresponds to α = n

n−2 . It amounts to the classical
Sobolev inequality (∫

|f |
2n
n−2

)n−2
2n ≤ Sn

(∫
|∇f |2

) 1
2

(7.5)

which is known to hold true with best constant

Sn =
1√

πn(n− 2)

(Γ(n)

Γ(n2 )

) 1
n
.

Moreover, the only extremizers in (7.5) have the form

f(x) =
a

(1 + b |x− x0|2)
n−2
2

, a ∈ R, b > 0, x0 ∈ Rn (7.6)
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(sometimes called the Barrenblat profile), see [1, 16, 7]. If f ∈ L2(Rn) and |∇f | ∈ L2(Rn),
then, by (7.3), we would have that f ∈ Lp(Rn) with p = 2α > 2n

n−2 which contradicts the

Sobolev embeddings. Therefore (7.3) cannot be true, so that (7.1) holds only for α ∈ [0, n
n−2 ].

As for the value of the best constant cα,n in (7.1) and the form of the extremizers, we need
to use again Theorem 6.1 which can however be applied only for n ≤ 5. As in Corollary 6.2,
we adopt the notation

Ms =

∫
Rn
us(|x|) dx

for a function u satisfying the non-linear ordinary differential equation

u′′(t) +
n− 1

t
u′(t) + u(t)2α−1 = u(t), 0 < t <∞, (7.7)

or (in a different scenario)

u′′(t) +
n− 1

t
u′(t) + u(t) = u(t)2α−1, 0 < t < T. (7.8)

Corollary 7.2. Let 3 ≤ n ≤ 5. (i) For any 1 < α < n
n−2 , we have

cα,n =
8α

n(α− 1)

( 2α

α(2− n) + n

)α(2−n)+n
n(α−1)

M
2
n

2

where M2 is defined for the unique positive decreasing solution u(t) to (7.7) on (0,∞) with
u′(0) = 0 and limt→∞ u(t) = 0.

(ii) For any α ∈ [1
2 , 1),

cα,n = 4
α(2− n) + n

n(1− α)

( 2α

α(2− n) + n

) 2α
n(1−α)

M
2
n

2α

where M2α is defined for the unique positive decreasing solution u(t) to (7.8) with u′(0) = 0,
u(T ) = u′(T ) = 0 and u(t) = 0 for all t ≥ T .

In both cases, the extremizers in (7.1) are densities of the form p(x) = b
M u

2(|bx + c|),
x ∈ Rn, with b > 0 and c ∈ Rn.

For the critical value of α, the picture is more complete, but is different.

Corollary 7.3. Let n ≥ 3 and α = n
n−2 . Then

cα,n = 4πn(n− 2)
(Γ(n2 )

Γ(n)

) 2
n
.

(i) For n = 3 and n = 4, (7.1) has no extremizers, i.e. there does not exist any density p
for which equality holds in (7.1) with the optimal constant.

(ii) For n ≥ 5, the extremizers in (7.1) exist and have the form

p(x) =
a

(1 + b|x− x0|2)n−2
, a, b > 0, x0 ∈ Rn. (7.9)



18 Sergey G. Bobkov and Cyril Roberto

Remark 7.4. Recall that c1,n = 2πen. Using the Stirling formula, it is easy to see that,
for α = n

n−2 ,

cα,n ∼ 2πen− 2πe (2 + log 2) +O
( 1

n

)
as n→∞.

In particular, cα,n ≥ 2πen− c0 for all 0 ≤ α ≤ n
n−2 with some absolute constant c0 > 0. To

get a similar upper bound, it is sufficient to test (7.1) with α = 0 on some specific probability
distributions. In this case, this inequality becomes

voln(supp(p))
2
n I(X) ≥ c0,n. (7.10)

Suppose that the random vector X = (X1, . . . , Xn) in Rn has independent components such
that every Xk has a common density w(s) = 2

π cos2(s), |s| ≤ π
2 . As we already mentioned

in Section 4, this one dimensional probability distribution appears as an extremal one in the
entropic isoperimetric inequality (1.2) for the parameter α = 0. The random vector X has
density

p(x) = w(x1) . . . w(xn), x = (x1, . . . , xn) ∈ Rn,
so that

N0(X) = N0(X1) = π2, I(X) = nI(X1) = 4n.

Therefore, from (7.10) we may conclude that c0,n ≤ 4π2n.

Proof of Corollaries 7.2-7.3. The first corollary is obtained by a straight forward
application of Theorem 6.1 with

s = 2, r = 2α, θ =
n(α− 1)

2α
, κn(2, r, s) = (4/cα,n)

n(α−1)
4α

when 1 < α < n
n−2 , and with

q = r = 2, s = 2α, θ =
n(1− α)

α(2− n) + n
, κn(2, r, s) = (4/cα,n)

n(1−α)
2[α(2−n)+n]

when α ∈ (0, 1). Details are left to the reader.
For the second corollary, we first observe that (7.2) can be recast for n ≥ 3 and α = n

n−2
as (∫

|f |
2n
n−2

)n−2
2n ≤

( 4

cα,n

)1/2(∫
|∇f |2

) 1
2
. (7.11)

Therefore 4
cα,n

= S2
n from which the explicit value of cα,n follows (recalling Corollary 5.2).

Now, in order to analyze the question about the extremizers in (7.1), suppose that we have
an equality in it for a fixed (probability) density p on Rn. In particular, we should assume
that the function f =

√
p belongs to W 2

1 (Rn). Rewriting (7.1) in terms of f , we then obtain
an equality in (7.11), which is the same as (7.5). As mentioned earlier, this implies that f
must be of the form (7.6), thus leading to (7.9). However, whether or not this function p is
integrable depends on the dimension. Using polar coordinates, one immediately realizes that∫

dx

(1 + b|x− x0|2)n−2

has the same behavior as
∫∞

1
1

rn−3dr. But, the latter integral is converging only if n ≥ 5. �
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