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Abstract. We are discussing some Sobolev-type inequalities for Cauchy mea-

sures and their information-theoretic counterparts.
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1. Introduction

One of the classical Sobolev inequalities on the Euclidean space Rn is the
relation (∫

Rn
|f |

2n
n−2

)n−2
2n ≤ Sn

(∫
Rn
|∇f |2

) 1
2

, n ≥ 3, (1.1)

which holds true for all smooth functions f on Rn vanishing at infinity. The best
constant

Sn =
1√

πn(n− 2)

( Γ(n)

Γ(n/2)

) 1
n

was determined in the 1970s by Aubin [1] and Talenti [13], see also [10], [3]. In the
sequel, the integrals are always understood with respect to the Lebesgue measure
on Rn, if the measure is not indicated explicitly.

Information-theoretic aspects of (1.1) are recently discussed in [6]. After the
change of functions p = f2/

∫
f2, this inequality enters the family of entropic

isoperimetric inequalities
Nα(X) I(X) ≥ Cn(α) (1.2)
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with a particular index α = n
n−2 . Here,

Nα(X) = Nα(p) =
(∫

pα
)− 2

n(α−1)

is the Rényi entropy power, and

I(X) = I(p) =

∫
|∇p|2

p

is the Fisher information hidden in the distribution of the random vector X in
Rn with a smooth density p. Since the function α 7→ Nα is non-increasing, the
inequality (1.2) is getting stronger for the growing index α.

With some constants Cn(α) > 0 independent of p, (1.2) holds true for all
α ∈ [0,∞] in the dimension n = 1, and for all α ∈ [0,∞) in the dimension n = 2.
However, α = n

n−2 is the maximal possible value in (1.2) in the case n ≥ 3.
When α = 1, the Rényi entropy power is reduced to the Shannon entropy power

N1(X) = N(X) = exp
{
− 2

n

∫
p log p

}
.

In this case, being written with an optimal constant, (1.2) becomes a well-known
relation due to Stam [12],

N(X) I(X) ≥ 2πen, (1.3)

in which the standard Gaussian measure plays an extremal role (for any n ≥ 1).
Costa and Cover [9] pointed out a remarkable analogy between (1.3) and the isoperi-
metric inequality relating the surface of an arbitrary body in Rn to its volume. The
terminology isoperimetric inequality for entropies goes back to Dembo, Costa and
Thomas [11].

Rather than describing the best constant, it should be emphasized that an
equality in (1.1) is always attained, and only for the functions of the form

f(x) =
c

(1 + b |x− x0|2)
n−2
2

, c ∈ R, b > 0, x0 ∈ Rn

(sometimes called the Barenblatt profiles). Up to numerical factors, they serve
as densities of the generalized multidimensional Cauchy measures, also called Stu-
dent’s distributions. So, choosing b = 1 and x0 = 0, we put

dms(x)

dx
= qs(x) = cs ϕs(x), ϕs(x) =

1

(1 + |x|2)s
, x ∈ Rn.

The function ϕs is integrable, if and only if s > n
2 , and then cs = c(s, n) is defined

as a normalizing constant so that ms(Rn) = 1. The probability distribution ms will
be called the Cauchy measure on Rn with parameter s.

Thus, ϕs with s = n−2
2 represents an extremizer in (1.1), which leads to the

extremizer qn−2 = cn−2 ϕn−2 in the entropic isoperimetric inequality (1.2). It is
indeed a probability density as long as n ≥ 5. However, ϕn−2 is not integrable
in the dimensions n = 3 and n = 4. As a consequence, in this case there is no
extremizer in (1.2) in the class of all (smooth) probability densities on Rn. We
refer an interested reader to [6] for details.

One of the aims in this note is to show the relationship of (1.1)-(1.2) with
a weighted Poincare-type inequality for the Cauchy measure mn with parameter
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s = n. It is well-defined for all n ≥ 1 and has density

dmn(x)

dx
=

cn
(1 + |x|2)n

, cn =
Γ(n)

π
n
2 Γ(n/2)

. (1.4)

In particular, as a consequence of (1.1) we prove:

Theorem 1.1. For any C1-smooth function g : Rn → R, n ≥ 3,

Varmn(g) ≤ 1

4n

∫
|∇g(x)|2(1 + |x|2)2 dmn(x). (1.5)

The constant 1/(4n) is optimal, and an equality in (1.5) is attained for g(x) =
1

1+|x|2 .

As usual,

Varmn(g) =

∫
g2 dmn −

(∫
g dmn

)2
stands for the variance of g under mn.

As we will see, the inequality (1.5) expresses the fact that p = qn−2 is a “point”
of local minimum to the functional Nα(p) I(p) for α = n

n−2 . Equivalently, f = ϕn−2
is a “point” of local minimum to the functional

‖∇f‖2/‖f‖ 2n
n−2

.

Weighted Poincaré-type inequalities such as (1.5) have been studied quite in-
tensively, although for a different weight function. In particular, it was shown in
[4] that, for all s ≥ n,

Varms(g) ≤ As
2(s− 1)

∫
|∇g(x)|2(1 + |x|2) dms(x) (1.6)

with

As =
(√

1 +
2

s− 1
+

√
2

s− 1

)2
.

Up to a universal factor, (1.6) is stronger than (1.5), however, it does not contain
information about extremizers. Similar weighted Poincaré-type and isoperimetric
inequalities of Cheeger-type remain to hold for general convex measures, cf. [2],
[7], [5].

Let us also mention that after rescaling of the space variable, (1.5) implies in the
limit as n→∞ the Poincaré-type inequality with respect to the standard Gaussian
measure γk on Rk (which is also true about the inequality (1.6) with s → ∞ and
fixed n). We provide details in the end of these notes (Section 5), while Theorem
1.1 is proved in Section 4.

In this connection it is worthwhile to note that the Stam entropic inequality
(1.3) may be used to derive the Gross logarithmic Sobolev inequality in the Gauss
space (Rk, γk), which is stronger than the Poincaré-type inequality. Hence, one may
wonder whether or not a similar derivation is applicable to mn on the basis of the
entropic isoperimetric inequality (1.2). We propose one variant of a log-Sobolev-
type inequality in the “Cauchy space” (Rn,mn) in Section 3. In Section 2 we address
a closely related question: Is it true that the Cauchy measures ms play an extremal
role when minimizing the Fisher information I(X) subject to certain moment-type
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constraints? This might give another analogy with a well-known assertion that
I(X) is minimized for the normal distribution under a second moment assumption.

2. Minimizing the Fisher information subject to moment conditions

Recall that, given two random variables X and Z with (smooth) densities p
and q respectively, the relative Fisher information is defined by

I(X||Z) =

∫
{p,q>0}

∣∣∣∇p
p
− ∇q

q

∣∣∣2 p.
To avoid technical issues, suppose that q is everywhere positive and well-behaving.
Then, if p = fq with f smooth and bounded,

I(X||Z) =

∫
|∇f |2

f
q.

Using an integration by part formula, we get

I(X)− I(Z) = I(X||Z) + 2

∫
〈∇f,∇q〉+

∫
f
|∇q|2

q
−
∫
|∇q|2

q

= I(X||Z) +

∫
f

[
−2∆q +

|∇q|2

q

]
−
∫
|∇q|2

q
, (2.1)

where

∆g =

n∑
i=1

∂2 g/∂x2
i

stands for the Laplacian operator.
As a classical example, one may consider the standard Gaussian random vari-

able Z with density

q(x) = (2π)−n/2 exp{−|x|2/2}.
In this case, ∇q = −xq and ∆q = −nq + |x|2q, so that the above identity amounts
to

I(X)− I(Z) = I(X||Z) + n−
∫
|x|2f(x)q(x)

= I(X||Z) + E |X|2 − E |Z|2.

Since the relative Fisher information is non-negative, this implies in particular that
among all random vectors X in Rn with the second moment E |X|2 = E |Z|2 = n,
the Fisher information I(X) is minimized for the standard Gaussian distribution.

Here, we obtain a similar comparison for the Cauchy measures ms with densities

qs(x) =
cs

(1 + |x|2)s
, x ∈ Rn, (2.2)

where cs is the normalizing constant so that
∫
qs = 1. Let us denote by Zs a random

vector in Rn with distribution ms, s >
n
2 . As a direct analogue of the above result

for the Gaussian measure, we prove:

Theorem 2.1. Let X be a random vector in Rn with a smooth density and
finite Fisher information. If

E
n− (s− n+ 2) |X|2

(1 + |X|2)2
= E

n− (s− n+ 2) |Zs|2

(1 + |Zs|2)2
, (2.3)
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then

I(X||Z) = I(X)− I(Zs). (2.4)

In particular, I(X) ≥ I(Zs).

The expectation in (2.3) may easily be evaluated explicitly, so that one may
rewrite this moment condition as

E
n− (s− n+ 2) |X|2

(1 + |X|2)2
=

n
2 (s− n

2 )

s+ 1
.

For example, for s = n− 2 with n ≥ 5, (2.3) is simplified to

E
1

(1 + |X|2)2
= E

1

(1 + |Zs|2)2
=

n− 4

4(n− 1)
, (2.5)

and then we get (2.4).
For the proof of Theorem 2.1, we need a few calculus lemmas.

Lemma 2.2. For any s > n/2 and x ∈ Rn,

−2∆qs(x) +
|∇qs(x)|2

qs(x)
= 4s

n− (s− n+ 2) |x|2

(1 + |x|2)2
qs(x), (2.6)

|∇qs(x)|2

qs(x)
= 4s2

|x|2

(1 + |x|2)2
qs(x). (2.7)

This is verified directly. Putting

ϕs(x) = (1 + |x|2)−s

as before, we have

∂xiϕs(x) = −2s
xi

(1 + |x|2)s+1
, |∇ϕs(x)| = 2s

|x|
(1 + |x|2)s+1

,

so that
|∇ϕs(x)|2

ϕs(x)
= 4s2

|x|2

(1 + |x|2)s+2
.

This is the same as (2.7). Further differentiation gives

∂2x2
i
ϕs(x) = −2s

[
1

(1 + |x|2)s+1
− 2(s+ 1)

x2i
(1 + |x|2)s+2

]
,

∆ϕs(x) = −2s

[
n

(1 + |x|2)s+1
− 2(s+ 1)

|x|2

(1 + |x|2)s+2

]
,

and thus
|∇ϕs(x)|2

ϕs(x)
− 2∆ϕs(x) = 4s

n− (s− n+ 2) |x|2

(1 + |x|2)s+2
.

Hence, we arrive at (2.6).
For example, for s = n− 2,

|∇ϕn−2(x)|2

ϕn−2(x)
− 2∆ϕn−2(x) = 4n(n− 2)

1

(1 + |x|2)n
, (2.8)

which is a multiple of ϕn.
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In order to compute the constant cα in (2.2), we need a technical lemma. As
usual,

B(x, y) =

∫ 1

0

(1− t)x−1 ty−1 dt =
Γ(x) Γ(y)

Γ(x+ y)
, x, y > 0,

stands for the beta function. In the sequel, ωn denotes the volume of the unit ball
of Rn.

Lemma 2.3. For any s > n/2,

1

cs
=

∫
Rn

1

(1 + |x|2)s
=
nωn

2
B
(n

2
, s− n

2

)
. (2.9)

As a consequence, we get:

Lemma 2.4. For any s > n/2,∫
1

(1 + |x|2)2
dms(x) =

(s− n
2 )(s+ 1− n

2 )

s(s+ 1)
, (2.10)∫

|x|2

(1 + |x|2)2
dms(x) =

n
2 (s− n

2 )

s(s+ 1)
. (2.11)

Proof. Using polar coordinates, we have∫
Rn

1

(1 + |x|2)s
= nωn

∫
Sn−1

∫ ∞
0

rn−1

(1 + r2)s
dr dσn−1

= nωn

∫ ∞
0

rn−1

(1 + r2)α
dr.

Changing variable u = 1
1+r2 , we get∫ ∞

0

rn−1

(1 + r2)s
dr =

1

2

∫ 1

0

( 1

u
− 1
)n−2

2

us−2 du

=
1

2

∫ 1

0

(1− u)
n−2
2 us−2−

n−2
2 du.

This leads to the first desired conclusion (2.9).
Applying this identity, we see that the integral in (2.10) is equal to

cs
cs+2

=
B(n2 , s+ 2− n

2 )

B(n2 , s−
n
2 )

=
Γ(s+ 2− n

2 )

Γ(s+ 2)

Γ(s)

Γ(s− n
2 )

=
(s− n

2 )(s+ 1− n
2 )

s(s+ 1)
.
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Applying (2.9) once more, the integral in (2.11) may be written as

cs

[∫
1

(1 + |x|2)s+1
−
∫

1

(1 + |x|2)s+2

]
= cs

(
c−1s+1 − c

−1
s+2

)
=
B(n2 , s+ 1− n

2 )−B(n2 , s+ 2− n
2 )

B(n2 , s−
n
2 )

=
s− n

2

s
−

(s− n
2 )(s+ 1− n

2 )

s(s+ 1)

=
(s− n

2 )n2
s(s+ 1)

.

�

Proof of Theorem 2.1. Applying (2.6)-(2.7) in (2.1), we see that the ran-
dom variable X with density p = fqs satisfies

I(X)− I(Zs) = I(X||Zs) +

∫
4s
n− (s− n+ 2) |x|2

(1 + |x|2)2
f(x)qs(x)

−
∫

4s2 |x|2

(1 + |x|2)2
qs(x). (2.12)

In particular, if∫
n− (s− n+ 2) |x|2

(1 + |x|2)2
p(x) = s

∫
|x|2

(1 + |x|2)2
qs(x), (2.13)

we get I(X) − I(Zs) = I(X||Zs), that is, the desired relation (2.4). Moreover,
choosing f = 1 in (2.12), we see that the two integrals therein must coincide, that
is, ∫

n− (s− n+ 2) |x|2

(1 + |x|2)2
qs(x) = s

∫
|x|2

(1 + |x|2)2
qs(x).

This may also be verified on the basis of Lemma 2.3. Indeed, by (2.10)-(2.11), the
above first integral is equal to

n
(s− n

2 )(s+ 1− n
2 )

s(s+ 1)
− (s− n+ 2)

n
2 (s− n

2 )

s(s+ 1)
=

n
2 (s− n

2 )

s+ 1
,

which is exactly the second integral, according to (2.11).
Thus, the moment condition (2.13) coincides with the condition (2.3). �

3. Log-Sobolev-type inequality

In analogy with the equivalence between the Stam isoperimetric inequality for
entropies (that is, in the case α = 1 as in (1.3)) and the logarithmic Sobolev in-
equality for the standard Gaussian measure, we derive in this section one inequal-
ity involving, as a reference measure, the Cauchy measure (2.2) with parameter
s = n− 2, that is, with density

q(x) =
c

(1 + |x|2)n−2
, x ∈ Rn, n ≥ 5, (3.1)
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where

c−1 =
nωn

2
B(

n

2
,
n

2
− 2)

is a normalizing constant (cf. Lemma 2.3).
Recall that this function is an extremizer in the isoperimetric inequality for

entropies (1.2) of order α = n
n−2 , so that, for all smooth densities p on Rn(∫

p
n
n−2

)−n−2
n

∫
|∇p|2

p
≥
(∫

q
n
n−2

)−n−2
n

∫
|∇q|2

q
. (3.2)

Here the expression on the right-hand side represents the constant

Cn = 4π n(n− 2)
(

Γ
(n

2

)
/Γ(n)

) 2
n

. (3.3)

Let X be random vector in Rn with density p = fq, and, as before, denote by
Z a random vector with density q. Taking the logarithm in (3.2) leads to

−n− 2

n
log

∫
f

n
n−2 q

n
n−2 + log I(X) ≥ −n− 2

n
log

∫
q

n
n−2 + log I(Z).

Therefore, if f satisfies the moment condition (2.5), then Theorem 2.1 is applicable,
and hence from (2.4) we obtain

log

∫
f

n
n−2 q

n
n−2 − log

∫
q

n
n−2 ≤ n

n− 2

(
log I(X)− log I(Z)

)
=

n

n− 2
log
(

1 +
I(X||Z)

I(Z)

)
.

Using log(1 + x) ≤ x, this is simpliefied to

log

∫
f

n
n−2 q

n
n−2 − log

∫
q

n
n−2 ≤ n

n− 2

1

I(Z)

∫
|∇f |2

f
q

= Bn

∫
|∇f |2

f
q.

for some constant Bn that can be made explicit. Namely, since

∇q = −2(n− 2)
x

1 + |x|2
q,

as in the relation (2.7) from Lemma 2.2 with s = n− 2, we may apply Lemma 2.4
to get

I(Z) = 4(n− 2)2
∫

|x|2

(1 + |x|2)2
q =

n(n− 2)(n− 4)

n− 1
.

Thus,

Bn =
n− 1

(n− 2)2(n− 4)
.

As a summary, we proved the following statement.

Theorem 3.1. Let q be the density of the Cauchy distribution on Rn with
parameter α = n − 2, n ≥ 5, as in (3.1). For any smooth function f : Rn → R+

satisfying ∫
fq = 1 and

∫
fq

(1 + |x|2)2
=

n− 4

4(n− 1)
, (3.4)
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we have

log

∫
f

n
n−2 q

n
n−2 − log

∫
q

n
n−2 ≤ n− 1

(n− 2)2(n− 4)

∫
|∇f |2

f
q. (3.5)

Turning back to the previous computations, let us note that we have actually
proved a stronger inequality

log

∫
f

n
n−2 q

n
n−2 − log

∫
q

n
n−2 ≤ n

n− 2
log

(
1 +

n− 1

n(n− 2)(n− 4)

∫
|∇f |2

f
q

)
.

Similarly to the usual log-Sobolev inequality, the last integral in (3.5) describes
the relative Fisher information I(X||Z) of the random vector X in Rn with density
p = fq with respect to the random vector Z with density q.

Let us show that the left hand side of (3.5), which replaces the relative entropy
D(X||Z) in the usual log-Sobolev inequality, is always non-negative. We claim that,
under the moment condition (3.4), we have∫

q
n
n−2 ≤

∫
f

n
n−2 q

n
n−2 . (3.6)

Indeed, by Holder’s inequality with exponents n/(n− 2) and n/2,∫
fq

(1 + |x|2)2
≤
(∫

f
n
n−2 q

n
n−2

)n−2
n
(∫ 1

(1 + |x|2)n

) 2
n

,

so that ∫
f

n
n−2 q

n
n−2 ≥

(∫ fq

(1 + |x|2)2

) n
n−2

(∫ 1

(1 + |x|2)n

)− 2
n−2

.

Therefore, (3.6) would follow from(∫ 1

(1 + |x|2)n

) 2
n−2

∫
q

n
n−2 ≤

(∫ fq

(1 + |x|2)2

) n
n−2

.

By (3.4) and (2.5), this is equivalent to(∫ 1

(1 + |x|2)n

) 2
n
(∫

q
n
n−2

)n−2
n ≤

∫
1

(1 + |x|2)2
q.

But, since q is proportional to (1 + |x|2)−(n−2), the above inequality is actually an
equality.

4. Proof of Theorem 1.1

In the proof of Theorem 1.1, we follow ideas from [8]. Recall that the function

ϕ(x) =
1

(1 + |x|2)n−2
, x ∈ Rn,

is an extremizer in the isoperimetric inequality for entropies with order α = n
n−2 ,(∫

p
n
n−2

)−n−2
n

∫
|∇p|2

p
≥
(∫

ϕ
n
n−2

)−n−2
n

∫
|∇ϕ|2

p
. (4.1)

If n ≥ 5 (and only then), ϕ is integrable, and then after normalization it represents
the density of the Cauchy probability measure mn−2. But, applying (4.1) to p =
f/
∫
f , one realizes that the inequality holds for any f ≥ 0 smooth enough, not

necessarily a density, like in the Sobolev inequality (1.1).
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Our aim is to apply (4.1) to p = (1 + εg)ϕ and to expand in the limit ε → 0.
We may assume that g is smooth enough and compactly supported so that all
approximations are uniform in space. We also assume that ε is small enough so
that p(x) > 0 for all x ∈ Rn. Set α = n

n−2 . On one hand we have

∫
pα =

∫
ϕα (1 + εg)

α

=

∫
ϕα + εα

∫
gϕα + ε2

α(α− 1)

2

∫
g2ϕα + o(ε2).

Therefore,

(∫
pα
)−1/α

=
(∫

ϕα
)−1/α(

1 + εα

∫
gϕα∫
ϕα

+ ε2
α(α− 1)

2

∫
g2ϕα∫
ϕα

+ o(ε2)

)−1/α
.

In terms of the probability measure mn on Rn with density

mn(dx)

dx
= ϕ(x)α /

∫
ϕα,

the latter expression may be written as

(∫
ϕα
)−1/α(

1− ε
∫
g dmn + ε2

(
− α− 1

2

∫
g2 dmn +

α+ 1

2

(∫
g dmn

)2 ))

with error of order o(ε2).
On the other hand,

∫
|∇p|2

p

=

∫
(1 + εg)2 |∇ϕ|2 + 2ε(1 + εg)ϕ∇ϕ · ∇g + ε2ϕ2 |∇g|2

(1 + εg)ϕ

=

∫
1

ϕ

(
|∇ϕ|2 + 2ε (g |∇ϕ|2 + ϕ∇ϕ · ∇g) + ε2 |∇(gϕ)|2

)(
1− εg + ε2g2 + o(ε2)

)
=

∫
|∇ϕ|2

ϕ
+ ε

∫ [
g
|∇ϕ|2

ϕ
+ 2∇ϕ · ∇g

]
+ ε2

∫ [
|∇(gϕ)|2

ϕ
− 2g∇ϕ · ∇g − g2 |∇ϕ|

2

ϕ

]
+ o(ε2)

=

∫
|∇ϕ|2

ϕ
+ ε

∫
g

[
|∇ϕ|2

ϕ
− 2∆ϕ

]
+ ε2

∫
ϕ|∇g|2 + o(ε2),

where in the last line we used an integration by part to ensure that∫
∇g · ∇ϕ = −

∫
g∆ϕ.
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Multiplying the two expressions, it follows that(∫
pα
)−1/α ∫ |∇p|2

p

=
(∫

ϕα
)−1/α ∫ |∇ϕ|2

ϕ

+ ε
(∫

ϕα
)−1/α [∫

g

[
|∇ϕ|2

ϕ
− 2∆ϕ

]
−
∫
g dmn

∫
|∇ϕ|2

ϕ

]
+ ε2

(∫
ϕα
)−1/α [∫

ϕ|∇g|2 −
∫
g dmn

∫
g

[
|∇ϕ|2

ϕ
− 2∆ϕ

]
+

∫
|∇ϕ|2

ϕ

(
−α− 1

2

∫
g2 dmn +

α+ 1

2

(∫
g dmn

)2)]
. (4.2)

By (4.1), and since ε may be both positive and negative, the coefficient in front
of ε in (4.2) must be vanishing, that is,∫

g

[
|∇ϕ|2

ϕ
− 2∆ϕ

]
=

∫
g dmn

∫
|∇ϕ|2

ϕ
. (4.3)

Of course, this may be verified directly on the basis of Lemma 2.2 with s = n− 2,
from which we know that

|∇ϕ(x)|2

ϕ(x)
= 4(n− 2)2

|x|2

(1 + |x|2)n
. (4.4)

and
|∇ϕ(x)|2

ϕ(x)
− 2∆ϕ(x) = 4n(n− 2)

1

(1 + |x|2)n
. (4.5)

Up to a normalizing constant, the right-hand side is the density of the probability
measure mn. Therefore,∫

g

[
|∇ϕ|2

ϕ
− 2∆ϕ

]
= 4n(n− 2)

∫
g dmn

∫
ϕα.

To obtain (4.3), it remains to check that

4n(n− 2)

∫
ϕα =

∫
|∇ϕ|2

ϕ
,

which follows by Lemmas 2.3-2.4 (in view of (4.4)).
Thus, the linear term in (4.2) is vanishing. As a consequence, the coefficient in

front of ε2 must be non-negative, that is,∫
ϕ |∇g|2 ≥

∫
g dmn

∫
g

[
|∇ϕ|2

ϕ
− 2∆ϕ

]
+

(
α− 1

2

∫
g2 dmn −

α+ 1

2

(∫
g dmn

)2)∫ |∇ϕ|2
ϕ

. (4.6)

Recalling (4.4)-(4.5), up to the factor 4n(n − 2)
∫
ϕα, the above right-hand side

represents just the normalized variance(∫
g dmn

)2
+
α− 1

2

∫
g2 dmn −

α+ 1

2

(∫
g dmn

)2
=
α− 1

2
Varmn(g).
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As a result, (4.6) is simplified to∫
ϕ |∇g|2 ≥ 4nVarmα(g)

∫
ϕα.

Since

ϕ(x)

ϕ(x)α
= (1 + |x|2)2,

we arrive at the weighted Poincaré-type inequality

Varmn(g) ≤ 1

4n

∫
|∇g(x)|2(1 + |x|2)2 dmn(x) (4.7)

On this step, the assumption that g is compactly supported may be dropped.
Note also that, since the volume of the unit ball is

ωn = 2π
n
2 /(nΓ(n/2)),

the density of mn is

ϕα(x)∫
ϕα

=
2

nωnB
(
n
2 ,

n
2

) 1

(1 + |x|2)n
=

Γ(n)

π
n
2 Γ(n/2)

1

(1 + |x|2)n
.

We end this section by proving that the 1/(4n) is optimal in (4.7). In fact,let
us check that that

g(x) =
1

1 + |x|2

is an extremizer. To that aim, we will repeatedly use the following identities:

B
(n

2
,
n

2
+ 1
)

=
1

2
B
(n

2
,
n

2

)
and B

(n
2
,
n

2
+ 2
)

=
1

4

n+ 2

n+ 1
B
(n

2
,
n

2

)
,

that are consequences of

(x+ y)B(x, y + 1) = yB(x, y).

We have ∫
g dmn = Zn

∫
dx

(1 + |x|2)n+1
= Zn

nωn
2

B
(n

2
,
n

2
+ 1
)

=
1

2

and ∫
g2 dmn = Zn

∫
dx

(1 + |x|2)n+2
= Zn

nωn
2

B
(n

2
,
n

2
+ 2
)

=
n+ 2

4(n+ 1)
.

Therefore,

Varmn(g) =

∫
g2 dmα −

(∫
g dmn

)2
=

1

4

(n+ 2

n+ 1
− 1
)

=
1

4(n+ 1)
.
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On the other hand,∫
|∇g(x)|2(1 + |x|2)2 dmn(x) = 4Zn

∫
|x|2

(1 + |x|2)n+2

= 4Zn

(∫ 1

(1 + |x|2)n+1
−
∫

1

(1 + |x|2)n+2

)
= 4Zn

nωn
2

(
B
(n

2
,
n

2
+ 1
)
−B

(n
2
,
n

2
+ 2
))

= 4
B(n2 ,

n
2 + 1)−B(n2 ,

n
2 + 2)

B(n2 ,
n
2 )

= 4
(1

2
− n+ 2

4(n+ 1)

)
=

n

n+ 1
.

Therefore, the smallest constant C such that

Varmn(g) ≤ C
∫
|∇g(x)|2(1 + |x|2)2 dmn(x)

holds for any g must satisfy

1

4(n+ 1)
≤ C · n

n+ 1

from which we deduce that C ≥ 1/(4n) and hence that C = 1/(4n) is indeed the
optimal constant in the weighted Poincaré inequality (4.7)

5. Relationship with the Gaussian Poincaré-type inequality

Let us explain how (1.5) implies the Poincaré-type inequality

Varγk(g) ≤
∫
|∇g|2 dγk (5.1)

with respect to the standard Gaussian measure γk on Rk. As is well-known, the
Cauchy measure mn may be characterized as the distribution of the random vector

X =
Z√

ξ21 + · · ·+ ξ2n
,

where ξi’s are independent random variables with a standard normal distribution
on the real line, that are independent of a random vector Z = (Z1, . . . , Zn) having
a standard normal distribution on Rn. Rescaling the space variable, (1.5) may be
rewritten in terms of the random vector

Y =
√
nX = (Y1, . . . , Yn)

as

Var(g(Y )) ≤ 1

4
E |∇g(Y )|2

(
1 +

1

n
|Y |2

)2
.

If g = g(y1, . . . , yk) depends on the first k variables (k < n), and

Zk,n = (Y1, . . . , Yk)

is the k-dimensional projection of Y , we obtain that

Var(g(Zk,n)) ≤ 1

4
E |∇g(Zk,n)|2

(
1 +

1

n
|Zk,n|2 +

1

n
|Vk,n|2

)2
, (5.2)
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where
Vk,n = (Yk+1, . . . , Yn).

As n→∞, we have Zk,n ⇒ γk weakly in distribution, so that the variance in (5.2)
is convergent to Varγk(g) as long as the function g is bounded and continuous on
Rk. Moreover, assuming that the gradient ∇g is bounded and continuous as well,
the asymptotic behavior of the right-hand side in (5.2) is easily explored. First,
putting

χn =
√
ξ21 + · · ·+ ξ2n,

we have

E |Zk,n|2 = E
√
Z2
1 + · · ·+ Z2

k E
√
n

χn
=

√
n

n− 1
Eχk Eχn ≤

2kn

n− 1

which is bounded in n. Since Zk,n and Vk,n are asymptotically independent, we
conclude that the limit of the right-hand side in (5.2) is equal to the integral in
(5.1). On this step, one may use the identity

E
(

1 +
1

n
|Z|2

)2
= 4 +

2

n
.

Thus, in the limit (5.2) leads to (5.1).
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