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Abstract. We illustrate the notion of irregular Hodge theory on the example of pairs
(U, f) formed by a smooth quasi-projective variety with a regular function. Such a
datum can be sometimes seen as a mirror image of a projective Fano manifold (or
orbifold). After indicating Deligne’s (1984) initial motivation for such a theory, we
introduce the notion of exponential mixed Hodge structure (Kontsevich-Soibelman),
which we illustrate for pairs (U, f) by introducing the notion of space of global van-
ishing cycles and its irregular Hodge filtration. We conclude with some general results
on the theory of irregular mixed Hodge modules, including a Kodaira-Saito-type van-
ishing theorem for irregular Hodge bundles.
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1.1. Introduction

Our main object of study in these lectures consists of pairs (U, f) formed by a
smooth quasi-projective variety with a regular function on it. Techniques of Singu-
larity theory and of Algebraic geometry can be simultaneously applied

• by regarding (U, f) as analogous to f : (Cn, 0) → (C, 0),
• and by considering the particular case U = (U, 0).

Mirror symmetry for Fano manifolds or orbifolds can produce such pairs, known
as Landau-Ginzburg models.

• Singularity theory leads us to define spaces of global vanishing cycles Hk(U, f)

together with a monodromy structure.
• Algebraic geometry leads us to consider simultaneously

• the Betti (topological) aspects, defined over Q,
• the de Rham aspects (over C, or Q if (U, f) is defined over Q),
• the Hodge aspects (which Hodge theory is suitable for such pairs?),
• the motivic aspects (make clear the relations between these various aspects,

e.g. develop the notion of exponential period).

Irregular Hodge theory (Deligne, 1984). To f ∈ Z[x1, . . . , xn] one can associate for each
q = pk an exponential sum

∑
x∈Fn

q
exp

(
2πi(TrFq/Fp

f(x))/p
)
, and then, varying p, an

L-function, which, in good cases (e.g. f is tame) is a polynomial or the inverse of a
polynomial with coefficients in Q(ζp). Deligne introduced a notion of irregular Hodge
filtration as an invariant which would allow one to bound the p-adic valuation of the
coefficients of this polynomial.

Running example. Let M be the standard lattice Zn ⊂ Rn. Let ∆ ⊂ R ⊗ M be
a convex polyhedron with set V (∆) of vertices contained in M and having 0 in its
interior. We say that ∆ is

• simplicial is each face is a simplex,
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• reflexive if the equation of any hyperplane containing a codimension-one face
takes the form L(x) + 1 = 0 for some integral linear form L. (In such a case, 0 is the
unique integral point in the interior of ∆.)

Let ∆∨ = {y ∈ (Rn)∨ | ⟨y, x⟩ ⩾ −1} be the dual polyhedron. Then V (∆∨) ⊂
N = M∨, and ∆∨ is also simplicial reflexive with 0 in its interior. The fan Σ ⊂ N

dual to ∆, is also the cone on ∆∨ with apex 0. We assume that Σ is the fan of
nonsingular toric variety XΣ of dimension n, that is, each set of vertices of the same
(n− 1)-dimensional face of ∂∆∨ is a Z-basis of N . It is known (Batyrev) that XΣ is
Fano and any smooth toric Fano variety is obtained like this.

Let us fix coordinates x = (x1, . . . , xn) such that Q[N ] = Q[x, x−1]. Our running
example will be the Laurent polynomial f(x1, . . . , xn) =

∑
v∈V (∆∨) x

v.

The space of global vanishing cycles, Betti/de Rham aspects
For each k ∈ N, we set

Hk
Betti(U, f) := lim

|t|→∞
Hk(Uan, f−1(t);Q) (provisional definition),

Hk
dR(U, f) := Hk(U, (Ω

•
U ,d + df)).

Theorem. The space of global vanishing cycles Hk(U, f) admits a canonical irregular
mixed Hodge structure.

1.2. Exponential Hodge theory and the irregular Hodge filtration

1.2.a. Admissible variations of MHS on the punctured line. Recall that a
(graded-polarizable) MHS H consists of the data

• (HC, F
•): ↘ filtered finite-dim. C-vector space,

• (HQ,W•): ↗ filtered finite-dim. Q-vector space,
• a comparison isomorphism comp : HC ≃ HQ ⊗ C

such that grWℓ H is a polarizable Hodge structure of weight ℓ for any ℓ ∈ Z. This is
a neutral Tannakian category with respect to ⊗, and the Betti (resp. de Rham) fiber
functor is the underlying Q- (resp. C-) vector space.

For a variation H of MHS (e.g. on a curve C),
• (HC,∇, F •) is a flat holomorphic bundle filtered by sub-bundles satisfying the

Griffiths transversality property,
• (HQ,W•) is a Q-local system on C filtered by sub-local systems,
• there is given a comparison isomorphism comp : (HC)

∇ ≃ HQ ⊗ C,
• the polarization on grWℓ H is flat.

This is a neutral Tannakian category with respect to ⊗ and each point of C leads to
a fiber functor. Note that the fiber is more than a vector space: it is a MHS. One
usually adds the condition of admissibility at infinity on C, which corresponds to the
meromorphicity of the period map.
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1.2.b. Exponential mixed Hodge structures. Assume that C is a punctured
affine line C ∖ {p1, . . . , pr}. In order to consider (W -filtered) objects on C and not
only on C∖{p1, . . . , pr}, one replaces (W -filtered) a Q-local system with a Q-perverse
sheaf on C (coordinate t) with possible singularities at the punctures, and the filtration
W• is a filtration by Q-perverse subsheaves (in the abelian category Perv(C)). The
category of such perverse sheaves is not Tannakian with respect to ⊗, but the group
structure on C allows one to replace ⊗ with the convolution product F⋆G = Rs∗(F⊠G)

(up to a suitable shift), where s : C× C → C is the sum map (t1, t2) 7→ t1 + t2.

The category Perv0(C). The full subcategory Perv0(C) ⊂ Perv(C) of perverse sheaves
with vanishing global cohomology on C is stable by convolution. Firstly, one notices
that the convolution of two constructible complexes remains constructible and if one
of them has zero global cohomology, so has the convolution. This is because of the
isomorphism

RΓ(C, Rs∗(F ⊠ G)) ≃ RΓ(C,F)⊗RΓ(C,G).

On the other hand, if F and G are perverse and G ∈ Perv0, then F ⋆G is also perverse,
hence in Perv0 according to the previous identification. This can be seen in two
ways: either by giving a precise description of perverse sheaves on C, or by using the
Fourier transformation of constructible complexes and the property (as expected) that
it transforms the convolution product into the tensor product; the Fourier transform
of a perverse sheaf F on C is a perverse sheaf on the dual line C∨ which is a shifted
locally constant sheaf L[1] on (C∨)∗, and F ∈ Perv0(C) iff its Fourier transform takes
the form Ri∗L[1], with i : (C∨)∗ ↪→ C∨.

The projector Π : Perv(C) → Perv0(C). An example of an object of Perv0(C) is
the perverse sheaf j!QC∗ [1], where j : C∗ ↪→ C is the inclusion. For F ∈ Perv(C),
Π(F) := F ⋆ (j!QC∗ [1]) is thus an object of Perv0(C). The functor Π is exact. The
projector Π has the effect of killing any constant perverse sheaf, hence, for F ∈ Perv(C)
any constant subquotient of F is annihilated by Π.

Tannakian property of Perv0(C). Let us consider the compactification of C as a closed
disc and let

⌢C denote the open subset which is the union of C and the open half-
interval Re(t) > 0 in its boundary. We let α : C ↪→ ⌢C denote the open inclusion of C
into

⌢C.

Proposition. The category Perv0(C) of perverse sheaves with vanishing global cohomol-
ogy on C is a neutral Tannakian category with respect to ⋆, with fiber functor given
by F 7→ H0

c (
⌢C, Rα∗F).

Weight filtration. If F ∈ Perv(C) is equipped with a filtration W•F (it will be the
weight filtration when considering mixed Hodge modules), then ΠF acquires a filtra-
tion W EMHS

• (ΠF) := Π(W•F). Note that ΠF can be pure of weight w without F being
pure.
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Caveat. The perverse sheaf j!QC∗ [1] has a weight filtration with weights 1, 2, an one
can define a weight filtration on ΠF = F ⋆ (j!QC∗ [1]) = Rs∗(F⊠ j!QC∗ [1]) in the usual
way. However, the latter is not in general equal to W EMHS

• (ΠF).

The de Rham side. On the other hand, the flat algebraic bundle (HC,∇) on A1 ∖
{p1, . . . , pr} is replaced with a quasi-coherent OA1-module M with connection ∇ (in
fact, a holonomic DA1-module) and a filtration F •M by coherent subsheaves. We
obtain the category MHM(A1) of mixed Hodge modules by imposing various supple-
mentary constraints to M = ((M, F •), (F,W•), comp) at the punctures. Any ad-
missible variation H of MHS on A1 ∖ {p1, . . . , pr} can be extended to an object of
MHM(A1). Conversely, the restriction of an object of MHM(A1) to the complement of
its singularities is and admissible variation of MHS.

Shortcuts. M⊗ Et = (M,∇+ dt) and
p

DR(M) = (Ω•
A1 ⊗M,∇)[1].

Definition. The category EMHS of exponential mixed Hodge structure is the sub-
category of MHM(A1) consisting of objects M = ((M, F •), (F,W•), comp) such that
F ∈ Perv0(C) and comp :

p

DRM
∼−→ F ⊗ C is an isomorphism.

Theorem (Kontsevich-Soibelman). The category EMHS is a neutral Tannakian category
with respect to ⋆ with Betti fiber functor being that of Perv0, and de Rham functor
defined as M 7→ H0(A1,

p

DR(M⊗ Et)).

Remarks
(1) For a mixed Hodge module M on A1, the comparison isomorphism comp

induces an isomorphism between the de Rham and the complex Betti fibers:
H0(A1,

p

DR(M⊗ Et)) ≃ H0
c (
⌢C, Rα∗FC).

(2) The projector Π extends as a functor MHM(A1) → MHM(A1) with essential
image EMHS.

(3) MHS is indeed a full subcategory of EMHS by the following trick: we identify
it with the subcategory of EMHS consisting of objects M such that the underlying
perverse sheaf F is the constant local system (shifted by one) on C ∖ {0}. One
recovers a usual MHS by taking vanishing cycles at the origin. Furthermore, the
weight filtration in MHS and that in EMHS coincide.

Question. The Betti fiber of an object in EMHS is naturally equipped with the induced
weight filtration W•H

0
c (
⌢C, Rα∗FC) := H0

c (
⌢C, Rα∗W•FC). In the case of an admissible

variation of MHS, we also get a Hodge filtration on the de Rham fiber. Is there
any kind of Hodge filtration on the de Rham fiber of an exponential mixed Hodge
structure?
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2.1. EMHS for (U, f)

Set n = dimU . Recall that the constant sheaf
p

QU = Q[n] is a perverse sheaf on
U . For each j ∈ Z, one can consider the perverse cohomology sheaves Fj =

p

Rjf∗
p

QU

on C. They do not belong to Perv0(C) in general, so one considers their projection
Π(Fj) ∈ Perv0(C). Such a construction can be lifted to mixed Hodge modules as
we only use standard functors for it. Starting from the pure Hodge module

p

QH

U =

((OU , F•),
p

QU ) of weight n, we obtain in this way the object Hj+n
EMHS(U, f) ∈ EMHS.

Proposition. The Betti fiber of Hk
EMHS(U, f) is isomorphic to Hk

Betti(U, f) and its
de Rham fiber is isomorphic to Hk

dR(U, f).

Corollary. The space Hk
Betti(U, f) comes equipped with a canonical weight filtration.

Example: f = tg. Assume that U = V × A1t and f = t · g, with g : V → A1. Then
for each k, Hk

EMHS(U, f) belongs to MHS. In other words, for each j ∈ Z, the perverse
sheaf

p

Rjf∗
p

QU is constant (shifted by one) on C∗.

Running example f =
∑

v∈V (∆∨) x
v . In this case, f is a tame function on U =(C∗)n.

Then Hk
EMHS(U, f)=0 for k ̸=n and Hn

EMHS(U, f) is pure of weight n. Considering the
projective Fano variety XΣ, one has dimHn

Betti/dR(U, f) = dimH∗(XΣ). We will see
later how to recover the grading of H∗(XΣ).

2.2. Irregular Hodge filtration on H•
dR(U, f)

Let us fix a compactification f : X → P1 of f : U → A1 such that D = X ∖ U

is a ncd. Recall that the filtration by “stupid” truncation (“filtration bête”) of the
logarithmic de Rham complex (Ω•

X(logD),d) is the filtration

F p(Ω
•
X(logD),d) =

{
0 → · · · → 0 → Ωp

X(logD) → · · · → Ωn
X(logD) → 0

}
,

and that, for each p and k, the natural morphism

Hk
(
X,F p(Ω

•
X(logD),d)

)
−→ Hk

dR(U)
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is injective, with image defining the decreasing filtration F •Hk
dR(U).

Let P denote the (non-reduced) divisor f∗(∞) with support Pred. For any a ∈ Q,
we can consider the integral part ⌊aP ⌋, that is, if P =

∑
i miPi with Pi reduced, we

set ⌊aP ⌋ =
∑

i⌊ami⌋Pi. The family of divisors ⌊aP ⌋ with a ∈ Q is increasing, and
there exists a finite set A of rational numbers in [0, 1) such that the jumps occur at
most for a ∈ A+Z (since the jumps occur at most when the denominator of a divides
some mi). Multiplication by f sends OX(⌊aP ⌋) to OX(⌊(a + 1)P ⌋). On noting that
df = f · df/f and that both d and df/f preserve logarithmic poles along D, we can
consider for each α ∈ A the subsheaf of Ωk

X(logD)(⌊(αP ⌋):

Ωk(logD, f, α) = ker
[
df : Ωk

X(logD)(⌊(αP ⌋)→Ωk+1
X (∗D)/Ωk+1

X (logD)(⌊αP ⌋)
]

and consider the filtered Kontsevich-Yu complex (Ω•(logD, f, α),d + df) with
F p(Ω•(logD, f, α),d + df) given by:{

0 → · · · → 0 → Ωp(logD, f, α) → · · · → Ωn(logD, f, α) → 0
}
,

We omit α in the notation if α = 0. The properties previously recalled for the
logarithmic de Rham complex extend to the Kontsevich complex.

Theorem.

(1) For each α ∈ A, the inclusion

(Ω
•
(logD, f),d + df) ↪−→ (Ω

•
(logD, f, α),d + df)

is a quasi-isomorphism, leading to an identification

Hk
(
X, (Ω

•
(logD, f),d + df)

)
= Hk

(
X, (Ω

•
(logD, f, α),d + df)

)
.

(2) Furthermore, for each α ∈ A, p ⩾ 0 and k ⩾ 0, the natural morphism

Hk
(
X,F p(Ω

•
(logD, f, α),d + df)

)
−→ Hk

dR(U, f)

is injective, with image defining the decreasing filtration F •
irr,αH

k
dR(U, f). For each k,

we have a decomposition

Hk
dR(U, f) ≃

⊕
p⩾0

grpFirr,α
Hk

dR(U, f) ≃
⊕

p+q=k

Hq(X,Ωp(logD, f, α)).

(3) A similar result holds for the Kontsevich-Yu complex “with compact support”
(Ω•(logD, f, α)(−D),d + df).

Complement. The irregular Hodge filtration can also be defined from the meromorphic
de Rham complex. In such a way, by looking at the order of the poles, one finds an
inclusion, for α, β ∈ [0, 1):

p− α ⩾ q − β =⇒ F p
irr,αH

k
dR(U, f) ⊂ F q

irr,βH
k
dR(U, f).

One can thus consider the irregular Hodge filtration as indexed by p ∈ −A + Z: if
p = p− α, then one sets F p

irrH
k
dR(U, f) = F p

irr,αH
k
dR(U, f).
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2.3. The Kontsevich-Yu bundles and the Brieskorn-Deligne bundles

Theorem. The dimension of the twisted de Rham complex

Hk
(
X, (Ω

•
(logD, f, α), uod + vodf)

)
is independent of (uo, vo) ∈ C2.

It follows that we can define a vector bundle Kk
α on P1, called the Kontsevich

bundle with index α, by decomposing P1 = A1
v ∪ A1

u with u = v−1 on Gm : A1
v ∩ A1

u,
and setting

Kk
α|A1v = Hk

(
X, (Ω

•
(logD, f, α)[v],d + vdf)

)
,

Kk
α|A1u = Hk

(
X, (Ω

•
(logD, f, α)[u], ud + df)

)
≃ Hk

(
X, (u−•

Ω
•
(logD, f, α)[u],d + df/u)

)
,

Kk
α|Gm = Hk

(
X, (Ω

•
(logD, f, α)[u, u−1],d + df/u)

)
≃ Hk

(
X, (Ω

•
(logD, f, α)[v, v−1],d + vdf)

)
,

In a way analogous to that of theorem of the previous section, the filtration by the
stupid truncation of each of these twisted de Rham complexes degenerates at E1 and
induces a filtration F •

irr,αK
k
α indexed by N. Its restriction at u = 1 is the filtration

considered in that theorem.

Proposition. The filtration F •
irr,αK

k
α is the Harder-Narasimhan filtration of Kk

α, that
is,

∀ p ∈ N, ∃hp
α ∈ N, grpFirr,α

Kk
α ≃ OP1(p)h

p
α .

Behavior on Gm. One checks, in a way analogous to that of the theorem of the previous
section, that the natural morphism Kk

β |Gm
→ Kk

α|Gm
is an isomorphism for β ⩽ α ∈ A

and we set Hk
dR(U, f/u) = Hk

(
X, (Ω•(logD, f)[u, u−1],d+df/u)

)
the common value

of these C[u, u−1]-modules.
By restricting to Gm the Harder-Narasimhan filtration of each Kk

α, we obtain a
family of filtrations F •

irr,αH
k
dR(U, f/u) indexed by α ∈ A. Furthermore, for β ⩽ α ∈ A,

the quasi-isomorphism

(Ω
•
(logD, f, β)[u, u−1],d + df/u) −→ (Ω

•
(logD, f, α)[u, u−1],d + df/u)

is filtered with respect to the filtration by stupid truncation, so that we obtain, for
all p ∈ N, the inclusion

F p
irr,βH

k
dR(U, f/u) ⊂ F p

irr,αH
k
dR(U, f/u).

We can thus regard the irregular Hodge filtration as indexed by −A + Z ⊂ Q by
setting, for p = p− α ∈ −A+ Z,

F p
irrH

k
dR(U, f/u) := F p

irr,αH
k
dR(U, f/u).
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Proposition. The irregular Hodge filtration F p
irrH

k
dR(U, f/u) is a filtration by subbun-

dles, that is, each C[u, u−1]-module

grpFirr
Hk

dR(U, f/u) := F p
irrH

k
dR(U, f/u)/F

>p
irr H

k
dR(U, f/u)

is free, where >p denotes the successor of p in −A+ Z.

The connection on Hk
dR(U, f/u). The complex (Ω•(logD, f)[u, u−1],d + df/u) comes

equipped with an action ∇∂u
commuting with d+df/u: u∇∂u

(ηuk) = (k− f/u)ηuk.
This connection descends to Hk

dR(U, f/u) and extends as a meromorphic connec-
tion on each Kk

α with a pole of order two at u = 0 and a regular singularity at
u = ∞. The irregular Hodge filtration satisfies the Griffiths transversality property
∇(F p

irr,αK
k
α|Gm

) ⊂ Ω1
Gm

⊗ F p−1
irr,αK

k
α|Gm

for all p ∈ N.

Limiting properties. At the limit u → ∞ (i.e., v → 0) where the connection ∇ has a
regular singularity, the filtration F •

irrH
k
dR(U, f/u) behaves in the same way as a the

Hodge filtration of a polarizable Hodge module in the sense of M. Saito. Furthermore,
one can show that, for each α ∈ A, the limit filtration of F •

irr,αH
k
dR(U, f/u) is the

Hodge filtration of a mixed Hodge structure, isomorphic to the limiting Hodge filtra-
tion of the mixed Hodge structure on Hk(U, f−1(t);C) when t → ∞ on the generalized
eigenspace corresponding the eigenvalue exp(−2πiα) of the monodromy.

On the other hand, the limit at u = 0 is much less understood.

Link with the spectrum at infinity. Since Hk
dR(U, f/u) has a connection with a regular

singularity at u = ∞, we can consider for each a ∈ Q the Deligne canonical lattices
V a(U, f) which are free C[u−1]-module with logarithmic connection whose residues
has eigenvalues in [a, a + 1). On the other hand, the Brieskorn lattice Gk(U, f) =

Hk
(
X, (u−•Ω•(logD, f)[u],d+df/u)

)
is a free C[u]-module, according to the previous

theorem. Gluing both for a = −α with α ∈ [0, 1) ∩Q leads to the Brieskorn-Deligne
bundle Hk

α.

Theorem. For each α ∈ [0, 1) ∩Q, the bundles Kk
α and Hk

α are isomorphic.

Definition. The spectrum at infinity in degree k of (U, f) is the set of pairs (−p, νkp )

with a ∈ Q and

νkp = dim
V p ∩Gk

[V >p ∩Gk] + [V p ∩ uGk]
.

Proposition (Spectrum at infinity). For each p ∈ Q, we have:

rk grpFirr
Hk

dR(U, f/u) = νkp .
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APPLICATIONS

3.1. A conjecture of K-K-P in the toric case

I will state and sketch the proof of this conjecture in the case of the running example
(toric case). Other cases of the conjecture are proved in the literature, but the general
case is still open. Before stating the result, let me add some properties of the irregular
Hodge filtration in this example, where U = (C∗)n and f(x) =

∑
v∈V (∆∨) x

v.

The irregular Hodge filtration of (U, f) jumps at integers only. It is enough to prove
that the spectral numbers (i.e., a ∈ Q such that νna ̸= 0) are integers. The spectral
numbers can be computed as the jumping numbers of the Newton filtration on the
Jacobian quotient C[x, x−1]/(∂f), according to a result of Douai-Sabbah, analogous
to a result of Varchenko in Singularity theory.

Since ∆ and ∆∨ are simplicial, reflexive and with vertices in Zn, the jumps of the
Newton filtration are integers.

The monodromy at infinity of f is unipotent. This property follows from the relation
between the spectral numbers and the eigenvalues of the monodromy of Hn(U, f−1(t))

around infinity: these eigenvalues are of the form exp(2πi spectral numbers).

Statement of the conjecture. The only nonvanishing irregular Hodge numbers are de-
noted hp,q(f):

hp,q(f) := dimgrpFirr
Hp+q

DR (U,d + df).

In the case of the running example, we then have hp,q(f) = 0 unless p+ q = n.
Let W• be the monodromy filtration of the nilpotent part of the monodromy around

t = ∞ on Hn(U, f−1(t)) centered at n. The conjecture of K-K-P that we consider is
the equality

hp,n−p(f) = dimgrW2pH
n(U, f−1(t)).

Theorem. The above equality holds true for the Laurent polynomial f(x).
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Sketch of proof. One knows that X is a smooth Fano projective variety (i.e., the
canonical bundle KX is anti-ample). In particular, by anti-ampleness of KX , the
cup product with c1(TX) satisfies the Hard Lefschetz property on the Q-Chow ring
of X. Due to a formula of Borisov-Chen-Smith, this Chow ring is identified with the
graded ring with respect to the Newton filtration:

grN• (Q[x, x−1]/(∂f).

Then one identifies multiplication by c1(TX) = f on this ring tensored by C with
the action of the monodromy on Hn

dR(U, f), by an argument similar to that used by
Varchenko. The Hard Lefschetz property implies then the desired equality.

3.2. What is an irregular Hodge structure?

General procedure to construct an irregular Hodge filtration. Let H be a finite-
dimensional C-vector space and let u be a new variable. Assume that the free
C[u]-module G = H[u] is equipped with an algebraic connection ∇ having a pole of
order two at the origin and no other pole. It defines a local system on C∗. Assume
that the eigenvalues of the monodromy of this local system have absolute value equal
to one (or are roots of the unity). The connection defines, for each p ∈ R (or Q), a
Deligne extension V p which is a free C[u−1]-module such that the connection ∇ has
a simple pole at u−1 = 0 and the eigenvalues of its residue belong to [p, p + 1). We
regard both G and V p as contained in H[u, u−1] and we identify H with G/(u− 1)G.
Then we set

F p
irr(H) =

V p ∩G

(V p ∩G) ∩ (u− 1)G
.

Without any other assumption, such a filtration does not deserve the name of ‘Hodge’.
For example, given a morphism of C[u]-modules with connection φ : (G,∇) →
(G′,∇′), the morphism induced mod (u− 1), H → H ′, preserves the filtrations F •

irr,
but need not be strict, a property that would be expected for Hodge filtrations.

Irregular mixed Hodge structures. The definition is given in a few steps. We let σ :

P1 → P1
denote the anti-linear morphism u 7→ −1/u.

(1) (Pure twistor structure) As (G,∇) is the source of the irregular Hodge filtra-
tion, a condition replacing oppositeness in Hodge theory has to hold for (G,∇). A
pure integrable twistor structure T of weight w consists of the data (G,∇, γ), where
γ is a gluing (G,∇)|C∗

∼−→ σ∗(G,∇)|C∗ , so that the corresponding bundle on P1 is
isomorphic to OP1(w)⊕r.

(2) There is a natural notion of polarization for such objects.
(3) There is a natural notion of weight filtration. This leads to the notion of mixed

twistor structure (Simpson).
(4) A kind of admissibility condition is to be added to obtain good properties of the

irregular Hodge filtration. For that purpose, one considers the rescaling operation,
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that rescales the parameter: u 7→ uτ , τ ∈ C∗. The pullback of the given mixed
twistor structure (T,W.•) by (z, τ) 7→ u = z/τ can be regarded as a variation of mixed
twistor structure parametrized by τ ∈ C∗. An integrable mixed twistor structure is
an irregular MHS if this variation satisfies suitable extendability conditions at τ = 0.

Theorem.

(1) The category IrrMHS is an abelian category and any morphism is strictly com-
patible with both the weight and the irregular Hodge filtration.

(2) The de Rham fiber of an object of EMHS is canonically equipped with an irreg-
ular mixed Hodge structure.

(3) The (already defined) irregular Hodge filtration F •
irrH

k
dR(U, f) is the irregular

Hodge filtration of Hk
dR(U, f) as the de Rham fiber of Hk

EMHS(U, f).

This notion can be extended with a base of arbitrary dimension and leads to the
category IrrMHM(X) of irregular mixed Hodge modules on a complex manifold X.

3.3. Vanishing theorems

Let X be a smooth projective variety of dimension n. Let T be an object of
IrrMHM(X) and let M be the underlying holonomic (left) DX -module, with its irreg-
ular Hodge filtration indexed by −A+Z for some subset A ⊂ [0, 1). Given p ∈ −A+Z,
the shifted holomorphic de Rham complex

p

DRM is filtered by setting

F p
irr

p

DRM = {0 → F p
irrM → Ω1

X ⊗ F p−1
irr M → · · · → Ωn

X ⊗ F p−n
irr M

•
→ 0},

where • indicates the term in degree zero.

Theorem (Kodaira-Saito vanishing). Let L be an ample line bundle on X and let T,
M and A be as above. Then we have

Hk(X, grF irr

p

DR(M)⊗ L) = 0 for k > 0,

Hk(X, grFirr

p

DR(M)⊗ L−1) = 0 for k < 0.

Corollary. For T, M and A as above, let po ∈ −A+ Z be such that F>po
irr M = 0, and

let us set ωX = Ωn
X . Then we have the vanishing

Hk(X,ωX ⊗ F p
irr(M)⊗ L) = 0 ∀ k > 0, and ∀ p ∈ (po − 1, po].

Note that we can replace F p
irr(M) by grpFirr

(M) in this corollary. We also have the
analogue of Kollár’s vanishing theorem:

Corollary (Kollár vanishing for the irregular Hodge filtration)
Let T, M, A and po be as above. Let f : X → Y be a projective morphism to a
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smooth projective variety Y and let L be an ample line bundle on Y . Then we have
the vanishing

Hk(Y,Rjf∗(ωX ⊗ grpFirr
M)⊗ L) = 0 ∀ j, ∀ k > 0, and ∀ p ∈ (po − 1, po].

3.4. Geometric consequences

Let us emphasize an example where the vanishing theorem applies. Let L be an
ample line bundle on X and let D ⊂ X be a divisor with normal crossings. Recall
that the Kodaira-Norimatsu vanishing theorem: for each integer p ⩾ 0,

Hq(X,Ωp
X(logD)⊗ L) = 0 for p+ q > n,

Hq(X,Ωp
X(logD)⊗ L−1) = 0 for p+ q < n.

The theorem of Section 3.2 enables us to extend this vanishing result when D

contains the support of the pole divisor P of a morphism f : X → P1. Recall the
definition of Ωk(logD, f, α) ⊂ OX(⌊αP ⌋) ⊗OX

Ωk
X(logD) for each α ∈ [0, 1) ∩ Q

and each k ⩾ 0. For example, Ω0(logD, f, α) = OX(−P ) and Ωn(logD, f, α) =

ωX(D + ⌊αP ⌋).

Corollary. With the above assumptions and notations, for each p ⩾ 0, the sheaves
Ωp(logD, f, α) (α ∈ [0, 1) ∩Q) satisfy the Kodaira-Saito vanishing property

Hq(X,Ωp
X(logD, f, α)⊗ L) = 0 for p+ q > n,

Hq(X,Ωp
X(logD, f, α)⊗ L−1) = 0 for p+ q < n.

In particular, we obtain the vanishing Hk(X,ωX(D + ⌊αP ⌋)⊗ L) for k > 0.

Corollary. Let f : X → P1 be a projective morphism and set P = f∗(∞). Assume
that the support of P is contained in a (reduced) divisor with normal crossings D in
X. Let f : X → Y be a projective morphism to a smooth projective variety Y and let
L be an ample line bundle on Y . Then for each α ∈ A we have the vanishing property

Hk(Y,Rjf∗ωX(D + ⌊αP ⌋)⊗ L) = 0 for all k > 0 and all j.
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