A panorama on irregular singularities

Claude Sabbah

Centre de Mathématiques Laurent Schwartz

École polytechnique, CNRS, Université Paris-Saclay

Palaiseau, France

A panorama on singular varieties: a conference to celebrate Lê Dũng Tráng 70th birthday February 9, 2017 Sevilla, Spain

Setting for this talk

- X: cplx manifold, D: reduced divisor in X.
- V: vector bdle on $X, \nabla : V \to \Omega^1_X(*D) \otimes V$ integrable meromorphic connection.
- Loc. coordinates x_1, \ldots, x_n ,
 - $\nabla = \mathrm{d} + \sum_{i=1}^n A_i(x) \,\mathrm{d} x_i, \quad A_i \in \mathrm{M}_n(\mathcal{O}_X(*D)),$

$$rac{\partial A_i(x)}{\partial x_j} - rac{\partial A_j(x)}{\partial x_i} = [A_i(x),A_j(x)].$$

• Enough to consider $\mathcal{V} := \mathcal{O}_X(*D) \otimes_{\mathcal{O}_X} V$: meromorphic vect. bdle.

Basic examples

- $\mathcal{V} = \mathcal{O}_X(*D)$: trivial merom. bdle of rank one.
- \checkmark φ : merom. fnct. with poles in D.

• Case 1:
$$\nabla = \left| \mathbf{d} + \alpha \, \frac{\mathbf{d} \varphi}{\varphi} \right|, \quad \alpha \in \mathbb{C}^*.$$

- $\nabla v = 0 \implies v = \varphi^{-\alpha}$, multi-valued hol. fnct with moderate growth all around D
- \Rightarrow regular singularity along D.

Basic examples

- $\mathcal{V} = \mathcal{O}_X(*D)$: trivial merom. bdle of rank one.
- \checkmark φ : merom. fnct. with poles in D.

• Case 1:
$$\nabla = \left[\mathrm{d} + lpha \, \frac{\mathrm{d} \varphi}{\varphi} \right], \quad lpha \in \mathbb{C}^*.$$

∇v = 0 ⇒ v = φ^{-α}, multi-valued hol. fnct with moderate growth all around D
 → regular singularity along D.

- Case 2: $\nabla = d + \alpha d\varphi$, $\alpha \in \mathbb{C}^*$.
 - $\nabla v = 0 \implies v = e^{-\alpha \varphi}$, hol. fnct. with moderate growth only on the semi-analytic domain

$$\operatorname{Re}(lpha arphi) > 0 \quad ext{in } X \smallsetminus D.$$

• \Rightarrow *irrregular singularity* along **D**.

Reg. versus irreg. singularities

- ▼ has *irreg. sing.* along *D* otherwise.

Reg. versus irreg. singularities

- Thas irreg. sing. along D otherwise.
 ??
 - To describe the subanalytic domains around *D* on which some components of *v* have moderate growth.
 - To describe the change that occurs when one moves from a subanalytic domain to another one (Stokes phenomenon, Wall crossing formulas).

• $\nabla = d + A(z)dz$, $A \in \operatorname{End}(\mathbb{C}(\{z\})^r)$.

THEOREM (Levelt-Turrittin): Replace z with $\zeta = z^{1/q}$, then $\exists \widehat{M} \in \operatorname{GL}_r(\mathbb{C}((\zeta)))$, $\widehat{B}(\zeta) d\zeta := \left(\widehat{M}^{-1}A(\zeta^q)\widehat{M} + \widehat{M}^{-1}\widehat{M}'_{\zeta}\right) d\zeta$

 $\varphi_j \in \mathbb{C}[1/\zeta], \quad C_i = \text{cst matrix.}$

- Basic invariant: Irreg. number.

- $\ \, \bullet \ \, \operatorname{irr}(\mathcal{V}, \boldsymbol{\nabla}, \boldsymbol{0}) := \boldsymbol{\chi}\big(\mathcal{V}^{\operatorname{ess}} \stackrel{\boldsymbol{\nabla}}{\longrightarrow} \mathcal{V}^{\operatorname{ess}}\big) = \dim(\mathcal{V}^{\operatorname{ess}})^{\boldsymbol{\nabla}}.$

- Basic invariant: Irreg. number.

- $\ \, \bullet \ \, \operatorname{irr}(\mathcal{V}, \boldsymbol{\nabla}, \boldsymbol{0}) := \chi \big(\mathcal{V}^{\operatorname{ess}} \xrightarrow{\boldsymbol{\nabla}} \mathcal{V}^{\operatorname{ess}} \big) = \dim(\mathcal{V}^{\operatorname{ess}})^{\boldsymbol{\nabla}}.$

THEOREM: $irr(\mathcal{V}, \nabla, 0)$ only depends on $(\widehat{\mathcal{V}}, \nabla)$, and more precisely,

$$\operatorname{irr}(\mathcal{V}, oldsymbol{
abla}, \mathbf{0}) = \sum_{j=1}^k r_j p_j, \quad iggl\{ egin{array}{c} p_j := ext{pole ord. of } arphi_j, \ r_j := ext{size of } C_j. \end{array}
ight.$$

- Asympt. anal.: $\nabla v = 0 \Rightarrow v = \begin{pmatrix} e^{-\varphi_1} \cdot \text{mod. growth} \\ \vdots \\ e^{-\varphi_k} \cdot \text{mod. growth} \end{pmatrix}$
- Stokes structure and Stokes phenomenon

- Asympt. anal.: $\nabla v = 0 \Rightarrow v = \begin{pmatrix} e^{-\varphi_1} \cdot \text{mod. growth} \\ \vdots \\ e^{-\varphi_k} \cdot \text{mod. growth} \end{pmatrix}$
- Stokes structure and Stokes phenomenon

- Asympt. anal.: $\nabla v = 0 \Rightarrow v = \begin{pmatrix} e^{-\varphi_1} \cdot \text{mod. growth} \\ \vdots \\ e^{-\varphi_k} \cdot \text{mod. growth} \end{pmatrix}$
- Stokes structure and Stokes phenomenon

- Asympt. anal.: $\nabla v = 0 \Rightarrow v = \begin{pmatrix} e^{-\varphi_1} \cdot \text{mod. growth} \\ \vdots \\ e^{-\varphi_k} \cdot \text{mod. growth} \end{pmatrix}$
- Stokes structure and Stokes phenomenon

- Asympt. anal.: $\nabla v = 0 \Rightarrow v = \begin{pmatrix} e^{-\varphi_1} \cdot \text{mod. growth} \\ \vdots \\ e^{-\varphi_k} \cdot \text{mod. growth} \end{pmatrix}$
- Stokes structure and Stokes phenomenon

• (\mathcal{V}, ∇) : any merom. bdle with integrable connection.

THEOREM (André 2007): The red points where the transverse structure changes drastically (and does not only rotate) form a *closed cplx analytic subset*.

The irregularity complex

The de Rham complex of DR(V) is the complex

$$0 \longrightarrow \mathcal{V} \xrightarrow{\nabla} \Omega^1_X \otimes \mathcal{V} \longrightarrow \cdots \xrightarrow{\nabla} \Omega^n_X \otimes \mathcal{V} \longrightarrow 0$$

and the cone $Irr(\mathcal{V})[+1]$ (*irregularity complex*):

$$\operatorname{Irr}(\mathcal{V}) \longrightarrow \operatorname{DR}(\mathcal{V}) \longrightarrow Rj_*(\operatorname{DR}(\mathcal{V})_{X \smallsetminus D}) \xrightarrow{+1}$$

is a complex on D which basically computes flat sections of V with **essential sing.** along D.

The irregularity complex

The de Rham complex of $DR(\mathcal{V})$ is the complex

$$0 \longrightarrow \mathcal{V} \xrightarrow{\mathbf{\nabla}} \Omega^1_X \otimes \mathcal{V} \longrightarrow \cdots \xrightarrow{\mathbf{\nabla}} \Omega^n_X \otimes \mathcal{V} \longrightarrow 0$$

and the cone $Irr(\mathcal{V})[+1]$ (*irregularity complex*):

$$\operatorname{Irr}(\mathcal{V}) \longrightarrow \operatorname{DR}(\mathcal{V}) \longrightarrow Rj_*(\operatorname{DR}(\mathcal{V})_{X \setminus D}) \xrightarrow{+1}$$

is a complex on D which basically computes flat sections of V with **essential sing.** along D.

THEOREM (Mebkhout 1989): $Irr(\mathcal{V})$ is perverse.

CONJECTURE (Teyssier 2013): Singularities of $Irr(\mathcal{V})$ correspond to the red point locus.

The real oriented blow up along D

• If D = (f), replace D with $D \times S^1$ and get

 $arpi: \widetilde{X}(D) \longrightarrow X, \quad arpi^{-1}(D) = D imes S^1 = \partial \widetilde{X}(D).$

Real semi-analytic spaces. Can be globalized.

- $\mathcal{A}_{\widetilde{X}(D)}^{\geq \operatorname{mod} D}$: holom. fncts on $X \smallsetminus D$, modulo those having mod. growth near pts of $\partial \widetilde{X}(D)$.
- $\mathbf{DR}^{> \mathbf{mod} D} \mathcal{V}$: complex on $\partial \widetilde{X}(D)$.

The real oriented blow up along D

• If D = (f), replace D with $D \times S^1$ and get

 $arpi: \widetilde{X}(D) \longrightarrow X, \quad arpi^{-1}(D) = D imes S^1 = \partial \widetilde{X}(D).$

Real semi-analytic spaces. Can be globalized.

- $\mathcal{A}_{\widetilde{X}(D)}^{\geq \operatorname{mod} D}$: holom. fncts on $X \smallsetminus D$, modulo those having mod. growth near pts of $\partial \widetilde{X}(D)$.
- $\mathbf{DR}^{> \mathbf{mod} D}$ \mathcal{V} : complex on $\partial \widetilde{X}(D)$.

THEOREM: $\mathbf{DR}^{> \mathbf{mod}D} \mathcal{V}$ has \mathbb{R} -constr. cohom. and $R\varpi_*(\mathbf{DR}^{> \mathbf{mod}D} \mathcal{V}) \simeq \operatorname{Irr}(\mathcal{V})[+1].$

The proof uses the reduction to *formal normal form* after cplx blow-up.

- (\mathcal{V}, ∇) has a **good formal structure along D** if
 - *D* has normal crossings,
 - at each point of D, loc. coord. x_1, \ldots, x_n ,

 $egin{aligned} D &= \{x_1 \cdots x_\ell = 0\}, \
abla &= \mathrm{d} + A = \mathrm{d} + \sum_i A_i(x) \mathrm{d} x_i, \ A_i &\in \mathbb{C}\{x\} [1/x_1 \cdots x_\ell], \end{aligned}$

- (\mathcal{V}, ∇) has a **good formal structure along D** if
 - *D* has normal crossings,
 - at each point of D, loc. coord. x_1, \ldots, x_n , $D = \{x_1 \cdots x_\ell = 0\},$ $\nabla = d + A = d + \sum_i A_i(x) dx_i,$ $A_i \in \mathbb{C}\{x\} [1/x_1 \cdots x_\ell],$
 - up to ramif. around D: $\begin{cases} \boldsymbol{\xi}_i = x_i^{1/q_i}, i = 1, \dots, \ell, \\ \boldsymbol{\xi}_i = x_i \quad i > \ell, \end{cases}$
 - $\exists \widehat{M} \in \operatorname{GL}_r(\mathbb{C}\{\xi\}[1/\xi_1 \cdots \xi_\ell])$ such that
 - $\widehat{B}(\xi)$ is block-diagonal, with blocks

$$\mathrm{d} arphi_j \, \mathrm{Id}_j + \sum_{i=1}^\ell C_{i,j} \, rac{\mathrm{d} oldsymbol{\xi}_i}{oldsymbol{\xi}_i}$$

 $\varphi_j \in \mathbb{C}\{\xi\}[1/\xi_1 \cdots \xi_\ell], \quad C_{i,j} = \text{cst matrix},$ + "good condition" on the family $(\varphi_j)_j$.

THEOREM (Kedlaya, Mochizuki, 2008-11): \exists a finite sequence of complex blowing-ups after which the pull-back of (\mathcal{V}, ∇) has a good formal structure everywhere.

THEOREM (Kedlaya, Mochizuki, 2008-11): \exists a finite sequence of complex blowing-ups after which the pull-back of (\mathcal{V}, ∇) has a good formal structure everywhere.

Тнеокем (Majima 1984, CS, Mochizuki): A good formal structure can be lifted in poly-sectors to an $\mathcal{A}^{\mathrm{mod}D}_{\widetilde{X}(D)}$ -decomposition.

- $\widetilde{X}(D)$: real-oriented blow-up along the *irred. comp.* of D (polar coordinates w.r.t. x_1, \ldots, x_{ℓ}).
- Near each point \widetilde{x}_o of $\partial \widetilde{X}(D)$, \widehat{M} can be lifted to $M \in \operatorname{GL}_r(\mathcal{A}_{\widetilde{X}(D),\widetilde{x}_o}^{\operatorname{mod} D})$,
- $\mathfrak{I} \longrightarrow \widetilde{B}_{x_o}$ has the same block diagonal form as \widehat{B} .

- If (\mathcal{V}, ∇) has a good formal structure along D, \rightarrow **Stokes structure** along D well-understood:
 - "Rotating daisy struct." along each stratum of **D**,
 - Gluing properties between strata.

- If (\mathcal{V}, ∇) has a good formal structure along D, \rightarrow **Stokes structure** along D well-understood:
 - "Rotating daisy struct." along each stratum of **D**,
 - Gluing properties between strata.
- THEOREM (CS, sugg. by Teyssier): On any open stratum D_I of D, $Irr(\mathcal{V}, \nabla)_{|D_I}$ only depends on the formal module $\mathcal{O}_{\widehat{D_I}} \otimes (\mathcal{V}, \nabla)$.
- i.e., each cohomology sheaf of $Irr(\mathcal{V}, \nabla)_{|D_I}$ is a local system on D_I whose monodromy **does not depend** on the Stokes phenomenon transverse to D_I .
- Analogue of the one-dim. case.

Geometry of Riemann-Hilbert corresp.

- Assume (\mathcal{V}, ∇) has a good formal structure along D.
- $D_I :=$ stratum of D,
- $\widetilde{X}(D)_{|\mathrm{nb}(D_I)} = D_I \times (S^1)^\ell \times (\mathbb{R}_+)^\ell,$
- $\widetilde{X}(D)_{|D_I} = D_I \times (S^1)^\ell \times \{0\}$
- $\varphi_j \sim u_j(x_{\ell+1}, \ldots, x_n) \cdot \xi^{-p_{j,1}} \cdots \xi^{-p_{j,\ell}}, \quad u_j(0) \neq 0,$
- $\arg \varphi_j = \arg u_j(x) \sum_{i=1}^{\ell} p_{j,i} \arg \xi_i$

Geometry of Riemann-Hilbert corresp.

- Assume (\mathcal{V}, ∇) has a good formal structure along D.
- $D_I :=$ stratum of D,
- $\widetilde{X}(D)_{|\mathrm{nb}(D_I)} = D_I \times (S^1)^\ell \times (\mathbb{R}_+)^\ell,$
- $\widetilde{X}(D)_{|D_I} = D_I \times (S^1)^\ell \times \{0\}$
- $\varphi_j \sim u_j(x_{\ell+1}, \ldots, x_n) \cdot \xi^{-p_{j,1}} \cdots \xi^{-p_{j,\ell}}, \quad u_j(0) \neq 0,$
- $\arg \varphi_j = \arg u_j(x) \sum_{i=1}^{\ell} p_{j,i} \arg \xi_i$
- $\varphi_j \stackrel{\text{def}}{\leqslant} \varphi_{j_o} \iff e^{-\varphi_j} = e^{-\varphi_{j_o}} \cdot \text{mod. growth}$ $\iff \operatorname{Re}(\varphi_j) > \operatorname{Re}(\varphi_{j_o})$ $\iff \operatorname{arg}(\varphi_j) - \operatorname{arg}(\varphi_{j_o}) \in (\pi/2, 3\pi/2)$

• $\{\varphi_j \leq \varphi_{j_o}\}$: semi-analytic open set in $D_I \times (S^1)^{\ell}$.

• Global setting \rightsquigarrow finite cover. Σ_I of $(S^1)_{D_I}^{\ell}(X)$

- $\mathcal{L} := (j^* \mathcal{V})^{\nabla}$: local system on $X \setminus D$,
- extends as a local system \mathcal{L} on $\widetilde{X}(D)$
- \rightsquigarrow local system \mathcal{L}_{I} on Σ_{I} . $\forall \varphi_{j_{o}}, \mathcal{L}_{I, \leqslant \varphi_{j_{o}}}$: flat sect. $v = \begin{pmatrix} e^{-\varphi_{1}} \cdot \text{mod. growth} \\ \vdots \\ e^{-\varphi_{k}} \cdot \text{mod. growth} \end{pmatrix}$
- $\mathcal{L}_{I, \leq \varphi_{j_o}}$: \mathbb{R} -construct. subsheaf of \mathcal{L}_{I} .
- \rightarrow Stokes-filtered local system $(\mathcal{L}, \mathcal{L}_{I, \leq \bullet})$ on Σ_{I}
- \rightsquigarrow Stokes-filtered constr. sheaf on $\widetilde{X}(D)$.

- $\mathcal{L} := (j^* \mathcal{V})^{\nabla}$: local system on $X \setminus D$,
- extends as a local system \mathcal{L} on $\widetilde{X}(D)$
- \rightsquigarrow local system \mathcal{L}_{I} on Σ_{I} . $\forall \varphi_{j_{o}}, \mathcal{L}_{I, \leqslant \varphi_{j_{o}}}$: flat sect. $v = \begin{pmatrix} e^{-\varphi_{1}} \cdot \text{mod. growth} \\ \vdots \\ e^{-\varphi_{k}} \cdot \text{mod. growth} \end{pmatrix}$
- $\mathcal{L}_{I,\leq \varphi_{j_o}}$: \mathbb{R} -construct. subsheaf of \mathcal{L}_{I} .
- \rightarrow Stokes-filtered local system $(\mathcal{L}, \mathcal{L}_{I, \leq \bullet})$ on Σ_{I}
- \rightarrow Stokes-filtered constr. sheaf on $\widetilde{X}(D)$.

THEOREM (Deligne, Malgrange, Mochizuki, CS): (\mathcal{V}, ∇) with good formal struct. along $D \mapsto$ Stokes-filtered constr. sheaf on $\widetilde{X}(D)$ is an *equivalence of categories*.

- Drawback: What happens if (\mathcal{V}, ∇) does not have a good formal structure along D, e.g., D not ncd?
- Main problem: What kind of an object extends \mathcal{L} on $X \setminus D$.
- D'Agnolo-Kashiwara: Define a category of
 R-constructible enhanced Ind-sheaves and functors

with an isom. $(\mathcal{V}, \nabla) \simeq \Psi_X^{\mathsf{E}}(\mathrm{DR}^{\mathsf{E}}(\mathcal{V}, \nabla))$

D'Agnolo-Kashiwara (2014):

with an isom. $\Psi_X^{\mathsf{E}} \circ \mathbf{DR}^{\mathsf{E}} \simeq \mathbf{Id}$

- Essential image of $D_{hol}^{b}(\mathcal{D}_{X})$ by DR^{E} ?
- Mochizuki (2016): Ess. image = objects whose restriction to any germ of cplx analytic parametrized curve corresponds to Stokes-filtered loc. syst.