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Abstract. These lectures are devoted to explaining some properties and some ap-
plications of the Fourier transformation of holonomic D-modules. Firstly, a compar-
ison is made with the usual Fourier transformation of tempered distribution. Soon,
we restrict our attention to one-dimensional D-modules, and explain the stationary
phase formula in this context. This part relies on works of Katz, Bloch-Esnault
and García López. As a first application, we explain the approach of Arinkin to
the Katz algorithm, which reduces rigid irreducible bundles with connection to rank-
one bundles with connection through various transformations, one of which is the
Fourier (or Laplace) transformation. A second application, which relies on the work
of Beilinson, Bloch, Deligne and Esnault, concerns the product formula for the period
matrix of a bundle with connection. Both applications are strongly motivated by
previous works of Katz and Laumon in the realm of `-adic perverse sheaves, and are
intended to pursue the analogy between the complex and the `-adic theories. In this
way, general holonomic D-modules are analogous to wildly ramified `-adic perverse
sheaves.
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LECTURE 1

THE STATIONARY PHASE FORMULA

Summary. In this lecture, we introduce the notion of global and local Fourier
(or Laplace) transform for a holonomic module over the Weyl algebra. After
having explained the local structure of such a module in one variable, we give an
explicit correspondence, called stationary phase formula, between the local struc-
ture of such a module at its singular points and that of its Fourier (or Laplace)
transform.

1.a. Fourier transform of tempered distributions and Laplace transform of
D-modules. Let u be a tempered distribution on Cn (coordinates zj = xj + iyj) and
let Fu be its Fourier transform. The Fourier kernel e−i(x·ξ+y·η) can also be written as
ezζ−zζ if we set ζj = ηj + iξj . If P ∈ C[z]〈∂z〉 is a holomorphic differential operator
with polynomial coefficients, we have F(Pu) = FP (Fu), where FP ∈ C[ζ]〈∂ζ〉 is the
differential operator obtained from P by replacing zj with −∂ζj and ∂zj with ζj .

Given a left C[z]〈∂z〉-module M of the form C[z]〈∂z〉/(P1, . . . , Pk), its Laplace
transform FM (with kernel e−zζ) is the left C[ζ]〈∂ζ〉-module C[ζ]〈∂ζ〉/(FP1, . . . ,

FPk).
More generally, note that the previous correspondence makes C[ζ]〈∂ζ〉 a left
C[z]〈∂z〉-module and any C[z]〈∂z〉-module M defines a C[ζ]〈∂ζ〉-module FM :=
C[ζ]〈∂ζ〉⊗C[z]〈∂z〉M , that is, FM is the C-vector spaceM equipped with the structure
of C[ζ]〈∂ζ〉-module where ζj acts by ∂zj and ∂ζj by −zj . The inverse Laplace
transformation is the similar transformation with kernel ezζ .

Example 1.1. Let u ∈ S ′(Cnz ) be a tempered distribution and letM ⊂ S ′(Cnz ) be the
C[z]〈∂z〉-module generated by u. Then FM is the C[ζ]〈∂ζ〉-module generated by Fu

in S ′(Cnζ ).

1.b. Formal normal form of a holonomic D-modules in dimension one
From now on, I assume that n = 1. In such a case, the notion of a holonomic

C[z]〈∂z〉-module is easy to define: a left C[z]〈∂z〉-module is holonomic if each element
m ∈ M satisfies a non-trivial equation Pm = 0 for some P ∈ C[z]〈∂z〉 r {0}. It is
said to be irreducible if it has no non-trivial submodule.
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The main goal of these notes is to say something non-trivial about irreducible
holonomic D-modules, as a step to their classification. One should notice immediately
that the Laplace transform FM of a holonomic C[z]〈∂z〉-module is holonomic, and is
irreducible as soon as FM is so.

Before considering this question, I will consider the simpler one for C[[z]]〈∂z〉-
modules. Given a C[z]〈∂z〉-module M , we get a C[[z]]〈∂z〉-module (formalization at
the origin)

M̂0 := C[[z]]〈∂z〉 ⊗C[z]〈∂z〉M i.e., M̂0 = C[[z]]⊗C[z] M.

Changing the variable z to z − zo for some zo ∈ C allows one to apply the same
arguments at each zo for M̂zo . One can also consider M̂∞: in such a case, denote
by z′ the coordinate 1/z at infinity; correspondingly, set ∂z′ = −z2∂z; for a C[z]〈∂z〉-
module M , consider M∞ := C[z, z−1] ⊗C[z] M as a left C[z′, z′−1]〈∂z′〉-module and
set

M̂∞ := C((z′))⊗C[z′,z′−1] M∞.

Note that M̂∞ is a priori a C((z′))〈∂z′〉-module, not only a C[[z′]]〈∂z′〉-module, i.e.,
z′ : M̂∞ → M̂∞ is invertible.

Singular points. Let M be a holonomic C[z]〈∂z〉-module and let m ∈ M be a non-
zero element. Let P be a non-zero differential operator of minimal degree with respect
to ∂z annihilating m, written as

∑d
k=0 pk(z)∂kz , with pk ∈ C[z] and pd 6= 0. Near any

zo ∈ C such that pd(zo) 6= 0, Cauchy’s theorem allows one to solve the equation
Pf = 0, and algebraically this means that, in C[[z − zo]]〈∂z〉, the operator can be
decomposed as a product of degree-one operators. Near each point of the zero set
of pd, such a statement is false, and a more precise analysis is needed.

Definition 1.2. Let P ∈ C[[z]]〈∂z〉 written as
∑d
k=0 pk(z)∂kz , with pk ∈ C[[z]] and pd 6= 0.

The Newton polygon N(P ) of P is the compact boundary of the convex hull in R+×R
of the sets (k, v(pk)− k) + ((−N)× N):

v(pk)− k

k

r

r ���r ��r �
�
�rN(P )

Figure 1

We say that P 6= 0 is pure of slope λ ∈ Q+ if N(P ) has only one edge, with slope λ.
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Theorem 1.3 (Structure of holonomic C[[z]]〈∂z〉-modules).
(1) Each C[[z]]〈∂z〉-module M̂ has a unique finite decomposition M̂ =

⊕
λ∈Q+

M̂ (λ),
where m ∈ M̂ (λ) iff there exists P 6= 0 pure of slope λ such that Pm = 0.

(2) M̂ (0) is determined by the data of a quiver

E
c

))
F

v
ii

where E,F are finite dimensional C-vector spaces and c, v are linear morphisms sub-
ject to the property that Id +cv and Id +vc are invertible.

(3) If λ > 0, z acts bijectively on M̂ (λ), which is then a finite dimensional C((z))-
vector space.

The space F is called the space of vanishing cycles of M̂ (0). The structure of
indecomposable C[[z]]〈∂z〉-modules of pure slope 0 (also called regular) is a question
of linear algebra. Let us consider the particular case of regular C[[z]]〈∂z〉-modules on
which z acts bijectively.

Proposition 1.4. The action of z is invertible on M̂ (0) if and only if v : F → E is an
isomorphism. In such a case,

(1) M̂ (0) ' C((z))⊗C E and the action of z∂z is induced by that of 1
2πi log(vc),

(2) M̂ (0) is indecomposable if and only if vc has only one Jordan block,
(3) M̂ (0) is irreducible if and only if dimE = 1.

Proposition 1.5 (Indecomposable C[[z]]〈∂z〉-modules of pure slope λ > 0)
If M̂ (λ) is indecomposable, then M̂ (λ) ' Î(λ) ⊗C((z)) R̂

(0), where Î(λ) is irreducible
of pure slope λ and R̂(0) is indecomposable of pure slope 0.

We now analyze the structure of irreducible C[[z]]〈∂z〉-modules of positive slope.
If Î(λ) has rank one over C((z)), then any generator of Î(λ) is annihilated by an
operator P of the form

P = zλ(z∂z) + a(z), with λ ∈ N∗, a(z) ∈ C[[z]], and a(0) 6= 0.

Up to changing the generator, one ca assume that a(z) is a polynomial of degree6λ.
We denote such a module by Ê ϕ, where ϕ ∈ C((z))/C[[z]] is such that ϕ′(z) =
−a(z)/zλ+1.

In order to get examples with non-integral slopes, it is necessary to introduce
ramification and push-forward. In particular, if λ = q/p with (p, q) = 1, then Î(λ)

has rank p. Let ρ(u) be any element of uC[[u]] with valuation p > 1 (e.g. ρ(u) = up).
We regard ρ as a morphism of degree p from the formal disc with coordinate u to the
formal disc with coordinate z through the correspondence ρ : C[[z]]→ C[[u]], z 7→ ρ(u).
Let N be a finite dimensional C((u))-vector space equipped with a compatible action
of C[[u]]〈∂u〉. The push-forward ρ+N is defined as follows:
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(1) the C((z))-vector space ρ∗N is the C-vector spaceN equipped with the structure
of C((z))-vector space given by f(z) ·m := f(ρ(u))m,

(2) the action of ∂z is that of ρ′(u)−1∂u.

Proposition 1.6 (Irreducible C[[z]]〈∂z〉-modules of pure slope λ > 0)
If λ = q/p > 0 with (p, q) = 1, any irreducible C[[z]]〈∂z〉-module Î(λ) of pure

slope λ takes the form El(ρ, ϕ,R) := ρ+(Ê ϕ ⊗R) for some ρ ∈ uC[[u]] of valuation p,
ϕ ∈ C((u))/C[[u]] having a pole of order q and R of rank one and slope 0.

Up to modifying ϕ, one can assume that ρ(u) = up. Any indecomposable C[[z]]〈∂z〉-
module can also be written as El(ρ, ϕ,R) := ρ+(Ê ϕ⊗R), where R is indecomposable
of pure slope 0 and ρ+Ê ϕ is irreducible.

Conclusion. LetM be a holonomic C[z]〈∂z〉-module. For all zo ∈ C except a finite set,
the formalized module M̂zo is isomorphic to C[[z − zo]]n with its natural action of ∂z.
The complementary finite set, together with ∞, is called the set of singular points
of M . At each singular point zo, M̂zo has a decomposition into pure-slope modules,
and more precisely indecomposable objects, as described in the previous propositions
for the positive-slope part, and as suggested by the quiver representation for the
zero-slope part.

The formal stationary phase formula consists in describing the set of singular points
and the corresponding decompositions for the Laplace transform FM of M , in terms
of the similar data for M . Having a formal normal form for a differential equation
allows one to solve it in terms of formal power series. A general theorem says that this
amounts to finding asymptotic solutions of the differential equation. The consequence
is that, knowing the asymptotic expansion of a basis of solutions of a differential
equation in the neighbourhood of each of its singular points, we can recover the
possible asymptotic expansions of the solutions of the Laplace transformed differential
equation. The name “stationary phase” comes from the fact that the computation
only involves the singular points of M .

1.c. The local Laplace transforms. Let M be a holonomic C[z]〈∂z〉-module and
let FM be its Laplace transform. For each ζo ∈ Cζ∪{∞ζ}, we can consider the formal
object F̂Mζo .

Question 1.7. Is it possible to compute F̂Mζo only in terms of various M̂zo , where zo
varies in Cz ∪ {∞z}. More precisely, we look for an expression

F̂Mζo =
⊕

zo∈Cz∪{∞z}
F (zo,ζo)(M̂zo).

If they exist, the transformations F (zo,ζo) are called local Fourier (Laplace) transform.

Example 1.8. The local Laplace transform F (zo,∞) (zo ∈ C) is nothing but microlo-
calization, namely, this is the tensor product with the ring Êzo consisting of Laurent
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series
∑
k>ko

ak(z−zo)θk such that ak is holomorphic in a fixed neighbourhood of zo.
It comes equipped with a suitable non-commutative product, such that in particular
θ · a(z − zo) =

∑
k>0(−1)ka(k)(z − zo)θk+1. The ring Êzo contains C[[z − zo]]〈∂z〉 as a

subring by sending ∂z to θ−1. So we set

F (zo,∞)M̂zo = Êzo ⊗C[[z−zo]]〈∂z〉 M̂zo .

One can also define F (∞,∞) with a suitable ring of microdifferential operators.

Theorem 1.9 (Stationary phase theorem, cf. [?] and also [?]). Let M be a holonomic
C[z]〈∂z〉-module. Then

F̂M (<1)
∞ = F (0,∞)M̂0(1.9)(0,∞)

F̂M (=1)
∞ =

⊕
zo∈C∗

F (zo,∞)M̂zo(1.9)(6=0,∞)

F̂M (>1)
∞ = F (∞,∞)M̂ (>1)

∞(1.9)(∞,∞)

We can picture the theorem in the following diagram:

F−

��

M̂0

F
(0,∞)
−

��

⊕zo 6=0M̂zo

⊕F
(zo,∞)
−

��

M̂
(>1)
∞

F
(∞,∞)
−

��

M̂
(=1)
∞

⊕F
(∞,ζo)
−

��

M̂
(<1)
∞

F
(∞,0)
−

��

F̂M
(<1)
∞

F
(∞,0)
+

XX

F̂M
(=1)
∞

⊕F
(∞,zo)
+

XX

F̂M
(>1)
∞

F
(∞,∞)
+

XX

⊕ζo 6=0F̂Mζo

⊕F
(ζo,∞)
+

XX

F̂M0

F
(0,∞)
+

XX

F+

ZZ

Remark 1.10

(1) There is no contribution of the kind (finite dist., finite dist.).

(2) There is a more precise correspondence for the slopes with respect to F (0,∞)

or F (∞,∞). For example, F (0,∞)M̂
(λ)
0 = F̂M

(µ)
∞ with 1/µ = 1 + 1/λ.

1.d. Explicit formulas for the local Laplace transforms. I will only consider
the local Laplace transform F (0,∞). There are similar formulas for the other local
Laplace transforms. According to the structure of holonomic C[[z]]〈∂z〉-modules, it is
enough to compute the local Laplace transform of a C[[z]]〈∂z〉-module of pure slope 0
and of elementary C[[z]]〈∂z〉-modules of pure slope λ > 0.

Theorem 1.11 (cf. [?] and [?])

(1) The local Laplace transform of a C[[z]]〈∂z〉-module M̂ (0) of pure slope 0, deter-
mined by a quiver 1.3(2), is isomorphic to the C((θ))-vector space C((θ))⊗CF equipped
with the connection (of pure slope 0)such that θ∂θ(1⊗ f) = 1⊗ 1

2πi log(cv)(f).
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(2) For any elementary C[z]〈∂z〉-vector space El(ρ, ϕ,R) with irregular connection
(i.e., such that ϕ 6∈ C[[u]]), the local Laplace transform F

(0,∞)
± El(ρ, ϕ,R) is the ele-

mentary finite dimensional C((θ))-vector space with connection El(Fρ±, Fϕ, FR) with
(setting Lq = (C((u)), d− q

2
du
u ))

Fρ±(u) = ∓ ρ
′(u)
ϕ′(u) ,

Fϕ(u) = ϕ(u)− ρ(u)
ρ′(u) ϕ

′(u), FR ' R⊗ Lq.



LECTURE 2

RIGID IRREDUCIBLE CONNECTIONS AND
THE ALGORITHM OF KATZ

Summary. The purpose of this lecture is to consider the following “local-
to-global” existence and uniqueness question: (a) given formal holonomic
D-modules at points zi ∈ A1

z (i ∈ I) and at ∞, does there exist a holonomic
C[z]〈∂z〉-module having {zi | i ∈ I} ∪ {∞} as singularities exactly and cor-
responding isomorphic local structure? (b) Is a C[z]〈∂z〉-module completely
determined by the local formal structure at its singular points. When the answer
to (b) is positive, the C[z]〈∂z〉-module is said to be rigid. The algorithm of
Katz reduces any rigid holonomic C[z]〈∂z〉-module to a C[z]〈∂z〉-module having
generic rank one through various transformations, one of which is the Fourier
(Laplace) transformation.

2.a. Irreducible C[z]〈∂z〉-modules and irreducible connections. Let M be a
holonomic C[z]〈∂z〉-module. For all zo ∈ A1 except a finite number, the formalization
M̂zo is isomorphic to C[[z− zo]]n equipped with its natural structure of C[[z− zo]]〈∂z〉-
module. We say that zo is a regular point of M . Otherwise, it is a singular point.
The set of regular points of M is a Zariski open subset of A1. Let U be a Zariski open
subset of A1 containing no singular point ofM and let O(U) ⊂ C(z) be the subring of
rational fractions having no poles on U . Then (this is a theorem)MU := O(U)⊗C[z]M

is a free O(U)-module of rank n, equipped with a compatible action of ∂z, that we
call a connection. In a given O(U)-basis of MU , one can consider the matrix of ∂z,
although ∂z is not O(U)-linear and so the base change formula is not the usual one for
linear operators. This matrix has entries in O(U). On the other hand, note that, in
general, M is not a C[z]-module of finite type, due to the presence of singular points.

Proposition 2.1. Let MU be a free O(U)-module with a compatible action of ∂z. Then
there exists a unique holonomic C[z]〈∂z〉-module, denoted by j!∗MU if j : U ↪→ A1

denotes the inclusion, such that
– (j!∗MU )U = MU ,
– j!∗MU has no sub or quotient module supported in A1 r U .

The operation j!∗ is functorial and preserves inclusions. Moreover, if U ′ is a Zariski
open subset of U and MU ′ := (MU )U ′ , then j′!∗MU ′ = j!∗MU .
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Corollary 2.2. Let M be a holonomic C[z]〈∂z〉-module and let U be a Zariski open
subset of A1 containing no singular point of M . Then, if M is irreducible, MU is
irreducible and M = j!∗MU . Conversely, if MU is irreducible, then j!∗MU is irre-
ducible.

Proof of the corollary. If M is irreducible, then M satisfies both characteristic prop-
erties of j!∗MU , hence it is equal to it. If MU had a non-trivial submodule NU , then
j!∗NU would be a non-trivial submodule of j!∗MU , a contradiction.

Conversely, if MU is irreducible as a O(U)〈∂z〉-module, then the only possible
submodules of j!∗MU are supported on A1 r U , hence are trivial.

2.b. Katz transformations
The middle Laplace transformation. Let us start with a free O(U)-module MU with
a connection. In order to define its Laplace transform, it is necessary to extend it
first as a C[z]〈∂z〉-module. A minimal way to do this is to consider the middle exten-
sion j!∗MU . The Laplace transform F(j!∗MU ) is a holonomic C[ζ]〈∂ζ〉-module, which
defines a connection on its open set of regular points V . In general, the composed oper-
ationMU 7→ F(MU ) :=

[
F(j!∗MU )

]
V
, which associates a connection on V to a connec-

tion on U , is not invertible, since there is no reason why (Fj)!∗(j!∗MU )V = F(j!∗MU ),
where Fj : V ↪→ A1

ζ is the inclusion.
However, if MU is irreducible, then j!∗MU is also irreducible, as well as its Laplace

transform F(j!∗MU ), which means that F(j!∗MU ) = (Fj)!∗
F(j!∗MU )V , according to

the corollary. In conclusion, for irreducible free O(U)-modules with connection, the
minimal Laplace transformation is an invertible transformation.

Remark 2.3. If M is any holonomic C[z]〈∂z〉-module, the set of regular points of FM
only depends on the behaviour of M near infinity, according to the (inverse) sta-
tionary phase formula. The non-zero ones are created from the part of the formal
connection M̂∞ with slope one at infinity, while zero comes from the part M̂ (<1)

∞ . In
particular, they only depend onMU , whatever U is, providedM has no singular point
in U .

Tensoring with a rank-one connection. Let MU ′ be a free O(U ′)-module with con-
nection and let LU ′′ be a free O(U ′′)-module of rank one with connection. Set
U = U ′ ∩ U ′′. The tensor product LU ⊗OU MU is naturally equipped with a con-
nection by setting ∂z(` ⊗ m) = (∂z`) ⊗ m + ` ⊗ (∂zm). If MU ′ is irreducible, then
MU remains irreducible. Moreover, LU ⊗OU MU is irreducible: If it had a non-trivial
submodule NU , then L−1

U ⊗OU NU would be a non-trivial submodule of MU , where
L−1
U is the dual OU -module equipped with the dual connection.

Möbius transformations. Let MU ′ be a free O(U ′)-module with connection and let U
be a Zariski open subset of U ′. Let µ : O(U) ∼−→ O(U) be an automorphism of O(U)
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(a Möbius transformation). Let us set MU = (MU ′)U . Then µ∗MU is a free O(U)-
module, equipped with a connection (by using the chain rule). If MU ′ is irreducible,
then MU remains irreducible. Moreover, µ∗MU is irreducible.

Remark 2.4. The interest of the Möbius transformations is that they allow to change
the point at infinity. Followed by a Laplace transform, they allow to change the locus
of singular points, according to Remark 2.3.

Middle convolution. This is the adjunction of tensoring with L by middle Laplace
transformation. Let MU ′ be an irreducible free O(U ′)-module with connection and
let LV ′′ be a free O(V ′′)-module of rank one with connection. Let V ′ be the Zariski
open set of regular points of F(j!∗MU ′). Set V = V ′ ∩ V ′′. The middle convolution of
MU ′ by LV ′′ is defined by

MU ′ ?mid LV ′′ := F−1(
(FMU ′)V ⊗O(V ) LV

)
U
,

where U is contained in the set of regular points of F−1((FMU )V ⊗O(V ) LV
)
.

Definition 2.5 (Algorithm of Katz). An algorithm of Katz is a succession of transfor-
mations of the previous kind (Laplace transformation, tensoring with a rank-one con-
nection, Möbius transformation) such that, starting from an irreducible free O(U)-
module with connection MU , we reach a new one having rank strictly smaller than
rkMU .

Question 2.6. Given an irreducible MU , is it possible to find a Katz algorithm that
terminates with a rank-one connection (equivalently, that terminates with (O(U ′), ∂z)
for some U ′ ⊂ U)?

We will get a positive answer to Question 2.6 for rigid irreducible connections.

2.c. Rigidity and the Deligne-Simpson problem. Let us fix a finite set of points
Z ⊂ A1 and a non-zero integer n. Set U = A1 r Z. The Deligne-Simpson problem is
an existence question, while rigidity refers to a uniqueness question.

(a) Given a n-dimensional C((z − zo)) (resp. C((z′))) vector space with connection
M̂zo for each zo ∈ A1 (resp. M̂∞), does there exist an irreducible free O(U)-module
with connection MU having the given formalization at Z and at ∞?

This is called the Deligne-Simpson problem for the formal data (M̂zo)zo∈Z∪{∞}.
There is a trivial necessary condition, which follows from the residue theorem: the
sum over Z∪{∞} of the traces of the residues of the connection should be an integer.

The case where each formal data has only slope zero (regular singularity) is equiv-
alent to the following. Given conjugacy classes Czo ⊂ GL(n,C) for zo ∈ Z∪{∞} such
that the product of the determinants of these classes is one, does there exist repre-
sentatives czo ∈ Czo such that

∏
zo∈Z∪{∞} czo = Id and the family (czo)zo∈Z∪{∞} is

irreducible?
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(b) On the other hand, we will say that a free O(U)-module with connection MU

is rigid if any other M ′U having isomorphic formal data M̂ ′zo ' M̂zo (zo ∈ Z ∪ {∞})
is isomorphic to MU .

Example 2.7 (Rank one). Assume MU has rank one. We have thus MU ' O(U) and
the action of ∂z on the generator 1 is given by some f ∈ O(U): ∂z(1) = f ·1, ∂z(g(z)) =
(g′(z)+f(z)g(z))·1. Changing the generator consists in choosing p(z) ∈ O(U)∗. Then
the “matrix” f of the connection is changed to f(z) + p′(z)/p(z). For zo ∈ A1, we
denote by [fzo ] the polar part of f at zo, and we denote [f̃∞] the polynomial part (in
the variable z) of −z2f(z) (that we regard as the polar part in the variable z′ = 1/z).
The residue formula is written as∑

zo∈A1

Reszo [fzo ] + Res∞[f̃∞] = 0.

A similar property holds for the localizations M̂Uzo and M̂U∞. For zo ∈ A1,
the isomorphism class of M̂Uzo is determined by the data of a polar part in C((z −
zo))/C[[z − zo]] up to adding a integer to its residue. At infinity, a similar result hods
in the variable z′?

The Deligne-Simpson problem consists in the following: given polar parts (fzo)zo∈Z
and f̃∞, is it possible to find f ∈ O(U) such that [fzo ]− fzo (zo ∈ Z) and [f̃∞]− f̃∞
have integral residue?

A necessary condition is that the sum of the residues of fzo and f̃∞ is an integer.
Conversely, if such a condition on the given polar parts is satisfied, one can naturally
modify one of these polar parts in order that the sum of the residues is zero, and one
can consider them as elements of O(U) and define f as the sum of these elements at
finite distance, and −f̃∞/z2. Then f is a solution to the problem. In other words,
the Deligne-Simpson problem has a solution in rank one.

The rigidity question asks for uniqueness: assume that f ∈ O(U) has simple poles
with integral residues nzo at finite distance. Then rigidity means that there should
exists p(z) ∈ O(U)∗ such that f(z) = p′(z)/p(z). Such a p exists: take p(z) =∏
zo∈Z(z − zo)no . In other words, any rank one O(U)-module with ∂z is rigid.

We will be mainly concerned with rigidity and we will not consider the existence
problem. We will give a criterion, due to Katz [?] and Bloch-Esnault [?], for rigid-
ity. Let MU be a free O(U)-module with connection. Then the free O(U)-module
End(MU ) := HomO(U)(MU ,MU ) is equipped with a natural action of ∂z, defined by
the formula

(∂zϕ)(m) = ∂z(ϕ(m))− ϕ(∂zm).
If NU is a free O(U)-module with connection, we attach to it the following numbers:

χ(NU ) := χ(∂z : NU −→ NU ) = dim Ker−dim Coker,

hzo(NU ) := dim Ker ∂z : N̂U,zo −→ N̂U,zo , (zo ∈ A1 r U),

h∞(NU ) := dim Ker ∂z′ : N̂U,∞ −→ N̂U,∞.
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Definition 2.8 (Index of rigidity). Let MU be a free O(U)-module with connection. Its
rigidity index is

rigMU := χ(End(MU ))−
∑

zo∈Z∪{∞}

hzo(End(MU )).

Theorem 2.9 (Katz, Bloch-Esnault). Let MU be an irreducible free O(U)-module with
connection. Then MU is rigid if and only if rigMU = 2.

Theorem 2.10 (Katz, Bloch-Esnault). Let MU be an irreducible free O(U)-module with
connection. Then rigMU = rig FMU . In particular, MU is rigid if and only if FMU

is rigid.

2.d. The algorithm of Katz for rigid connections, after Arinkin. The purpose
of this section is to prove:

Theorem 2.11 (Arinkin (1)[?]). Let MU be a rigid irreducible free O(U)-module with
connection. Then there exists a choice of the Katz algorithm which stops at rank one.

Lemma 2.12. The Katz transformations preserve the index of rigidity.

Proof. For the Laplace transform, this is Theorem 2.10. For the tensor with a rank-
one O(U)-module with connection, note that End(MU ⊗LU ) = End(MU ). Lastly, for
a Möbius transformation, one notices that End(µ∗MU ) = µ∗ End(MU ) and that, for
any NU , χ(µ∗NU ) = χ(NU ) and∑

zo∈µ−1(Z∪{∞})

hzo(µ∗NU ) =
∑

zo∈µ−1(Z∪{∞})

hµ(zo)(NU ) =
∑

zo∈Z∪{∞}

hzo(NU ).

Therefore, the theorem is a consequence of the following proposition.

Proposition 2.13 (Arinkin [?]). Let MU be a rigid irreducible free O(U)-module with
connection. If rkMU > 1, there exists a choice of the Katz algorithm which strictly
decreases the rank.

Sketch of proof. I will not try to give a detailed proof, that one can find in [?]. I will
only indicate the role of the rigidity assumption in the proof.

(1) There is a Euler-Poincaré formula (analogue of the Grothendieck-Ogg-
Shafarevich formula) expressing the rigidity index. One introduces, for any x ∈ P1,
the following number, also called the number of vanishing cycles of j!∗MU at x, where
now j denotes the inclusion U ↪→ P1: we set

δx(MU ) = rkMU − hx(MU ) + irrx(MU ),

1. A similar result has been previously (2006) proved by Deligne in an unpublished letter to
N. Katz.
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where irrx(MU ) (the irregularity number of MU at x) is defined in terms of the
decomposition of M̂U,x:

irrx(MU ) =
∑
λ>0

λ rk M̂ (λ)
U,x.

Then
rigMU = 2(rkMU )2 −

∑
x∈P1rU

δx(End(MU )),

(where 2 is the topological Euler characteristic of P1). If MU is rigid, we thus have

(∗)
∑

x∈P1rU

δx(End(MU )) < 2(rkMU )2.

(2) For each x ∈ P1 r U , choose a local coordinate t (if x = zo ∈ A1, choose
t = z − zo, and if x =∞, choose t = 1/z). One shows that there exists an irreducible
C((t))-vector space with connection L̂x such that

δx(End(MU )) >
rkMU

rk L̂x
· δx(L̂x ⊗ M̂U,x),

and that rk L̂x > 2 implies that the RHS is > (rkMU )2 = rk End(M̂U ). Then (∗)
implies that there is at most one x ∈ P1 r U such that rk L̂x > 2. One can assume
that∞ 6∈ U and, if such a x exists, one can assume that it is equal to∞ after applying
a suitable Möbius transformation.

(3) If rk L̂x = 1 for every x ∈ P1 r U , there exists LU such that L̂U,x = L̂x for
x ∈ A1 rU and L̂U,∞ is obtained from L̂∞ by adding αdt/t to the connection (This is
the Cousin problem: given polar parts of meromorphic 1-forms at x ∈ P1 r U , find a
global meromorphic 1-form giving rise to these polar parts; the sum of residues should
be zero in order to have a solution, which explains the introduction of αdt/t). Then an
explicit formula for the rank of the middle convolution implies that (LU ⊗MU ) ? Kα

has rank strictly smaller than that of MU , as a consequence of (∗), where Kα =
(C[ζ, ζ−1], d+ αdζ/ζ).

(4) If rk L̂x = 1 for every x ∈ A1 r U and rk L̂∞ > 2, one can find a suitable
rank-one LU such that L̂U,x = L̂x for x ∈ A1 r U , such that F(LU ⊗MU ) has rank
smaller than rkMU .

Remark 2.14. From the point of view of the physicist or of the analyst, the Fourier
or Laplace transformation relates two different worlds, the space of positions and the
space of (spacial) frequencies. The variables z and ζ reflect two very different ways
of encoding a function. This justifies the different names for the variables.

The point of view of the algebraist is different, since the Laplace transformation
is regarded as an automorphism of the Weyl algebra C[z]〈∂z〉, inducing an equiva-
lence from the category of holonomic C[z]〈∂z〉-modules to itself. This point of view
is present in the approach of Arinkin to Katz transformations, since the Laplace
transformation is one of them, together with Möbius transformations for instance.
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Previous works on the Katz algorithm did not take this point of view however.
Indeed, these works only considered free O(U)-modules with connection having slope 0
at each point of P1 rU , and more specifically the rigid irreducible ones. This property
is not preserved by the Laplace transformation, and the main transformation was then
middle convolution, which can be expressed without using the Laplace transformation
(in the same way as the usual convolution of L1 functions can be defined without using
Fourier transform).

Considering the whole category of holonomic C[z]〈∂z〉-modules with no restriction
on slopes makes the Laplace transformation completely symmetric, and it can be used
as a fundamental transformation.





LECTURE 3

THE DETERMINANT OF
THE DE RHAM COHOMOLOGY

Summary. This lecture explains the role of the Laplace transformation in
proving a product formula for the determinant of a period matrix. This can be
regarded as an analogue of the product formula proved by Laumon [?] in the
`-adic setting, and the method is similar. We will restrict to showing the mech-
anism providing the product formula, and we will not prove (not even express)
such a formula, for which we refer to [?, ?].

3.a. Statement of the problem. Let M be a holonomic C[z]〈∂z〉-module with
singularity set Z ∪ {∞}. The de Rham complex is the complex

M
∂z−−−→M

where the second term M is in degree 0. The de Rham cohomology of M is the
cohomology of this complex, that is,

H−1
DR(M) = Ker ∂z, H0

DR(M) = Coker ∂z.

These spaces are both finite dimensional C-vector spaces (this is a theorem). If M
is defined over a subfield K of C (for example if M = C[z]〈∂z〉/(P ) where P is a
differential operator having coefficients in K[z]), then the de Rham cohomology is
also defined over K.

On the other hand, in many interesting cases, the de Rham cohomology is also
equipped with a natural Q-structure.

Example 3.1. Let T1, . . . , Tr be r elements of GLn(Q) (r > 1, n > 1). Let us fix r
points z1, . . . , zr in A1 and let us set U = A1 r {z1, . . . , zr}. The matrices T1, . . . , Tr
determine a representation of the fundamental group π1(U) when we identify it with
the free group on r elements, that we can choose as loops γi encircling once zi and
not having index zero with respect to zj , j 6= i = 1, . . . , r. This representation gives
rise to a local system LQ of n-dimensional k-vector spaces on U . The cohomology
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Hk(U,LQ) consists of finite-dimensional Q-vector spaces. It is possibly non-zero for
k = 0, 1 at most. A Euler-Poincaré formula gives

χ(U,LQ) = dimH0 − dimH1 = χ(U) rk LQ = (1− r)n.

The Riemann-Hilbert correspondence produces a free O(U)-module MU of rank n

with a connection ∂z having slope 0 at z1, . . . , zr and at∞. It determines a holonomic
C[z]〈∂z〉-module M = j∗MU (j : U ↪→ A1), such that Hk−1

DR (M) ' Hk(U,LQ)⊗Q C.

Given a Q-basis and a K-basis of Hk
DR(M) (k = −1, 0), the determinant of the

base change Pj between these bases is a complex number, independent of the choice
of the bases when considered modulo Q× and K×. The period determinant is

det P0

det P−1
∈ C×

/
Q×K×.

Example 3.2. Let α be a complex number. We define M = C[z, z−1] with the action
of ∂z defined by

∂z(1) = −1 + α/z, ∂z(p(z)) = p′(z) + p(z)∂z(1) if p(z) ∈ C[z, z−1].

Then M is defined over K = Q(α). The singularity set of M reduces to {0,∞} (one
can check that M has slope zero at z = 0 and slope one at z = ∞). The de Rham
cohomology H−1

DR(M) is zero since the equation
p′(z)
p(z) = 1− α/z

has no solution in C[z, z−1] (easily checked). The C-linear map ∂z : M → M is
expressed on the C-basis (zk)k∈Z by the formula zk 7→ −zk + (α + k)zk−1. Assume
for simplicity that α /∈ Z. Then dim Coker ∂z = 1, since each zk is equivalent, modulo
Im ∂z, to a constant (e.g. if k > 1, zk ∼ Γ(α + k + 1)/Γ(α + 1)). This computation
can be done over K, and we find H0

DR(MK) ' K.
We will now define an isomorphism H0

DR(M) ∼−→ C (the period isomorphism) and
the Q-structure on H0

DR(M) will be, by definition, the Q-subspace corresponding to
Q ⊂ C. We first define a C-linear map M → C:

p(z) 7−→ lim
γ

∫
γ

e−zzαp(z) dz,

where γ is a path as in the picture below, and the limit is taken with respect to
the radius of the circle, which tends to 0. Moreover, we fix a determination of the
logarithm along this path to define zα.

x

y

0

γ
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The first point to check is that any element of the form ∂z(p(z)) is mapped to 0.
Notice that, working analytically, ∂z(p(z)) can be written as

ezz−α ◦ ∂

∂z

(
e−zzαp(z)

)
,

so that the integral is written as∫
γ

∂

∂z
(e−zzαp(z)) dz,

and is zero by integration by parts, since e−z is exponentially decreasing at infinity
on γ. The image of 1 is equal to

lim
γ

∫
γ

e−zzαdz = (e2πiα − 1)Γ(α+ 1),

if we assume for simplicity that Reα > 0. In other words,

1K = (e2πiα − 1)Γ(α+ 1) · 1Q.

In this product formula, we can regard (e2πiα − 1) as produced by the singularity
of M at 0, while Γ(α+ 1) is produced by the singularity at infinity.

Question 3.3. Is it possible to express the period determinant in terms of local data
of M at its singularity set Z ∪ {∞}?

One possible proof, developed in [?], consists in expressing the K-vector space
detH0

DR(M) ⊗ (detH−1
DR(M))−1 (the de Rham determinant) in terms of local data,

and similarly for the corresponding Q-vector space, also called the Betti determinant,
and then compute the local multiplicative factors. In this lecture, I will give a hint
for the computation of the de Rham determinant and explain the use of the Laplace
transform.

3.b. The local de Rham determinant and the local de Rham data. The
purpose of this section is to introduce the local terms in the desired product formula.
For M as above, we have defined the de Rham (global) determinant as the one-
dimensional vector space detH0

DR(M)⊗ (detH−1
DR(M))−1.

For each singular point zi of M , the formalized module M̂zi has a slope decom-
position M̂zi =

⊕
λ∈Q M̂

(λ)
zi (cf. Lecture 1). The term of slope 0 is determined by a

quiver

Ei

ci
))
Fi

vi
jj

where Id +vici and Id +civi are invertible. On the other hand, any term of posi-
tive slope is decomposed as the direct sum of elementary indecomposable modules
El(ρ, ϕ,Ri,ρ,ϕ), and each Ri,ρ,ϕ is written as Ei,ρ,ϕ ⊗C C((u)), where u is the ramified
coordinate such that ρ(u) = z − zi, with a suitable connection of slope 0.
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We have a similar decomposition for M at infinity, where the term F∞ is identified
with E∞. In order to simplify the argument, I will assume that M∞ has slope 0.

Question 3.3 (de Rham aspect made precise). Express the global de Rham determinant
in terms of the various detFi, detEi,ρ,ϕ, detE∞.

3.c. The role of the Laplace transform. The main problem is to make explicit a
relation between the global and the local determinants. Another related problem is to
compute the de Rham determinant in terms of a morphism between finite dimensional
vector spaces.

Firstly, the de Rham complex M ∂z−→M can be written as

FM
ζ−−−→ FM.

Now, it is classical that this complex is quasi-isomorphic to

F̂M0
ζ−−−→ F̂M0

because of the flatness of C[[ζ]] over C[ζ]. Even without the simplifying assumption
on M∞, one can use the decomposition with respect to slopes and remark that ζ is
bijective on the part with positive slope. The complex is then computed only in terms
of the quiver attached to F̂M

(0)
0 , that is,

FF0
Fv−−−→ FE0.

Both FE0 and FF0 are finite dimensional, so we finally find

detH0
DR(M)⊗ (detH−1

DR(M))−1 = det FE0 ⊗ (det FF0)−1.

We now use the simplifying assumption. The inverse local Laplace transform
(F (∞,0))−1 identifies FF0 with E∞ (cf. Theorem 1.11(1)), and therefore identifies
det FF0 with detE∞.

It remains now to express det FE0 in terms of the local data detFi, detEi,ρ,ϕ.
From the stationary phase formula, the local data can be recovered at ζ =∞, while
det FE0 is an object defined at ζ = 0. The simplifying assumption above implies that
the singularities of FM are ζ = 0 and ζ = ∞, because, according to the (inverse)
stationary phase formula, other singularities would be caused by the part of slope 1
at z = ∞, which is assumed to be zero. In particular, C[ζ, ζ−1] ⊗C[ζ]

FM is a free
C[ζ, ζ−1]-module of finite rank.

Let us notice that C((ζ))⊗C[ζ]
FM is identified with C((ζ))⊗C

FE0. It follows that
there is a unique C[ζ]-submodule E of M such that

C[[ζ]]⊗C[ζ]
FE = C[[ζ]]⊗C[ζ] ⊗C

FE0,

and we have C[ζ, ζ−1] ⊗C[ζ]
FE = C[ζ, ζ−1] ⊗C[ζ]

FM = FM∞. Moreover, FE0 is the
fibre of E at ζ = 0.
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Similarly, setting ζ ′ = 1/ζ, F̂M∞ is decomposed as⊕
i

[(
C((ζ ′))⊗C Fi

)
⊕
⊕
ρ,ϕ

El(Fρ, Fϕ,Ri,ρ,ϕ ⊗ Lq)
]
,

according to the stationary phase formula, where Ri,ρ,ϕ = C((u)) ⊗C Ei,ρ,ϕ, and the
natural differential on each term indexed by i is twisted by ezi/ζ′ . As a consequence,
there exists a unique free C[ζ ′]-module FE′ such that

C[[ζ ′]]⊗C[ζ′]
FE′ =

⊕
i

[(
C[[ζ ′]]⊗C Fi

)
⊕
⊕
ρ,ϕ

Fρ∗(C[[u]]⊗C Ei,ρ,ϕ)
]
.

The fibre of FE′ at ∞ (that is, at ζ ′ = 0), is then identified with⊕
i

[
Fi ⊕

⊕
ρ,ϕ

(Ei,ρ,ϕ)p+q
]
,

where p is the valuation of ρ and q is the order of the pole of ϕ. We also notice that
C[ζ ′, ζ ′−1]⊗C[ζ′]

FE′ = FM∞.
As a consequence, both modules FE and FE′ glue as a vector bundle on P1, that

we denote by F̃E. This bundle is not trivial in general. However, its determinant
is a rank-one bundle on P1, and up to a simple twist, is trivial. As a consequence,
omitting the twist in the notation, the fibre of det F̃E at ζ = 0, which is nothing but
det FE0, is identified canonically with the fiber of det F̃E at ζ =∞, which is⊗

i

[
detFi ⊗

⊗
ρ,ϕ

(detEi,ρ,ϕ)⊗p+q
]
.

Putting everything together, we find

detH0
DR(M)⊗ (detH−1

DR(M))−1 =
⊗
i

[
detFi ⊗

⊗
ρ,ϕ

(detEi,ρ,ϕ)⊗p+q
]
⊗ (detE∞)−1,

which is the expected product formula.




