Irregular Hodge theory: Applications to arithmetic and mirror symmetry

Claude Sabbah

Centre de Mathématiques Laurent Schwartz CNRS, École polytechnique, Institut Polytechnique de Paris Palaiseau, France

Origins and motivations of irreg. Hodge theory

Deligne, 1984.

Origins and motivations of irreg. Hodge theory

Deligne, 1984.

- Griffiths' regularity theorem:
 - (V, ∇) : alg. vect. bdle with connect. on a quasi-proj. curve.
 - (V, ∇) underlies a PVHS $\implies \nabla$ has reg. sing. at ∞ .
- E.g., regularity of the Gauss-Manin connection.
- Complex analogues of exponential sums over finite fields:
 (V, ∇) with *irreg. sing.* at ∞.
- Is there a Hodge realization for such objects?
- Typical example: " e^x " on $\mathbb{A}^1 \stackrel{J}{\hookrightarrow} \mathbb{P}^1$, i.e., $(j_* \mathcal{O}_{\mathbb{A}^1}, d + dx)$.
- **Deligne** defines a \searrow filtration $F^{\bullet}(j_*V)$ in many examples.
- -----> Filtration of the de Rham complex

 $F^{p} \mathrm{DR}(j_{*}V, \nabla) := \{ 0 \to F^{p}(j_{*}V) \xrightarrow{\nabla} \Omega^{1}_{\mathbb{P}^{1}} \otimes F^{p-1}(j_{*}V) \to 0 \}$

• In these examples, *degeneration at* E^1 , i.e.,

 $\boldsymbol{H}^{1}(\mathbb{P}^{1}, F^{p} \operatorname{DR}(j_{*}V, \nabla)) \longleftrightarrow \boldsymbol{H}^{1}(\mathbb{P}^{1}, \operatorname{DR}(j_{*}V, \nabla)).$

- Filtration indexed by $p \in A + \mathbb{N}$, $A \subset [0, 1)$ finite.
- What could be the use of a "Hodge filtration" which does not lead to Hodge theory? A hope it that it imposes bounds to p-adic valuations of eigenvalues of Frobenius.

Adolphson-Sperber, 1987–89.

- Lower bound of the *p*-adic Newton polygon of the *L*-function attached to a nondeg. Laurent pol. *f* ∈ Z[x₁^{±1},...,x_n^{±1}] given by a Newton polygon attached to *f*.
- -----> Answers Deligne's hope, but no Hodge filtration.
- (Would like to interpret this as "Newton above Hodge".)

Simpson, 1990.

- Non abelian Hodge theory on curves. Correspondence between (V, ∇) with reg. sing. (tame) at ∞ and stable tame parabolic Higgs bdles.
- Simpson suggests it would be possible to extend this correspondence to (V, ∇) wild (i.e., with irreg. sing.).
- • Positive answer on curves by CS and Biquard-Boalch $(2000 \pm \epsilon)$.
- Positive answer (any dimension) by T. Mochizuki (2011).
- *Drawback:* no Hodge filtration.

Mirror symmetry for Fano's.

- Need to consider a pair $(X, f), f : X \to \mathbb{A}^1, X$ smooth quasi-proj., as possible mirror of a Fano mfld.
- www Various cohomologies $H^{\bullet}(X, f)$ attached to (X, f), e.g.
 - dual of Betti homology (Lefschetz thimbles),
 - de Rham cohomology: hypercohom of $(\Omega_{\chi}^{\bullet}, d + df)$,
 - Periodic cyclic homology,
 - Exponential motives.

Questions on the Hodge theory of Landau-Ginzburg models.

- If (X, f) is mirror of a Fano mfld Y, what is the Hodge filtration on $H^{\bullet}(X, f)$ corresponding to that of $H^{\bullet}(Y)$?
- If Y is a Fano orbifold (e.g. toric, like P(w₀,...,w_n)), H[•]_{orb}(Y) (Chen-Ruan) has rational exponents (corresponding to "twisted sectors"). Natural to expect that F[•] for (X, f) is indexed by A + N, A ⊂ [0, 1) ∩ Q.
- If Y is a Fano mfld, how to translate to $F^{\bullet}H^n(X, f)$ Hard Lefschetz for $c_1(TY)$?

*E*₁-degeneration

Hodge realization for a pair (X, f).

- *X* smooth quasi-proj.
- Choose a compact. $f : \overline{X} \to \mathbb{P}^1$ of f s.t. $D = \overline{X} \setminus X$ ncd.

• $P := f^*(\infty), |P| \subset D.$

 $H^{k}_{\mathrm{dR}}(X,f) \simeq \begin{cases} \boldsymbol{H}^{k}(\overline{X},(\Omega^{\bullet}_{\overline{X}}(*D),\mathrm{d}+\mathrm{d}f)),\\ \boldsymbol{H}^{k}(\overline{X},(\Omega^{\bullet}_{\overline{X}}(\log D,f),\mathrm{d}+\mathrm{d}f)) \end{cases}$

$$\begin{split} \Omega^{k}_{\overline{X}}(\log D, f) &:= \left\{ \omega \in \Omega^{k}_{\overline{X}}(\log D) \mid \mathrm{d}f \wedge \omega \in \Omega^{k+1}_{\overline{X}}(\log D) \right\} \\ &= \left\{ \omega \in \Omega^{k}_{\overline{X}}(\log D) \mid (\mathrm{d} + \mathrm{d}f \wedge) \omega \in \Omega^{k+1}_{\overline{X}}(\log D) \right\} \end{split}$$

- Quasi-isomorphic filtered complexes:
 - Yu: $F^{\bullet}(\Omega^{\bullet}_{\overline{X}}(*D), d + df),$
 - K-K-P: $F^{\bullet}(\Omega_{\overline{X}}^{\bullet}(\log D, f), d + df)).$

 $F^{p}(\Omega^{\bullet}_{\overline{X}}(\log D, f), \mathrm{d}) := \{0 \to \Omega^{p}(\log D, f) \to \dots \to \Omega^{n}(\log D, f) \to 0\}$

• Recall: for X quasi-projective (and $f \equiv 0$)

Theorem (Degeneration at E_1 , Deligne (Hodge II, 1972)).

 $\boldsymbol{H}^{\bullet}(\overline{X}, F^{p}(\Omega^{\bullet}_{\overline{X}}(\log D), \mathrm{d})) \hookrightarrow \boldsymbol{H}^{\bullet}(\overline{X}, (\Omega^{\bullet}_{\overline{X}}(\log D), \mathrm{d})) \simeq \boldsymbol{H}^{\bullet}(X, \mathbb{C}).$

Theorem (Esnault-S.-Yu, Katzarkov-Kontsevich-Pantev, M. Saito, T. Mochizuki).

- The spectral seq. for F[●](Ω[●]/_X(*D), d + df), equivalently for F[●](Ω[●]/_X(log D, f), d + df)), degenerates at E₁. *mm* Irreg. Hodge filtr. F[●]H^k_{dP}(X, f).
- Four different proofs:
 - M. Saito uses a comparison with nearby cycles of *f* along *f*^{*}(∞) and Steenbrink/Schmid limit theorems.
 - K-K-P use reduction to char. p à la Deligne-Illusie. But need assumption that f^{*}(∞) is reduced.
 - E-S-Y use reduction to $X = \mathbb{A}^1$ by pushing forward by f and previous results on CS extending the original construction of Deligne on curves by means of *twistor D-modules*.
 - T. Mochizuki uses the full strength of twistor D-modules in arbitrary dimensions.
- Can take into account multiplicities of $f^*(\infty)$ to refine F^{\bullet} and index it by $A + \mathbb{N}$,

$$A = \left\{ \ell / m_i \mid 0 \leq \ell < m_i, \ m_i = \text{mult. of a component of } f^*(\infty) \right\}$$

Irregular Hodge-Tate structures

- $H := H^k(X, f)$, monodromy induced by $H^k(X, e^{i\theta}f)_{\theta \in [0, 2\pi]}$
- $F_{irr}^{\bullet} H$: irreg. Hodge filtr.
- if *unipotent* monodromy *www* Jakobson-Morosov filtr. *M*.*H* associated to its nilpotent part.
- Define $W_{\ell}H = M_{\ell-k}H$
- *unipotent* monodromy \implies jumps of $F_{irr}^{\bullet}H$ are integers. *Definition.* $H^k(X, f)$ is *irreg. Hodge-Tate* if *unipotent* monodr. and

$$\forall p, \quad \dim \operatorname{gr}_{2p}^{W} H = \dim \operatorname{gr}_{F_{\operatorname{irr}}}^{p} H \quad \text{and} \quad \operatorname{gr}_{2p+1}^{W} H = 0$$

Conjecture (K-K-P, 2017). If (X, f) is the Landau-Ginzburg model mirror to a projective Fano mfld Y, then $H^n(X, f)$ ($n = \dim X$) is irregular Hodge-Tate.

Many works on the conjecture.

- Lunts, Przyjalkowski, Harder
- Shamoto

The toric case.

- Lattices $M \subset \mathbb{R}^n$, $N = M^{\vee}$.
- Δ ⊂ ℝⁿ: reflexive simplicial polyhedron with vertices in *M*,
 s.t. 0 is the only integral point in the interior of Δ.
- Δ^* : dual polyhedron (vertices in *N* and of the same kind as Δ).
- Σ : fan dual to Δ , = cone (0, Δ^*).
- $Y = \mathbb{P}_{\Sigma}$ assumed smooth, hence toric Fano (Batyrev).
- Chow ring A*(Y) ≃ H^{2★}(Y, Z) generated by div. classes D_v,
 v ∈ Vertices(Δ*) =: V(Δ*).
- $c_1(K_Y^{\vee}) = \sum_{v \in V(\Delta^*)} D_v$ satisfies Hard Lefschetz on $H^{2\star}(Y, \mathbb{Q})$.

• Coordinates
$$x_1, \dots, x_n$$
 s.t. $\mathbb{C}[N] = \mathbb{C}[x, x^{-1}]$.
 $X := \operatorname{Spec} \mathbb{C}[x, x^{-1}],$
 $f : X \longrightarrow \mathbb{A}^1, \qquad f(x) = \sum_{v \in V(\Delta^*)} x^v$
 $H^n_{\mathrm{dR}}(X, f) = \Omega^n_X / (\mathrm{d} + \mathrm{d} f \wedge) \Omega^{n-1}_X \simeq \left[\mathbb{C}[x, x^{-1}] / (\partial f)\right] \cdot \frac{\mathrm{d} x_1}{x_1} \wedge \cdots \wedge \frac{\mathrm{d} x_n}{x_n}$

- Newton filtration \mathbb{N}_{\bullet} on the Jacobian ring $\mathbb{Q}[x, x^{-1}]/(\partial f)$
- Borisov-Chen-Smith: $H^{2\star}(Y,\mathbb{C}) \simeq \operatorname{gr}^{\mathcal{N}}_{\star}(\mathbb{C}[x,x^{-1}]/(\partial f))$
- Hard Lefschetz $\implies \forall k \text{ s.t. } 0 \leq k \leq n/2,$

 f^{n-2k} : $\operatorname{gr}_{k}^{\mathcal{N}}(\mathbb{C}[x, x^{-1}]/(\partial f)) \xrightarrow{\sim} \operatorname{gr}_{n-k}^{\mathcal{N}}(\mathbb{C}[x, x^{-1}]/(\partial f))$

- Idea of Varchenko from Singularity theory (Doklady, 1981): interpret multipl. by *f* as the nilpotent part of a monodromy operator.
- Adapt and apply this idea to $H^n_{dR}(X, f)$
- One shows that

 $\dim F^p_{\operatorname{irr}} H^n_{\operatorname{dR}}(X, F) = \dim \mathcal{N}_{n-p} \big(\mathbb{C}[x, x^{-1}]/(\partial f) \big).$

• \implies irreg. Hodge-Tate property.

Computation of Hodge numbers by means of irregular Hodge theory

- Standard course of calculus: often easier to compute convolution $f \star g$ by applying *Fourier transformation*.
- Same idea for Hodge nbrs.
- Arithmetic motivation: Functional equation for the *L*-function attached to symmetric power moments of Kloosterman sums.
- Complex analogue of the Kloosterman sums: modified Bessel differential equation on G_m.
- Kl_2 : $(\mathscr{O}_{\mathbb{G}_{\mathrm{m}}}^2, \nabla), \quad \nabla(v_0, v_1) = (v_0, v_1) \cdot \begin{pmatrix} 0 & z \\ 1 & 0 \end{pmatrix} \cdot \frac{\mathrm{d}z}{z}.$
- For k ≥ 1, want to consider Sym^k Kl₂:
 free C[z, z⁻¹]-mod. rk k + 1 with connection, and its de Rham cohomology

 $H^1_{\mathrm{dR}}(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^k \operatorname{Kl}_2) = \operatorname{coker}\left[\nabla : \operatorname{Sym}^k \operatorname{Kl}_2 \longrightarrow \operatorname{Sym}^k \operatorname{Kl}_2 \otimes \frac{\mathrm{d}z}{z}\right]$

Theorem (Fresán-S-Yu). Assume k odd for simplicity.

- $H^1_{dR}(\mathbb{G}_m, \operatorname{Sym}^k \operatorname{Kl}_2)$ canonically endowed with a MHS of weights k + 1 & 2k + 2.
- dim $H^1_{dR}(\mathbb{G}_m, \operatorname{Sym}^k \operatorname{Kl}_2)^{p,q} = 1$ if p + q = k + 1 and p = 2, ..., k 1 or p = q = k + 1, and 0 otherwise.

Synopsis.

• *Motivations.* Series of papers by Broadhurst-Roberts: some Feynman integrals expressed as period integrals

 $\int_0^\infty I_0(t)^a K_0(t)^b t^c dt \qquad (I_0, K_0 : \text{``modified Bessel functions''}).$

- www various conjectures on L fns of Kloosterman moments.
- On Sym^k Kl₂, ∇ has a regular sing. at z = 0, but an *irregular* one at ∞ , hence *does not* underlie a PVHS (Griffiths th.).
- $H^1_{dR}(\mathbb{G}_m, \operatorname{Sym}^k \operatorname{Kl}_2)$ has a *motivic* interpretation: this explains the MHS.
- Sym^k Kl₂ underlies a *variation of irregular Hodge structure* (i.e., an irregular mixed Hodge module on $\mathbb{P}^1 \supset \mathbb{G}_m$).
- $\implies H^1_{dR}(\mathbb{G}_m, \operatorname{Sym}^k \operatorname{Kl}_2)$ endowed with an *irregular Hodge filtration*.
- We prove that this irreg. Hodge filtr. *coincides* with the Hodge filtr. of the MHS.
- We compute this irreg. Hodge filtration by toric methods of Adolphson-Sperber & Yu. (Irreg. analogue of Danilov-Khovanski computation for toric hypersurfaces).