EXAMPLES OF FROBENIUS MANIFOLDS

EXPOSÉ À VENISE, JUIN 2003

Claude Sabbah

Contents

Introduction 1

1. The Gauss-Manin system 2
2. The canonical Frobenius structure 6
References 7

This is a joint work with Antoine Douai (Nice), written in $[\mathbf{1 , 2}]$.

Introduction

Let $w_{0}, \ldots, w_{n}(n \geqslant 1)$ be positive integers such that $\operatorname{gcd}\left(w_{0}, \ldots, w_{n}\right)=1$. In this talk, I will consider some properties of the function

$$
f\left(u_{0}, \ldots, u_{n}\right)=w_{0} u_{0}+\cdots+w_{n} u_{n}
$$

restricted to the torus $U \subset \mathbf{C}^{n+1}$ defined by the equation

$$
u_{0}^{w_{0}} \cdots u_{n}^{w_{n}}=1 .
$$

This function has μ simple critical points, with $\mu=w_{0}+\cdots+w_{n}$. The μ critical values $\mu e^{2 i \pi k / \mu}(k=0, \ldots, \mu-1)$ are distinct.
If $t \in \mathbf{C}$ is not a critical value, the relative cohomology $H^{k}\left(U, f^{-1}(t), \mathbf{Q}\right)$ vanishes, unless $k=\operatorname{dim} U=n$. The "limit" when $t \rightarrow \infty$ is a vector space space $H_{\mathbf{Q}}$ equipped with an endomorphism $T: H_{\mathbf{Q}} \rightarrow H_{\mathbf{Q}}$, called the monodromy at infinity. It is also equipped with a mixed Hodge structure, according to Elzein, Steenbrink-Zucker, M. Saito.
The interest in such a polynomial f on U is that the data "at infinity" look very much like the orbifold cohomology of the weighted projective space $\mathbf{P}\left(w_{0}, \ldots, w_{n}\right)$.
One can associate to a universal unfolding of f a canonical structure of Frobenius manifold on the germ $\left(\mathbf{C}^{\mu}, 0\right)$ of the parameter space.

On the other hand, the quantum orbifold cohomology, defined by Chen and Ruan, allows one to associate the structure of a Frobenius manifold on $H_{\text {orb }}^{*}\left(\mathbf{P}\left(w_{0}, \ldots, w_{n}\right)\right)$. It is then natural that a "mirror symmetry phenomenon" holds, i.e., that both Frobenius structures coincide.
When $w_{i}=1$ for all i, so that $\mathbf{P}\left(w_{0}, \ldots, w_{n}\right)$ is the ordinary projective space \mathbf{P}^{n}, such a result has been guessed by A. Givental and proved by S. Barannikov.

In fact, $\mathbf{P}\left(w_{0}, \ldots, w_{n}\right)$ has two different orbifold structures: the local one, which was referred to above, and the global one, with respect to which it is a global quotient. D. van Straten has conjectured that the same symmetry phenomenon holds between the global quotient $\mathbf{P}\left(w_{0}, \ldots, w_{n}\right)$ and the Pham-Brieskorn polynomial

$$
g\left(x_{0}, \ldots, x_{n}\right)=\frac{1}{a_{0}} x_{0}^{a_{0}}+\cdots+\frac{1}{a_{n}} x_{n}^{a_{n}}
$$

restricted to the torus $x_{0} \ldots x_{n}=1$, where $w_{i}=\operatorname{lcm}\left(a_{0}, \ldots, a_{n}\right) / a_{i}$.

1. The Gauss-Manin system

1.1. General results. The results in this paragraph apply to any regular function on an affine manifold U, satisfying some nonsingularity condition at infinity. The polynomial f considered above is such a function on the torus U.
The Gauss-Manin system G of the Laurent polynomial f is a module over the ring $\mathbf{C}\left[\tau, \tau^{-1}\right]$, where τ is a new variable, and comes equipped with a connection, that we view as a C-linear morphism $\partial_{\tau}: G \rightarrow G$ satisfying Lebniz rule

$$
\forall g \in G, \forall \varphi \in \mathbf{C}\left[\tau, \tau^{-1}\right], \quad \partial_{\tau}(\varphi \cdot g)=\frac{\partial \varphi}{\partial \tau} \cdot g+\varphi \partial_{\tau}(g)
$$

It will be convenient to put $\theta=\tau^{-1}$, and consider (τ, θ) as complementary coordinates on \mathbf{P}^{1}. Then G is a $\mathbf{C}\left[\theta, \theta^{-1}\right]$-module with connection, and $\partial_{\tau}=-\theta^{2} \partial_{\theta}$.

Let $\Omega^{n}(U)$ denote the space of algebraic differential forms of maximal degree on the torus U, and let $\Omega^{n}(U)\left[\tau, \tau^{-1}\right]$ be the space of Laurent polynomials in τ with coefficients in $\Omega^{n}(U)$.

The Gauss-Manin system is defined by the formula

$$
\begin{gathered}
G=\frac{\Omega^{n}(U)\left[\tau, \tau^{-1}\right]}{(d-\tau d f \wedge) \Omega^{n-1}(U)\left[\tau, \tau^{-1}\right]} \\
(d-\tau d f \wedge) \sum_{k} \eta_{k} \tau^{k}=\sum_{k}\left(d \eta_{k}-d f \wedge \eta_{k-1}\right) \tau^{k} .
\end{gathered}
$$

The action of the connection ∇_{τ} on G, i.e., the $\mathbf{C}[\tau]\left\langle\partial_{\tau}\right\rangle$-module structure on G, is first defined on the image of $\Omega^{n}(U)$ by

$$
\forall \omega \in \Omega^{n}(U), \quad \partial_{\tau}[\omega]=[f \omega],
$$

and is then extended to G using the Leibniz rule

$$
\forall p \in \mathbf{Z}, \quad \partial_{\tau}\left(\tau^{p}[\omega]\right)=p \tau^{p-1}[\omega]+\tau^{p}[f \omega] .
$$

In order to extend it as a rank μ vector bundle on \mathbf{P}^{1} (coordinates τ and $\theta=\tau^{-1}$), one is led to study lattices, i.e., $\mathbf{C}[\tau]$ or $\mathbf{C}[\theta]$ submodules which are free of rank μ.
The lattice in the chart θ. The Briekorn lattice

$$
G_{0}=\operatorname{image}\left(\Omega^{n}(U)[\theta] \rightarrow G\right)=\frac{\Omega^{n}(U)[\theta]}{(\theta d-d f \wedge) \Omega^{n-1}(U)[\theta]}
$$

is a free $\mathbf{C}[\theta]$-module of rank μ. It is stable by the action of ∂_{τ}, also acting as $-\theta^{2} \partial_{\theta}$. Therefore, ∂_{θ} is a connection on G_{0} with a pole of order 2 .
We will also consider the increasing exhaustive filtration $G_{p}=\tau^{p} G_{0}(p \in \mathbf{Z})$ of G.

The lattice in the chart τ. In the chart τ, there are various natural lattices, indexed by \mathbf{Q}. We denote them by $V_{\alpha}(G)$, with $V_{\alpha-1}(G)=\tau V_{\alpha}(G)$. For any $\alpha \in \mathbf{Q}$, define $V_{\alpha}(G)$ as the set of $[\omega]$ in G satisfying a differential equation of the kind

$$
\prod_{\beta \leqslant \alpha}\left(\tau \partial_{\tau}+\beta\right)^{\nu_{\beta}}[\omega]=\tau P\left(\tau, \tau \partial_{\tau}\right)[\omega] .
$$

On the quotient space $H_{\alpha}=V_{\alpha}(G) / V_{<\alpha}(G)$ exists a nilpotent endomorphism N induced by the action of $-\left(\tau \partial_{\tau}+\alpha\right)$. Put $T=\exp (2 i \pi \alpha \operatorname{Id}+N)$. Consider also the decreasing filtration $F^{p}\left(H_{\alpha}\right)=G_{n-p} H_{\alpha}$.

Theorem. The space $\oplus_{\alpha \in[0,1[} H_{\alpha}$ with its endomorphism T is naturally isomorphic to $\left(H_{\mathbf{C}}, T\right)$. Moreover, the filtration $\oplus_{\alpha \in[0,1[} F^{p} H_{\alpha}$ is the limit Hodge filtration on $H_{\mathbf{C}}$.

A basic isomorphism. We will make use of the following isomorphism, which emphasizes either the chart τ (i.e., the lattices $\left.V_{\mathbf{\bullet}}(G)\right)$ or the chart θ (i.e., the Brieskorn lattice), for any $\alpha \in \mathbf{Q} \cap[0,1[$.

$$
\begin{gathered}
\frac{G_{p} \cap V_{\alpha}}{G_{p-1} \cap V_{\alpha}+G_{p} \cap V_{<\alpha}}=\operatorname{gr}_{F}^{n-p}\left(H_{\alpha}\right) \\
\cdot \tau^{p} \mid \downarrow \cdot \theta^{p} \\
\frac{V_{\alpha+p} \cap G_{0}}{V_{\alpha+p} \cap G_{-1}+V_{<\alpha+p} \cap G_{0}}=\operatorname{gr}_{\alpha+p}^{V}\left(G_{0} / G_{-1}\right)
\end{gathered}
$$

The multiplicity of $\beta \in \mathbf{Q}$ in the spectrum at infinity of f is

$$
\nu_{\beta}=\operatorname{dim} \operatorname{gr}_{\beta}^{V}\left(G_{0} / G_{-1}\right) .
$$

1.2. Some combinatorics. Consider the set

$$
\mathcal{S}_{w} \stackrel{\text { def }}{=} \coprod_{i=0}^{n}\left\{\ell / w_{i} \mid \ell=0, \ldots, w_{i}-1\right\}
$$

and number its elements in an increasing way $s(0) \leqslant \cdots \leqslant s(\mu-1)$. Put $\sigma_{w}(k)=k-\mu s(k)$. The image of \mathcal{S}_{w} in \mathbf{Q} is $S_{w}=\bigcup_{i=0}^{n}\left\{\ell / w_{i} \mid \ell=0, \ldots, w_{i}-1\right\}$. For $s \in S_{w}$, let $m(s)$ the number of its preimages in \mathcal{S}_{w} (the number of ways of writing s as ℓ / w_{i}).

One has

$$
\begin{aligned}
\prod_{\beta}(X+\beta)^{\nu_{\beta}} & =\prod_{k=0}^{\mu-1}\left(X+\sigma_{w}(k)\right) \quad(\text { proved in }[2]) \\
& =\prod_{s \in S_{w}} \prod_{j=0}^{m(s)-1}\left(X+n-\left(j+\left\{s w_{0}\right\}+\cdots+\left\{s w_{n}\right\}\right)\right) \quad \text { (É. Mann) }
\end{aligned}
$$

1.3. A nice presentation of the Gauss-Manin system. Let ω_{0} be the n form on U defined by

$$
\omega_{0}=\left.\frac{\frac{d u_{0}}{u_{0}} \wedge \cdots \wedge \frac{d u_{n}}{u_{n}}}{d\left(\prod_{i} u_{i}^{w_{i}}\right)}\right|_{\prod_{i} u_{i}^{w_{i}}=1} .
$$

Define inductively, for $k \geqslant 0$,

$$
\left[\omega_{k+1}\right]=-\frac{1}{\mu \tau}\left(\tau \partial_{\tau}+\sigma_{w}(k)\right)\left[\omega_{k}\right] .
$$

Then

Proposition

- ω_{0} induces an isomorphism between the μ-dimensional vector spaces

$$
\mathbf{C}\left[u, u^{-1}\right] /\left(u_{0} \frac{\partial f}{\partial u_{0}}, \ldots, u_{n} \frac{\partial f}{\partial u_{n}}\right) \xrightarrow{\sim} G_{0} / G_{-1},
$$

defining thus a ring structure on G_{0} / G_{-1}.

- $\left[\omega_{\mu}\right]=\left[\omega_{0}\right]$ and $\left[\omega_{k}\right]=\left[u^{a(k)} \omega_{0}\right]$ for some multi-index $a(k)$ with $|a(k)|=k$.
- The classes $\left[\omega_{0}\right],\left[\omega_{1}\right], \ldots,\left[\omega_{\mu-1}\right]$ form a $\mathbf{C}[\theta]$-basis $[\boldsymbol{\omega}]$ of G_{0} and a $\mathbf{C}\left[\tau, \tau^{-1}\right]$ basis of G. In this basis, the connection is written as

$$
-\partial_{\tau}[\boldsymbol{\omega}]=[\boldsymbol{\omega}] \cdot\left[A_{0}+\frac{1}{\tau} A_{\infty}\right], \quad \text { or } \quad \partial_{\theta}[\boldsymbol{\omega}]=[\boldsymbol{\omega}] \cdot\left[\frac{1}{\theta^{2}} A_{0}+\frac{1}{\theta} A_{\infty}\right]
$$

with

$$
A_{0}=\mu\left(\begin{array}{ccccc}
0 & 0 & \cdots & \cdots & 1 \\
1 & 0 & \cdots & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 0
\end{array}\right), \quad A_{\infty}=\operatorname{diag}\left(\sigma_{w}(0), \ldots, \sigma_{w}(\mu-1)\right)
$$

- The "sesquilinear" pairing $S: G \otimes_{\mathbf{C}\left[\tau, \tau^{-1}\right]} G^{\mathrm{a}} \rightarrow \mathbf{C}\left[\tau, \tau^{-1}\right]$ defined by

$$
S\left(\left[\omega_{k}\right],\left[\omega_{\ell}\right]\right)= \begin{cases}1 & \text { if } k+\ell \equiv n \bmod \mu \\ 0 & \text { otherwise }\end{cases}
$$

is, up to a constant, the pairing coming from Poincaré duality on the fibres of f. It is compatible with the connection.

Corollary (Simplification of the structure)

- The V-order of $\left[\omega_{k}\right]$ is equal to $\sigma_{w}(k)$ and $[\boldsymbol{\omega}]$ induces a \mathbf{C}-basis $\{\boldsymbol{\omega}\}$ of $\oplus_{\beta} \operatorname{gr}_{\beta}^{V}\left(G_{0} / G_{-1}\right)$.
- The graded space $\oplus_{\beta \in \mathbf{Q}} \operatorname{gr}_{\beta}^{V}\left(G_{0} / G_{-1}\right)$ is a (rationally) graded space equipped with a graded commutative product \cup such that

$$
\left\{\omega_{k}\right\} \cup\left\{\omega_{\ell}\right\}= \begin{cases}\left\{\omega_{k+\ell \bmod \mu}\right\} & \text { if } \sigma_{w}(k+\ell \bmod \mu)=\sigma_{w}(k)+\sigma_{w}(\ell) \\ 0 & \text { otherwise }\end{cases}
$$

and a nondegenerate pairing induced by S. Both induce a symmetric trilinear form
$\left\langle\left\{\omega_{j}\right\},\left\{\omega_{k}\right\},\left\{\omega_{\ell}\right\}\right\rangle=S\left(\left\{\omega_{j}\right\},\left\{\omega_{k}\right\} \cup\left\{\omega_{\ell}\right\}\right)=\left\{\begin{array}{l}1 \quad \text { if }\left\{\begin{array}{l}j+k+\ell \equiv n \bmod \mu \text { and } \\ \sigma_{w}(j)+\sigma_{w}(k)+\sigma_{w}(\ell)=n,\end{array}\right. \\ 0 \quad \text { otherwise. }\end{array}\right.$
Remark. This graded algebra G_{0} / G_{-1}, with its nondegenerate pairing, looks very much like the orbifold cohomology algebra of $\mathbf{P}\left(w_{0}, \ldots, w_{n}\right)$ with its Poincaré duality pairing.

Theorem. The basis $[\boldsymbol{\omega}]$ is canonically attached to f.
Explanation. The space $H_{\mathbf{C}}$ has a real structure. The conjugate filtration $\bar{F}^{\bullet} H_{\mathbf{C}}$ is in general not opposite to $F^{\bullet} H_{\mathbf{C}}$. It is opposite on a convenient graded space of $H_{\mathbf{C}}$ with respect to the weight filtration $W_{\mathbf{~}} H_{\mathbf{Q}}$. There is a canonical way of constructing an opposite filtration to $F^{\bullet} H_{\mathbf{C}}$ by putting

$$
F^{\prime \bullet} H_{\mathbf{C}}=\sum_{q} \bar{F}^{q} \cap W_{n+q-\bullet}
$$

Lemma. There is a 1-1 correspondence between opposite filtrations to $F^{\bullet} H_{\mathbf{C}}$ and free, rank $\mu, \mathbf{C}[\tau]$-submodules $G^{\prime 0}$ of G on which the connection is logarithmic and such that $\left(G_{0}, G^{\prime 0}\right)$ defines a trivial vector bundle on \mathbf{P}^{1}.

The statement of the theorem means that the $G^{\prime 0}$ coming from $F^{\prime \bullet} H_{\mathrm{C}}$ is

$$
\mathbf{C}[\tau]\left\langle\left[\omega_{0}\right], \ldots, \tau^{\left[\sigma_{w}(k)\right]}\left[\omega_{k}\right], \ldots, \tau^{\left[\sigma_{w}(\mu-1)\right]}\left[\omega_{\mu-1}\right]\right\rangle .
$$

2. The canonical Frobenius structure

2.1. General results. Let M be a complex manifold of dimension μ. A Frobenius structure on M, as defined by B. Dubrovin, or a flat structure, a defined by K. Saito, consists of 3 data on the tangent bundle $T M$ of M :
(1) a homogeneity (Euler) holomorphic vector field \mathfrak{E} on M,
(2) a commutative associative product \circ with unit e on vector fields, depending holomorphically on the point in M,
(3) a nondegenerate bilinear form g on vector fields, depending holomorphically on the point in M, such that the associated torsionless connection ∇ is flat (curvature 0).
These data have to be related by the following properties

- the 4-tensor

$$
\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \longmapsto \nabla \xi_{1} g\left(\xi_{2} \circ \xi_{3}, \xi_{4}\right)
$$

is symmetric in its arguments;

- $\nabla e=0$,
- $\mathcal{L}_{\mathscr{E}} e=-e, \mathcal{L}_{\mathscr{E}}(0)=0, \mathcal{L}_{\mathbb{E}}(g)=D g$ for some $D \in \mathbf{C}$.

Theorem. let f be any Laurent polynomial on a torus $U=\left(\mathbf{C}^{*}\right)^{n}$, which is convenient and nondegenerate with respect to its Newton polyhedron; in particular,

$$
\mu \stackrel{\text { def }}{=} \operatorname{dim} \mathbf{C}\left[v_{1}, v_{1}^{-1}, \ldots, v_{n}, v_{n}^{-1}\right] /\left(v_{1} \partial f / \partial v_{1}, \ldots, v_{n} \partial f / \partial v_{n}\right)<+\infty .
$$

Choose a family $\varphi_{0}=1, \varphi_{1}, \ldots, \varphi_{\mu-1}$ inducing a basis of this vector space. Then there exists a canonical Frobenius structure locally on the space of parameters $x_{0}, \ldots, x_{\mu-1}$ of the unfolding $F=f+\sum x_{i} \varphi_{i}$, for which

- $\partial_{x_{i}} \circ \partial_{x_{j}}=\delta_{i j} \partial_{x_{i}}$,
- $\mathfrak{E}=\sum_{i} x_{i} \partial_{x_{i}}$.

Theorem (Generation of a semisimple Frobenius structure, B. Dubrovin)

Given $\left(A_{0}, A_{\infty}, \omega_{0}\right)$, where

- A_{0}, A_{∞} are $\mu \times \mu$ complex matrices, A_{0} regular semisimple, $A_{\infty}+{ }^{t} A_{\infty}=w \mathrm{Id}$ for some $w \in \mathbf{Z}$,
- ω_{0} is an eigenvector of A_{∞}, corresponding to the eigenvalue α, with non zero component on the basis of eigenvectors of A_{0},
there exists a unique Frobenius structure on some neighbourhood of $x^{o}=\operatorname{Spec} A_{0}$ in $M=\mathbf{C}^{\mu} \backslash$ diagonals such that, in the canonical basis $\partial_{x_{1}}, \ldots, \partial_{x_{n}}$ of M,
- A_{0} is the matrix of $\xi \mapsto \mathfrak{E} \circ \xi$ at x^{o},
- A_{∞} is the matrix of $\xi \mapsto \nabla_{\xi} \mathfrak{E}$ at x^{o},
- ω_{0} is the vector of components of the unit field e at x^{o},
- $2 \alpha+2-w$ is the homogeneity constant D.

We now come back to $f=\sum_{i=0}^{n} w_{i} u_{i}$ on U.
Theorem. The data

$$
\begin{aligned}
& \omega_{0}=\left.\frac{\frac{d u_{0}}{u_{0}} \wedge \cdots \wedge \frac{d u_{n}}{u_{n}}}{d\left(\prod_{i} u_{i}^{w_{i}}\right)}\right|_{\prod_{i} u_{i}^{w_{i}}=1} \\
& A_{0}=\mu\left(\begin{array}{ccccc}
0 & 0 & \cdots & \cdots & 1 \\
1 & 0 & \cdots & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 0
\end{array}\right) \\
& A_{\infty}=\operatorname{diag}\left(\sigma_{w}(0), \ldots, \sigma_{w}(\mu-1)\right)
\end{aligned}
$$

generate the canonical Frobenius structure attached to any universal unfolding of $\sum_{i=0}^{n} w_{i} u_{i}$ on $\prod_{i} u_{i}^{w_{i}}=1$.

References

[1] A. Douai \& C. Sabbah - Gauss-Manin systems, Brieskorn lattices and Frobenius structures (I), Ann. Inst. Fourier (Grenoble) 53 (2003), no. 4, p. 1055-1116.
[2] __ Gauss-Manin systems, Brieskorn lattices and Frobenius structures (II), in Frobenius manifolds (Quantum cohomology and singularities) (C. Hertling \& M. Marcolli, eds.), Aspects of Mathematics, vol. E 36, Vieweg, 2004, arXiv: math.AG/0211353, p. 1-18.

[^0]
[^0]: C. SABBAH, UMR 7640 du CNRS, Centre de Mathématiques, École polytechnique, F-91128 Palaiseau cedex, France - E-mail: sabbah@math.polytechnique.fr Url: http://www.math.polytechnique.fr/cmat/sabbah/sabbah.html

