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Abstrat

We give a haraterization of those probability measures on the real

line whih satisfy ertain Sobolev inequalities. Our starting point is

a simpler approah to the Bobkov-G�otze haraterization of measures

satisfying a logarithmi Sobolev inequality. As an appliation of the

riterion we present a soft proof of the Lata la-Oleszkiewiz inequality

for exponential measures, and desribe the measures on the line whih

enjoy the same property. New onentration inequalities for produt

measures follow.

Mathematis Subjet Classi�ation: 26D10, 60E15.

Keywords: Sobolev inequalities, onentration.

1 Introdution

Poinar�e and logarithmi Sobolev inequalities are essential tools in the study

of onentration of measure, in the estimation of the relaxation time of var-

ious ergodi systems (see e.g. [12, 1, 8, 17, 10℄). Reall that a probability

measure � on R

n

satis�es a Poinar�e (or spetral gap) inequality if there

1
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exists a onstant C

P

> 0 suh that every smooth funtion f : R

n

! R

satis�es

Z

f

2

d��

�

Z

f d�

�

2

� C

P

Z

jrf j

2

d�: (1)

Here j � j is the Eulidean norm. One ould also onsider more general Dirih-

let forms than jrf j

2

. On the other hand, � veri�es a logarithmi Sobolev

inequality if there exists a onstant C

LS

> 0 so that for every smooth f one

has

Ent

�

f

2

� C

LS

Z

jrf j

2

d�; (2)

where the entropy is de�ned by

Ent

�

f

2

=

Z

f

2

ln f

2

d��

�

Z

f

2

d�

�

ln

�

Z

f

2

d�

�

:

This property was introdued by Gross [7℄ and is stronger than the Poinar�e

inequality. For example the standard Gaussian measure, say on R, satis�es

a Poinar�e and a logarithmi Sobolev inequality whereas the double expo-

nential measures only satis�es a spetral gap inequality. Bekner [3℄ showed

that Gaussian measures verify a family of Sobolev inequalities interpolating

between (1) and (2). More reently, Lata la and Oleszkiewiz [11℄ were able

to establish a orresponding fat for the probability measures �

r

, r 2 (1; 2)

de�ned by

d�

r

(t) =

e

�jtj

r

dt

2�(1 + 1=r)

; t 2 R:

Namely, there is a universal onstant C > 0 suh that for every smooth

f : R ! R and every p 2 (1; 2), one has

Z

f

2

d�

r

�

�

Z

jf j

p

d�

r

�

2

p

� C(2� p)

2(1�

1

r

)

Z

f

02

d�

r

: (3)

For r = 2 and C = 1 this is Bekner's interpolated inequality. The proof

of Lata la and Oleszkiewiz is hard, and the inequality itself is quite sub-

tle: most of the information is enoded in the speed at whih the on-

stant vanishes when p tends to 2. Their result niely ompleted the pi-

ture: while Poinar�e inequality ensures exponential onentration, and log-

Sobolev inequality yields Gaussian onentration, the family of Sobolev in-

equalities (3) with onstant (2� p)

2(1�1=r)

ensures onentration with deay

exp(�Kt

r

); t � 1 for the underlying measure. Moreover, like the Poinar�e

and the logarithmi Sobolev inequalities, the interpolated inequalities also

enjoy the tensorisation property [11℄. For this very reason it is of interest to
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study them for measures on the real line, sine this automatially provides

information on their in�nite produts.

The original motivation of this work was to haraterize the probability

measures on R whih satisfy the same inequalities (3) as the measure �

r

, for

any r 2 (1; 2). As we explain later, this was already done for log-Sobolev

and Poinar�e inequalities (whih orrespond to r = 2 and r = 1), by means

of Hardy type inequalities. Before giving some bakground about Hardy

inequalities, we would like to emphasize that all the previous inequalities

enter the natural framework of Sobolev inequalities of the form

�R

jf j

p

d�

�

2

p

�

R

f

2

d�

p� 2

� C

Z

jrf j

2

d�: (4)

Indeed, Poinar�e orresponds to p = 1 and log-Sobolev to the limit ase when

p tends to 2. The latter framework also enompasses more lassial Sobolev

inequalities, as the spherial one, for p > 2.

The Hardy inequality was originally introdued by Hardy, Littlewood and

Polya [9, 21, page 20℄. They proved, for p 2 [1;1) and b 2 R with bp < �1

that

 

1

X

x=0

x

b

j

x

X

y=0

f(y)j

p

!

1

p

�

�p

bp + 1

 

1

X

x=0

jx

b+1

f(x)j

p

!

1

p

;

holds for every funtion f on N (the onstant is optimal). Tomaselli [20℄ and

Talenti [19℄ extended the inequality to general weight funtions instead of

x

b

and x

b+1

and also to the ontinuous setting (the weights being absolutely

ontinuous measures). Let us preise that all the measures onsidered in

our artile are non-negative. Mukenhoupt [15℄ established the following

statement for general measures. Let �; � be Borel measures on R

+

, let p > 1,

then the best onstant A so that every smooth funtion f satis�es

�

Z

1

0

(f(x)� f(0))

p

d�(x)

�

1

p

� A

�

Z

1

0

f

0p

d�

�

1

p

(5)

is �nite if and only if

B = sup

x>0

�([x;+1))

1

p

�

Z

x

0

1

n(t)

p

0

=p

dt

�

1

p

0

is �nite (throughout the paper we adopt the onvention that 0 � 1 = 0, in

other words the supremum is only on x 2 (0;max(supp�)℄). Here p

0

is de�ned

by 1=p + 1=p

0

= 1 and n stands for the density of the absolutely ontinuous

part of �. Moreover, when it is �nite B � A � p

1

p

p

0

1

p

0

B:
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Using Hardy inequalities via the latter result by Mukenhoupt, Bobkov

and G�otze [4℄ gave the following haraterization of those probability mea-

sures on R whih satisfy a logarithmi Sobolev inequality (2):

Theorem 1 ([4℄). Let �; � be a Borel measures on R, with �(R) = 1 and let

n(t) dt denote the absolutely ontinuous omponent of �. Let m be a median

of �. Let C be the optimal onstant suh that for every smooth f : R ! R

+

one has

Ent

�

(f

2

) � C

Z

f

02

d�:

Then

1

150

(D

0

+ D

1

) � C � 468(D

0

+ D

1

) where

D

0

= sup

x<m

�((�1; x℄) log

�

1

�((�1; x℄)

�

Z

m

x

1

n

;

D

1

= sup

x>m

�([x;+1)) log

�

1

�([x;1))

�

Z

x

m

1

n

:

Apparently, this was the �rst time that Hardy inequalities had been used

in probability theory. Next Milo [14℄ and Chen [5, 6℄ extended their ap-

proah to Poinar�e and more general inequalities, inluding Sobolev inequal-

ities (see also [1℄). We wish to emphasize here that one an derive from these

results a simple expression of the best onstant C in a Sobolev inequality like

(4), up to onstants depending on p. However, these onstants degenerate

when p tends to 2, so these results are not preise enough to address the

inequalities of Lata la and Oleszkiewiz.

The rest of the paper is divided into three setions. In Setion 2 we present

a simpler and tighter proof for the latter theorem of Bobkov and G�otze

on log-Sobolev inequalities. The keystone in their approah was to replae

the entropy Ent(f

2

) by some Orliz norm kf

2

k

 

, for whih lassial Banah

spae theory provides a representation of the form kf

2

k

 

= sup

g2G

f

R

f

2

gd�g,

where G is a set of non negative funtions. This representation allows to

redue the log-Sobolev inequality to a family of Hardy inequalities. Instead,

we give a new lass G that naturally ontrols the entropy.

Setion 3 is devoted to the extension of our method to Sobolev inequalities

like (4) for measures on the line and p 2 (1; 2), and to the inequalities

of Lata la and Oleszkiewiz. We manage to haraterize those probability

measures on the line whih satisfy their inequalities. This in turn provides a

soft proof of their result for �

r

, and gives new onentration inequalities for

produt measures.

For sake of larity, the arguments of Setions 2 and 3 are not written in

full generality. Setion 4 ollets remarks on possible extensions, for example
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to disrete settings, or to measures on R

n

. In this situation we introdue the

right notion of apaity of a set with respet to a probability measure.

2 Logarithmi Sobolev inequalities

Our starting point is the following statement, taken from [4℄ and whih is a

diret orollary of the previously quoted riterion of Mukenhoupt. Let �; �

be (non-negative) Borel measures on [m;1) and let n(x) dx be the abso-

lutely ontinuous omponent of �. Let G be a family of non-negative Borel

measurable funtions on [m;1), and set for any measurable funtion f

�(f) = sup

g2G

Z

1

m

fg d�:

With this notation one has

Proposition 2 ([4℄). Let A be the smallest onstant suh that for every

smooth funtion f with f(m) = 0 one has

�(f

2

) � A

Z

1

m

f

02

d�:

Then B � A � 4B where

B = sup

x>m

�(1

[x;1)

)

Z

x

m

dt

n(t)

:

This result seems adapted to the study of logarithmi Sobolev inequalities,

due the lassial variational expression for the entropy of a real-value non-

negative measurable funtion ' on a probability spae (X;P )

Ent

P

(') = sup

�

Z

X

'g dP ;

Z

X

e

g

dP � 1

�

: (6)

However one should note that the only non-negative funtion g in the latter

supremum is the zero funtion, so this representation is not of the form

required in the proposition. We show in the rest of this setion that a little

more work allows to turn this diÆulty. We obtain the following re�nement

of the riterion of Bobkov and G�otze:

Theorem 3. Let �; � be a Borel measures on R, with �(R) = 1 and d�(x) =

n(x) dx. Let m be a median of �. Let C be the optimal onstant suh that

for every smooth f : R ! R

+

one has

Ent

�

(f

2

) � C

Z

f

02

d�:
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Then max(b

�

; b

+

) � C � 4 max(B

�

; B

+

) where

b

+

= sup

x>m

�([x;+1)) log

�

1 +

1

2�([x;1))

�

Z

x

m

1

n

;

B

+

= sup

x>m

�([x;+1)) log

�

1 +

e

2

�([x;1))

�

Z

x

m

1

n

;

b

�

= sup

x<m

�((�1; x℄) log

�

1 +

1

2�((�1; x℄)

�

Z

m

x

1

n

;

B

�

= sup

x<m

�((�1; x℄) log

�

1 +

e

2

�((�1; x℄)

�

Z

m

x

1

n

:

We shall use the following lemmas. The �rst one in due to Rothaus, it

appears in the previous proofs, and allows to restrit to funtions that vanish

at a presribed point.

Lemma 4 ([16℄). On a probability spae (X;P ), let f : X ! R

+

with

R

X

f

2

dP <1. Then for every a 2 R one has

Ent

P

(f

2

) � Ent

P

((f � a)

2

) + 2

Z

(f � a)

2

dP:

The next lemmas, though rather simple, are ruial in our argument.

Lemma 5. Let ' be a non-negative measurable funtion on a probability

spae (X;P ). Then

Ent

P

(') + 2

Z

X

'dP � sup

�

Z

X

'h dP ;

Z

X

e

h

dP � e

2

+ 1 andh � 0

�

:

Proof of Lemma 5: By the variational haraterization of entropy (6), and

setting h = g + 2,

Ent

P

(') + 2

Z

X

' = sup

�

Z

X

(g + 2)'dP ;

Z

X

e

g

dP � 1

�

:

= sup

�

Z

X

h' dP ;

Z

X

e

h

dP � e

2

�

:

� sup

�

Z

X

'h1

h�0

dP ;

Z

X

e

h

dP � e

2

�

:

Sine

R

X

e

h1

h�0

dP =

R

X

e

h

1

h�0

dP +

R

X

1

h<0

dP � e

2

+ 1, the result follows.

2
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Lemma 6. Let Q be a �nite measure on a spae X. Let K > Q(X) and let

A � X be measurable with Q(A) > 0. Then

sup

�

Z

X

1

A

h dQ;

Z

X

e

h

dQ � K andh � 0

�

= Q(A) log

�

1 +

K �Q(X)

Q(A)

�

:

Proof of Lemma 6: Let us write S for the previous supremum. In

R

A

h dQ,

the values of h on the omplement of A do not matter. So the best hoie is

to take h minimal (that is h = 0) on A



, in order to save on the onstraint

R

e

h

dQ � K. This shows that

S = sup

�

Z

A

h dQ; Q(A



) +

Z

A

e

h

dQ � K and h � 0

�

:

Conavity of the logarithm ensures that

Z

A

h

dQ

Q(A)

� log

Z

A

e

h

dQ

Q(A)

;

whih readily implies that S � Q(A) log((K �Q(A



)=Q(A)). There is atu-

ally equality as one an hek with

h = 1

A

log

�

1 +

K �Q(X)

Q(A)

�

� 0:

2

Proof of Theorem 3: We start with the upper bound on the best C in

the logarithmi Sobolev inequality. Let f : R ! R be smooth. We onsider

the funtions F = f � f(m), F

+

= F1

(m;1)

and F

�

= F1

(�1;m)

. They are

ontinuous. Sine F

2

= F

2

+

+ F

2

�

one has

Ent

�

(F

2

) = sup

�

Z

F

2

+

g d�+

Z

F

2

�

g d�;

Z

e

g

d� � 1

�

� Ent

�

(F

2

+

) + Ent

�

(F

2

�

);

where we have used that the supremum of a sum is less than the sum of the

suprema. By Lemma 4 and the previous remarks, one gets

Ent

�

(f

2

) � Ent

�

(F

2

) + 2

Z

F

2

d�

� Ent

�

(F

2

+

) + 2

Z

F

2

+

d�+ Ent

�

(F

2

�

) + 2

Z

F

2

�

d�:
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Next we work separately with F

+

. Reall that it is identially zero on

(�1; m℄. By Lemma 5,

Ent

�

(F

2

+

) + 2

Z

F

2

+

d� � sup

�

Z

F

2

+

h d�;

Z

e

h

d� � e

2

+ 1 andh � 0

�

:

Applying Proposition 2, we get

Ent

�

(F

2

+

) + 2

Z

F

2

+

d� � 4

~

B

+

Z

(F

0

+

)

2

d�;

where

~

B

+

= sup

x>m

�

sup

�

Z

1

[x;1)

h d�;

Z

e

h

d� � e

2

+ 1 andh � 0

�

Z

x

m

1

n

�

:

Lemma 6 ensures that

~

B

+

oinides with the quantity B

+

of the theorem.

We proeed in the same way with F

�

. Summing up, we arrive at

Ent

�

(f

2

) � 4B

+

Z

(F

0

+

)

2

d� + 4B

�

Z

(F

0

�

)

2

d�

� 4 max(B

+

; B

�

)

Z

((F

0

+

)

2

+ (F

0

�

)

2

)d�

= 4 max(B

+

; B

�

)

Z

f

02

d�:

Indeed, (F

0

+

)

2

+ (F

0

�

)

2

= f

02

at least on R n fmg. It follows that C �

4 max(B

+

; B

�

).

Next we give a lower bound on C suh that for every smooth non-negative

f on the line Ent

�

(f

2

) � C

R

f

02

d�. Let f be a ontinuous funtion that

vanishes on (�1; m℄ and is smooth on [m;1). By approximation, the latter

inequality holds for suh an f . Considering the variational expression (6) of

Ent

�

(f

2

) and noting as before that the values of the test funtion g outside

the support of f

2

appear only in the onstraint and have to be minimum

(here �1) in order to approah the supremum, one writes

Ent

�

(f

2

) = sup

�

Z

(m;1)

f

2

g d�;

Z

(m;1)

e

g

d� � 1

�

� sup

�

Z

(m;1)

f

2

g d�;

Z

(m;1)

e

g

d� � 1 and g � 0

�

:

The latter supremum is nontrivial sine the total mass of � restrited to

(m;1) is at most 1=2, so

R

(m;1)

e

g

d� � 1 an happen for many non-negative
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funtions. From the log Sobolev inequality we dedue that for every smooth

f with f(m) = 0 one has

sup

�

Z

(m;1)

f

2

g d�;

Z

(m;1)

e

g

d� � 1 and g � 0

�

� C

Z

(m;1)

f

02

d�:

Proposition 2 ensures that

C � sup

x>m

�

sup

�

Z

(m;1)

1

[x;1)

g d�;

Z

(m;1)

e

g

d� � 1 and g � 0

��

Z

x

m

1

n

Sine �((m;1)) � 1=2, Lemma 6 applies, and shows that the latter is at

least b

+

. Doing the same on (�1; m℄ we �nally obtain C � max(b

+

; b

�

).

The proof is therefore omplete. 2

Remark 7. It is not diÆult to hek that for any 0 � y � 1=2,

log

�

1 +

e

2

y

�

�

log(1 + 2e

2

)

log(2)

log

�

1 +

1

2y

�

� 4 log

�

1 +

1

2y

�

:

Thus, B

+

� 4b

+

and B

�

� 4b

�

. It follows that the best logarithmi Sobolev

onstant C satis�es max(b

�

; b

+

) � C � 16 max(b

�

; b

+

).

3 Sobolev inequalities

Let p 2 (1; 2), � be a Borel probability measure on R and d�(x) = n(x) dx.

In this setion we show how the argument of the previous setion may be

adapted to the study of the optimal onstant C suh that for every smooth

f : R ! R one has

Z

f

2

d��

�

Z

jf j

p

d�

�

2

p

� C

Z

f

02

d�: (7)

The following lemma is a slight extension of Lemma 4.1 in [2℄.

Lemma 8. Let p 2 (1; 2). Let f : X ! R be square integrable funtion on a

probability spae (X;Q). Then for all a 2 R one has

Z

f

2

dQ�

�

Z

jf j

p

dQ

�

2

p

�

Z

(f � a)

2

dQ� (p� 1)

�

Z

jf � aj

p

dQ

�

2

p
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Proof of Lemma 8: Let g : X ! R be a bounded funtion, taking �nitely

many values. One studies '(t) =

�

R

j1 + tgj

p

�

2=p

. For shortness we omit to

write the measure dQ. Clearly '(0) = 1; '

0

(0) = 2

R

g and

'

00

(t)

2

= (2� p)

�

Z

j1 + tgj

p

�

2

p

�2

�

Z

gj1 + tgj

p�1

sign(1 + tg)

�

2

+(p� 1)

�

Z

j1 + tgj

p

�

2

p

�1

Z

g

2

j1 + tgj

p�2

:

The previous di�erentiation is liit at least for all t's but a �nite number

(where 1 + tg vanishes). For suh values, note that the �rst term in the

seond derivative is non-negative, while the seond one an be bounded from

below by H�older's inequality:

Z

jgj

p

=

Z

jgj

p

j1 + tgj

p(p�2)=2

� j1 + tgj

p(2�p)=2

�

�

Z

g

2

j1 + tgj

p�2

�

p=2

�

Z

j1 + tgj

p

�

(2�p)=2

:

Therefore '

00

(t)=2 � (p � 1)

�
R

jgj

p

�

2=p

. Sine ' is C

1

(or onvex), this is

suÆient to dedue that '(t) � '(0) + t'

0

(0) + t

2

(p� 1)

�

R

jgj

p

�

2=p

for all t.

Setting a = 1=t and multiplying by a

2

one gets

�

Z

ja + gj

p

�

2=p

� a

2

+ 2a

Z

g + (p� 1)

�

Z

jgj

p

�

2=p

:

Substrating this from the relation

R

(a + g)

2

= a

2

+ 2a

R

g +

R

g

2

gives the

result for f = a + g. The general ase follows by approximation. 2

Next we need a onvenient representation of the left hand side in a Sobolev

inequality as a supremum.

Lemma 9. Let ' be a non-negative integrable funtion on a probability spae

(X;P ). Let A > 0 and a 2 (0; 1), then

Z

'dP � A

�

Z

'

a

dP

�

1

a

= sup

�

Z

'g dP ; g < 1 and

Z

(1� g)

a

a�1

dP � A

a

a�1

�

� sup

�

Z

'g dP ; 0 � g < 1 and

Z

(1� g)

a

a�1

dP � 1 + A

a

a�1

�
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Proof of Lemma 9: By a simple argument using H�older's inequality, it is

not diÆult to see that

�

Z

'

a

dP

�

1

a

= inf

�

Z

'h dP ; 0 < h and

Z

h

a

a�1

dP � 1

�

:

Setting g = 1� Ah, we deude from this fat that

Z

'dP � A

�

Z

'

a

dP

�

1

a

= sup

�

Z

'(1� Ah) dP ; 0 < h and

Z

h

a

a�1

dP � 1

�

= sup

�

Z

'g dP ; g < 1 and

Z

(1� g)

a

a�1

dP � A

a

a�1

�

� sup

�

Z

'g1

g�0

dP ; g < 1 and

Z

(1� g)

a

a�1

dP � A

a

a�1

�

� sup

�

Z

'g dP ; 0 � g < 1 and

Z

(1� g)

a

a�1

� 1 + A

a

a�1

�

:

In the previous lines we have used the following simple estimate

Z

(1�g1

g�0

)

a

a�1

dP =

Z

(1�g)

a

a�1

1

g�0

dP +Pfg < 0g �

Z

(1�g)

a

a�1

dP +1:

This onludes the proof of the Lemma. 2

We shall need the following analogue of Lemma 6. Its proof is very similar

and we omit it.

Lemma 10. Let a 2 (0; 1). Let Q be a �nite measure on a spae X and let

K > Q(X). Let A � X be measurable with Q(A) > 0. Then

sup

�

Z

X

1

A

g dQ; 0 � g < 1 and

Z

X

(1� g)

a

a�1

dQ � K

�

= Q(A)

 

1�

�

1 +

K �Q(X)

Q(A)

�

a�1

a

!

:

We are now in position to state our haraterization of measures whih

satisfy the inequality (7).
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Theorem 11. Let p 2 (1; 2), �; � be a Borel measures on R, with �(R) = 1

and d�(x) = n(x) dx. Let m be a median of �. Let C be the optimal onstant

suh that for every smooth f : R ! R

+

one has

Z

f

2

d��

�

Z

jf j

p

d�

�

2

p

� C

Z

f

02

d�: (8)

Then max(b

�

(p); b

+

(p)) � C � 4 max(B

�

(p); B

+

(p)) where

b

+

(p) = sup

x>m

�([x;+1))

 

1�

�

1 +

1

2�([x;1))

�

p�2

p

!

Z

x

m

1

n

;

B

+

(p) = sup

x>m

�([x;+1))

0

�

1�

 

1 +

(p� 1)

p

p�2

�([x;1))

!

p�2

p

1

A

Z

x

m

1

n

;

b

�

(p) = sup

x<m

�((�1; x℄)

 

1�

�

1 +

1

2�((�1; x℄)

�

p�2

p

!

Z

m

x

1

n

;

B

�

(p) = sup

x<m

�((�1; x℄)

0

�

1�

 

1 +

(p� 1)

p

p�2

�((�1; x℄)

!

p�2

p

1

A

Z

m

x

1

n

:

Proof of Theorem 11: The proof is similar to the one of Theorem 3. Just

use Lemmas 8, 9 (with A = p� 1 and a = p=2) and 10 instead of Lemmas 4,

5 and 6. 2

Remark 12. One an hek that for any 0 � y � 1=2, any p 2 (1; 2),

1�

�

1 +

(p�1)

p

p�2

y

�

p�2

p

1�

�

1 +

1

2y

�

p�2

p

�

1�

�

1 + 2(p� 1)

p

p�2

�

p�2

p

1� 2

p�2

p

� 5:

Thus, B

+

(p) � 5b

+

(p) and B

�

(p) � 5b

�

(p). It follows that the best onstant

C in (8) satis�es max(b

�

(p); b

+

(p)) � C � 20 max(b

�

(p); b

+

(p)).

We now explain how the latter theorem gives a haraterization of those

measures whih satisfy the Lata la-Oleszkiewiz inequality.

Theorem 13. Let r 2 (1; 2). Let �; � be Borel measures on R, with �(R) = 1

and d�(x) = n(x) dx. Let m be a median of �. Let C be the optimal onstant

suh that for any smooth f : R ! R

+

one has

sup

p2(1;2)

R

f

2

d��

�
R

jf j

p

d�

�

2

p

(2� p)

2(1�

1

r

)

� C

Z

f

02

d�: (9)
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Then

1

3

max(

�

(r); 

+

(r)) � C � 4 max(C

�

(r); C

+

(r)) � 17 max(

�

(r); 

+

(r))

where



+

(r) = sup

x>m

�([x;+1))

�

log

�

1 +

1

2�([x;1))

��

2(1�

1

r

)

Z

x

m

1

n

;

C

+

(r) = sup

x>m

�([x;+1))

�

log

�

1 +

8

�([x;1))

��

2(1�

1

r

)

Z

x

m

1

n

;



�

(r) = sup

x<m

�((�1; x℄)

�

log

�

1 +

1

2�((�1; x℄)

��

2(1�

1

r

)

Z

m

x

1

n

;

C

�

(r) = sup

x<m

�((�1; x℄)

�

log

�

1 +

8

�((�1; x℄)

��

2(1�

1

r

)

Z

m

x

1

n

:

Proof of Theorem 13: Using Theorem 11 for any p 2 (1; 2), one gets

sup

p2(1;2)

max(b

�

(p); b

+

(p))

(2� p)

2(1�1=r)

� C � 4 sup

p2(1;2)

max(B

�

(p); B

+

(p))

(2� p)

2(1�1=r)

:

Then, it follows from Lemma 14 below applied with � = 2(1 �

1

r

) that

1

3

max(

�

(r); 

+

(r)) � C � 4 max(C

�

(r); C

+

(r)). To ahieve the proof, one

proeeds as in Remarks 7, 12. 2

Lemma 14. For any 0 < y � 1=2 and any � 2 [0; 1℄,

sup

p2(1;2)

1�

�

1 +

(p�1)

p

p�2

y

�

p�2

p

(2� p)

�

�

�

log

�

1 +

8

y

��

�

and

sup

p2(1;2)

1�

�

1 +

1

2y

�

p�2

p

(2� p)

�

�

1

3

�

log

�

1 +

1

2y

��

�

:

Proof of Lemma 14: The term A(p) = (p � 1)

p

p�2

is just little nuisane.

As A(p) is non inreasing in p, A(p) � 8 for p 2 [3=2; 2). Thus,

sup

p2(1;2)

1�

�

1 +

(p�1)

p

p�2

y

�

p�2

p

(2� p)

�

�

max

2

6

4

sup

p2(1;

3

2

)

1

(2� p)

�

; sup

p2[

3

2

;2)

1�

�

1 +

8

y

�

p�2

p

(2� p)

�

3

7

5

:
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Set b = (2 � p)=p and note that 2 � p = 2b=(b + 1). For p 2 [3=2; 2),

b 2 (0; 1=3℄ and therefore (3=2)b � 2b=(b + 1) � 2b. Changing variable and

using the lower bound in the latter inequality, we estimate from above the

seond supremum by sup

b2(0;1=3℄

1�X

�b

b

�

where X = 1 +

8

y

2 [17;1). Next,

put  = b logX,

sup

b2(0;

1

3

℄

1�X

�b

b

�

= (logX)

�

sup

2(0;

1

3

logX℄

1� e

�



�

� (logX)

�

beause sup

>0

1�e

�



�

� 1. Finally, sup

p2(1;3=2)

1

(2�p)

�

= 2

�

� (logX)

�

. This

onludes the �rst part of the lemma.

For the seond part, we proeed as before with b 2 (0; 1) and set X =

1 +

1

2y

2 [2;1). It follows that

sup

p2(1;2)

1�

�

1 +

1

2y

�

p�2

p

(2� p)

�

�

1

2

�

(logX)

�

sup

2(0;log 2)

1� e

�



�

�

1

2(2 log 2)

�

(logX)

�

;

where we have taken  = log 2. Finally

1

2(2 log 2)

�

�

1

4 log 2

�

1

3

: 2

Next, we give examples of appliations of Theorem 13.

Proposition 15. Let d�(x) = e

��(x)

dx be a probability measure, where � is

a ontinuous funtion on R satisfying:

i) 9A > 0 suh that for jxj > A, � is C

2

and sign(x)�

0

(x) > 0,

ii) lim

jxj!1

�

00

(x)

�

0

(x)

2

= 0.

iii) there exists r 2 (1; 2) suh that lim sup

jxj!1

[�(x) + log �

0

(x)℄

2(1�

1

r

)

�

0

(x)

2

<1.

Then there exists C � 0 suh that � satis�es the the Lata la-Oleszkiewiz

inequality (9) with the orresponding r (and � = � on the right hand side).

Proof of Proposition 15: let m be a median of �. Under our hypotheses,

when x tends to +1, one has (see e.g. [1, hapter 6℄)

Z

x

m

e

�(t)

dt �

e

�(x)

�

0

(x)

and

Z

1

x

e

��(t)

dt �

e

��(x)

�

0

(x)

:

Thus, for any x � m,

�([x;+1))

�

log

�

1 +

8

�([x;1))

��

2(1�

1

r

)

Z

x

m

1

n

�

[�(x) + log �

0

(x)℄

2(1�

1

r

)

�

0

(x)

2

:
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By hypothesis iii), this quantity is bounded on [A

0

;1) for some A

0

> 0. As

it is ontinuous on [m;A

0

℄, it is bounded on (m;1). Thus, C

+

(r) < 1.

Similarily for C

�

(r). We onlude with Theorem 13. 2

As a diret appliation, we reover that the measures

d�

r

(t) = exp(�jtj

r

)

dt

2�(1 + 1=r)

; r 2 (1; 2)

satisfy the Lata la-Oleszkiewiz inequality (3) with the orresponding r, and

a onstant C that may depend on r. To reover the full result of [11℄, namely

that C an be hosen independent of r 2 (1; 2), one an ombine Theorem 13

with the lassial estimates on

R

x

0

exp(t

r

)dr and

R

1

x

exp(�t

r

)dr. This is very

easy and we omit the detail of the argument. The riterion allows to deal

with more general potentials, that are not bounded perturbations of the

latter. For example, we obtain that the probability measures

d�

r

(x) = exp(�jxj

r

� jxj

r�1

os(x))

dx

Z

r

; r 2 (1; 2)

d

r;a

(x) = x

a

exp(�x

r

)1

x>0

rdx

�((a + 1)=r)

; r 2 (1; 2); a > �1

also satisfy the Lata la-Oleszkiewiz inequality (3) with the orresponding r.

These fats, or more generaly Theorem 13, an be ombined with the follow-

ing result of these authors in order to establish dimension free onentration

inequalities with deay exp(�t

r

) for produt measures:

Theorem 16 ([11℄). Let r 2 [1; 2℄ and C > 0. Let � be a probability measure

on R

k

. Assume that for any smooth f : R

k

! R and any p 2 [1; 2), one has

Z

f

2

d��

�

Z

jf j

p

d�

�

2

p

� C(2� p)

2(1�

1

r

)

Z

jrf j

2

d�:

Then for any integer n � 1 and any h : R

nk

! R with khk

Lip

� 1 (with

respet to the Eulidean norm on R

nk

), one has

R

jhj d�

n

<1 and

�

n

��

x; h(x)�

Z

h d�

n

� t

p

C

��

� e

�

t

2

3

; t 2 [0; 1℄;

�

n

��

x; h(x)�

Z

h d�

n

� t

p

C

��

� e

�

t

r

3

; t � 1:
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Following this route Lata la and Oleszkiewiz proved dimension free on-

entration inequalities for �

n

r

. For these measures, a slightly stronger state-

ment was proved earlier by Talagrand, via inf-onvolution inequalities and

transport, that holds for even log-onave densities on the line, [18, Propo-

sition 2.7.4℄. The in�mum-onvolution approah seems a bit more general

than the one based on Sobolev inequalities. However there exits no simple

riterium so far, that would allow to deide whether a measures on R satis�es

an inf-onvolution inequality. On the other hand, Theorems 13 and 16 form

a onvenient tool to reah new onentration inequalities for wide families of

measures, inluding e.g. �

n

r

, 

n

r;a

.

4 Final remarks

We onlude with some remarks and extensions.

1) As mentionned in [4℄, a Sobolev type inequality holds with right hand

side C

R

f

0

2

(x)d�(x) if and only if it holds with C

R

f

0

2

(x)n(x)dx where n is

the absolutely ontinuous part of �. So our results extend to non neessarily

absolutely ontinuous � on R. Only n enters the riterion.

2) The method presented here an atually be extended to deal with more

general onentration regimes, between exponential and Gaussian, but not

neessarily exp(�t

r

). The details will be given in a paper in preparation.

3) Sobolev inequalities for p > 2. Our method an easily be adapted to

the Sobolev inequality (4) for p > 2, for measures on R. It would give good

estimates for �xed p or even when p ! 2. However, the result of Lemma 8

(reversed for p > 2), introdues a (p� 1) in front of the L

p

-norm. This term

spoils our estimates as p!1.

4) Other splittings. In our arguments we split the measures on R into

two measures on the half-lines starting at the median m of �. The argument

works if one makes the ut at some other point a. The upper estimate on the

onstant in Sobolev type inequalities would be similar, with m replaed by

a. In the lower bound, the mass of � on the left and on the right of a would

appear. If not the most onvenient in pratie, the hoie of the median

seems to be the best.
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5) Disrete ase. The argument of setions 2 and 3 an easily be adapted

to measures on Z. If � is a probability measure and � a positive measure,

both on Z, then, the logarithmi Sobolev inequality reads as

Ent

�

(f

2

) � C

X

x2Z

�(x)(f(x + 1)� f(x))

2

(10)

for every f : Z ! R null exepted on a �nite number of points, with

Ent

�

(f

2

) = �(f

2

log f

2

)� �(f

2

) log�(f

2

). In the same way, one an state a

Sobolev inequality in the disrete setting.

Exatly as in the proof of Theorem 3, one an prove that the best onstant

C in (10) satis�es max(b

�

; b

+

) � C � 4 max(B

�

; B

+

) with

B

+

= sup

x>m

 

X

y�x

�(y)

!

log

 

1 +

e

2

P

y�x

�(y)

!

x

X

y=m+1

1

�(y)

and similarily for b

�

; b

+

and B

�

. The same remark applies to setion 3 about

Sobolev inequalities and inequality (9).

6) Inequalities in R

n

. One an give a riterion for funtional inequalities

on R

n

(it is however diÆult to exploit). We illustrate this on the Poinar�e

inequality. Let f : R

n

! R be smooth. Then, Var

�

(f) �

R

(f � m)

2

d�

where m is a median of the law of f under �. Set F

+

= (f � m)1

ff>mg

and F

�

= (f � m)1

ff<mg

. One has,

Z

(f � m)

2

d� =

Z

F

2

�

d� +

Z

F

2

+

d�.

Now, �x 
 = fx : f(x) > mg. A result of Maz'ja [13℄ asserts that the best

onstant � in

Z




F

2

d� � �

Z




jrF j

2

d� for smooth F vanishing on �
 (and

at in�nity, but we an get rid of this by approximation sine � is �nite) is, up

to universal onstants, equal to the best � so that for every open set A � 
,

one has � Cap

�

(A;
) � �(A) where

Cap

�

(A;
) = inf

�

Z




jrf j

2

d�; 1

A

� f � 1




�

is the apaity of A in 
 under �. The idea of his argument is mainly a

deomposition of funtions into level-sets. In our ase we have no idea of the

shape of 
 = fx : f(x) > mg. So the relevant notion of apaity of a set A

suh that �(A) < 1=2 seems to be

Cap

�

(A; �) = inf

�

Cap

�

(A;
);
 � A and �(
) =

1

2

�

:
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Let � be the smallest number so that � Cap

�

(A; �) � �(A) whenever �(A) �

1=2. Then, by Maz'ja's result, Var

�

(f) � k�

R

jrf j

2

d� for some universal

onstant k.

On the other hand, if

R

f

2

d�� (

R

fd�)

2

� C

R

jrf j

2

d�, �(
) = 1=2 and

1

A

� f � 1




, one gets

�

Z

fd�

�

2

=

�

Z

f1




d�

�

2

�

1

2

Z

f

2

:

So, C

Z

jrf j

2

d� �

1

2

Z

f

2

�

1

2

�(A) and C Cap

�

(A; �) �

1

2

�(A). It follows

that

1

2

� � C � k�. We thus gave a haraterization of those measures whih

satisfy a Poinar�e inequality on R

n

.

Similarily the logarithmi Sobolev onstant is equal, up to universal on-

stants, to the best onstant

~

� in

~

� Cap

�

(A; �) � �(A) log

1

�(A)

.

Finally, we show the link with dimension 1. An intermediate step was

to deal with the inequality

Z

1

m

f

2

d� � C

Z

1

m

f

0

2

d� for f(m) = 0. Suh

an inequality is made tighter by replaing f(x) by

R

x

m

jf

0

j. So one redues

to inreasing funtions with level sets (x;1) � (m;1). And the apaity

Cap

�

((x;1); (m;1)) is easily seen to be (

R

x

m

1

n

)

�1

where d�(x) = n(x)dx.

Indeed, if f is a smooth funtion suh that 1

(x;1)

� f � 1

(m;1)

, f(m) = 0

and f(x) = 1, by Cauhy-Shwarz inequality

Z

1

m

f

0

2

n =

Z

1

m

f

0

2

n �

�
R

1

m

f

0

�

2

R

x

m

1

n

=

1

R

x

m

1

n

:

This inequality is tight for appropriate hoies of f , and the result follows.
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