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Norm. form: B =




ϕ′
1

. . .

ϕ′
d


 +

C

z

ϕk ∈ 1

z
C[1

z
]

C = const.

Theorem (Levelt-Turrittin). Given A, ∃ a formal
gauge transf. P̂ ∈ GLd(C((z1/q))) s.t.
B̂ = P̂ −1AP̂ + P̂ −1P̂ ′ is a normal form.
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̟ : ∆̃ −→ ∆, (ρ, eiθ) 7−→ z = ρeiθ

Sheaf A e∆
: on ∆∗: A = O,

on S1: A = ker z∂z : C ∞
e∆

→ C ∞
e∆

Basic exact sequence:

0 −→ A
rd 0
S1 −→ AS1[1/z] −→ ̟−1C((z)) −→ 0
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Theorem (Hukuhara-Turrittin).
Locally on S1, ∃ a lifting P̃ ∈ GLd(AS1[1/z]) of P̂ s.t. B̃
is a normal form.

Corollary . The sheaf on ∆̃ of sols of

du/dz = A(z) · u

having entries in A e∆
, resp. in A rd 0

fX
, is a real constr.

sheaf, constant on any interval of S1 on which Re(ϕk)
does not vanish ∀ k.
Example. ϕ = z−mu(z), u(0) 6= 0,

On S1, Re ϕ = 0 ⇐⇒ θ =
1

m
(arg u(0)+π/2) mod Zπ/m.
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X = cplx. manifold, D = hypersurface.

Linear diff. system:
holom. vect. bdle E on X,
merom. connection ∇ : E −→ Ω1

X(∗D) ⊗ E

Integrability cond. : ∇2 = 0.

In local coord. (z1, . . . , zn) and in a local basis of E,

∇ ⇐⇒

n∑

i=1

Ai(z)dzi, Ai ∈ Matd(C{z}(∗D)).

∇2 = 0 ⇐⇒
∂Ai

∂zj
−

∂Aj

∂zi
= [Ai, Aj ]
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⊂ AfX ′

⊂ C ∞
fX ′

.

(E′, ∇′) = π∗(E, ∇).

Complex of sheaves of horizontal sections of ∇′ with
rapid decay is well-defined.

Definition . Its push-forward by π̃′ : X̃ ′ −→ X̃ is the
complex of sheaves of horizontal sections of ∇ with
rapid decay.

Theorem .
If dim X =2, this complex is real constr. on X̃.

Problem. To describe a stratif. of X̃ adapted to this
complex.
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∂ϕ1/∂zi

. . .

∂ϕd/∂zi


 +

Ci
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Ci = const.

+ Integrability cond. : [Ci, Cj] = 0.

New condition: goodness .

∀ j, k ϕj − ϕk

{
= z−mjk · unit, mjk ∈ Nℓ r {0},

≡ 0
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Normal form in dim. > 2

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya).
Given (E, ∇) on X with poles along D,

∃ projective modif. π : X ′ → X s.t.
D′ = π−1(D) is a n.c.d.,
and π∗(E, ∇) has a good formal normal form
near each point of D′, i.e. ∀ x′

o ∈ Y ′ ∈ Strat(D′),
∃ P̂ ∈ GLd(OX̂ ′ |Y ′,x′

o
(∗D′)).

Remarks.

Conj. by C.S. in 2000 and proved in particular cases
in dim. 2.

Proved by T. Mochizuki in 2008, if X, E, ∇ are
algebraic .

Proved by K. Kedlaya in 2009 in the local (formal )
setting, if dim X = 2. Higher dim. in progress.
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X cplx manifold, D n.c.d,

(E, ∇) with good formal normal form near each
point of D.

̟ : X̃ → X: oriented real blow-up of X along the
comp. of D.

Loc. coord. on X: (z1, . . . , zn),
D = {z1 · · · zℓ = 0}.
Loc. coord. on X̃:
(ρ1, eiθ1, . . . , ρℓ, eiθℓ , zℓ+1, . . . , zn).

Theorem (Hukuhara-Turrittin, H. Majima ’84, C.S. ’00).
Locally on ∂X̃, ∃ a lifting P̃ ∈ GLd(AfX

(∗D)) of P̂ s.t.

B̃ is a normal form.
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Char. varieties and Stokes varieties
Y ⊂ X: smooth component of D (n.c.d.) or smooth
codim. ons stratum.

Theorem (Y. Laurent).
∀ r ∈ Q∗

+, ∃ ChY,r(E, ∇) ⊂ T ∗(NY X) which is a
closed anal., Lagrangean and r-homogeneous . The
subset r ∈ Q∗

+ s.t. ChY,r(E, ∇) 6= ∅ is finite .

∃ a well-defined Θ : T ∗(NY X) −→ C, loc. z1ζ1 if
Y = {z1 = 0}.
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mapped into ∂X̃ × S1 by (p, Θ).
The union (r > 0) of the images is the Stokes
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real constr. w.r.t. any stratification compatible with
the projection of St(E, ∇) on X̃.

Corollary .

Stokes phenomenon and real singularities – p. 13/13



Char. varieties and Stokes varieties
Properties if (E, ∇) has a good norm. form, dim. 2:

ChY,r(E, ∇)/R∗
+ is smooth (r > 0).

mapped into ∂X̃ × S1 by (p, Θ).
The union (r > 0) of the images is the Stokes
space StY (E, ∇).

The closure St(E, ∇) of StY (E, ∇) in X̃ × S1 is
real semi-analytic.
Theorem . The sheaf of rapid decay sols of ∇ is
real constr. w.r.t. any stratification compatible with
the projection of St(E, ∇) on X̃.

Corollary . If dim X = 2, and any (E, ∇), then the
complex of rapid decay sols of ∇ is real constructible
on X̃.
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