Introduction

Joint work with Antoine Douai (Nice)

- w_0, \ldots, w_n $(n \ge 1)$: positive integers such that $\gcd(w_0, \ldots, w_n) = 1$.
- $f(u_0,\ldots,u_n)=w_0u_0+\cdots+w_nu_n$ restricted to the **torus** $U\subset \mathbb{C}^{n+1}$: $u_0^{w_0}\cdots u_n^{w_n}=1.$
- $\mu = w_0 + \cdots + w_n$, f has μ simple critical points.
- Critical values: $\mu e^{2i\pi k/\mu}$ $(k=0,\ldots,\mu-1)$.
- If $t \in \mathbb{C}$ is not a critical value,

$$\dim H^k(U,f^{-1}(t),\mathrm{Q}) = egin{cases} 0 & ext{for } k
eq \dim U = n, \ \mu & ext{for } k = n. \end{cases}$$

- ullet $H_{
 m Q}\stackrel{
 m def}{=}$ " $\lim_{t o\infty}$ " $H^n(U,f^{-1}(t),{
 m Q}), \quad T_{\infty}:H_{
 m Q} o H_{
 m Q}$: monodromy at infinity.
- Mixed Hodge structure (Elzein, Steenbrink-Zucker, M. Saito).

1

- The interest in such a polynomial f on U is that the data "at infinity" look very much like the *orbifold cohomology* of the weighted projective space $P(w_0, \ldots, w_n)$.
- One can associate to any universal unfolding of f a *canonical* structure of *Frobenius manifold* on the germ $(\mathbb{C}^{\mu}, 0)$ of the parameter space.
- On the other hand, the *quantum orbifold cohomology*, defined by Chen and Ruan, allows one to associate the structure of a Frobenius manifold on the germ $(H_{\text{orb}}^*(P(w_0, \ldots, w_n)), 0)$. It is then natural to expect a "mirror symmetry phenomenon", i.e., that both Frobenius structures coincide.
- When $w_i = 1$ for all i, so that $P(w_0, \ldots, w_n)$ is the ordinary projective space P^n , such a result has been guessed by A. Givental and proved by S. Barannikov.

The Gauss-Manin system: general results

- f: any regular function on an affine manifold U, satisfying some nonsingularity condition at infinity.
- $\bullet \Omega^n(U)$: the space of algebraic differential forms of maximal degree on U.
- au: a new variable. $au= au^{-1}$ Gauss-Manin system: $ag{G}=rac{\Omega^n(U)[au, au^{-1}]}{(d- au df\wedge)\Omega^{n-1}(U)[au, au^{-1}]}$ with

$$(d- au df\wedge)\sum_k \eta_k au^k = \sum_k (d\eta_k - df\wedge \eta_{k-1}) au^k.$$

$$ullet$$
 Connection: $egin{cases} orall \ \omega \in \Omega^n(oldsymbol{U}), \quad \partial_{ au}[\omega] = [f\omega], \ \ orall \ p \in \mathbf{Z}, \quad \partial_{ au}(au^p[\omega]) = p au^{p-1}[\omega] + au^p[f\omega]. \end{cases}$

Lattices

- The **Briekorn lattice** (chart θ):
 - $ullet G_0 = \mathrm{image}(\Omega^n(U)[heta] o G) = rac{\Omega^n(U)[heta]}{(heta d d f \wedge)\Omega^{n-1}(U)[heta]}$
 - free $\mathbb{C}[\theta]$ -module of rank $\mu = \dim \Omega^n(U)/df \wedge \Omega^{n-1}(U)$,
 - stable by the action of ∂_{τ} , hence acted on by $\partial_{\theta} = -\frac{1}{\theta^2} \partial_{\tau}$ with a pole of order 2.
- Malgrange-Kashiwara lattices ($\alpha \in [0, 1[$, chart τ):
 - $V_{\alpha}(G)$: set of $[\omega]$ in G such that $\prod_{\beta\leqslant\alpha}(au\partial_{ au}+eta)^{
 u_{eta}}[\omega]= au P(au, au\partial_{ au})[\omega]$.
 - free $\mathbb{C}[\tau]$ -module of rank μ , stable by the action of $\tau \partial_{\tau}$.
 - $egin{aligned} ullet H_lpha &= V_lpha(G)/V_{<lpha}(G), N ext{ induced by } -(au\partial_ au+lpha), \ T &= \exp(2i\pilpha\operatorname{Id}+N). \end{aligned}$
- ullet $F^p(H_lpha) = au^{n-p} G_0 H_lpha.$

Theorem

The space $\bigoplus_{\alpha \in [0,1[} H_{\alpha}$ with its endomorphism T is naturally isomorphic to $(H_{\mathbb{C}}, T)$. Moreover, the filtration $\bigoplus_{\alpha \in [0,1[} F^p H_{\alpha}$ is the **limit Hodge filtration** on $H_{\mathbb{C}}$.

A basic isomorphism

$$egin{aligned} rac{F^{n-p}\cap V_lpha}{F^{n-p+1}\cap V_lpha+F^{n-p}\cap V_{$$

Spectrum at infinity of f: $\{(\beta, \nu_{\beta}) \mid \beta \in \mathbb{Q}, \ \nu_{\beta} = \dim \operatorname{gr}_{\beta}^{V}(G_{0}/\theta G_{0})\}.$

A nice presentation of the Gauss-Manin system

- $ullet \mathcal{S}_w \stackrel{\mathrm{def}}{=} \coprod_{i=0}^n \{\ell/w_i \mid \ell=0,\ldots,w_i-1\} \longrightarrow \mathrm{Q}.$ For $s \in \mathrm{Q}, m(s) = \mathit{number of preimages}$ of s in \mathcal{S}_w .
- $oldsymbol{\circ} \mathcal{S}_w = \{s(0) \leqslant s(1) \leqslant \cdots \leqslant s(\mu-1)\} \ \sigma_w(k) = k \mu s(k), k = 0, \ldots, \mu-1.$
- $ullet \omega_0 = rac{rac{du_0}{u_0} \wedge \cdots \wedge rac{du_n}{u_n}}{dig(\prod_i u_i^{w_i}ig)}ig|_{\prod_i u_i^{w_i} = 1}, \quad [\omega_{k+1}] = -rac{1}{\mu au}(au\partial_ au + \sigma_w(k))[\omega_k].$
- $ullet \left[\omega_0 \wedge
 ight] : \mathcal{O}(U) \Big/ \left(\operatorname{Jac}(f)
 ight) \stackrel{\sim}{\longrightarrow} G_0 / heta G_0 \ \Longrightarrow \ \textit{ring structure} \ ext{on} \ G_0 / heta G_0.$
- $ullet \left[\omega_{\mu}
 ight]=\left[\omega_{0}
 ight]$ and $\left[\omega_{k}
 ight]=\left[u^{a(k)}\omega_{0}
 ight]$ for some multi-index a(k) with $\left|a(k)
 ight|=k.$

Spectral polynomial

$$\prod_{eta} (X+eta)^{
u_{eta}} = egin{cases} \prod_{k=0}^{\mu-1} (X+\sigma_w(k)) \ \prod_{s\in \mathrm{Q}} \prod_{j=0}^{m(s)-1} ig(X+n-(j+\{sw_0\}+\cdots+\{sw_n\})ig) \end{cases}$$

- The classes $[\underline{\omega}]$ form a $C[\theta]$ -basis G_0 and a $C[\tau, \tau^{-1}]$ -basis of G.
- Connection in this basis:

$$-\partial_{ au}[\underline{\omega}] = [\underline{\omega}] \cdot \Big[A_0 + rac{1}{ au} A_\infty\Big], \quad ext{or} \quad \partial_{ heta}[\underline{\omega}] = [\underline{\omega}] \cdot \Big[rac{1}{ heta^2} A_0 + rac{1}{ heta} A_\infty\Big]$$

with

ullet The "sesquilinear" $pairing\ S:G\otimes_{{
m C}[au, au^{-1}]}G^{
m a} o {
m C}[au, au^{-1}]$ defined by

$$S([\omega_k], [\omega_\ell]) = egin{cases} 1 & ext{if } k+\ell \equiv n mod \mu \ 0 & ext{otherwise} \end{cases}$$

is, up to a constant, the pairing coming from *Poincaré duality* on the fibres of f. It is compatible with the connection.

• The graded algebra $\bigoplus_{\beta \in \mathbb{Q}} \operatorname{gr}_{\beta}^{V}(G_0/\theta G_0)$, with its nondegenerate pairing, looks very much like the orbifold cohomology algebra

$$\oplus_eta \, H^{2(n-eta)}_{
m orb}(\mathrm{P}(w_0,\ldots,w_n))$$

with its Poincaré duality pairing.

Corollary (Simplification of the structure)

- The V-order of $[\omega_k]$ is equal to $\sigma_w(k)$ and $[\underline{\omega}]$ induces a \mathbb{C} -basis $\{\underline{\omega}\}$ of $\bigoplus_{\beta} \operatorname{gr}_{\beta}^V(G_0/\theta G_0)$.
- The graded space $\bigoplus_{\beta \in \mathbb{Q}} \operatorname{gr}_{\beta}^{V}(G_0/\theta G_0)$ is a (rationally) graded space equipped with a graded commutative product \cup such that

$$\{\omega_k\}\cup\{\omega_\ell\} = egin{cases} \{\omega_{k+\ell \ \mathrm{mod} \ \mu}\} & \textit{if } \sigma_w(k+\ell \ \mathrm{mod} \ \mu) = \sigma_w(k) + \sigma_w(\ell), \ 0 & \textit{otherwise.} \end{cases}$$

and a nondegenerate pairing induced by S. Both induce a symmetric trilinear form

$$S(\{\omega_j\},\{\omega_k\}\cup\{\omega_\ell\}) = egin{cases} 1 & \textit{if} \ egin{cases} j+k+\ell \equiv n mod \mu & \textit{and} \ \sigma_w(j)+\sigma_w(k)+\sigma_w(\ell) = n, \ 0 & \textit{otherwise}. \end{cases}$$

Frobenius structure (Dubrovin) or flat structure (K. Saito)

Data:

- (0) M: complex manifold of dimension μ
- (1) \circ : *commutative associative product* with *unit e* on vector fields, depending holomorphically on the point in M,
- (2) g: nondegenerate bilinear form on vector fields, depending holomorphically on the point in M.
- (3) \mathfrak{E} : homogeneity (Euler) holomorphic vector field on M,

Constraints:

- Symmetry of the 4-tensor $(\xi_1, \xi_2, \xi_3, \xi_4) \longmapsto \nabla_{\xi_1} g(\xi_2 \circ \xi_3, \xi_4);$
- ∇ (torsionless connection associated to g) is flat and $\nabla e = 0$;
- $\mathcal{L}_{\mathfrak{E}}e = -e$, $\mathcal{L}_{\mathfrak{E}}(\circ) = \circ$, $\mathcal{L}_{\mathfrak{E}}(g) = Dg$ for some $D \in \mathbb{C}$.

Theorem

let f be any Laurent polynomial on a torus $U = (C^*)^n$, which is **convenient** and nondegenerate with respect to its Newton polyhedron; in particular, $\mu \stackrel{\text{def}}{=} \dim C[v_1, v_1^{-1}, \dots, v_n, v_n^{-1}]/(v_1\partial f/\partial v_1, \dots, v_n\partial f/\partial v_n) < +\infty$. Choose a family $\varphi_0 = 1, \varphi_1, \dots, \varphi_{\mu-1}$ inducing a basis of this vector space. Then there exists a **canonical Frobenius structure** locally on the space of parameters $x_0, \dots, x_{\mu-1}$ of the unfolding $F = f + \sum x_i \varphi_i$, for which

$$ullet \partial_{x_i} \circ \partial_{x_j} = \delta_{ij} \partial_{x_i},$$

$$ullet$$
 ${\mathfrak E}=\sum_i x_i \partial_{x_i}.$

Theorem (Generation of a semisimple Frobenius structure, B. Dubrovin)

Given $(A_0, A_\infty, \omega_0)$, where

- A_0, A_∞ are $\mu \times \mu$ complex matrices, A_0 regular semisimple, $A_\infty + {}^t\!A_\infty = w$ Id for some $w \in \mathbb{Z}$,
- ω_0 is an eigenvector of A_{∞} , with eigenvalue α , with no component equal to 0 on the basis of eigenvectors of A_0 ,

there exists a unique Frobenius structure on some neighbourhood of $x^o = \operatorname{Spec} A_0$ in $M = \operatorname{C}^{\mu} \setminus \operatorname{diagonals}$ such that, in the canonical basis $\partial_{x_1}, \ldots, \partial_{x_n}$ of M,

- A_0 is the matrix of $\xi \mapsto \mathfrak{E} \circ \xi$ at x^o ,
- A_{∞} is the matrix of $\xi \mapsto \nabla_{\xi} \mathfrak{E}$ at x^{o} ,
- ω_0 is the vector of components of the unit field e at x^o ,
- $2\alpha + 2 w$ is the homogeneity constant D.

$$f=w_0u_0+\cdots+w_nu_n$$
 on $U=\{\prod_i u_i^{w_i}=1\}.$

Theorem

The data

$$A_0 = \mu egin{pmatrix} 0 & 0 & \cdots & \cdots & 1 \ 1 & 0 & \cdots & \cdots & 0 \ 0 & 1 & 0 & \cdots & 0 \ dots & \ddots & \ddots & dots & dots \ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}, \qquad A_\infty = \operatorname{diag}ig(\sigma_w(0), \ldots, \sigma_w(\mu{-}1)ig), \ \omega_0 = rac{du_0}{u_0} \wedge \cdots \wedge rac{du_n}{u_n} ig|_{\prod_i u_i^{w_i} = 1}$$

generate the canonical Frobenius structure attached to any universal unfolding of f on U.