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INTRODUCTION TO MIXED HODGE MODULES
ANGERS, APRIL 1–5, 2019

Claude Sabbah

Abstract. These notes intend to be an introduction to the theory of mixed Hodge modules, as
developed by M. Saito in the fundamental articles [Sai88, Sai90] and in his various subsequent
publications. It is no question to give proofs of the main results, since the theorems come in
an intricate construction. Nevertheless, we intend to explain the main objectives of the theory,
and some of the features of mixed Hodge modules. Pure Hodge modules are of special interest,
in particular concerning the decomposition theorem. The theory of mixed Hodge modules
has applications to classical questions of algebraic geometry, singularity theory, and mirror
symmetry.

Since these notes are addressed to an audience with few knowledge in D-module theory, we
devote Lecture 1 to a very short introduction to the subject, and we emphasize the main notions
needed for the sequel. In Lecture 2, we focus on the problem of interaction between Hodge
filtration and Kashiwara-Malgrange filtration, which is at the heart of the definition of Hodge
modules, and we also consider the behaviour of the Hodge filtration with respect to localization
along a divisor, which is one of the main questions for passing from pure to mixed objects. An
overview of the theory of pure and mixed Hodge modules is given in Lecture 3. Lecture 4 is an
introduction to the question of extending a variation of Hodge structure and the properties of
the objects obtained by such an extension: these are the pure Hodge modules. In Lecture 5,
we come back to pure Hodge modules: the decomposition theorem is one of the main reasons
for developing the theory.

The interested reader can consult the introductory articles [Pop16, Sai91, Sai94, Sai17,
Sch14] for more details.
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LECTURE 1

TRAINING ON D-MODULES

1.1. Basics on DX-modules

X: complex manifold, OX sheaf of holomorphic functions, (x1, . . . , xn) local co-
ordinates on X.

1.1.a. DX-modules

OX-modules with integrable connection.
• Holomorphic vector bundle V ⇐⇒ locally free sheaf V of OX-modules of

finite rank.
• Connection∇ : V→ Ω1

X⊗OX
V satisfying Leibniz rule∇(fv) = df⊗v+f∇v.

In local coordinates: ∇∂xi
(fv) = (∂f/∂xi)v + f∇∂xi

(v)

• Integrability (i.e., curvature equal to zero): ∇2 : V→ Ω2
X ⊗V should be zero.

In local coordinates, ∇∂xi
∇∂xj

(v) = ∇∂xj
∇∂xi

(v).
• Can define the notion of integrable connection on any OX-module M. An

OX-module with integrable holomorphic connection ⇐⇒ a left DX-module.

Left DX-modules. The sheaf of rings DX is locally defined as OX〈∂x1, . . . , ∂xn〉,
with the commutation relations [∂xi, ∂xj ] = 0 and [∂xi, f(x)] = ∂f/∂xi. An OX-
module M with an integrable connection ∇ is nothing but a left DX-module, with
the action defined by ∂xim := ∇∂xi

m.

Examples:
• OX endowed with d.
• A holomorphic vector bundle with integrable connection.
• If D is a divisor in X and OX(∗D) is the sheaf of meromorphic functions on X

with poles along D of any order, then (OX(∗D), d) is a left DX-module.

Side-changing. Because DX is not commutative, one has to distinguish between
left and right DX-modules. The main example of a right DX-module is ωX , with
the right DX-module structure given by the local formula

(f(x)dx1 ∧ · · · ∧ dxn) · ∂xi = −(∂f/∂xi) · dx1 ∧ · · · ∧ dxn.
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Lemma 1.1. Equivalence “left DX-modules ←→ right DX-modules” by

Mleft 7−→Mright := ωX ⊗OX
Mleft,

((dx1 ∧ · · · ∧ dxn)⊗m) · ∂xi := −(dx1 ∧ · · · ∧ dxn)⊗ ∂xim.

The filtration by the order. The sheafDX is endowed with the increasing filtration:
FpDX := {operators of order 6 p}.
•  sheaf of graded rings RX :=

⊕
p FpDXz

p (z = grading variable).
• RX/zRX ' grFDX is a sheaf of commutative rings that can be identified

with a sheaf of functions on the cotangent space T ∗X.
•  flat OX-module with filtration satisfying Griffiths transversality ∇F pM ⊂

Ω1
X ⊗ F p−1M ←→ graded RX-module M without C[z]-torsion.
• Then M /zM ' grFM is a grFDX-module.
•  Abelian category of graded RX-modules and graded morphisms of degree

zero contains the full non-abelian subcategory of strict objects (i.e., without C[z]-
torsion).
• A morphism between graded RX-modules is strict if its kernel and cokernel

are strict.

Main property of Hodge modules. All operations on pure or mixed Hodge modules
preserve strictness with respect to the Hodge filtration.

1.1.b. Coherence and Kashiwara’s equivalence.

Coherence. One needs of course some finiteness properties on the OX-modules
with integrable connection one considers. Remark that OX-coherence is too strong
since it implies local freeness of finite rank.

• The sheaves of rings DX and RX are coherent, and there is a good notion of
a coherent DX-module M or a coherent RX-module M .
• Strict coherent RX-module M ⇐⇒ coherent DX-module M with a coherent

filtration F •M, i.e., such that grFM is a coherent grFDX-module. Its support is
a closed analytic subset of T ∗X called the characteristic variety of M and does
not depend on the choice of the coherent filtration on M.

Kashiwara’s equivalence. Let Y ⊂ X be a closed submanifold. The category
of coherent DX-modules supported on Y is equivalent to that of DY -modules.
The similar statement is not true for coherent OX-modules or for coherent
RX-modules.
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Example 1.2. Let f : X → C be a holomorphic function and let ιf : X ↪→ X×Ct

be the inclusion of the graph of f , i.e., ιf(x) = (x, f(x)). Let M be a left DX-
module. We associate with it a DX×C-module supported on the graph of f by
the following formula:
• ιf+M = ιf∗M⊗C C[∂t] =

⊕
k>0 ιf∗M⊗ ∂kt ,

• ϕ(x, t)(m⊗ 1) = (ϕ(x, f(x))m)⊗ 1,
• ∂t(m⊗ ∂kt ) = m⊗ ∂k+1

t ,
• ∂xi(m⊗ ∂kt ) = (∂xim)⊗ ∂kt − (∂f/∂xi)m⊗ ∂k+1

t ,
• the action of a general element of DX×C is deduced from these formulas and

the commutation relations in the ring DX×C.

1.2. Bernstein-Sato polynomials and the Kashiwara-Malgrange filtra-
tion

1.2.a. Bernstein-Sato polynomials. Let f : X → C be a holomorphic func-
tion. A natural question is to ask for which values of α < 0 is the function |f |2α
locally integrable.

Theorem 1.3. In any coordinate chart, there exists a nonzero polynomial bf(s)
and a holomorphic differential operator P (x, ∂x, s) in DX [s] such that, for Re(s)

large enough,

bf(s)|f(x)|2s = P (x, ∂x, s)f(x)|f(x)|2s, P (x, ∂x, s) :=
m∑
i=0

Pi(x, ∂x)s
i.

Moreover, the roots of bf(s) are in Q<0, and bf(s) = bf(s).

Let η be a C∞ form of maximal degree with compact support, which is ≡ vol

near xo (center of the coordinate chart). Write, for Re(s) big enough,

bf(s)

∫
|f |2sη =

∫
P (x, ∂x, s)f |f |2sη =

∫
f |f |2sη(1)(s), η(1)(s) := η·P ∗(x, ∂x, s).

Applying this to f and iterating k-times, we find∫
|f |2sη =

1∏k−1
j=0 bf(s+ j)bf(s+ j)

∫
|f |2(s+k)η(2k)(s) Re(s)� 0.

The LHS is holomorphic in s for Re(s) > 0, the RHS is meromorphic in s for
Re(s) > −k, and both coincide for Re(s)� 0, hence the LHS extends meromor-
phically in s for Re(s) > −k for any k > 1, hence it extends on Cs.

Corollary 1.4. The function |f |2α is integrable for any α > biggest root of bf .
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1.2.b. Specialization of DX-modules. We re-interpret this result in terms of
the Kashiwara-Malgrange filtration. Kashiwara’s equivalence is used to simplify
the function but making more complicated the D-module, by the procedure of
Example 1.2.
• V -filtration of DX×Ct

V 0DX×Ct
= OX×Ct

〈∂x1, . . . , ∂xn, t∂t〉,

V kDX×Ct
= tkV 0DX×Ct

, k > 0,

V −kDX×Ct
=

k∑
j=1

∂jtV
0DX×Ct

, k > 0.

•  Notion of coherent V -filtration for a DX×Ct
-module M.

• For M = ιf+OX ' OX [∂t] with the structure as in Example 1.2, set
Uk(ιf+OX) = V kDX×Ct

· (OX ⊗ 1). Theorem 1.3 can be read as follows:
(1.5) There exists a non-zero polynomial bU(s) such that bU(t∂t− k) vanishes on
Uk(ιf+OX)/Uk+1(ιf+OX) for each k ∈ Z.

Theorem-Definition 1.6 (R-specializability).
(1) Let M be a coherent DX×C-module. We say that M is R-specializable along

X ×{0} if for some coherent V -filtration U •M (1.5) holds with bU(s) having real
roots.
(2) Assume M is R-specializable along X × {0}. Any coherent V -filtration

satisfies the above property. Moreover, there exists a unique coherent V -filtration
V •M such that the set A of roots of bV is a finite subset of (−1, 0]. It is called
the Kashiwara-Malgrange filtration of M.

One can index the filtration by A+ Z in such a way that t∂t − a is nilpotent on
graVM = V aM/V >aM.

Proposition 1.7. Assume M is R-specializable along X × {0}. Then the V -
filtration satisfies the following properties:
• t : V aM

∼−→ V a+1M, for all a > −1,
• −∂t : graVM

∼−→ gra−1V M, for all a < 0.

Proof. Let us check the second point. If we compose on the left with t : gra−1V M→
graVM, we obtain−t∂t : graVM→ graVM, which is an isomorphism because−t∂t+a
is nilpotent and a < 0. If we compose on the right with t, we obtain −∂tt :

gra−1V M→ gra−1V M is an isomorphism since

−∂tt = −(t∂t + 1) = −(t∂t − (a− 1))− a,

t∂t − (a− 1) is nilpotent and a 6= 0.



LECTURE 2

HODGE FILTRATION AND
KASHIWARA-MALGRANGE FILTRATION

One of the main properties of Hodge modules is the good interaction between the
Hodge filtration and the Kashiwara-Malgrange filtration attached to any holomor-
phic function. In this chapter, we explain what “good interaction” means, under
the name of R-specializability of a filtered DX-module, or strict R-specializability
of the associated Rees module.
This good interaction is also instrumental when considering the notion of local-
ization, which is fundamental in mixed Hodge theory. We will restrict to the case
of localization with respect to a hypersurface.
The setting is then as follows. We consider a complex manifold X and a reduced
divisor D ⊂ X with complement U ↪

j−→ X. If D has a global defining equation
f : X → C, then we consider the graph inclusion ιf : X ↪→ X × Ct, and the
divisor is X × {0}. For an open set V ⊂ X, we set V ∗ = V ∩ U .

2.0. The Riemann-Hilbert correspondence

For a left DX-module (i.e., OX-module with integrable connection), the de Rham
complex pDRM is the complex

0 −→M
∇−−→ Ω1

X ⊗M
∇−−→ · · · ∇−−→ Ωn

X ⊗M
•

−→ 0.

If M is holonomic, pDRM has constructible cohomology (Kashiwara) and is a
perverse complex. The de Rham functor behaves well with respect to various
functors in D-module theory on the one hand and in sheaf theory on the other
hand.

2.1. Specialization of a filtered DX-module

2.1.a. R-specializability of filtered DX-modules. The following properties
are justified by Schmid’s theorem on the limit of a polarized variation of Hodge
structure (see Lecture 4).
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• M: a coherent DX×C-module which is R-specializable along X × {0} with
V -filtration V •M. The properties of Proposition 1.7 hold, as a consequence of the
definition of the Bernstein-Sato polynomial.
• Assume now we are given F •M: a coherent filtration on M. We define the

compatibility property between F •M and V •M.
• (M, F •M) is R-specializable along X × {0} if

• t : F pV aM
∼−→ F pV a+1M, for all a > −1,

• −∂t : F pgraVM
∼−→ F p−1gra−1V M, for all a < 0.

2.1.b. Nearby cycles. For an R-specializable module M, the construction
graVM will appear to be fundamental. It can be put in a good framework as
follows. Let M be a left DX-module and let f : X → C be a holomorphic
function. We say that M is R-specializable along (f) if ιf+M is R-specializable
along X × {0} in X ×Ct. For λ ∈ C∗ with |λ| = 1, we then set ψf,λM = graVM

with a ∈ (−1, 0] such that λ = exp(− 2π i a). It is known that any holonomic
DX-moduleM isR-specializable along any f , and that ψf,λM remains holonomic,
supported on f−1(0), and endowed with a nilpotent endomorphism N.
What about the perverse sheaf F := pDRM? We apply Deligne’s topological
construction of nearby cycles pψf,λF, which is known to produce a perverse sheaf
on X supported on f−1(0).

Theorem 2.1 (Kashiwara-Malgrange, M. Saito). If M is holonomic and
• regular along f−1(0),
• or underlies (M, F •M) which is R-specializable along (f),

then there is a functorial isomorphism pDRψf,λM ' pψf,λ
pDRM.

2.2. Localization and dual localization of perverse sheaves and
D-modules

2.2.a. Localization and dual localization of constructible complexes.
Let F be a sheaf of vector spaces on X. The sheaf j∗j−1F satisfies
• (j∗j

−1F)x = Fx if x ∈ U ,
• (j∗j

−1F)x = lim−→V 3x Γ(V ∗,F).
Similarly, the extension by zero (proper pushforward) is defined by
• (j!j

−1F)x = Fx if x ∈ U ,
• (j!j

−1F)x = 0.
These functors can be derived into Rj∗j

−1 and Rj!j
−1. They are called the

localization and dual localization functor. It is known that they preserve the
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property of having constructible cohomology, and they also preserve perversity
(because D has codimension one in X).

2.2.b. Localization of holonomic DX-modules

Given an OX-module M, the localization functor is OX(∗D)⊗OX
•, where OX(∗D)

is the sheaf of meromorphic functions onX with poles alongD at most. The sheaf
OX(∗D) is known to be flat over OX (but not faithfully flat: If M is OX-coherent
and supported on D, then M(∗D) = 0). Since OX(∗D) is a left DX-module in a
natural way, the localization functor acts on the category of DX-modules.
The fundamental result based on the existence of a Bernstein-Sato polynomial for
the defining equation of D is Kashiwara’s theorem:

Theorem 2.2. Assume that M is holonomic. Then M(∗D) is holonomic (hence
coherent).

Example 2.3.
• If D is locally defined by a coordinate x1, it is easy to check that OX(∗D) is

locally generated by 1/x1, which belongs to V −1OX(∗D) since (x1∂x1+1)·(1/x1) =

∂x1x1 · (1/x1) = 0.
• If D = (f) for some holomorphic function f , we derive for each k > 1 a

functional equation

bf(s− k) · · · bf(s− 1)f s−k = Pk(x, ∂x, s)f
s.

If p > 1 is an integer such that −p < roots of bf ,then −p− j is not a root of bf
for any j > 1, and we can fix s = −p in the previous equation for each k > 1,
showing that f−p generates OX(∗D) as a DX-module.

2.2.c. V -filtration and localization. The Kashiwara-Malgrange filtration en-
ables one to define localization and dual localization in a way suitable for ex-
tending the definition to the filtered case. For that purpose, we assume that D is
smooth and X = D×Ct (by using the trick of the pushforward by the inclusion of
the graph of a defining equation of D). In such a case, the Kashiwara-Malgrange
filtration along D is well-defined for any holonomic DX-module M.

Proposition 2.4. We have M(∗D) = DX ⊗V 0DX
V −1M.

It is then natural to define

• M(!D) = DX ⊗V 0DX
V >−1M,

• M(!∗D) = image[M(!D)→M(∗D)].
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Proposition 2.5. The kernel and cokernel of the morphism M(!D)→M(∗D) are
those of the nilpotent morphism

gr0VM
N = −t∂t−−−−−−−−→ gr0VM.

This nilpotent morphism N is the composition

gr0VM
can = −∂t−−−−−−−−→ gr−1V M

var = t−−−−−−→ gr0VM.

Remark 2.6. For a holonomic DX-module M, we have natural morphisms

M
++

M(!D)

33

** **

M(∗D)

M(!∗D)
& �

44

which induce isomorphisms when restricted to V >−1 of each module. On the other
hand,
• can : gr0VM(!D)→ gr−1V M(!D) is an isomorphism,
• var : gr−1V M(∗D)→ gr0VM(∗D) is an isomorphism,
• for M(!∗D), can is onto and var is injective.

Theorem 2.7 (Beilinson). The category of holonomic DX-modules is equivalent to
the category whose objects consist of quadruples (M∗,N, c, v), where M∗,N are
holonomic DX-modules, M∗ = M∗(∗D) and N is supported on D, and morphisms
c : gr0VM∗ → N, v : N→ gr0VM∗ such that v ◦ c = N.

2.3. Localization and dual localization with filtration

The previous framework can be adapted to holonomic filtered DX-modules, and
is convenient to explain the way of extending the Hodge filtration across a divisor.

Example 2.8. Let D be any divisor in X. Given the filtered DX-module
(OX , F

•OX) (recall this is the trivial filtration jumping at 0 only), how to define
a coherent filtration on OX(∗D)? A candidate is the filtration by the order of
the pole. When D is smooth or has only normal crossings as singularities, this
filtration, suitably defined, is indeed the filtration to be used for Hodge theory.
For other singularities, the situation is much more complicated.

We use the language of coherent RX-modules (Lecture 1) in order to treat
DX-modules with a coherent filtration. We say that a coherent RX-module M is
strictly R-specializable along D if the corresponding (M, F •M) is R-specializable
along D. One can then define the notion of Kashiwara-Malgrange filtration V •M
in the case X = D ×Ct with D smooth.
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Definition 2.9. We define the localization and dual localization of M along D as

M [∗D] := RX ⊗V 0RX
V −1M ,

M [!D] := RX ⊗V 0RX
V >−1M .

In other words, for example,

F pM(∗D) =
∑
r−q>p

∂qt t
−1(F rM ∩ V 0M).

Theorem 2.10 (Beilinson correspondence with filtration)
The category of coherent RX-modules which are strictly R-specializable along D
is equivalent to the category whose objects consist of quadruples (M∗,N , c, v),
where M∗,N are coherent strictly R-specializable DX-modules, M∗ = M∗[∗D]

and N is supported on D, and morphisms c : gr0VM∗ → N , v : N → gr0VM∗
such that v ◦ c = N.





LECTURE 3

OVERVIEW OF THE THEORY OF
MIXED HODGE MODULES

3.1. Some results of classical Hodge theory

3.1.a. Hodge structure. Pure polarizable Hodge structure of weight k on the
cohomology of a smooth complex variety or compact Kähler manifold X:

Hk(X,Q), Hk(X,Q)⊗C ' Hk(X,C) '
⊕

p+q=k

Hp,q

∂
(X)

'
⊕

p+q=k

Hq(X,Ωp
X).

• Hodge filtration F pHk(X,C) :=
⊕

p′>pH
p′,k−p′
∂

(X).
• Polarization on Hk(X,C): uses Poincaré duality and the first Chern class of

an ample line bundle, or the class of the Kähler form. ⇒ Many polarizations.
• “Polarizable”: there exists a polarization, but one does not need to make

precise which one is used.

3.1.b. Variation of Hodge structure and the Hodge-Deligne theorem

The first step to localize the definition of a Hodge structure is that of variation
of Hodge structure.
Data:

• HQ: locally constant sheaf of Q-vector spaces on X,
• (V,∇): holomorphic vector bundle V with flat holomorphic connection ∇ :

V→ Ω1
X ⊗ V,

• Filtration F •V ⊂ V by holomorphic subbundles,
• Duality pairing HC ⊗HC → C,

subject to the following compatibility properties:

• V∇ ' C⊗HQ,
• (Griffiths transversality) ∀ p, ∇F pV ⊂ Ω1

X ⊗ F p−1V,
• The restriction to each x ∈ X is a polarized pure Hodge structure of some

weight.
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De Rham complex:

DR(V,∇) = {V ∇−−→ Ω1
X ⊗ V

∇−−→ · · · ∇−−→ Ωn
X ⊗ V}

and
Hk(X,DR(V,∇)) ' Hk(X,V∇) = Hk(X,VC).

Filtered de Rham complex:

F p DR(V,∇) = {F pV
∇−−→ Ω1

X ⊗ F p−1V
∇−−→ · · · }

Theorem 3.1 (Hodge-Deligne theorem). Let X be smooth projective or Kähler,
let (V,∇, F •V,HQ) be a pVHS of weight w. Then
• ∀ p, Hk(X,F p DR(V,∇))→Hk(X,DR(V,∇)) is injective.
Image := F pHk(X,DR(V,∇)).
•
(
Hk(X,HC), F •Hk(X,HC), Hk(X,HQ)

)
is a pHS of weight w + k.

3.1.c. Open varieties. Assume now that U is smooth and quasi-projective and
let X be a smooth projective variety containing U as a Zariski dense subset. It
is often convenient to choose X such that D := X r U is a divisor with normal
crossings.
Deligne has introduced the notion of a mixed Hodge structure, by adding to
the data of a Hodge structure that of an increasing filtration W•HQ (the weight
filtration) such that the graded piece grW` with induced F -filtration is a pure
Hodge structure of weight `. A remarkable property is:

Theorem 3.2 (Deligne). The category of mixed Hodge structures is abelian and
any morphism is bi-strict with respect to the Hodge and the weight filtrations.

More precisely, given mixed Hodge srtuctures (Hi, F
•Hi,W•Hi) (i = 1, 2, 3) and

an exact sequence
0 −→ H1 −→ H2 −→ H3 −→ 0

of Q-vector spaces for which the morphisms are compatible with the filtrations,
then the sequence of bi-graded objects is still exact and moreover, the filtrations
on H1 and H3 are the filtrations naturally induced by those of H2.
Deligne has proved that Hk(U,C) can be endowed with a Hodge filtration
F •Hk(U,C) and a weight filtration W•H

k(U,Q), giving rise to a canonical
mixed Hodge structure. These have an explicit expression on X if D has normal
crossings. For example, H∗(U,C) is realized as the hypercohomology on X of
the logarithmic de Rham complex Ω•X(logD) and we have

Hk(U,C) '
⊕

p+q=k

Hq(X,Ωp
X(logD)).



3.2. THE PURPOSE OF THE THEORY OF MIXED HODGE MODULES 13

Moreover, the restriction morphism

Hk(X,Q) −→ Hk(U,Q)

is a morphism of mixed Hodge structure (the left-hand side is pure, however).
Let now (HQ, . . . ) be a pVHS on U . How to extend the previous properties?
Forgetting the Hodge and weight filtrations, the good replacement for Hk(X,Q)

is IHk(X,HQ) (intersection cohomology with coefficients in the locally constant
sheaf HQ) and there is a natural restriction morphism

IHk(X,HQ) −→ Hk(U,HQ).

We can regard IHk(X,HQ) as the kth hypercohomology of the intersection com-
plex ICX(HQ), while Hk(U,HQ) is the hypercohomology of the complex Rj∗HQ,
and the morphism comes from the natural morphism

ICX(HQ) −→ Rj∗j
−1 ICX(HQ) = Rj∗HQ.

De Rham realization:
• Deligne’s meromorphic extension (M∗,∇) of (V,∇) is a locally freeOX(∗D)-mod-

ule of finite rank endowed with an integrable connection, which satisfies
DR(M∗,∇) ' Rj∗HC.
• In order to define the de Rham realization of ICX(HQ), one needs to use the

notion of holonomic DX-module instead of that of vector bundle with integrable
connection.

3.2. The purpose of the theory of mixed Hodge modules

3.2.a. The objects (pure case). The objects we consider take the form
((M,∇, F •M),FQ, Iso),

where
(1) (M,∇) is an OX-module with integrable connection ∇. We do not impose

OX-coherence, otherwise it would be locally free of finite rank. The finiteness
property is coherence over the ring DX of differential operators, for the structure
given by the integrable connection. More precisely, one requires holonomicity.
(2) F •M is a decreasing filtration bounded from above, satisfying Griffiths

transversality with respect to ∇, and also a coherence property with respect to
the DX-structure (in particular, there exists locally on X a number po such that,
for each p > 0, F po−pM is locally generated by the coherent OX-module F poM

and its images by powers of ∇. In general, the filtration is not indexed by a finite
set, as in the case of pVHS.
(3) FQ is a Q-perverse sheaf on X.
(4) Iso is an isomorphism pDRM ' C⊗Q FQ.
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The morphisms are the natural ones which respect this structure. The category
pHM(X,w) defined in Lecture 4 is a full subcategory of the category consisting
of such objects and morphisms.

Remark 3.3. When X is reduced to a point, the category pHM(X,w) is nothing
but the category of polarizable pure Hodge structures of weight w.

3.2.b. The main theorems (pure case)

Theorem 3.4 (Abelianity). The category pHM(X,w) of polarizable pure Hodge
modules of some weight w ∈ Z is an abelian category and any morphism is strict
with respect to Hodge filtration.

Theorem 3.5 (Structure theorem of pure Hodge modules)
(1) A pure Hodge module with support a closed analytic subset Z of X decom-

poses as the direct sum of pure Hodge modules, each of which supported on an
irreducible component Zi of Z.
(2) A pure Hodge module with support an irreducible closed analytic subset Z

of X is uniquely determined by its restriction to the smooth part Z◦ of Z, which
is a pVHS.

Theorem 3.6 (Hodge-Saito theorem).
• X: smooth projective,
• (M,∇, F •M,FQ): an object of pHM(X,w).

Then
• ∀ p, Hk(X,F p pDR(M,∇))→Hk(X, pDR(M,∇)) is injective.
Image := F pHk(X, pDR(M,∇)).
•
(
Hk(X, pDR(M,∇)), F •Hk(X, pDR(M,∇)), Hk(X,FQ)

)
is a pHS of weight

w + k.

Example 3.7. Consider the trivial filtration of OX defined by F 0OX = OX and
F 1OX = 0. A particular case of the theorem, which is not a trivial statement in
this framework, is:
The data ((OX , d), F •OX ,QX [dimX], Iso) form a polarizable pure Hodge module
of weight dimX.

3.2.c. The objects (mixed case). The objects are endowed with a supple-
mentary increasing filtration, of the form

(W•(M,∇), F •M,W•FQ, Iso),

whereW•FQ is an increasing filtration of the perverse sheaf FQ in the abelian cat-
egory of perverse sheaves andW•(M,∇) is an increasing filtration in the category
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of OX-modules with integrable connection. The isomorphism Iso should respect
the W• filtrations. Morphisms should be compatible with all data.
The category MHM(X) of mixed Hodge modules on X is a full subcategory of
the above very big category whose objects satisfy in particular the property that
grW` is an object of pHM(X, `).

Example 3.8. For any divisor D in X, the DX-module OX(∗D) underlies a mixed
Hodge module. Difficult question: to make explicit the Hodge and the weight
filtration in terms of the singularities of D. Simple answer (Deligne) if D has
normal crossings.

3.2.d. The main theorems (mixed case)

Theorem 3.9. The category MHM(X) of mixed pure Hodge modules is an abelian
category and any morphism is bi-strict with respect to Hodge filtration and the
weight filtration.

Theorem 3.10 (Six operations). In the algebraic setting (we restrict to quasi-
projective varieties and morphisms), the category Db(MHM(X)) is endowed with
a formalism of six operations of Grothendieck.





LECTURE 4

PURE AND MIXED HODGE MODULES

4.1. The case of curves

4.1.a. Schmid’s theorems. X := compact Riemann surface, D := finite set of
points, j : U = XrD ↪→ X, (V,∇, F •V,HQ) a pVHS of weight w on U . How to
extend such an object on X? Various possibilities for HQ: j∗HQ, Rj∗HQ, j!HQ.
The questions are local, so one can assume X = ∆t ⊂ Ct and D = {t = 0}.
• Deligne’s meromorphic extension (V∗,∇) only depends on (V,∇): it produces

a OX(∗D)-locally free module with connection having a regular singularity at
every point of D. We have DR(V∗,∇) ' Rj∗HC. In fact Deligne constructs the
locally free OX-modules with connection having a simple pole (Va,∇) (a ∈ R)
such that Res∇ on Va has eigenvalues with real part in [a, a+1), and V∗ =

⋃
a V

a.
• From the point of view of DX-modules, V∗ is generated by V−1. Define V!∗ as

the DX-submodule of V∗ generated by V>−1. One can show DR(V!∗,∇) ' j∗HC.
• Each Va is a DX(logD)-module (in local coordinate at a point of D,

C{t}〈t∂t〉, and Res∇ is the endomorphism of Va/tVa induced by t∂t). Set
V! := DX ⊗DX(logD) V

>−1. Then one can show DR(V!,∇) ' j!HC.

Theorem 4.1 (Schmid). For a pVHS, the metric fits with Deligne’s construction,
i.e., Va can be defined only in terms of order of growth of the norms of sections.

How to extend the filtration F •V?

Theorem 4.2 (Schmid). j∗F pV ∩ V>−1 is a locally free OX-module.

Define locally

F pV!∗ := j∗F
pV ∩ V>−1 + ∂t(j∗F

p+1V ∩ V>−1) + ∂2t (j∗F
p+2V ∩ V>−1) + · · ·

We obtain a coherent filtered DX-module (V!∗, F
•V!∗).

4.1.b. Monodromy filtration. Each graV := Va/V>a is a finite dimensional
vector space endowed with the endomorphism induced by t∂t − a. By a lemma
of Borel, it is nilpotent, and denoted by N. Moreoever, Deligne’s construc-
tion fits with topology, namely, graV is identified with the nearby cycle space
ψt,λHC (generalized eigenspace of the nearby cycle space ψtHC with respect to
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the eigenvalue λ of the monodromy T), and we have T = exp(− 2π i t∂t), so
λ = exp− 2π i a.
A variant of the Jordan decomposition of N produces a unique increasing filtration
M•graV such that
• N ·M` ⊂ M`−2,
• for any ` > 1, N` : grM` → grM−` is an isomorphism.

Example 4.3. C3 with basis e1, e2, e3 such that the matrix of N in this basis is the
lower Jordan block of size 3: Ne1 = e2, Ne2 = e3 and Ne3 = 0. Then

C3 = M2 ⊃ M1 = M0 = 〈e2, e3〉 ⊃ M−1 = M−2 = 〈e3〉 ⊃ 0

and the basis should better be denoted as e2, e0, e−2 with respect to the weight.

For the pVHS as above and a ∈ (−1, 0], the filtration F pVa := j∗F
pV∩Va induces

a filtration F pgraV, and then a filtration

F pgrM` graV := F p ∩M`/F
p ∩M`−1.

Theorem 4.4 (Schmid). For each ` ∈ Z, (
⊕

a grM` graV,
⊕

a F
•grM` graV, grM` ψtHQ)

is a pHS of weight w + `.

4.2. Pure Hodge modules

4.2.a. Support-decomposability. X smooth projective (or compact Kähler).
The category pVHS(X,w) is semi-simple, i.e., every object in this category de-
composes as the direct sum of simple objects.

Remark 4.5. A Q-local system on a topological space Z is semi-simple iff the
associated C-local system is semi-simple (but the simple components are not the
same in general!).

Deligne has proved that the Q-local system underlying a pVHS on X is semi-
simple (this is stronger than the semi-simplicity of pVHS(X,w)). This can also
be obtained by using properties of the Hodge metric (it is a harmonic metric).
Semi-simplicity of a local system is a global property, i.e., it does not localize in
general.

Example 4.6. Choose two automorphisms T, T ′ of Cd which do not leave invariant
any nontrivial subspace (this can be achieved with a suitable choice of upper and
lower triangular matrices). For a curve C of genus two with

π1(C, ?) =
〈
γ1, γ2, γ3, γ4 | (γ1γ2γ−11 γ−12 )(γ3γ4γ

−1
3 γ−14 ) = 1

〉
,
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consider the representation

γ1 7−→ T, γ2 7−→ T ′, γ3 7−→ T ′−1, γ4 7−→ T−1.

The representation is irreducible, but the restriction of the representation to
nb(γ1) is not irreducible if T is not diagonalizable.

For a coherent DX-module, semi-simplicity may be broken because of support
properties.

Example 4.7. D a divisor inX smooth. We have an exact sequence ofDX-modules

0 −→ OX −→ OX(∗D) −→ OX(∗D)/OX −→ 0.

It is clear that OX is irreducible as a DX-module, while OX(∗D) is not, even
though the constant local system on X rD is irreducible.

Let M be a holonomic DX-module. If it is irreducible, then its support Z must
be irreducible (otherwise, Z = Z1 ∪ Z2 and the submodule of M consisting of
sections supported on Z1 is a proper submodule). If M is semi-simple, then it
must decomposes as a direct sum with respect to the irreducible components of
the support.
But If Z is irreducible, it may happen that for some xo ∈ Z, the space Z ∩nb(xo)

is not irreducible. We wish however to keep the decomposability with respect to
the support by localization. This leads to the notion of S-decomposable (filtered)
DX-module.

Definition 4.8 (S-decomposability). Let (M, F •M) be a filteredDX-module which
is R-specializable along any germ of holomorphic function f : (X, xo) → C. We
say that it is S-decomposable if for any xo and any such f , (M, F •M) decomposes
as the direct sum (M′, F •M′)⊕ (M′′, F •M′′) such that (M′′, F •M′′) is supported
on f−1(0) and (M′, F •M′) has no subobject nor quotient object supported on
f−1(0).

4.2.b. Definition of pure Hodge modules. The category HM(X,w) of pure
Hodge modules of weight w on X is defined in an inductive way with respect to
the dimension d of the support. We thus define the category HM6d(X,w). The
objects take the form M = ((M, F •M),FQ, Iso), where (M, F •M) is a holonomic
DX-module with a coherent filtration, FQ is a perverse sheaf on X, and Iso :
pDRM

∼−→ FC is an isomorphism, and the morphisms are the natural ones.
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Definition 4.9.
• The category HM{xo}(X,w) of pure Hodge modules of weight w supported

in {xo} is equivalent to the category of pure Hodge structures of weight w via the
pushforward (i+,Ri∗).
• For d > 1, M = ((M, F •M),FQ, Iso) is in the category HM6d(X,w) if it

satisfies the following properties:
• (M, F •M) is R-specializable along any germ (f, xo) and it is S-decompo-

sable,
• for any holomorphic f : X ⊃ U → C, and any ` ∈ Z, the object grM` ψfM

is an object of HM6d−1(X, `+ w − 1).

The notion of polarization is defined in a way similar to this, by induction on the
dimension of the support. This leads to the definition of the category pHM(X,w)

of polarizable pure Hodge modules of weight w.

Remark 4.10. Recall the two important theorems: Theorem 3.4 (Abelianity) and
the structure theorem 3.5. That QH := ((OX , F

•OX),QX [dimX]) (resp. a VHS
of weight w) is a pure Hodge module of weight dimX (resp. w + dimX) is non-
trivial.

4.3. Mixed Hodge modules

A naive approach in order to define the category of mixed Hodge modules would
be to mimic the definition of mixed Hodge structures from that of pure Hodge
structures. Namely, we define the category WHM(X) of W -filtered Hodge mod-
ules: objects consist of
• a filtered holonomic DX-module (M, F•M) endowed with an increasing finite

exhaustive filtration W`M by holonomic DX-submodules,
• a filtration W•FQ of FQ in the abelain category of perverse sheaves,
• both W -filtrations corresponding by Iso,

such that each graded object (grW` M, F•grW` M, grW` FQ, grW` Iso) is an object of
pHM(X, `).
Although this category WHM(X) has good properties (it is abelian and behaves
well by projective pushforward), it is not fine enough, as the localization functor
[∗D] is possibly not defined in it. The categoryMHM(X) of mixed Hodge modules
on X is a full subcategory of WHM(X) so that
• The localization functor [∗D] is well defined for any divisor,
• A subtler property, called admissibility, is satisfied.



LECTURE 5

THE DECOMPOSITION THEOREM

The decomposition theorem is an essential result in algebraic geometry. Roughly
speaking, it means that “semi-simplicity is a property that is preserved by pro-
jective pushforward”. At the heart of the decomposition theorem is the Hard
Lefschetz theorem [Del68] and the preservation of polarizability by projective
pushforward.

5.1. The topological decomposition theorem [BBDG82]

5.1.a. The case of a smooth morphism. Let us start with the simplest
case, that of a smooth projective morphism f : X → Y between smooth quasi-
projective varieties. In particular, each sheaf Rkf∗CX is a locally constant sheaf
on Y with stalk Hk(f−1(y),C) at y. Each fibre f−1(y) being smooth projec-
tive, one can apply to it the Hodge Lefschetz package. Let us choose a relatively
ample line bundle L on X. Then the relative Hard Lefschetz theorem holds,
so that for each ` > 0, the `th power L`L of the associated Lefschetz operator
LL := c1(L)∪ • induces an isomorphism Rn−`f∗CX

∼−→ Rn+`f∗CX (n = dimX).
Deligne [Del68] has shown that this implies a (possibly non-canonical) decompo-
sition in Db(CY ):

Rf∗CX '
⊕
k

Rkf∗CX [−k].

This result is in fact local (in the analytic topology) on Y , i.e., we do not need
to assume that Y is quasi-projective and any complex manifold would satisfy the
same property. Moreover, the local systems Rkf∗CX underlie a pVHS of weight k.
We now use the quasi-projectivity of Y , which implies that each Rkf∗CX is a semi-
simple local system, hence can be furthermore decomposed as the direct sum of
irreducible local systems.

5.1.b. The case of more general local systems. If instead of the constant
sheaf CX we start from a locally constant sheaf L on X, what kind of properties
are enough to ensure a similar decomposition theorem?
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• If L underlies a pVHS onX of some weight w, then a similar argument applies.
• If X and Y are projective, and if L is a semi-simple local system on X,

then Simpson has shown that a similar decomposition theorem holds. It follows
from the work of T.Mochizuki one the one hand, and Drinfeld on the other hand
(by arithmetic arguments) that it is enough to assume that X and Y are quasi-
projective (and f is still smooth).

5.1.c. The case of perverse sheaves of geometric origin. We assume some
familiarity with the notion of perverse sheaf. Since we will be mainly interested
in the behaviour of the Hodge filtration, the reader may think of a perverse sheaf
over C as a holonomic DX-module.
Assume that X, Y are smooth quasi-projective varieties, and f : X → Y is pro-
jective but not necessarily smooth. Since we will work in the realm of perverse
sheaves, we adopt the perverse convention and denote pCX := CX [dimX]. The
complex Rf∗

pCX is C-constructible, and it is more convenient to consider its per-
verse cohomology sheaves pRjf∗

pCX . It follows from BBDG [BBDG82, Th. 6.2.5]
that there is a non-canonical decomposition in Db(CY ):

Rf∗
pCX '

⊕
j

pRjf∗
pCX [−j],

and each perverse sheaf pRjf∗
pCX is semi-simple.

Another proof, relying on classical Hodge theory, i.e., Deligne’s theory, has been
given by deCataldo and Migliorini [dCM05]. In [BW19], Budur and Wang
propose a new approach to this result.

5.1.d. The general case of a semi-simple perverse sheaf. Let us mention
that the decomposition theorem has been much generalized by many authors by
replacing the constant sheaf with any semi-simple perverse sheaf. We will not
discuss these generalizations (see [dC16] and the references therein).

5.2. M. Saito’s decomposition theorem

We will se how the decomposition theorem of M. Saito [Sai88] for pure Hodge
modules unifies the previous results.

5.2.a. Pushforward of DX-modules. Let f : X → Y be a holomorphic
map between complex manifolds and let M be a left DX-module. Equip
M⊗f−1OY

f−1DY with the structure of left DX-module as follows: holomorphic
functions act on M, and vector fields ξ on X act following Lebniz’ rule:

ξ · (m⊗ P ) = (ξm)⊗ P +m⊗ Tf(ξ) · P,
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where Tf : ΘX → f ∗ΘY is the tangent map to f . This module is also equipped
with a right f−1DY -module structure in a trivial way.

Example 5.1. IfM = OX , the bimodule thus obtained is usually denoted byDX→Y
and is called the transfer DX-module. The above bimodule is then isomorphic to
M⊗OX

DX→Y .

We can apply the deRham functor on X to the left DX-module M⊗f−1OY
f−1DY

and get the complex

pDR(M⊗f−1OY
f−1DY ) = (Ωn+•

X ⊗ (M⊗f−1OY
f−1DY )).

Its direct image Rf∗
pDR(M ⊗f−1OY

f−1DY ) is a bounded complex in the cate-
gory of right DY -modules. This is f+M up to side-changing. The cohomology
modules are denoted by f j+M. If Y is reduced to a point, we recover the de Rham
cohomology of M.

5.2.b. Pushforward of filtered DX-modules and E1 degeneration

Assume now that (M, F •M) is a coherent DX-module with a coherent filtration.
By using the filtration by the order of differential operators on DY one can define
a filtration

F p(M⊗f−1OY
f−1DY ) :=

∑
q+r=p

F qM⊗f−1OY
f−1F rDY ,

and one can filter the deRham complex

F p pDR(M⊗f−1OY
f−1DY )

= {F p(M⊗f−1OY
f−1DY )

∇−−→ F p−1(M⊗f−1OY
f−1DY ) −→ · · · }

Let us emphasize a consequence of the Hodge-Saito theorem stated later.

Theorem 5.2 (Degeneration at E1). Assume that (M, F •M) underlies an object of
pHM(X,w) and that f is projective. Then for each p and j, the natural morphism

Rjf∗F
p pDR(M⊗f−1OY

f−1DY ) −→ Rjf∗
pDR(M⊗f−1OY

f−1DY ) = f j+M

is injective, and its image is denoted F pf j+M.

5.2.c. The decomposition theorem for pHM(X,w)

Theorem 5.3 (Hodge-Saito theorem). Let f be a projective morphism of complex
manifolds and let M = ((M, F •M),FQ, Iso) be an object of pHM(X,w). Then,
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• We have decompositions compatible with p in Db(OY ):

Rf∗F
p pDR(M⊗f−1OY

f−1DY ) '
⊕
j

Rjf∗F
p pDR(M⊗f−1OY

f−1DY )[−j]

giving rise at the limit p = −∞ to a decomposition in Db(DY ):

f+M '
⊕
j

f j+M[−j]

which is compatible via pDR and Iso with a decomposition in Db(CY ):

Rf∗FQ '
⊕
j

pRjf∗FQ[−j],

• for each j ∈ Z, the object ((f j+M, F δ+•f j+M), pRjf∗FQ,
pRjf∗ Iso) belongs to

pHM(Y,w + j), where δ is a suitable normalization depending on dimX and
dimY .

The first point is obtained, as expected, by proving a relative version of the Hard
Lefschetz theorem for the cohomology pushforward objects. Since the Lefschetz
operator is defined overQ in this projective setting, it acts on the triples occurring
as pushforwards of objects of pHM(X,w).

Remark 5.4. (1) If Y is assumed quasi-projective, then by the structure theo-
rem 3.5 and Deligne’s semi-simplicity theorem mentioned after Remark 4.5, each
perverse cohomology sheaf pRjf∗FQ is semi-simple.
(2) If X is smooth projective and f is the constant map, then one recovers the

Hodge-Saito theorem 3.6.

5.2.d. Kollár’s theorems. In [Kol86a, Kol86b], Kollár has proved a decom-
position theorem in the holomorphic setting, together with vanishing theorems.

Theorem 5.5 (Kollár). Let f : X → Z be a surjective map X → Z, X,Z projec-
tive, X smooth and Z possibly singular. Then the following holds:

(Decomposition) Rf∗ωX '
⊕

j R
jf∗ωX ,

(Torsion freeness) Rjf∗ωX are torsion-free OZ-modules,
(Vanishing) If L is an ample line bundle on Z, then Hk(Z,L ⊗ Rjf∗ωX) = 0

for k > 0 and any j.

For the first and third properties, one can embed Z into a smooth projective
variety Y and it is not restrictive to assume Z smooth.
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5.2.e. Generalization of Kollár’s theorems. Let f : X → Y be a projective
morphism between smooth quasi-projective varieties. For M ∈ pHM(X,w), let
F poM be the first nonzero step of the Hodge filtration. Then the first nonzero step
in F • pDRM is F po+n pDRM = ωX ⊗OX

F poM[−n]. The filtered decomposition
theorem implies the decomposition

Rf∗(ωX ⊗OX
F poM) '

⊕
j

Rjf∗(ωX ⊗OX
F poM)[−j].

The two other properties also extend to the case of pure Hodge modules and f as
above, and Supp f j+M = Z possibly singular.
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