EXAMPLES OF FROBENIUS MANIFOLDS EXPOSÉ À VENISE, JUIN 2003

Claude Sabbah

Contents

Introduction	1
1. The Gauss-Manin system	2
2. The canonical Frobenius structure	6
References	7

This is a joint work with Antoine Douai (Nice), written in [1, 2].

Introduction

Let w_0, \ldots, w_n $(n \ge 1)$ be positive integers such that $gcd(w_0, \ldots, w_n) = 1$. In this talk, I will consider some properties of the function

 $f(u_0,\ldots,u_n)=w_0u_0+\cdots+w_nu_n$

restricted to the torus $U \subset \mathbf{C}^{n+1}$ defined by the equation

$$u_0^{w_0}\cdots u_n^{w_n}=1.$$

This function has μ simple critical points, with $\mu = w_0 + \cdots + w_n$. The μ critical values $\mu e^{2i\pi k/\mu}$ $(k = 0, \ldots, \mu - 1)$ are distinct.

If $t \in \mathbf{C}$ is not a critical value, the relative cohomology $H^k(U, f^{-1}(t), \mathbf{Q})$ vanishes, unless $k = \dim U = n$. The "limit" when $t \to \infty$ is a vector space space $H_{\mathbf{Q}}$ equipped with an endomorphism $T : H_{\mathbf{Q}} \to H_{\mathbf{Q}}$, called the *monodromy at infinity*. It is also equipped with a *mixed Hodge structure*, according to Elzein, Steenbrink-Zucker, M. Saito.

The interest in such a polynomial f on U is that the data "at infinity" look very much like the *orbifold cohomology* of the weighted projective space $\mathbf{P}(w_0, \ldots, w_n)$.

One can associate to a universal unfolding of f a canonical structure of *Frobenius* manifold on the germ ($\mathbf{C}^{\mu}, 0$) of the parameter space.

C. SABBAH

On the other hand, the quantum orbifold cohomology, defined by Chen and Ruan, allows one to associate the structure of a Frobenius manifold on $H^*_{\text{orb}}(\mathbf{P}(w_0,\ldots,w_n))$. It is then natural that a "mirror symmetry phenomenon" holds, *i.e.*, that both Frobenius structures coincide.

When $w_i = 1$ for all *i*, so that $\mathbf{P}(w_0, \ldots, w_n)$ is the ordinary projective space \mathbf{P}^n , such a result has been guessed by A. Givental and proved by S. Barannikov.

In fact, $\mathbf{P}(w_0, \ldots, w_n)$ has two different orbifold structures: the local one, which was referred to above, and the global one, with respect to which it is a global quotient. D. van Straten has conjectured that the same symmetry phenomenon holds between the global quotient $\mathbf{P}(w_0, \ldots, w_n)$ and the Pham-Brieskorn polynomial

$$g(x_0, \dots, x_n) = \frac{1}{a_0} x_0^{a_0} + \dots + \frac{1}{a_n} x_n^{a_n}$$

restricted to the torus $x_0 \dots x_n = 1$, where $w_i = \operatorname{lcm}(a_0, \dots, a_n)/a_i$.

1. The Gauss-Manin system

1.1. General results. The results in this paragraph apply to any regular function on an affine manifold U, satisfying some nonsingularity condition at infinity. The polynomial f considered above is such a function on the torus U.

The Gauss-Manin system G of the Laurent polynomial f is a module over the ring $\mathbf{C}[\tau, \tau^{-1}]$, where τ is a new variable, and comes equipped with a connection, that we view as a **C**-linear morphism $\partial_{\tau} : G \to G$ satisfying Lebniz rule

$$\forall g \in G, \ \forall \varphi \in \mathbf{C}[\tau, \tau^{-1}], \qquad \partial_{\tau}(\varphi \cdot g) = \frac{\partial \varphi}{\partial \tau} \cdot g + \varphi \partial_{\tau}(g)$$

It will be convenient to put $\theta = \tau^{-1}$, and consider (τ, θ) as complementary coordinates on \mathbf{P}^1 . Then G is a $\mathbf{C}[\theta, \theta^{-1}]$ -module with connection, and $\partial_{\tau} = -\theta^2 \partial_{\theta}$.

Let $\Omega^n(U)$ denote the space of algebraic differential forms of maximal degree on the torus U, and let $\Omega^n(U)[\tau, \tau^{-1}]$ be the space of Laurent polynomials in τ with coefficients in $\Omega^n(U)$.

The Gauss-Manin system is defined by the formula

$$G = \frac{\Omega^n(U)[\tau, \tau^{-1}]}{(d - \tau df \wedge)\Omega^{n-1}(U)[\tau, \tau^{-1}]}$$
$$(d - \tau df \wedge) \sum_k \eta_k \tau^k = \sum_k (d\eta_k - df \wedge \eta_{k-1})\tau^k.$$

The action of the connection ∇_{τ} on G, *i.e.*, the $\mathbf{C}[\tau]\langle\partial_{\tau}\rangle$ -module structure on G, is first defined on the image of $\Omega^n(U)$ by

$$\forall \, \omega \in \Omega^n(U), \quad \partial_\tau[\omega] = [f\omega],$$

and is then extended to G using the Leibniz rule

 $\forall p \in \mathbf{Z}, \quad \partial_{\tau}(\tau^{p}[\omega]) = p\tau^{p-1}[\omega] + \tau^{p}[f\omega].$

In order to extend it as a rank μ vector bundle on \mathbf{P}^1 (coordinates τ and $\theta = \tau^{-1}$), one is led to study *lattices*, *i.e.*, $\mathbf{C}[\tau]$ or $\mathbf{C}[\theta]$ submodules which are free of rank μ .

The lattice in the chart θ . The Briekorn lattice

$$G_0 = \operatorname{image}(\Omega^n(U)[\theta] \to G) = \frac{\Omega^n(U)[\theta]}{(\theta d - df \wedge)\Omega^{n-1}(U)[\theta]}$$

is a free $\mathbf{C}[\theta]$ -module of rank μ . It is stable by the action of ∂_{τ} , also acting as $-\theta^2 \partial_{\theta}$. Therefore, ∂_{θ} is a connection on G_0 with a pole of order 2.

We will also consider the increasing exhaustive filtration $G_p = \tau^p G_0$ $(p \in \mathbb{Z})$ of G.

The lattice in the chart τ . In the chart τ , there are various natural lattices, indexed by **Q**. We denote them by $V_{\alpha}(G)$, with $V_{\alpha-1}(G) = \tau V_{\alpha}(G)$. For any $\alpha \in \mathbf{Q}$, define $V_{\alpha}(G)$ as the set of $[\omega]$ in G satisfying a differential equation of the kind

$$\prod_{\beta \leqslant \alpha} (\tau \partial_{\tau} + \beta)^{\nu_{\beta}} [\omega] = \tau P(\tau, \tau \partial_{\tau}) [\omega].$$

On the quotient space $H_{\alpha} = V_{\alpha}(G)/V_{<\alpha}(G)$ exists a nilpotent endomorphism N induced by the action of $-(\tau \partial_{\tau} + \alpha)$. Put $T = \exp(2i\pi\alpha \operatorname{Id} + N)$. Consider also the decreasing filtration $F^p(H_{\alpha}) = G_{n-p}H_{\alpha}$.

Theorem. The space $\bigoplus_{\alpha \in [0,1[} H_{\alpha}$ with its endomorphism T is naturally isomorphic to $(H_{\mathbf{C}}, T)$. Moreover, the filtration $\bigoplus_{\alpha \in [0,1[} F^p H_{\alpha}$ is the limit Hodge filtration on $H_{\mathbf{C}}$.

A basic isomorphism. We will make use of the following isomorphism, which emphasizes either the chart τ (*i.e.*, the lattices $V_{\bullet}(G)$) or the chart θ (*i.e.*, the Brieskorn lattice), for any $\alpha \in \mathbf{Q} \cap [0, 1]$.

The multiplicity of $\beta \in \mathbf{Q}$ in the spectrum at infinity of f is

$$\nu_{\beta} = \dim \operatorname{gr}_{\beta}^{V}(G_{0}/G_{-1}).$$

1.2. Some combinatorics. Consider the set

$$\mathcal{S}_w \stackrel{\text{def}}{=} \prod_{i=0}^n \{\ell/w_i \mid \ell = 0, \dots, w_i - 1\}$$

and number its elements in an increasing way $s(0) \leq \cdots \leq s(\mu - 1)$. Put $\sigma_w(k) = k - \mu s(k)$. The image of \mathcal{S}_w in \mathbf{Q} is $S_w = \bigcup_{i=0}^n \{\ell/w_i \mid \ell = 0, \dots, w_i - 1\}$. For $s \in S_w$, let m(s) the number of its preimages in \mathcal{S}_w (the number of ways of writing s as ℓ/w_i).

One has

$$\prod_{\beta} (X+\beta)^{\nu_{\beta}} = \prod_{k=0}^{\mu-1} (X+\sigma_w(k)) \quad \text{(proved in [2])}$$
$$= \prod_{s \in S_w} \prod_{j=0}^{m(s)-1} (X+n-(j+\{sw_0\}+\dots+\{sw_n\})) \quad \text{(É. Mann)}$$

1.3. A nice presentation of the Gauss-Manin system. Let ω_0 be the *n*-form on U defined by

$$\omega_0 = \frac{\frac{du_0}{u_0} \wedge \dots \wedge \frac{du_n}{u_n}}{d(\prod_i u_i^{w_i})}\Big|_{\prod_i u_i^{w_i} = 1}.$$

Define inductively, for $k \ge 0$,

$$[\omega_{k+1}] = -\frac{1}{\mu\tau} (\tau \partial_{\tau} + \sigma_w(k)) [\omega_k].$$

Then

Proposition

• ω_0 induces an isomorphism between the μ -dimensional vector spaces

$$\mathbf{C}[u, u^{-1}] / \left(u_0 \frac{\partial f}{\partial u_0}, \dots, u_n \frac{\partial f}{\partial u_n} \right) \xrightarrow{\sim} G_0 / G_{-1},$$

defining thus a ring structure on G_0/G_{-1} .

- $[\omega_{\mu}] = [\omega_0]$ and $[\omega_k] = [u^{a(k)}\omega_0]$ for some multi-index a(k) with |a(k)| = k.
- The classes $[\omega_0], [\omega_1], \ldots, [\omega_{\mu-1}]$ form a $\mathbf{C}[\theta]$ -basis $[\boldsymbol{\omega}]$ of G_0 and a $\mathbf{C}[\tau, \tau^{-1}]$ -

basis of G. In this basis, the connection is written as

$$-\partial_{\tau}[\boldsymbol{\omega}] = [\boldsymbol{\omega}] \cdot \left[A_0 + \frac{1}{\tau}A_{\infty}\right], \quad or \quad \partial_{\theta}[\boldsymbol{\omega}] = [\boldsymbol{\omega}] \cdot \left[\frac{1}{\theta^2}A_0 + \frac{1}{\theta}A_{\infty}\right]$$

with

$$A_{0} = \mu \begin{pmatrix} 0 & 0 & \cdots & \cdots & 1 \\ 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}, \qquad A_{\infty} = \operatorname{diag} \left(\sigma_{w}(0), \dots, \sigma_{w}(\mu - 1) \right).$$

• The "sesquilinear" pairing $S: G \otimes_{\mathbf{C}[\tau,\tau^{-1}]} G^{\mathbf{a}} \to \mathbf{C}[\tau,\tau^{-1}]$ defined by

$$S([\omega_k], [\omega_\ell]) = \begin{cases} 1 & \text{if } k + \ell \equiv n \mod \mu \\ 0 & \text{otherwise} \end{cases}$$

is, up to a constant, the pairing coming from Poincaré duality on the fibres of f. It is compatible with the connection.

Corollary (Simplification of the structure)

• The V-order of $[\omega_k]$ is equal to $\sigma_w(k)$ and $[\boldsymbol{\omega}]$ induces a **C**-basis $\{\boldsymbol{\omega}\}$ of $\bigoplus_{\beta} \operatorname{gr}^V_{\beta}(G_0/G_{-1})$.

• The graded space $\bigoplus_{\beta \in \mathbf{Q}} \operatorname{gr}_{\beta}^{V}(G_{0}/G_{-1})$ is a (rationally) graded space equipped with a graded commutative product \cup such that

$$\{\omega_k\} \cup \{\omega_\ell\} = \begin{cases} \{\omega_{k+\ell \mod \mu}\} & \text{if } \sigma_w(k+\ell \mod \mu) = \sigma_w(k) + \sigma_w(\ell), \\ 0 & \text{otherwise.} \end{cases}$$

and a nondegenerate pairing induced by S. Both induce a symmetric trilinear form

$$\left\langle \{\omega_j\}, \{\omega_k\}, \{\omega_\ell\} \right\rangle = S(\{\omega_j\}, \{\omega_k\} \cup \{\omega_\ell\}) = \begin{cases} 1 & \text{if } \begin{cases} j+k+\ell \equiv n \mod \mu \text{ and} \\ \sigma_w(j) + \sigma_w(k) + \sigma_w(\ell) = n, \\ 0 & \text{otherwise.} \end{cases} \end{cases}$$

Remark. This graded algebra G_0/G_{-1} , with its nondegenerate pairing, looks very much like the orbifold cohomology algebra of $\mathbf{P}(w_0, \ldots, w_n)$ with its Poincaré duality pairing.

Theorem. The basis $[\boldsymbol{\omega}]$ is canonically attached to f.

Explanation. The space $H_{\mathbf{C}}$ has a real structure. The conjugate filtration $\overline{F}^{\bullet}H_{\mathbf{C}}$ is in general not opposite to $F^{\bullet}H_{\mathbf{C}}$. It is opposite on a convenient graded space of $H_{\mathbf{C}}$ with respect to the *weight filtration* $W_{\bullet}H_{\mathbf{Q}}$. There is a canonical way of constructing an opposite filtration to $F^{\bullet}H_{\mathbf{C}}$ by putting

$$F'^{\bullet}H_{\mathbf{C}} = \sum_{q} \overline{F}^{q} \cap W_{n+q-\bullet}.$$

Lemma. There is a 1-1 correspondence between opposite filtrations to $F^{\bullet}H_{\mathbf{C}}$ and free, rank μ , $\mathbf{C}[\tau]$ -submodules G'^0 of G on which the connection is logarithmic and such that (G_0, G'^0) defines a trivial vector bundle on \mathbf{P}^1 .

The statement of the theorem means that the $G^{\prime 0}$ coming from $F^{\prime \bullet}H_{\mathbf{C}}$ is

$$\mathbf{C}[\tau] \big\langle [\omega_0], \dots, \tau^{[\sigma_w(k)]}[\omega_k], \dots, \tau^{[\sigma_w(\mu-1)]}[\omega_{\mu-1}] \big\rangle. \qquad \Box$$

2. The canonical Frobenius structure

2.1. General results. Let M be a complex manifold of dimension μ . A Frobenius structure on M, as defined by B. Dubrovin, or a flat structure, a defined by K. Saito, consists of 3 data on the tangent bundle TM of M:

(1) a homogeneity (Euler) holomorphic vector field \mathfrak{E} on M,

(2) a commutative associative product \circ with unit e on vector fields, depending holomorphically on the point in M,

(3) a nondegenerate bilinear form q on vector fields, depending holomorphically on the point in M, such that the associated torsionless connection ∇ is flat (curvature 0).

These data have to be related by the following properties

• the 4-tensor

$$(\xi_1,\xi_2,\xi_3,\xi_4)\longmapsto \bigtriangledown_{\xi_1}g(\xi_2\circ\xi_3,\xi_4)$$

is symmetric in its arguments;

- $\nabla e = 0$,
- $\mathcal{L}_{\mathfrak{E}}e = -e, \mathcal{L}_{\mathfrak{E}}(\circ) = \circ, \mathcal{L}_{\mathfrak{E}}(g) = Dg$ for some $D \in \mathbf{C}$.

Theorem. let f be any Laurent polynomial on a torus $U = (\mathbf{C}^*)^n$, which is convenient and nondegenerate with respect to its Newton polyhedron; in particular,

$$\mu \stackrel{\text{def}}{=} \dim \mathbf{C}[v_1, v_1^{-1}, \dots, v_n, v_n^{-1}] / (v_1 \partial f / \partial v_1, \dots, v_n \partial f / \partial v_n) < +\infty.$$

Choose a family $\varphi_0 = 1, \varphi_1, \ldots, \varphi_{\mu-1}$ inducing a basis of this vector space. Then there exists a canonical Frobenius structure locally on the space of parameters $x_0, \ldots, x_{\mu-1}$ of the unfolding $F = f + \sum x_i \varphi_i$, for which

- $\partial_{x_i} \circ \partial_{x_j} = \delta_{ij} \partial_{x_i},$ $\mathfrak{E} = \sum_i x_i \partial_{x_i}.$

Theorem (Generation of a semisimple Frobenius structure, B. Dubrovin)

Given $(A_0, A_\infty, \omega_0)$, where

• A_0, A_∞ are $\mu \times \mu$ complex matrices, A_0 regular semisimple, $A_\infty + {}^t\!A_\infty = w$ Id for some $w \in \mathbf{Z}$,

• ω_0 is an eigenvector of A_{∞} , corresponding to the eigenvalue α , with non zero component on the basis of eigenvectors of A_0 ,

there exists a unique Frobenius structure on some neighbourhood of $x^o = \operatorname{Spec} A_0$ in $M = \mathbb{C}^{\mu} \setminus \operatorname{diagonals}$ such that, in the canonical basis $\partial_{x_1}, \ldots, \partial_{x_n}$ of M,

- A_0 is the matrix of $\xi \mapsto \mathfrak{E} \circ \xi$ at x^o ,
- A_{∞} is the matrix of $\xi \mapsto \bigtriangledown_{\xi} \mathfrak{E}$ at x^{o} ,
- ω_0 is the vector of components of the unit field e at x^o ,
- $2\alpha + 2 w$ is the homogeneity constant D.

We now come back to $f = \sum_{i=0}^{n} w_i u_i$ on U.

Theorem. The data

$$\omega_{0} = \frac{\frac{du_{0}}{u_{0}} \wedge \dots \wedge \frac{du_{n}}{u_{n}}}{d(\prod_{i} u_{i}^{w_{i}})} \Big|_{\prod_{i} u_{i}^{w_{i}} = 1},$$

$$A_{0} = \mu \begin{pmatrix} 0 & 0 & \dots & 1 \\ 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix},$$

$$A_{\infty} = \operatorname{diag} \left(\sigma_{w}(0), \dots, \sigma_{w}(\mu - 1) \right)$$

generate the canonical Frobenius structure attached to any universal unfolding of $\sum_{i=0}^{n} w_i u_i$ on $\prod_i u_i^{w_i} = 1$.

References

- A. DOUAI & C. SABBAH Gauss-Manin systems, Brieskorn lattices and Frobenius structures (I), Ann. Inst. Fourier (Grenoble) 53 (2003), no. 4, p. 1055–1116.
- [2] _____, Gauss-Manin systems, Brieskorn lattices and Frobenius structures (II), in Frobenius manifolds (Quantum cohomology and singularities) (C. Hertling & M. Marcolli, eds.), Aspects of Mathematics, vol. E 36, Vieweg, 2004, arXiv: math.AG/0211353, p. 1–18.

C. SABBAH, UMR 7640 du CNRS, Centre de Mathématiques, École polytechnique, F-91128 Palaiseau cedex, France • E-mail : sabbah@math.polytechnique.fr
 Url : http://www.math.polytechnique.fr/cmat/sabbah.html