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Abstra
t

We give a 
hara
terization of those probability measures on the real

line whi
h satisfy 
ertain Sobolev inequalities. Our starting point is

a simpler approa
h to the Bobkov-G�otze 
hara
terization of measures

satisfying a logarithmi
 Sobolev inequality. As an appli
ation of the


riterion we present a soft proof of the Lata la-Oleszkiewi
z inequality

for exponential measures, and des
ribe the measures on the line whi
h

enjoy the same property. New 
on
entration inequalities for produ
t

measures follow.

Mathemati
s Subje
t Classi�
ation: 26D10, 60E15.

Keywords: Sobolev inequalities, 
on
entration.

1 Introdu
tion

Poin
ar�e and logarithmi
 Sobolev inequalities are essential tools in the study

of 
on
entration of measure, in the estimation of the relaxation time of var-

ious ergodi
 systems (see e.g. [12, 1, 8, 17, 10℄). Re
all that a probability

measure � on R

n

satis�es a Poin
ar�e (or spe
tral gap) inequality if there

1
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exists a 
onstant C

P

> 0 su
h that every smooth fun
tion f : R

n

! R

satis�es

Z

f

2

d��

�

Z

f d�

�

2

� C

P

Z

jrf j

2

d�: (1)

Here j � j is the Eu
lidean norm. One 
ould also 
onsider more general Diri
h-

let forms than jrf j

2

. On the other hand, � veri�es a logarithmi
 Sobolev

inequality if there exists a 
onstant C

LS

> 0 so that for every smooth f one

has

Ent

�

f

2

� C

LS

Z

jrf j

2

d�; (2)

where the entropy is de�ned by

Ent

�

f

2

=

Z

f

2

ln f

2

d��

�

Z

f

2

d�

�

ln

�

Z

f

2

d�

�

:

This property was introdu
ed by Gross [7℄ and is stronger than the Poin
ar�e

inequality. For example the standard Gaussian measure, say on R, satis�es

a Poin
ar�e and a logarithmi
 Sobolev inequality whereas the double expo-

nential measures only satis�es a spe
tral gap inequality. Be
kner [3℄ showed

that Gaussian measures verify a family of Sobolev inequalities interpolating

between (1) and (2). More re
ently, Lata la and Oleszkiewi
z [11℄ were able

to establish a 
orresponding fa
t for the probability measures �

r

, r 2 (1; 2)

de�ned by

d�

r

(t) =

e

�jtj

r

dt

2�(1 + 1=r)

; t 2 R:

Namely, there is a universal 
onstant C > 0 su
h that for every smooth

f : R ! R and every p 2 (1; 2), one has

Z

f

2

d�

r

�

�

Z

jf j

p

d�

r

�

2

p

� C(2� p)

2(1�

1

r

)

Z

f

02

d�

r

: (3)

For r = 2 and C = 1 this is Be
kner's interpolated inequality. The proof

of Lata la and Oleszkiewi
z is hard, and the inequality itself is quite sub-

tle: most of the information is en
oded in the speed at whi
h the 
on-

stant vanishes when p tends to 2. Their result ni
ely 
ompleted the pi
-

ture: while Poin
ar�e inequality ensures exponential 
on
entration, and log-

Sobolev inequality yields Gaussian 
on
entration, the family of Sobolev in-

equalities (3) with 
onstant (2� p)

2(1�1=r)

ensures 
on
entration with de
ay

exp(�Kt

r

); t � 1 for the underlying measure. Moreover, like the Poin
ar�e

and the logarithmi
 Sobolev inequalities, the interpolated inequalities also

enjoy the tensorisation property [11℄. For this very reason it is of interest to
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study them for measures on the real line, sin
e this automati
ally provides

information on their in�nite produ
ts.

The original motivation of this work was to 
hara
terize the probability

measures on R whi
h satisfy the same inequalities (3) as the measure �

r

, for

any r 2 (1; 2). As we explain later, this was already done for log-Sobolev

and Poin
ar�e inequalities (whi
h 
orrespond to r = 2 and r = 1), by means

of Hardy type inequalities. Before giving some ba
kground about Hardy

inequalities, we would like to emphasize that all the previous inequalities

enter the natural framework of Sobolev inequalities of the form

�R

jf j

p

d�

�

2

p

�

R

f

2

d�

p� 2

� C

Z

jrf j

2

d�: (4)

Indeed, Poin
ar�e 
orresponds to p = 1 and log-Sobolev to the limit 
ase when

p tends to 2. The latter framework also en
ompasses more 
lassi
al Sobolev

inequalities, as the spheri
al one, for p > 2.

The Hardy inequality was originally introdu
ed by Hardy, Littlewood and

Polya [9, 21, page 20℄. They proved, for p 2 [1;1) and b 2 R with bp < �1

that

 

1

X

x=0

x

b

j

x

X

y=0

f(y)j

p

!

1

p

�

�p

bp + 1

 

1

X

x=0

jx

b+1

f(x)j

p

!

1

p

;

holds for every fun
tion f on N (the 
onstant is optimal). Tomaselli [20℄ and

Talenti [19℄ extended the inequality to general weight fun
tions instead of

x

b

and x

b+1

and also to the 
ontinuous setting (the weights being absolutely


ontinuous measures). Let us pre
ise that all the measures 
onsidered in

our arti
le are non-negative. Mu
kenhoupt [15℄ established the following

statement for general measures. Let �; � be Borel measures on R

+

, let p > 1,

then the best 
onstant A so that every smooth fun
tion f satis�es

�

Z

1

0

(f(x)� f(0))

p

d�(x)

�

1

p

� A

�

Z

1

0

f

0p

d�

�

1

p

(5)

is �nite if and only if

B = sup

x>0

�([x;+1))

1

p

�

Z

x

0

1

n(t)

p

0

=p

dt

�

1

p

0

is �nite (throughout the paper we adopt the 
onvention that 0 � 1 = 0, in

other words the supremum is only on x 2 (0;max(supp�)℄). Here p

0

is de�ned

by 1=p + 1=p

0

= 1 and n stands for the density of the absolutely 
ontinuous

part of �. Moreover, when it is �nite B � A � p

1

p

p

0

1

p

0

B:
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Using Hardy inequalities via the latter result by Mu
kenhoupt, Bobkov

and G�otze [4℄ gave the following 
hara
terization of those probability mea-

sures on R whi
h satisfy a logarithmi
 Sobolev inequality (2):

Theorem 1 ([4℄). Let �; � be a Borel measures on R, with �(R) = 1 and let

n(t) dt denote the absolutely 
ontinuous 
omponent of �. Let m be a median

of �. Let C be the optimal 
onstant su
h that for every smooth f : R ! R

+

one has

Ent

�

(f

2

) � C

Z

f

02

d�:

Then

1

150

(D

0

+ D

1

) � C � 468(D

0

+ D

1

) where

D

0

= sup

x<m

�((�1; x℄) log

�

1

�((�1; x℄)

�

Z

m

x

1

n

;

D

1

= sup

x>m

�([x;+1)) log

�

1

�([x;1))

�

Z

x

m

1

n

:

Apparently, this was the �rst time that Hardy inequalities had been used

in probability theory. Next Mi
lo [14℄ and Chen [5, 6℄ extended their ap-

proa
h to Poin
ar�e and more general inequalities, in
luding Sobolev inequal-

ities (see also [1℄). We wish to emphasize here that one 
an derive from these

results a simple expression of the best 
onstant C in a Sobolev inequality like

(4), up to 
onstants depending on p. However, these 
onstants degenerate

when p tends to 2, so these results are not pre
ise enough to address the

inequalities of Lata la and Oleszkiewi
z.

The rest of the paper is divided into three se
tions. In Se
tion 2 we present

a simpler and tighter proof for the latter theorem of Bobkov and G�otze

on log-Sobolev inequalities. The keystone in their approa
h was to repla
e

the entropy Ent(f

2

) by some Orli
z norm kf

2

k

 

, for whi
h 
lassi
al Bana
h

spa
e theory provides a representation of the form kf

2

k

 

= sup

g2G

f

R

f

2

gd�g,

where G is a set of non negative fun
tions. This representation allows to

redu
e the log-Sobolev inequality to a family of Hardy inequalities. Instead,

we give a new 
lass G that naturally 
ontrols the entropy.

Se
tion 3 is devoted to the extension of our method to Sobolev inequalities

like (4) for measures on the line and p 2 (1; 2), and to the inequalities

of Lata la and Oleszkiewi
z. We manage to 
hara
terize those probability

measures on the line whi
h satisfy their inequalities. This in turn provides a

soft proof of their result for �

r

, and gives new 
on
entration inequalities for

produ
t measures.

For sake of 
larity, the arguments of Se
tions 2 and 3 are not written in

full generality. Se
tion 4 
olle
ts remarks on possible extensions, for example
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to dis
rete settings, or to measures on R

n

. In this situation we introdu
e the

right notion of 
apa
ity of a set with respe
t to a probability measure.

2 Logarithmi
 Sobolev inequalities

Our starting point is the following statement, taken from [4℄ and whi
h is a

dire
t 
orollary of the previously quoted 
riterion of Mu
kenhoupt. Let �; �

be (non-negative) Borel measures on [m;1) and let n(x) dx be the abso-

lutely 
ontinuous 
omponent of �. Let G be a family of non-negative Borel

measurable fun
tions on [m;1), and set for any measurable fun
tion f

�(f) = sup

g2G

Z

1

m

fg d�:

With this notation one has

Proposition 2 ([4℄). Let A be the smallest 
onstant su
h that for every

smooth fun
tion f with f(m) = 0 one has

�(f

2

) � A

Z

1

m

f

02

d�:

Then B � A � 4B where

B = sup

x>m

�(1

[x;1)

)

Z

x

m

dt

n(t)

:

This result seems adapted to the study of logarithmi
 Sobolev inequalities,

due the 
lassi
al variational expression for the entropy of a real-value non-

negative measurable fun
tion ' on a probability spa
e (X;P )

Ent

P

(') = sup

�

Z

X

'g dP ;

Z

X

e

g

dP � 1

�

: (6)

However one should note that the only non-negative fun
tion g in the latter

supremum is the zero fun
tion, so this representation is not of the form

required in the proposition. We show in the rest of this se
tion that a little

more work allows to turn this diÆ
ulty. We obtain the following re�nement

of the 
riterion of Bobkov and G�otze:

Theorem 3. Let �; � be a Borel measures on R, with �(R) = 1 and d�(x) =

n(x) dx. Let m be a median of �. Let C be the optimal 
onstant su
h that

for every smooth f : R ! R

+

one has

Ent

�

(f

2

) � C

Z

f

02

d�:
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Then max(b

�

; b

+

) � C � 4 max(B

�

; B

+

) where

b

+

= sup

x>m

�([x;+1)) log

�

1 +

1

2�([x;1))

�

Z

x

m

1

n

;

B

+

= sup

x>m

�([x;+1)) log

�

1 +

e

2

�([x;1))

�

Z

x

m

1

n

;

b

�

= sup

x<m

�((�1; x℄) log

�

1 +

1

2�((�1; x℄)

�

Z

m

x

1

n

;

B

�

= sup

x<m

�((�1; x℄) log

�

1 +

e

2

�((�1; x℄)

�

Z

m

x

1

n

:

We shall use the following lemmas. The �rst one in due to Rothaus, it

appears in the previous proofs, and allows to restri
t to fun
tions that vanish

at a pres
ribed point.

Lemma 4 ([16℄). On a probability spa
e (X;P ), let f : X ! R

+

with

R

X

f

2

dP <1. Then for every a 2 R one has

Ent

P

(f

2

) � Ent

P

((f � a)

2

) + 2

Z

(f � a)

2

dP:

The next lemmas, though rather simple, are 
ru
ial in our argument.

Lemma 5. Let ' be a non-negative measurable fun
tion on a probability

spa
e (X;P ). Then

Ent

P

(') + 2

Z

X

'dP � sup

�

Z

X

'h dP ;

Z

X

e

h

dP � e

2

+ 1 andh � 0

�

:

Proof of Lemma 5: By the variational 
hara
terization of entropy (6), and

setting h = g + 2,

Ent

P

(') + 2

Z

X

' = sup

�

Z

X

(g + 2)'dP ;

Z

X

e

g

dP � 1

�

:

= sup

�

Z

X

h' dP ;

Z

X

e

h

dP � e

2

�

:

� sup

�

Z

X

'h1

h�0

dP ;

Z

X

e

h

dP � e

2

�

:

Sin
e

R

X

e

h1

h�0

dP =

R

X

e

h

1

h�0

dP +

R

X

1

h<0

dP � e

2

+ 1, the result follows.

2
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Lemma 6. Let Q be a �nite measure on a spa
e X. Let K > Q(X) and let

A � X be measurable with Q(A) > 0. Then

sup

�

Z

X

1

A

h dQ;

Z

X

e

h

dQ � K andh � 0

�

= Q(A) log

�

1 +

K �Q(X)

Q(A)

�

:

Proof of Lemma 6: Let us write S for the previous supremum. In

R

A

h dQ,

the values of h on the 
omplement of A do not matter. So the best 
hoi
e is

to take h minimal (that is h = 0) on A




, in order to save on the 
onstraint

R

e

h

dQ � K. This shows that

S = sup

�

Z

A

h dQ; Q(A




) +

Z

A

e

h

dQ � K and h � 0

�

:

Con
avity of the logarithm ensures that

Z

A

h

dQ

Q(A)

� log

Z

A

e

h

dQ

Q(A)

;

whi
h readily implies that S � Q(A) log((K �Q(A




)=Q(A)). There is a
tu-

ally equality as one 
an 
he
k with

h = 1

A

log

�

1 +

K �Q(X)

Q(A)

�

� 0:

2

Proof of Theorem 3: We start with the upper bound on the best C in

the logarithmi
 Sobolev inequality. Let f : R ! R be smooth. We 
onsider

the fun
tions F = f � f(m), F

+

= F1

(m;1)

and F

�

= F1

(�1;m)

. They are


ontinuous. Sin
e F

2

= F

2

+

+ F

2

�

one has

Ent

�

(F

2

) = sup

�

Z

F

2

+

g d�+

Z

F

2

�

g d�;

Z

e

g

d� � 1

�

� Ent

�

(F

2

+

) + Ent

�

(F

2

�

);

where we have used that the supremum of a sum is less than the sum of the

suprema. By Lemma 4 and the previous remarks, one gets

Ent

�

(f

2

) � Ent

�

(F

2

) + 2

Z

F

2

d�

� Ent

�

(F

2

+

) + 2

Z

F

2

+

d�+ Ent

�

(F

2

�

) + 2

Z

F

2

�

d�:
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Next we work separately with F

+

. Re
all that it is identi
ally zero on

(�1; m℄. By Lemma 5,

Ent

�

(F

2

+

) + 2

Z

F

2

+

d� � sup

�

Z

F

2

+

h d�;

Z

e

h

d� � e

2

+ 1 andh � 0

�

:

Applying Proposition 2, we get

Ent

�

(F

2

+

) + 2

Z

F

2

+

d� � 4

~

B

+

Z

(F

0

+

)

2

d�;

where

~

B

+

= sup

x>m

�

sup

�

Z

1

[x;1)

h d�;

Z

e

h

d� � e

2

+ 1 andh � 0

�

Z

x

m

1

n

�

:

Lemma 6 ensures that

~

B

+


oin
ides with the quantity B

+

of the theorem.

We pro
eed in the same way with F

�

. Summing up, we arrive at

Ent

�

(f

2

) � 4B

+

Z

(F

0

+

)

2

d� + 4B

�

Z

(F

0

�

)

2

d�

� 4 max(B

+

; B

�

)

Z

((F

0

+

)

2

+ (F

0

�

)

2

)d�

= 4 max(B

+

; B

�

)

Z

f

02

d�:

Indeed, (F

0

+

)

2

+ (F

0

�

)

2

= f

02

at least on R n fmg. It follows that C �

4 max(B

+

; B

�

).

Next we give a lower bound on C su
h that for every smooth non-negative

f on the line Ent

�

(f

2

) � C

R

f

02

d�. Let f be a 
ontinuous fun
tion that

vanishes on (�1; m℄ and is smooth on [m;1). By approximation, the latter

inequality holds for su
h an f . Considering the variational expression (6) of

Ent

�

(f

2

) and noting as before that the values of the test fun
tion g outside

the support of f

2

appear only in the 
onstraint and have to be minimum

(here �1) in order to approa
h the supremum, one writes

Ent

�

(f

2

) = sup

�

Z

(m;1)

f

2

g d�;

Z

(m;1)

e

g

d� � 1

�

� sup

�

Z

(m;1)

f

2

g d�;

Z

(m;1)

e

g

d� � 1 and g � 0

�

:

The latter supremum is nontrivial sin
e the total mass of � restri
ted to

(m;1) is at most 1=2, so

R

(m;1)

e

g

d� � 1 
an happen for many non-negative
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fun
tions. From the log Sobolev inequality we dedu
e that for every smooth

f with f(m) = 0 one has

sup

�

Z

(m;1)

f

2

g d�;

Z

(m;1)

e

g

d� � 1 and g � 0

�

� C

Z

(m;1)

f

02

d�:

Proposition 2 ensures that

C � sup

x>m

�

sup

�

Z

(m;1)

1

[x;1)

g d�;

Z

(m;1)

e

g

d� � 1 and g � 0

��

Z

x

m

1

n

Sin
e �((m;1)) � 1=2, Lemma 6 applies, and shows that the latter is at

least b

+

. Doing the same on (�1; m℄ we �nally obtain C � max(b

+

; b

�

).

The proof is therefore 
omplete. 2

Remark 7. It is not diÆ
ult to 
he
k that for any 0 � y � 1=2,

log

�

1 +

e

2

y

�

�

log(1 + 2e

2

)

log(2)

log

�

1 +

1

2y

�

� 4 log

�

1 +

1

2y

�

:

Thus, B

+

� 4b

+

and B

�

� 4b

�

. It follows that the best logarithmi
 Sobolev


onstant C satis�es max(b

�

; b

+

) � C � 16 max(b

�

; b

+

).

3 Sobolev inequalities

Let p 2 (1; 2), � be a Borel probability measure on R and d�(x) = n(x) dx.

In this se
tion we show how the argument of the previous se
tion may be

adapted to the study of the optimal 
onstant C su
h that for every smooth

f : R ! R one has

Z

f

2

d��

�

Z

jf j

p

d�

�

2

p

� C

Z

f

02

d�: (7)

The following lemma is a slight extension of Lemma 4.1 in [2℄.

Lemma 8. Let p 2 (1; 2). Let f : X ! R be square integrable fun
tion on a

probability spa
e (X;Q). Then for all a 2 R one has

Z

f

2

dQ�

�

Z

jf j

p

dQ

�

2

p

�

Z

(f � a)

2

dQ� (p� 1)

�

Z

jf � aj

p

dQ

�

2

p
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Proof of Lemma 8: Let g : X ! R be a bounded fun
tion, taking �nitely

many values. One studies '(t) =

�

R

j1 + tgj

p

�

2=p

. For shortness we omit to

write the measure dQ. Clearly '(0) = 1; '

0

(0) = 2

R

g and

'

00

(t)

2

= (2� p)

�

Z

j1 + tgj

p

�

2

p

�2

�

Z

gj1 + tgj

p�1

sign(1 + tg)

�

2

+(p� 1)

�

Z

j1 + tgj

p

�

2

p

�1

Z

g

2

j1 + tgj

p�2

:

The previous di�erentiation is li
it at least for all t's but a �nite number

(where 1 + tg vanishes). For su
h values, note that the �rst term in the

se
ond derivative is non-negative, while the se
ond one 
an be bounded from

below by H�older's inequality:

Z

jgj

p

=

Z

jgj

p

j1 + tgj

p(p�2)=2

� j1 + tgj

p(2�p)=2

�

�

Z

g

2

j1 + tgj

p�2

�

p=2

�

Z

j1 + tgj

p

�

(2�p)=2

:

Therefore '

00

(t)=2 � (p � 1)

�
R

jgj

p

�

2=p

. Sin
e ' is C

1

(or 
onvex), this is

suÆ
ient to dedu
e that '(t) � '(0) + t'

0

(0) + t

2

(p� 1)

�

R

jgj

p

�

2=p

for all t.

Setting a = 1=t and multiplying by a

2

one gets

�

Z

ja + gj

p

�

2=p

� a

2

+ 2a

Z

g + (p� 1)

�

Z

jgj

p

�

2=p

:

Substra
ting this from the relation

R

(a + g)

2

= a

2

+ 2a

R

g +

R

g

2

gives the

result for f = a + g. The general 
ase follows by approximation. 2

Next we need a 
onvenient representation of the left hand side in a Sobolev

inequality as a supremum.

Lemma 9. Let ' be a non-negative integrable fun
tion on a probability spa
e

(X;P ). Let A > 0 and a 2 (0; 1), then

Z

'dP � A

�

Z

'

a

dP

�

1

a

= sup

�

Z

'g dP ; g < 1 and

Z

(1� g)

a

a�1

dP � A

a

a�1

�

� sup

�

Z

'g dP ; 0 � g < 1 and

Z

(1� g)

a

a�1

dP � 1 + A

a

a�1

�
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Proof of Lemma 9: By a simple argument using H�older's inequality, it is

not diÆ
ult to see that

�

Z

'

a

dP

�

1

a

= inf

�

Z

'h dP ; 0 < h and

Z

h

a

a�1

dP � 1

�

:

Setting g = 1� Ah, we de
ude from this fa
t that

Z

'dP � A

�

Z

'

a

dP

�

1

a

= sup

�

Z

'(1� Ah) dP ; 0 < h and

Z

h

a

a�1

dP � 1

�

= sup

�

Z

'g dP ; g < 1 and

Z

(1� g)

a

a�1

dP � A

a

a�1

�

� sup

�

Z

'g1

g�0

dP ; g < 1 and

Z

(1� g)

a

a�1

dP � A

a

a�1

�

� sup

�

Z

'g dP ; 0 � g < 1 and

Z

(1� g)

a

a�1

� 1 + A

a

a�1

�

:

In the previous lines we have used the following simple estimate

Z

(1�g1

g�0

)

a

a�1

dP =

Z

(1�g)

a

a�1

1

g�0

dP +Pfg < 0g �

Z

(1�g)

a

a�1

dP +1:

This 
on
ludes the proof of the Lemma. 2

We shall need the following analogue of Lemma 6. Its proof is very similar

and we omit it.

Lemma 10. Let a 2 (0; 1). Let Q be a �nite measure on a spa
e X and let

K > Q(X). Let A � X be measurable with Q(A) > 0. Then

sup

�

Z

X

1

A

g dQ; 0 � g < 1 and

Z

X

(1� g)

a

a�1

dQ � K

�

= Q(A)

 

1�

�

1 +

K �Q(X)

Q(A)

�

a�1

a

!

:

We are now in position to state our 
hara
terization of measures whi
h

satisfy the inequality (7).
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Theorem 11. Let p 2 (1; 2), �; � be a Borel measures on R, with �(R) = 1

and d�(x) = n(x) dx. Let m be a median of �. Let C be the optimal 
onstant

su
h that for every smooth f : R ! R

+

one has

Z

f

2

d��

�

Z

jf j

p

d�

�

2

p

� C

Z

f

02

d�: (8)

Then max(b

�

(p); b

+

(p)) � C � 4 max(B

�

(p); B

+

(p)) where

b

+

(p) = sup

x>m

�([x;+1))

 

1�

�

1 +

1

2�([x;1))

�

p�2

p

!

Z

x

m

1

n

;

B

+

(p) = sup

x>m

�([x;+1))

0

�

1�

 

1 +

(p� 1)

p

p�2

�([x;1))

!

p�2

p

1

A

Z

x

m

1

n

;

b

�

(p) = sup

x<m

�((�1; x℄)

 

1�

�

1 +

1

2�((�1; x℄)

�

p�2

p

!

Z

m

x

1

n

;

B

�

(p) = sup

x<m

�((�1; x℄)

0

�

1�

 

1 +

(p� 1)

p

p�2

�((�1; x℄)

!

p�2

p

1

A

Z

m

x

1

n

:

Proof of Theorem 11: The proof is similar to the one of Theorem 3. Just

use Lemmas 8, 9 (with A = p� 1 and a = p=2) and 10 instead of Lemmas 4,

5 and 6. 2

Remark 12. One 
an 
he
k that for any 0 � y � 1=2, any p 2 (1; 2),

1�

�

1 +

(p�1)

p

p�2

y

�

p�2

p

1�

�

1 +

1

2y

�

p�2

p

�

1�

�

1 + 2(p� 1)

p

p�2

�

p�2

p

1� 2

p�2

p

� 5:

Thus, B

+

(p) � 5b

+

(p) and B

�

(p) � 5b

�

(p). It follows that the best 
onstant

C in (8) satis�es max(b

�

(p); b

+

(p)) � C � 20 max(b

�

(p); b

+

(p)).

We now explain how the latter theorem gives a 
hara
terization of those

measures whi
h satisfy the Lata la-Oleszkiewi
z inequality.

Theorem 13. Let r 2 (1; 2). Let �; � be Borel measures on R, with �(R) = 1

and d�(x) = n(x) dx. Let m be a median of �. Let C be the optimal 
onstant

su
h that for any smooth f : R ! R

+

one has

sup

p2(1;2)

R

f

2

d��

�
R

jf j

p

d�

�

2

p

(2� p)

2(1�

1

r

)

� C

Z

f

02

d�: (9)
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Then

1

3

max(


�

(r); 


+

(r)) � C � 4 max(C

�

(r); C

+

(r)) � 17 max(


�

(r); 


+

(r))

where




+

(r) = sup

x>m

�([x;+1))

�

log

�

1 +

1

2�([x;1))

��

2(1�

1

r

)

Z

x

m

1

n

;

C

+

(r) = sup

x>m

�([x;+1))

�

log

�

1 +

8

�([x;1))

��

2(1�

1

r

)

Z

x

m

1

n

;




�

(r) = sup

x<m

�((�1; x℄)

�

log

�

1 +

1

2�((�1; x℄)

��

2(1�

1

r

)

Z

m

x

1

n

;

C

�

(r) = sup

x<m

�((�1; x℄)

�

log

�

1 +

8

�((�1; x℄)

��

2(1�

1

r

)

Z

m

x

1

n

:

Proof of Theorem 13: Using Theorem 11 for any p 2 (1; 2), one gets

sup

p2(1;2)

max(b

�

(p); b

+

(p))

(2� p)

2(1�1=r)

� C � 4 sup

p2(1;2)

max(B

�

(p); B

+

(p))

(2� p)

2(1�1=r)

:

Then, it follows from Lemma 14 below applied with � = 2(1 �

1

r

) that

1

3

max(


�

(r); 


+

(r)) � C � 4 max(C

�

(r); C

+

(r)). To a
hieve the proof, one

pro
eeds as in Remarks 7, 12. 2

Lemma 14. For any 0 < y � 1=2 and any � 2 [0; 1℄,

sup

p2(1;2)

1�

�

1 +

(p�1)

p

p�2

y

�

p�2

p

(2� p)

�

�

�

log

�

1 +

8

y

��

�

and

sup

p2(1;2)

1�

�

1 +

1

2y

�

p�2

p

(2� p)

�

�

1

3

�

log

�

1 +

1

2y

��

�

:

Proof of Lemma 14: The term A(p) = (p � 1)

p

p�2

is just little nuisan
e.

As A(p) is non in
reasing in p, A(p) � 8 for p 2 [3=2; 2). Thus,

sup

p2(1;2)

1�

�

1 +

(p�1)

p

p�2

y

�

p�2

p

(2� p)

�

�

max

2

6

4

sup

p2(1;

3

2

)

1

(2� p)

�

; sup

p2[

3

2

;2)

1�

�

1 +

8

y

�

p�2

p

(2� p)

�

3

7

5

:
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Set b = (2 � p)=p and note that 2 � p = 2b=(b + 1). For p 2 [3=2; 2),

b 2 (0; 1=3℄ and therefore (3=2)b � 2b=(b + 1) � 2b. Changing variable and

using the lower bound in the latter inequality, we estimate from above the

se
ond supremum by sup

b2(0;1=3℄

1�X

�b

b

�

where X = 1 +

8

y

2 [17;1). Next,

put 
 = b logX,

sup

b2(0;

1

3

℄

1�X

�b

b

�

= (logX)

�

sup


2(0;

1

3

logX℄

1� e

�





�

� (logX)

�

be
ause sup


>0

1�e

�





�

� 1. Finally, sup

p2(1;3=2)

1

(2�p)

�

= 2

�

� (logX)

�

. This


on
ludes the �rst part of the lemma.

For the se
ond part, we pro
eed as before with b 2 (0; 1) and set X =

1 +

1

2y

2 [2;1). It follows that

sup

p2(1;2)

1�

�

1 +

1

2y

�

p�2

p

(2� p)

�

�

1

2

�

(logX)

�

sup


2(0;log 2)

1� e

�





�

�

1

2(2 log 2)

�

(logX)

�

;

where we have taken 
 = log 2. Finally

1

2(2 log 2)

�

�

1

4 log 2

�

1

3

: 2

Next, we give examples of appli
ations of Theorem 13.

Proposition 15. Let d�(x) = e

��(x)

dx be a probability measure, where � is

a 
ontinuous fun
tion on R satisfying:

i) 9A > 0 su
h that for jxj > A, � is C

2

and sign(x)�

0

(x) > 0,

ii) lim

jxj!1

�

00

(x)

�

0

(x)

2

= 0.

iii) there exists r 2 (1; 2) su
h that lim sup

jxj!1

[�(x) + log �

0

(x)℄

2(1�

1

r

)

�

0

(x)

2

<1.

Then there exists C � 0 su
h that � satis�es the the Lata la-Oleszkiewi
z

inequality (9) with the 
orresponding r (and � = � on the right hand side).

Proof of Proposition 15: let m be a median of �. Under our hypotheses,

when x tends to +1, one has (see e.g. [1, 
hapter 6℄)

Z

x

m

e

�(t)

dt �

e

�(x)

�

0

(x)

and

Z

1

x

e

��(t)

dt �

e

��(x)

�

0

(x)

:

Thus, for any x � m,

�([x;+1))

�

log

�

1 +

8

�([x;1))

��

2(1�

1

r

)

Z

x

m

1

n

�

[�(x) + log �

0

(x)℄

2(1�

1

r

)

�

0

(x)

2

:
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By hypothesis iii), this quantity is bounded on [A

0

;1) for some A

0

> 0. As

it is 
ontinuous on [m;A

0

℄, it is bounded on (m;1). Thus, C

+

(r) < 1.

Similarily for C

�

(r). We 
on
lude with Theorem 13. 2

As a dire
t appli
ation, we re
over that the measures

d�

r

(t) = exp(�jtj

r

)

dt

2�(1 + 1=r)

; r 2 (1; 2)

satisfy the Lata la-Oleszkiewi
z inequality (3) with the 
orresponding r, and

a 
onstant C that may depend on r. To re
over the full result of [11℄, namely

that C 
an be 
hosen independent of r 2 (1; 2), one 
an 
ombine Theorem 13

with the 
lassi
al estimates on

R

x

0

exp(t

r

)dr and

R

1

x

exp(�t

r

)dr. This is very

easy and we omit the detail of the argument. The 
riterion allows to deal

with more general potentials, that are not bounded perturbations of the

latter. For example, we obtain that the probability measures

d�

r

(x) = exp(�jxj

r

� jxj

r�1


os(x))

dx

Z

r

; r 2 (1; 2)

d


r;a

(x) = x

a

exp(�x

r

)1

x>0

rdx

�((a + 1)=r)

; r 2 (1; 2); a > �1

also satisfy the Lata la-Oleszkiewi
z inequality (3) with the 
orresponding r.

These fa
ts, or more generaly Theorem 13, 
an be 
ombined with the follow-

ing result of these authors in order to establish dimension free 
on
entration

inequalities with de
ay exp(�t

r

) for produ
t measures:

Theorem 16 ([11℄). Let r 2 [1; 2℄ and C > 0. Let � be a probability measure

on R

k

. Assume that for any smooth f : R

k

! R and any p 2 [1; 2), one has

Z

f

2

d��

�

Z

jf j

p

d�

�

2

p

� C(2� p)

2(1�

1

r

)

Z

jrf j

2

d�:

Then for any integer n � 1 and any h : R

nk

! R with khk

Lip

� 1 (with

respe
t to the Eu
lidean norm on R

nk

), one has

R

jhj d�

n

<1 and

�

n

��

x; h(x)�

Z

h d�

n

� t

p

C

��

� e

�

t

2

3

; t 2 [0; 1℄;

�

n

��

x; h(x)�

Z

h d�

n

� t

p

C

��

� e

�

t

r

3

; t � 1:
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Following this route Lata la and Oleszkiewi
z proved dimension free 
on-


entration inequalities for �

n

r

. For these measures, a slightly stronger state-

ment was proved earlier by Talagrand, via inf-
onvolution inequalities and

transport, that holds for even log-
on
ave densities on the line, [18, Propo-

sition 2.7.4℄. The in�mum-
onvolution approa
h seems a bit more general

than the one based on Sobolev inequalities. However there exits no simple


riterium so far, that would allow to de
ide whether a measures on R satis�es

an inf-
onvolution inequality. On the other hand, Theorems 13 and 16 form

a 
onvenient tool to rea
h new 
on
entration inequalities for wide families of

measures, in
luding e.g. �

n

r

, 


n

r;a

.

4 Final remarks

We 
on
lude with some remarks and extensions.

1) As mentionned in [4℄, a Sobolev type inequality holds with right hand

side C

R

f

0

2

(x)d�(x) if and only if it holds with C

R

f

0

2

(x)n(x)dx where n is

the absolutely 
ontinuous part of �. So our results extend to non ne
essarily

absolutely 
ontinuous � on R. Only n enters the 
riterion.

2) The method presented here 
an a
tually be extended to deal with more

general 
on
entration regimes, between exponential and Gaussian, but not

ne
essarily exp(�t

r

). The details will be given in a paper in preparation.

3) Sobolev inequalities for p > 2. Our method 
an easily be adapted to

the Sobolev inequality (4) for p > 2, for measures on R. It would give good

estimates for �xed p or even when p ! 2. However, the result of Lemma 8

(reversed for p > 2), introdu
es a (p� 1) in front of the L

p

-norm. This term

spoils our estimates as p!1.

4) Other splittings. In our arguments we split the measures on R into

two measures on the half-lines starting at the median m of �. The argument

works if one makes the 
ut at some other point a. The upper estimate on the


onstant in Sobolev type inequalities would be similar, with m repla
ed by

a. In the lower bound, the mass of � on the left and on the right of a would

appear. If not the most 
onvenient in pra
ti
e, the 
hoi
e of the median

seems to be the best.
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5) Dis
rete 
ase. The argument of se
tions 2 and 3 
an easily be adapted

to measures on Z. If � is a probability measure and � a positive measure,

both on Z, then, the logarithmi
 Sobolev inequality reads as

Ent

�

(f

2

) � C

X

x2Z

�(x)(f(x + 1)� f(x))

2

(10)

for every f : Z ! R null ex
epted on a �nite number of points, with

Ent

�

(f

2

) = �(f

2

log f

2

)� �(f

2

) log�(f

2

). In the same way, one 
an state a

Sobolev inequality in the dis
rete setting.

Exa
tly as in the proof of Theorem 3, one 
an prove that the best 
onstant

C in (10) satis�es max(b

�

; b

+

) � C � 4 max(B

�

; B

+

) with

B

+

= sup

x>m

 

X

y�x

�(y)

!

log

 

1 +

e

2

P

y�x

�(y)

!

x

X

y=m+1

1

�(y)

and similarily for b

�

; b

+

and B

�

. The same remark applies to se
tion 3 about

Sobolev inequalities and inequality (9).

6) Inequalities in R

n

. One 
an give a 
riterion for fun
tional inequalities

on R

n

(it is however diÆ
ult to exploit). We illustrate this on the Poin
ar�e

inequality. Let f : R

n

! R be smooth. Then, Var

�

(f) �

R

(f � m)

2

d�

where m is a median of the law of f under �. Set F

+

= (f � m)1

ff>mg

and F

�

= (f � m)1

ff<mg

. One has,

Z

(f � m)

2

d� =

Z

F

2

�

d� +

Z

F

2

+

d�.

Now, �x 
 = fx : f(x) > mg. A result of Maz'ja [13℄ asserts that the best


onstant � in

Z




F

2

d� � �

Z




jrF j

2

d� for smooth F vanishing on �
 (and

at in�nity, but we 
an get rid of this by approximation sin
e � is �nite) is, up

to universal 
onstants, equal to the best � so that for every open set A � 
,

one has � Cap

�

(A;
) � �(A) where

Cap

�

(A;
) = inf

�

Z




jrf j

2

d�; 1

A

� f � 1




�

is the 
apa
ity of A in 
 under �. The idea of his argument is mainly a

de
omposition of fun
tions into level-sets. In our 
ase we have no idea of the

shape of 
 = fx : f(x) > mg. So the relevant notion of 
apa
ity of a set A

su
h that �(A) < 1=2 seems to be

Cap

�

(A; �) = inf

�

Cap

�

(A;
);
 � A and �(
) =

1

2

�

:



18 F. Barthe and C. Roberto

Let � be the smallest number so that � Cap

�

(A; �) � �(A) whenever �(A) �

1=2. Then, by Maz'ja's result, Var

�

(f) � k�

R

jrf j

2

d� for some universal


onstant k.

On the other hand, if

R

f

2

d�� (

R

fd�)

2

� C

R

jrf j

2

d�, �(
) = 1=2 and

1

A

� f � 1




, one gets

�

Z

fd�

�

2

=

�

Z

f1




d�

�

2

�

1

2

Z

f

2

:

So, C

Z

jrf j

2

d� �

1

2

Z

f

2

�

1

2

�(A) and C Cap

�

(A; �) �

1

2

�(A). It follows

that

1

2

� � C � k�. We thus gave a 
hara
terization of those measures whi
h

satisfy a Poin
ar�e inequality on R

n

.

Similarily the logarithmi
 Sobolev 
onstant is equal, up to universal 
on-

stants, to the best 
onstant

~

� in

~

� Cap

�

(A; �) � �(A) log

1

�(A)

.

Finally, we show the link with dimension 1. An intermediate step was

to deal with the inequality

Z

1

m

f

2

d� � C

Z

1

m

f

0

2

d� for f(m) = 0. Su
h

an inequality is made tighter by repla
ing f(x) by

R

x

m

jf

0

j. So one redu
es

to in
reasing fun
tions with level sets (x;1) � (m;1). And the 
apa
ity

Cap

�

((x;1); (m;1)) is easily seen to be (

R

x

m

1

n

)

�1

where d�(x) = n(x)dx.

Indeed, if f is a smooth fun
tion su
h that 1

(x;1)

� f � 1

(m;1)

, f(m) = 0

and f(x) = 1, by Cau
hy-S
hwarz inequality

Z

1

m

f

0

2

n =

Z

1

m

f

0

2

n �

�
R

1

m

f

0

�

2

R

x

m

1

n

=

1

R

x

m

1

n

:

This inequality is tight for appropriate 
hoi
es of f , and the result follows.
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