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Origins and motivations of irreg. Hodge theory
Deligne, 1984.

Origins and motivations of irreg. Hodge theory
Deligne, 1984.
∙ Griffiths’ regularity theorem:
∙ (V ,∇): alg. vect. bdle with connect. on a quasi-proj. curve.
∙ (V ,∇) underlies a PVHS ⟹ ∇ has reg. sing. at ∞.

∙ E.g., regularity of the Gauss-Manin connection.

∙ Complex analogues of exponential sums over finite fields:
(V ,∇) with irreg. sing. at ∞.

∙ Is there a Hodge realization for such objects?

∙ Typical example: “ex” on A1 
j

⟶ ℙ1, i.e., (j∗OA1, d + dx).

∙ Deligne defines a ↘ filtration F ∙(j∗V ) in many examples.
∙⟿ Filtration of the de Rham complex

F pDR(j∗V ,∇) ∶= {0→ F p(j∗V )
∇
←←←←←←←←←←←←←→ Ω1ℙ1 ⊗ F p−1(j∗V ) → 0}

∙ In these examples, degeneration at E1, i.e.,

H1(ℙ1, F pDR(j∗V ,∇)) ⟶H1(ℙ1,DR(j∗V ,∇)).

∙ Filtration indexed by p ∈ A + ℕ, A ⊂ [0, 1) finite.
∙ What could be the use of a “Hodge filtration” which does not

lead to Hodge theory? A hope it that it imposes bounds to

p-adic valuations of eigenvalues of Frobenius.



Adolphson-Sperber, 1987–89.
∙ Lower bound of the p-adic Newton polygon of the L-function

attached to a nondeg. Laurent pol. f ∈ ℤ[x±11 ,… , x±1n ] given
by a Newton polygon attached to f .

∙⟿ Answers Deligne’s hope, but no Hodge filtration.

∙ (Would like to interpret this as “Newton above Hodge”.)

Simpson, 1990.
∙ Non abelian Hodge theory on curves. Correspondence be-

tween (V ,∇) with reg. sing. (tame) at ∞ and stable tame par-
abolic Higgs bdles.

∙ Simpson suggests it would be possible to extend this corre-
spondence to (V ,∇) wild (i.e., with irreg. sing.).

∙⟿ Positive answer on curves by CS and Biquard-Boalch
(2000 ±").

∙ Positive answer (any dimension) by T. Mochizuki (2011).

∙ Drawback: no Hodge filtration.

Mirror symmetry for Fano’s.
∙ Need to consider a pair (X, f ), f ∶ X → A1, X smooth

quasi-proj., as possible mirror of a Fano mfld.

∙⟿ Various cohomologies H∙(X, f ) attached to (X, f ), e.g.
∙ dual of Betti homology (Lefschetz thimbles),
∙ de Rham cohomology: hypercohom of (Ω∙X, d + df ),
∙ Periodic cyclic homology,
∙ Exponential motives.

Questions on the Hodge theory of Landau-Ginzburg models.
∙ If (X, f ) is mirror of a Fano mfld Y , what is the Hodge filtra-

tion on H∙(X, f ) corresponding to that of H∙(Y )?

∙ If Y is a Fano orbifold (e.g. toric, like ℙ(w0,… , wn)),H∙orb(Y )
(Chen-Ruan) has rational exponents (corresponding to “twisted
sectors”). Natural to expect that F ∙ for (X, f ) is indexed by
A + ℕ, A ⊂ [0, 1) ∩ℚ.

∙ If Y is a Fano mfld, how to translate to F ∙Hn(X, f ) Hard
Lefschetz for c1(TY )?



E1-degeneration
Hodge realization for a pair (X, f ).
∙ X smooth quasi-proj.

∙ Choose a compact. f ∶ X → ℙ1 of f s.t. D = X ∖X ncd.

∙ P ∶= f ∗(∞), |P | ⊂ D.

Hk
dR(X, f ) ≃

{
Hk(X, (Ω∙

X
(∗D), d + df )),

Hk(X, (Ω∙
X
(logD, f ), d + df ))

Ωk
X
(logD, f ) ∶ =

{
! ∈ Ωk

X
(logD) ∣ df ∧ ! ∈ Ωk+1

X
(logD)

}

=
{
! ∈ Ωk

X
(logD) ∣ (d + df∧)! ∈ Ωk+1

X
(logD)

}

∙ Quasi-isomorphic filtered complexes:
∙ Yu: F ∙(Ω∙

X
(∗D), d + df ),

∙ K-K-P: F ∙(Ω∙
X
(logD, f ), d + df )).

F p(Ω∙
X
(logD, f ), d) ∶= {0→ Ωp(logD, f )

p
→⋯→ Ωn(logD, f )→ 0}

∙ Recall: for X quasi-projective (and f ≡ 0)

Theorem (Degeneration at E1, Deligne (Hodge II, 1972)).

H∙(X,F p(Ω∙
X
(logD), d)) ⟶H∙(X, (Ω∙

X
(logD), d)) ≃ H ∙(X,ℂ).

Theorem (Esnault-S.-Yu, Katzarkov-Kontsevich-Pantev,
M. Saito, T. Mochizuki).
∙ The spectral seq. for F ∙(Ω∙

X
(∗D), d + df ), equivalently for

F ∙(Ω∙
X
(logD, f ), d + df )), degenerates at E1.

∙⟿ Irreg. Hodge filtr. F ∙Hk
dR(X, f ).

∙ Four different proofs:
∙ M. Saito uses a comparison with nearby cycles of f along
f ∗(∞) and Steenbrink/Schmid limit theorems.

∙ K-K-P use reduction to char. p à la Deligne-Illusie. But
need assumption that f ∗(∞) is reduced.

∙ E-S-Y use reduction to X = A1 by pushing forward by f
and previous results on CS extending the original construc-
tion of Deligne on curves by means of twistor D-modules.

∙ T. Mochizuki uses the full strength of twistor D-modules in
arbitrary dimensions.

∙ Can take into account multiplicities of f ∗(∞) to refine F ∙ and
index it by A + ℕ,

A =
{
l∕mi ∣ 0 ⩽ l < mi, mi = mult. of a component of f ∗(∞)

}
.



Irregular Hodge-Tate structures
∙H ∶= Hk(X, f ), monodromy induced by Hk(X, ei�f )�∈[0,2π]
∙ F ∙irrH : irreg. Hodge filtr.
∙ if unipotent monodromy ⟿ Jakobson-Morosov filtr. M∙H

associated to its nilpotent part.
∙ Define WlH =Ml−kH
∙ unipotent monodromy ⟹ jumps of F ∙irrH are integers.

Definition. Hk(X, f ) is irreg. Hodge-Tate if unipotent monodr. and

∀p, dim grW2pH = dim grpFirrH and grW2p+1H = 0

Conjecture (K-K-P, 2017). If (X, f ) is the Landau-Ginzburg model

mirror to a projective Fano mfld Y , then Hn(X, f ) (n = dimX) is

irregular Hodge-Tate.

Many works on the conjecture.

∙ Lunts, Przyjalkowski, Harder
∙ Shamoto

The toric case.

∙ Lattices M ⊂ ℝn, N =M∨.
∙ Δ ⊂ ℝn: reflexive simplicial polyhedron with vertices in M ,

s.t. 0 is the only integral point in the interior of Δ.
∙ Δ∗: dual polyhedron (vertices in N and of the same kind

as Δ).
∙ Σ: fan dual to Δ, = cone (0,Δ∗).
∙ Y = ℙΣ assumed smooth, hence toric Fano (Batyrev).
∙ Chow ring A∗(Y ) ≃ H2⋆(Y ,ℤ) generated by div. classes Dv,
v ∈ Vertices(Δ∗) =∶ V (Δ∗).
∙ c1(K∨

Y ) =
∑
v∈V (Δ∗)Dv satisfies Hard Lefschetz onH2⋆(Y ,ℚ).



∙ Coordinates x1,… , xn s.t. ℂ[N] = ℂ[x, x−1].
X ∶= Specℂ[x, x−1],

f ∶ X ⟶ A1, f (x) =
∑

v∈V (Δ∗)
xv

Hn
dR(X, f ) = Ω

n
X∕(d + df∧)Ω

n−1
X ≃

[
ℂ[x, x−1]∕()f )

]
⋅
dx1
x1

∧⋯ ∧
dxn
xn

∙ Newton filtration N∙ on the Jacobian ring ℚ[x, x−1]∕()f )

∙ Borisov-Chen-Smith: H2⋆(Y ,ℂ) ≃ grN⋆
(
ℂ[x, x−1]∕()f )

)

∙ Hard Lefschetz ⟹ ∀k s.t. 0 ⩽ k ⩽ n∕2,

f n−2k ∶ grNk
(
ℂ[x, x−1]∕()f )

) ∼
⟶ grNn−k

(
ℂ[x, x−1]∕()f )

)

∙ Idea of Varchenko from Singularity theory (Doklady, 1981):
interpret multipl. by f as the nilpotent part of a monodromy
operator.
∙ Adapt and apply this idea to Hn

dR(X, f )
∙ One shows that

dimF p
irrH

n
dR(X,F ) = dimNn−p

(
ℂ[x, x−1]∕()f )

)
.

∙ ⟹ irreg. Hodge-Tate property. �

Computation of Hodge numbers by means of
irregular Hodge theory

∙ Standard course of calculus: often easier to compute convolu-
tion f ⋆ g by applying Fourier transformation.
∙ Same idea for Hodge nbrs.
∙ Arithmetic motivation: Functional equation for theL-function

attached to symmetric power moments of Kloosterman sums.
∙ Complex analogue of the Kloosterman sums: modified Bessel

differential equation on Gm.

∙ Kl2 ∶ (O2Gm,∇), ∇(v0, v1) = (v0, v1) ⋅
(
0 z
1 0

)
⋅
dz
z

.

∙ For k ⩾ 1, want to consider SymkKl2:
∙ free ℂ[z, z−1]-mod. rk k + 1 with connection,

and its de Rham cohomology

H1
dR(Gm,Sym

kKl2) = coker
[
∇ ∶ SymkKl2 ⟶ SymkKl2⊗

dz
z

]

Theorem (Fresán-S-Yu). Assume k odd for simplicity.

∙H1
dR(Gm,Sym

kKl2) canonically endowed with a MHS of

weights k + 1 & 2k + 2.

∙ dimH1
dR(Gm,Sym

kKl2)p,q = 1 if p + q = k + 1 and p =
2,… , k − 1 or p = q = k + 1, and 0 otherwise.



Synopsis.
∙ Motivations. Series of papers by Broadhurst-Roberts: some

Feynman integrals expressed as period integrals

∫
∞

0
I0(t)aK0(t)btcdt (I0, K0 ∶ “modified Bessel functions”).

⟿ various conjectures on L fns of Kloosterman moments.

∙ On SymkKl2, ∇ has a regular sing. at z = 0, but an irregular
one at ∞, hence does not underlie a PVHS (Griffiths th.).
∙H1

dR(Gm,Sym
kKl2) has a motivic interpretation: this explains

the MHS.

∙ SymkKl2 underlies a variation of irregular Hodge structure
(i.e., an irregular mixed Hodge module on ℙ1 ⊃ Gm).
∙ ⟹ H1

dR(Gm,Sym
kKl2) endowed with an irregular Hodge

filtration.
∙ We prove that this irreg. Hodge filtr. coincides with the Hodge

filtr. of the MHS.
∙ We compute this irreg. Hodge filtration by toric methods of

Adolphson-Sperber & Yu. (Irreg. analogue of Danilov-Khovanski
computation for toric hypersurfaces).


