Stokes phenomenon and real singularities

Claude Sabbah

Centre de Mathématiques Laurent Schwartz UMR 7640 du CNRS École polytechnique, Palaiseau, France Programme SEDIGA ANR-08-BLAN-0317-01

• $\Delta = \text{complex disc}$, complex coord. z.

- $\Delta = \text{complex disc}$, complex coord. z.
- Linear cplx diff. eqn. $\frac{du}{dz} = A(z) \cdot u$,

- $\Delta = \text{complex disc}$, complex coord. z.
- Linear cplx diff. eqn. $\frac{du}{dz} = A(z) \cdot u$,
- A(z) matrix of size d, merom. pole at z = 0.

- $\Delta = \text{complex disc}$, complex coord. z.
- Linear cplx diff. eqn. $\frac{du}{dz} = A(z) \cdot u$,
- A(z) matrix of size d, merom. pole at z = 0.
- Gauge equiv.: $P \in \operatorname{GL}_d(\mathbb{C}(\{z\}))$,

$$A \sim B = P^{-1}AP + P^{-1}P'$$

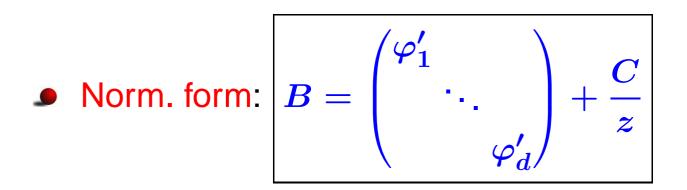
- $\Delta = \text{complex disc}$, complex coord. z.
- Linear cplx diff. eqn. $\frac{du}{dz} = A(z) \cdot u$,
- A(z) matrix of size d, merom. pole at z = 0.
- Gauge equiv.: $P \in \operatorname{GL}_d(\mathbb{C}(\{z\}))$,

$$A \sim B = P^{-1}AP + P^{-1}P'$$

Norm. form:

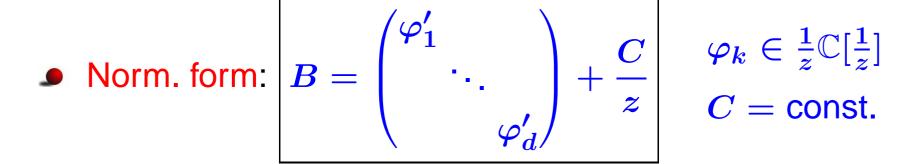
- $\Delta = \text{complex disc}$, complex coord. z.
- Linear cplx diff. eqn. $\frac{du}{dz} = A(z) \cdot u$,
- A(z) matrix of size d, merom. pole at z = 0.
- Gauge equiv.: $P \in \operatorname{GL}_d(\mathbb{C}(\{z\}))$,

$$A \sim B = P^{-1}AP + P^{-1}P'$$



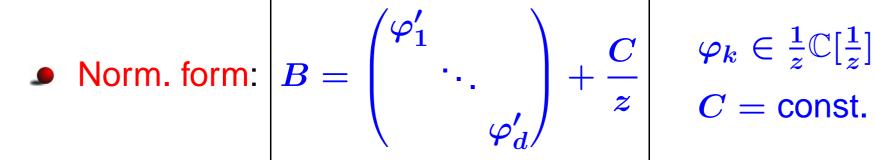
- $\Delta = \text{complex disc}$, complex coord. z.
- Linear cplx diff. eqn. $\frac{du}{dz} = A(z) \cdot u$,
- A(z) matrix of size d, merom. pole at z = 0.
- Gauge equiv.: $P \in \operatorname{GL}_d(\mathbb{C}(\{z\}))$,

$$A\sim B=P^{-1}AP+P^{-1}P'$$



- $\Delta = \text{complex disc}$, complex coord. z.
- Linear cplx diff. eqn. $\frac{du}{dz} = A(z) \cdot u$,
- A(z) matrix of size d, merom. pole at z = 0.
- Gauge equiv.: $P \in \operatorname{GL}_d(\mathbb{C}(\{z\}))$,

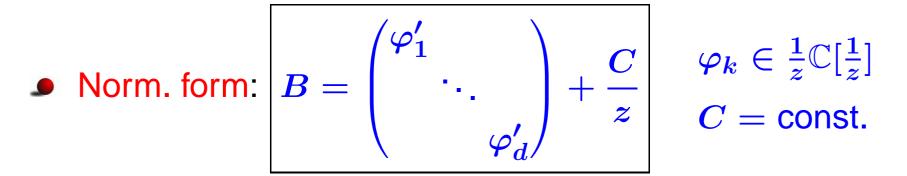
$$A \sim B = P^{-1}AP + P^{-1}P'$$



Theorem (Levelt-Turrittin).

- $\Delta = \text{complex disc}$, complex coord. z.
- Linear cplx diff. eqn. $\frac{du}{dz} = A(z) \cdot u$,
- A(z) matrix of size d, merom. pole at z = 0.
- Gauge equiv.: $P \in \operatorname{GL}_d(\mathbb{C}(\{z\})),$

$$A \sim B = P^{-1}AP + P^{-1}P'$$



Theorem (Levelt-Turrittin). Given A, \exists a **formal** gauge transf. $\hat{P} \in \operatorname{GL}_d(\mathbb{C}((z^{1/q})))$ s.t. $\hat{B} = \hat{P}^{-1}A\hat{P} + \hat{P}^{-1}\hat{P}'$ is a normal form.

• Oriented real blow-up: $\widetilde{\Delta} = S^1 \times [0, \varepsilon)$, coord. $\rho, e^{i\theta}$.

• Oriented real blow-up: $\widetilde{\Delta} = S^1 \times [0, \varepsilon)$, coord. $\rho, e^{i\theta}$.

 $arpi: \widetilde{\Delta} \longrightarrow \Delta, \quad (
ho, e^{i heta}) \longmapsto z =
ho e^{i heta}$

• Oriented real blow-up: $\widetilde{\Delta} = S^1 \times [0, \varepsilon)$, coord. $\rho, e^{i\theta}$.

 $arpi: \widetilde{\Delta} \longrightarrow \Delta, \quad (
ho, e^{i heta}) \longmapsto z =
ho e^{i heta}$

• Oriented real blow-up: $\widetilde{\Delta} = S^1 \times [0, \varepsilon)$, coord. $\rho, e^{i\theta}$.

$$arpi: \widetilde{\Delta} \longrightarrow \Delta, \quad (
ho, e^{i heta}) \longmapsto z =
ho e^{i heta}$$

• Sheaf
$$\mathscr{A}_{\widetilde{\Delta}}$$
: on Δ^* : $\mathscr{A} = \mathscr{O}$,

• Oriented real blow-up: $\widetilde{\Delta} = S^1 \times [0, \varepsilon)$, coord. $\rho, e^{i\theta}$.

$$arpi: \widetilde{\Delta} \longrightarrow \Delta, \quad (
ho, e^{i heta}) \longmapsto z =
ho e^{i heta}$$

• Sheaf
$$\mathscr{A}_{\widetilde{\Delta}}$$
: on Δ^* : $\mathscr{A} = \mathscr{O}$,

on
$$S^1$$
: $\mathscr{A} = \ker \overline{z} \partial_{\overline{z}} : \mathscr{C}^{\infty}_{\widetilde{\Delta}} \to \mathscr{C}^{\infty}_{\widetilde{\Delta}}$

• Oriented real blow-up: $\widetilde{\Delta} = S^1 \times [0, \varepsilon)$, coord. $\rho, e^{i\theta}$.

$$arpi: \widetilde{\Delta} \longrightarrow \Delta, \quad (
ho, e^{i heta}) \longmapsto z =
ho e^{i heta}$$

• Sheaf
$$\mathscr{A}_{\widetilde{\Delta}}$$
: on Δ^* : $\mathscr{A} = \mathscr{O}$,

on
$$S^1$$
: $\mathscr{A} = \ker \overline{z} \partial_{\overline{z}} : \mathscr{C}^{\infty}_{\widetilde{\Delta}} \to \mathscr{C}^{\infty}_{\widetilde{\Delta}}$

Basic exact sequence:

• Oriented real blow-up: $\widetilde{\Delta} = S^1 \times [0, \varepsilon)$, coord. $\rho, e^{i\theta}$.

$$arpi: \widetilde{\Delta} \longrightarrow \Delta, \quad (
ho, e^{i heta}) \longmapsto z =
ho e^{i heta}$$

• Sheaf
$$\mathscr{A}_{\widetilde{\Delta}}$$
: on Δ^* : $\mathscr{A} = \mathscr{O}$,

on
$$S^1$$
: $\mathscr{A} = \ker \overline{z} \partial_{\overline{z}} : \mathscr{C}^{\infty}_{\widetilde{\Delta}} \to \mathscr{C}^{\infty}_{\widetilde{\Delta}}$

Basic exact sequence:

$$0\longrightarrow \mathscr{A}_{S^1}^{\mathsf{rd}\,0}\longrightarrow \mathscr{A}_{S^1}[1/z]\longrightarrow arpi^{-1}\mathbb{C}(\!(z)\!)\longrightarrow 0$$

Theorem (Hukuhara-Turrittin).

Theorem (Hukuhara-Turrittin). Locally on S^1 , \exists a lifting $\tilde{P} \in \operatorname{GL}_d(\mathscr{A}_{S^1}[1/z])$ of \hat{P} s.t. \tilde{B} is a normal form.

Theorem (Hukuhara-Turrittin). Locally on S^1 , \exists a lifting $\tilde{P} \in \operatorname{GL}_d(\mathscr{A}_{S^1}[1/z])$ of \hat{P} s.t. \tilde{B} is a normal form.

Corollary.

Theorem (Hukuhara-Turrittin). Locally on S^1 , \exists a lifting $\tilde{P} \in \operatorname{GL}_d(\mathscr{A}_{S^1}[1/z])$ of \hat{P} s.t. \tilde{B} is a normal form.

Corollary. The sheaf on Δ of sols of

 $du/dz = A(z) \cdot u$

having entries in $\mathscr{A}_{\widetilde{\Delta}}$, resp. in $\mathscr{A}_{\widetilde{X}}^{rd 0}$, is a real constr. sheaf,

Theorem (Hukuhara-Turrittin). Locally on S^1 , \exists a lifting $\tilde{P} \in \operatorname{GL}_d(\mathscr{A}_{S^1}[1/z])$ of \hat{P} s.t. \tilde{B} is a normal form.

Corollary. The sheaf on Δ of sols of

 $du/dz = A(z) \cdot u$

having entries in $\mathscr{A}_{\widetilde{\Delta}}^{\sim}$, resp. in $\mathscr{A}_{\widetilde{X}}^{\mathsf{rd 0}}$, is a real constr. sheaf, constant on any interval of S^1 on which $\operatorname{Re}(\varphi_k)$ does not vanish $\forall k$.

Theorem (Hukuhara-Turrittin). Locally on S^1 , \exists a lifting $\tilde{P} \in \operatorname{GL}_d(\mathscr{A}_{S^1}[1/z])$ of \hat{P} s.t. \tilde{B} is a normal form.

Corollary. The sheaf on Δ of sols of

 $du/dz = A(z) \cdot u$

having entries in $\mathscr{A}_{\widetilde{\Delta}}$, resp. in $\mathscr{A}_{\widetilde{X}}^{\mathsf{rd}\,0}$, is a real constr. sheaf, constant on any interval of S^1 on which $\operatorname{Re}(\varphi_k)$ does not vanish $\forall k$.

Example.

Theorem (Hukuhara-Turrittin). Locally on S^1 , \exists a lifting $\tilde{P} \in \operatorname{GL}_d(\mathscr{A}_{S^1}[1/z])$ of \hat{P} s.t. \tilde{B} is a normal form.

Corollary. The sheaf on Δ of sols of

 $du/dz = A(z) \cdot u$

having entries in $\mathscr{A}_{\widetilde{\Delta}}$, resp. in $\mathscr{A}_{\widetilde{X}}^{\mathsf{rd}\,0}$, is a real constr. sheaf, constant on any interval of S^1 on which $\operatorname{Re}(\varphi_k)$ does not vanish $\forall k$.

Example. $\varphi = z^{-m}u(z), u(0) \neq 0$,

Theorem (Hukuhara-Turrittin). Locally on S^1 , \exists a lifting $\tilde{P} \in \operatorname{GL}_d(\mathscr{A}_{S^1}[1/z])$ of \hat{P} s.t. \tilde{B} is a normal form.

Corollary. The sheaf on Δ of sols of

 $du/dz = A(z) \cdot u$

having entries in $\mathscr{A}_{\widetilde{\Delta}}^{}$, resp. in $\mathscr{A}_{\widetilde{X}}^{\mathsf{rd}\,0}$, is a real constr. sheaf, constant on any interval of S^1 on which $\operatorname{Re}(\varphi_k)$ does not vanish $\forall k$.

Example. $\varphi = z^{-m}u(z), u(0) \neq 0$,

 ${\sf On}\ S^1, \quad {
m Re}\, arphi = 0 \iff heta = rac{1}{m}(rg\, u(0)\!+\!\pi/2) \mod \mathbb{Z}\pi/m.$

Local approach.

Local approach.

• Δ^n , coord. $z = (z_1, \ldots, z_n)$.

Local approach.

•
$$\Delta^n$$
, coord. $z = (z_1, \ldots, z_n)$.

Linear diff. system: $\frac{du}{dz_i} = A_i(z) \cdot u, \quad i = 1, \ldots, n.$

Local approach.

- Δ^n , coord. $z = (z_1, \ldots, z_n)$.
- Linear diff. system: $\frac{du}{dz_i} = A_i(z) \cdot u, \quad i = 1, \dots, n.$
- $A_i(z)$ matrix of size d, merom., pole along a div. D.

Local approach.

•
$$\Delta^n$$
, coord. $z = (z_1, \ldots, z_n)$.

- Linear diff. system: $\frac{du}{dz_i} = A_i(z) \cdot u, \quad i = 1, \ldots, n.$
- $A_i(z)$ matrix of size d, merom., pole along a div. D.
- Gauge equiv.: $P \in \operatorname{GL}_d(\mathbb{C}\{z\}(*D))$,

$$A_i \sim B_i = P^{-1}A_iP + P^{-1}\partial P/\partial z_i$$

Local approach.

•
$$\Delta^n$$
, coord. $z = (z_1, \ldots, z_n)$.

- Linear diff. system: $\frac{du}{dz_i} = A_i(z) \cdot u, \quad i = 1, \ldots, n.$
- $A_i(z)$ matrix of size d, merom., pole along a div. D.
- Gauge equiv.: $P \in \operatorname{GL}_d(\mathbb{C}\{z\}(*D))$,

$$A_i \sim B_i = P^{-1}A_iP + P^{-1}\partial P/\partial z_i$$

Integrability cond.:

Local approach.

•
$$\Delta^n$$
, coord. $z = (z_1, \ldots, z_n)$.

- Linear diff. system: $\frac{du}{dz_i} = A_i(z) \cdot u, \quad i = 1, \ldots, n.$
- $A_i(z)$ matrix of size d, merom., pole along a div. D.
- Gauge equiv.: $P \in \operatorname{GL}_d(\mathbb{C}\{z\}(*D))$,

$$A_i \sim B_i = P^{-1}A_iP + P^{-1}\partial P/\partial z_i$$

Integrability cond.:

$$egin{aligned} rac{\partial A_i}{\partial z_j} - rac{\partial A_j}{\partial z_i} &= [A_i,A_j] \end{aligned} \quad orall i,j. \end{aligned}$$

Global approach.

Global approach.

• X = cplx. manifold, D = hypersurface.

- X = cplx. manifold, D = hypersurface.
- Linear diff. system:

- X = cplx. manifold, D = hypersurface.
- Linear diff. system:
 - holom. vect. bdle E on X,

- X = cplx. manifold, D = hypersurface.
- Linear diff. system:
 - holom. vect. bdle E on X,
 - merom. connection $\nabla : E \longrightarrow \Omega^1_X(*D) \otimes E$

- X = cplx. manifold, D = hypersurface.
- Linear diff. system:
 - holom. vect. bdle E on X,
 - merom. connection $\nabla : E \longrightarrow \Omega^1_X(*D) \otimes E$
- Integrability cond.:

- X = cplx. manifold, D = hypersurface.
- Linear diff. system:
 - holom. vect. bdle E on X,
 - merom. connection $\nabla : E \longrightarrow \Omega^1_X(*D) \otimes E$
- Integrability cond.: $\nabla^2 = 0$.

- X = cplx. manifold, D = hypersurface.
- Linear diff. system:
 - holom. vect. bdle E on X,
 - merom. connection $\nabla : E \longrightarrow \Omega^1_X(*D) \otimes E$
- Integrability cond.: $\nabla^2 = 0$.
- In local coord. (z_1, \ldots, z_n) and in a local basis of E,

Global approach.

- X = cplx. manifold, D = hypersurface.
- Linear diff. system:
 - holom. vect. bdle E on X,
 - merom. connection $\nabla : E \longrightarrow \Omega^1_X(*D) \otimes E$
- Integrability cond.: $\nabla^2 = 0$.
- In local coord. (z_1, \ldots, z_n) and in a local basis of E,

 $abla \iff \sum_{i=1}^n A_i(z) dz_i, \quad A_i \in \operatorname{Mat}_d(\mathbb{C}\{z\}(*D)).$

Global approach.

- X = cplx. manifold, D = hypersurface.
- Linear diff. system:
 - holom. vect. bdle E on X,
 - merom. connection $\nabla : E \longrightarrow \Omega^1_X(*D) \otimes E$
- Integrability cond.: $\nabla^2 = 0$.
- In local coord. (z_1, \ldots, z_n) and in a local basis of E,

 $egin{aligned}
abla &\iff \sum_{i=1}^n A_i(z) dz_i, \quad A_i \in \operatorname{Mat}_d(\mathbb{C}\{z\}(*D)). \ &
onumber \ &
onumbe$

• X cplx manifold, D hypersurface,

- X cplx manifold, D hypersurface,
- $\varpi : \widetilde{X} \to X$: oriented real blow-up of X along D.

- X cplx manifold, D hypersurface,
- $\varpi : \widetilde{X} \to X$: oriented real blow-up of X along D. Locally, $\widetilde{X} \simeq (X \setminus D) \sqcup (D \times S^1)$.

- X cplx manifold, D hypersurface,
- $\varpi : \widetilde{X} \to X$: oriented real blow-up of X along D. Locally, $\widetilde{X} \simeq (X \setminus D) \sqcup (D \times S^1)$.
- Choose $\pi : X' \longrightarrow X$ s.t. $\pi^{-1}(D) = D'$ is a n.c.d., $\varpi' : \widetilde{X'} \longrightarrow X'$ or real blow-up of the components of D'.

- X cplx manifold, D hypersurface,
- $\varpi : \widetilde{X} \to X$: oriented real blow-up of X along D. Locally, $\widetilde{X} \simeq (X \setminus D) \sqcup (D \times S^1)$.
- Choose $\pi : X' \longrightarrow X$ s.t. $\pi^{-1}(D) = D'$ is a n.c.d., $\varpi' : \widetilde{X'} \longrightarrow X'$ or real blow-up of the components of D'.
- Loc. coord. on $X': (z_1, ..., z_n),$ $D' = \{z_1 \cdots z_\ell = 0\}.$

- X cplx manifold, D hypersurface,
- $\varpi : \widetilde{X} \to X$: oriented real blow-up of X along D. Locally, $\widetilde{X} \simeq (X \setminus D) \sqcup (D \times S^1)$.
- Choose $\pi : X' \longrightarrow X$ s.t. $\pi^{-1}(D) = D'$ is a n.c.d., $\varpi' : \widetilde{X'} \longrightarrow X'$ or real blow-up of the components of D'.
- Loc. coord. on X': (z_1, \ldots, z_n) , $D' = \{z_1 \cdots z_{\ell} = 0\}$. Loc. coord. on $\widetilde{X'}$: $(\rho_1, e^{i\theta_1}, \ldots, \rho_{\ell}, e^{i\theta_{\ell}}, z_{\ell+1}, \ldots, z_n)$.

- X cplx manifold, D hypersurface,
- $\varpi: X \to X$: oriented real blow-up of X along D. Locally, $\widetilde{X} \simeq (X \setminus D) \sqcup (D \times S^1)$.
- Choose $\pi : X' \longrightarrow X$ s.t. $\pi^{-1}(D) = D'$ is a n.c.d., $\varpi' : \widetilde{X'} \longrightarrow X'$ or real blow-up of the components of D'.
- Loc. coord. on X': (z_1, \ldots, z_n) , $D' = \{z_1 \cdots z_{\ell} = 0\}$. Loc. coord. on $\widetilde{X'}$: $(\rho_1, e^{i\theta_1}, \ldots, \rho_{\ell}, e^{i\theta_{\ell}}, z_{\ell+1}, \ldots, z_n)$. $\widetilde{X'} = (S^1)^{\ell} \times [0, \varepsilon)^{\ell} \times \Delta^{n-\ell}$ is a PL manifold.

- X cplx manifold, D hypersurface,
- $\varpi : \widetilde{X} \to X$: oriented real blow-up of X along D. Locally, $\widetilde{X} \simeq (X \setminus D) \sqcup (D \times S^1)$.
- Choose $\pi : X' \longrightarrow X$ s.t. $\pi^{-1}(D) = D'$ is a n.c.d., $\varpi' : \widetilde{X'} \longrightarrow X'$ or real blow-up of the components of D'.
- Loc. coord. on $X': (z_1, \dots, z_n),$ $D' = \{z_1 \cdots z_{\ell} = 0\}.$ Loc. coord. on $\widetilde{X'}:$ $(\rho_1, e^{i\theta_1}, \dots, \rho_{\ell}, e^{i\theta_{\ell}}, z_{\ell+1}, \dots, z_n).$ $\widetilde{X'} = (S^1)^{\ell} \times [0, \varepsilon)^{\ell} \times \Delta^{n-\ell}$ is a PL manifold. • $\exists \, \widetilde{\pi} : \widetilde{X'} \longrightarrow \widetilde{X}$ lifting π .

- Sheaves $\mathscr{A}_{\widetilde{X}'}^{\operatorname{rd} D'} \subset \mathscr{A}_{\widetilde{X}'} \subset \mathscr{C}_{\widetilde{X}'}^{\infty}$.
- $\ \, \bullet \ \, (E',\nabla')=\pi^*(E,\nabla).$

- Sheaves $\mathscr{A}_{\widetilde{X}'}^{\operatorname{rd} D'} \subset \mathscr{A}_{\widetilde{X}'} \subset \mathscr{C}_{\widetilde{X}'}^{\infty}$.
- $\ \, {} (E',\nabla')=\pi^*(E,\nabla).$
- Complex of sheaves of horizontal sections of
 ▼' with rapid decay is well-defined.

- Sheaves $\mathscr{A}_{\widetilde{X}'}^{\operatorname{rd} D'} \subset \mathscr{A}_{\widetilde{X}'} \subset \mathscr{C}_{\widetilde{X}'}^{\infty}$.
- $\ \, {} \ \, {} (E',\nabla')=\pi^*(E,\nabla).$
- Complex of sheaves of horizontal sections of
 ▼' with rapid decay is well-defined.
- **Definition**. Its push-forward by $\tilde{\pi}' : \widetilde{X}' \longrightarrow \widetilde{X}$ is the complex of sheaves of horizontal sections of ∇ with rapid decay.

- Sheaves $\mathscr{A}_{\widetilde{X}'}^{\operatorname{rd} D'} \subset \mathscr{A}_{\widetilde{X}'} \subset \mathscr{C}_{\widetilde{X}'}^{\infty}$.
- Complex of sheaves of horizontal sections of
 ▼' with rapid decay is well-defined.
- **Definition**. Its push-forward by $\tilde{\pi}' : \widetilde{X}' \longrightarrow \widetilde{X}$ is the complex of sheaves of horizontal sections of ∇ with rapid decay.

Theorem.

If dim X = 2, this complex is real constr. on \overline{X} .

- Sheaves $\mathscr{A}_{\widetilde{X}'}^{\operatorname{rd} D'} \subset \mathscr{A}_{\widetilde{X}'} \subset \mathscr{C}_{\widetilde{X}'}^{\infty}$.
- $\ \, {} {\scriptstyle \bullet} \ \, (E',\nabla')=\pi^*(E,\nabla).$
- **Definition.** Its push-forward by $\tilde{\pi}' : \widetilde{X}' \longrightarrow \widetilde{X}$ is the complex of sheaves of horizontal sections of ∇ with rapid decay.

Theorem.

If dim X = 2, this complex is real constr. on \widetilde{X} .

Problem. To describe a stratif. of \widetilde{X} adapted to this complex.

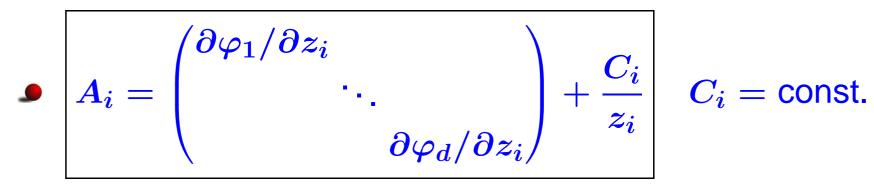
• $X = \Delta^n$, coord. $z = (z_1, \ldots, z_n)$,

- $X = \Delta^n$, coord. $z = (z_1, \ldots, z_n)$,
- $D = \{z_1 \cdots z_\ell = 0\}, \text{ n.c.d.}$

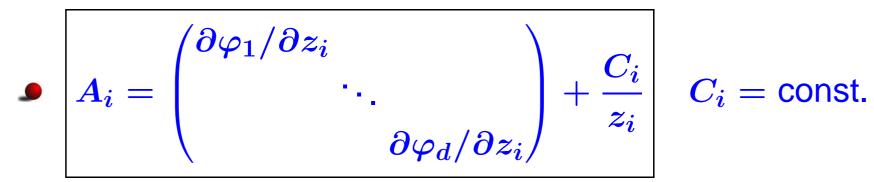
- $X = \Delta^n$, coord. $z = (z_1, \ldots, z_n)$,
- $D = \{z_1 \cdots z_\ell = 0\}, \text{ n.c.d.}$
- $\varphi_1, \ldots, \varphi_d \in \mathscr{O}_X[(z_1 \cdots z_\ell)^{-1}]/\mathscr{O}_X,$

- $X = \Delta^n$, coord. $z = (z_1, \ldots, z_n)$,
- $D = \{z_1 \cdots z_\ell = 0\}, \text{ n.c.d.}$
- $\varphi_1, \ldots, \varphi_d \in \mathscr{O}_X[(z_1 \cdots z_\ell)^{-1}]/\mathscr{O}_X,$
- $A_i(z)$ matrix of size d, merom., pole along D.

- $X = \Delta^n$, coord. $z = (z_1, \ldots, z_n)$,
- **•** $D = \{z_1 \cdots z_\ell = 0\}, \text{ n.c.d.}$
- $A_i(z)$ matrix of size d, merom., pole along D.

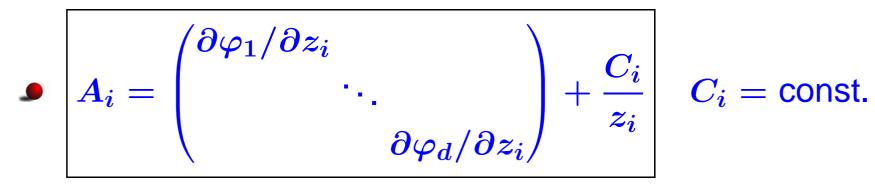


- $X = \Delta^n$, coord. $z = (z_1, \ldots, z_n)$,
- **•** $D = \{z_1 \cdots z_\ell = 0\}, \text{ n.c.d.}$
- $A_i(z)$ matrix of size d, merom., pole along D.



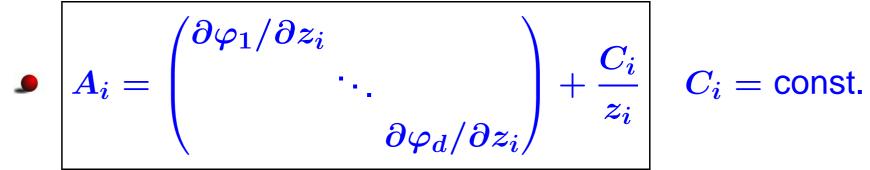
• + Integrability cond.: $[C_i, C_i] = 0$.

- $X = \Delta^n$, coord. $z = (z_1, \ldots, z_n)$,
- $D = \{z_1 \cdots z_\ell = 0\}$, n.c.d.
- $A_i(z)$ matrix of size d, merom., pole along D.



- + Integrability cond.: $[C_i, C_j] = 0$.
- New condition: goodness.

- $X = \Delta^n$, coord. $z = (z_1, \ldots, z_n)$,
- $D = \{z_1 \cdots z_\ell = 0\}$, n.c.d.
- $\varphi_1, \ldots, \varphi_d \in \mathscr{O}_X[(z_1 \cdots z_\ell)^{-1}]/\mathscr{O}_X,$
- $A_i(z)$ matrix of size d, merom., pole along D.



- + Integrability cond.: $[C_i, C_j] = 0$.
 - New condition: goodness.

$$egin{array}{lll} orall \, j,k & arphi_j - arphi_k iggl\{ = z^{-m_{jk}} \cdot ext{unit}, & m_{jk} \in \mathbb{N}^\ell \smallsetminus \{0\}, \ \equiv 0 \end{array}$$

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya).

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya). Given (E, ∇) on X with poles along D,

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya). Given (E, ∇) on X with poles along D,

■ ∃ projective modif. $\pi : X' \to X$ s.t.

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya). Given (E, ∇) on X with poles along D,

- I projective modif. $\pi: X' \to X$ s.t.
 - $D' = \pi^{-1}(D)$ is a n.c.d.,

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya). Given (E, ∇) on X with poles along D,

- ∃ projective modif. $\pi : X' \to X$ s.t.
 - $D' = \pi^{-1}(D)$ is a n.c.d.,
 - and $\pi^*(E, \nabla)$ has a **good formal normal form** near each point of D',

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya). Given (E, ∇) on X with poles along D,

- \exists projective modif. $\pi : X' \to X$ s.t.
 - $D' = \pi^{-1}(D)$ is a n.c.d.,
 - and $\pi^*(E, \nabla)$ has a **good formal normal form** near each point of D', i.e. $\forall x'_o \in Y' \in \text{Strat}(D')$, $\exists \hat{P} \in \text{GL}_d(\mathscr{O}_{\widehat{X'|Y'}, x'_o}(*D')).$

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya). Given (E, ∇) on X with poles along D,

- \exists projective modif. $\pi : X' \to X$ s.t.
 - $D' = \pi^{-1}(D)$ is a n.c.d.,
 - and $\pi^*(E, \nabla)$ has a **good formal normal form** near each point of D', i.e. $\forall x'_o \in Y' \in \text{Strat}(D')$, $\exists \hat{P} \in \text{GL}_d(\mathscr{O}_{\widehat{X'|Y'},x'_o}(*D')).$

Remarks.

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya). Given (E, ∇) on X with poles along D,

- \exists projective modif. $\pi : X' \to X$ s.t.
 - $D' = \pi^{-1}(D)$ is a n.c.d.,
 - and $\pi^*(E, \nabla)$ has a **good formal normal form** near each point of D', i.e. $\forall x'_o \in Y' \in \text{Strat}(D')$, $\exists \hat{P} \in \text{GL}_d(\mathscr{O}_{\widehat{X'|Y'}, x'_o}(*D')).$

Remarks.

Conj. by C.S. in 2000 and proved in particular cases in dim. 2.

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya). Given (E, ∇) on X with poles along D,

- \exists projective modif. $\pi : X' \to X$ s.t.
 - $D' = \pi^{-1}(D)$ is a n.c.d.,
 - and $\pi^*(E, \nabla)$ has a **good formal normal form** near each point of D', i.e. $\forall x'_o \in Y' \in \text{Strat}(D')$, $\exists \hat{P} \in \text{GL}_d(\mathscr{O}_{\widehat{X'|Y'}, x'_o}(*D')).$

Remarks.

- Conj. by C.S. in 2000 and proved in particular cases in dim. 2.
- Proved by T. Mochizuki in 2008, if X, E, ∇ are algebraic.

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya). Given (E, ∇) on X with poles along D,

- \exists projective modif. $\pi : X' \to X$ s.t.
 - $D' = \pi^{-1}(D)$ is a n.c.d.,
 - and $\pi^*(E, \nabla)$ has a **good formal normal form** near each point of D', i.e. $\forall x'_o \in Y' \in \text{Strat}(D')$, $\exists \hat{P} \in \text{GL}_d(\mathscr{O}_{\widehat{X'|Y'}, x'_o}(*D')).$

Remarks.

- Conj. by C.S. in 2000 and proved in particular cases in dim. 2.
- Proved by T. Mochizuki in 2008, if X, E, ∇ are algebraic.
- Proved by K. Kedlaya in 2009 in the *local* (*formal*) setting, if $\dim X = 2$. Higher dim. in progress.

• X cplx manifold, D n.c.d,

- X cplx manifold, D n.c.d,
- (E, ∇) with **good formal normal form** near each point of **D**.

- X cplx manifold, D n.c.d,
- (E, ∇) with **good formal normal form** near each point of **D**.
- $\varpi : \widetilde{X} \to X$: oriented real blow-up of X along the comp. of D.

- X cplx manifold, D n.c.d,
- (E, ∇) with **good formal normal form** near each point of **D**.
- $\varpi : \widetilde{X} \to X$: oriented real blow-up of X along the comp. of D.
- Loc. coord. on $X: (z_1, ..., z_n),$ $D = \{z_1 \cdots z_{\ell} = 0\}.$

- X cplx manifold, D n.c.d,
- (E, ∇) with **good formal normal form** near each point of **D**.
- $\varpi : \widetilde{X} \to X$: oriented real blow-up of X along the comp. of D.
- Loc. coord. on $X: (z_1, \dots, z_n)$, $D = \{z_1 \cdots z_{\ell} = 0\}$. Loc. coord. on $\widetilde{X}:$ $(\rho_1, e^{i\theta_1}, \dots, \rho_{\ell}, e^{i\theta_{\ell}}, z_{\ell+1}, \dots, z_n)$.

- X cplx manifold, D n.c.d,
- (E, ∇) with **good formal normal form** near each point of **D**.
- $\varpi : \widetilde{X} \to X$: oriented real blow-up of X along the comp. of D.
- Loc. coord. on $X: (z_1, \dots, z_n),$ $D = \{z_1 \cdots z_{\ell} = 0\}.$ Loc. coord. on $\widetilde{X}:$ $(\rho_1, e^{i\theta_1}, \dots, \rho_{\ell}, e^{i\theta_{\ell}}, z_{\ell+1}, \dots, z_n).$

Theorem (Hukuhara-Turrittin, H. Majima '84, C.S. '00).

- X cplx manifold, D n.c.d,
- (E, ∇) with **good formal normal form** near each point of **D**.
- $\varpi : \widetilde{X} \to X$: oriented real blow-up of X along the comp. of D.
- Loc. coord. on $X: (z_1, \dots, z_n),$ $D = \{z_1 \cdots z_{\ell} = 0\}.$ Loc. coord. on $\widetilde{X}:$ $(\rho_1, e^{i\theta_1}, \dots, \rho_{\ell}, e^{i\theta_{\ell}}, z_{\ell+1}, \dots, z_n).$

Theorem (Hukuhara-Turrittin, H. Majima '84, C.S. '00). Locally on $\partial \widetilde{X}$, \exists a lifting $\widetilde{P} \in \operatorname{GL}_d(\mathscr{A}_{\widetilde{X}}(*D))$ of \widehat{P} s.t. \widetilde{B} is a normal form.

• $Y \subset X$: smooth component of D (n.c.d.) or smooth codim. ons stratum.

• $Y \subset X$: smooth component of D (n.c.d.) or smooth codim. ons stratum.

Theorem (Y. Laurent).

• $Y \subset X$: smooth component of D (n.c.d.) or smooth codim. ons stratum.

Theorem (Y. Laurent). $\forall r \in \mathbb{Q}_+^*, \exists \operatorname{Ch}_{Y,r}(E, \nabla) \subset T^*(N_YX)$ which is a closed anal., *Lagrangean* and *r*-homogeneous.

• $Y \subset X$: smooth component of D (n.c.d.) or smooth codim. ons stratum.

Theorem (Y. Laurent). $\forall r \in \mathbb{Q}^*_+, \exists \operatorname{Ch}_{Y,r}(E, \nabla) \subset T^*(N_YX)$ which is a closed anal., *Lagrangean* and *r*-homogeneous. The subset $r \in \mathbb{Q}^*_+$ s.t. $\operatorname{Ch}_{Y,r}(E, \nabla) \neq \emptyset$ is *finite*.

• $Y \subset X$: smooth component of D (n.c.d.) or smooth codim. ons stratum.

Theorem (Y. Laurent). $\forall r \in \mathbb{Q}^*_+, \exists \operatorname{Ch}_{Y,r}(E, \nabla) \subset T^*(N_YX)$ which is a closed anal., *Lagrangean* and *r*-homogeneous. The subset $r \in \mathbb{Q}^*_+$ s.t. $\operatorname{Ch}_{Y,r}(E, \nabla) \neq \emptyset$ is *finite*.

■ \exists a well-defined $\Theta : T^*(N_Y X) \longrightarrow \mathbb{C}$,

• $Y \subset X$: smooth component of D (n.c.d.) or smooth codim. ons stratum.

Theorem (Y. Laurent). $\forall r \in \mathbb{Q}^*_+, \exists \operatorname{Ch}_{Y,r}(E, \nabla) \subset T^*(N_YX)$ which is a closed anal., *Lagrangean* and *r*-homogeneous. The subset $r \in \mathbb{Q}^*_+$ s.t. $\operatorname{Ch}_{Y,r}(E, \nabla) \neq \emptyset$ is *finite*.

■ ∃ a well-defined Θ : $T^*(N_YX) \longrightarrow \mathbb{C}$, loc. $z_1\zeta_1$ if
 $Y = \{z_1 = 0\}$.

Properties if (E, ∇) has a good norm. form, dim. 2:

Properties if (E, ∇) has a good norm. form, dim. 2: Ch_{Y,r}(E, ∇)/ℝ^{*}₊ is smooth (r > 0).

- **Properties** if (E, ∇) has a good norm. form, dim. 2:
 - $\operatorname{Ch}_{Y,r}(E, \nabla)/\mathbb{R}^*_+$ is smooth (r > 0).
 - mapped into $\partial \widetilde{X} \times S^1$ by (p, Θ) .

- **Properties** if (E, ∇) has a good norm. form, dim. 2:
 - $\operatorname{Ch}_{Y,r}(E, \nabla)/\mathbb{R}^*_+$ is smooth (r > 0).
 - mapped into $\partial \widetilde{X} \times S^1$ by (p, Θ) .
 - The union (r > 0) of the images is the Stokes space $St_Y(E, \nabla)$.

- **Properties** if (E, ∇) has a good norm. form, dim. 2:
 - $\operatorname{Ch}_{Y,r}(E, \nabla)/\mathbb{R}^*_+$ is smooth (r > 0).
 - mapped into $\partial \widetilde{X} \times S^1$ by (p, Θ) .
 - The union (r > 0) of the images is the Stokes space $St_Y(E, \nabla)$.
 - The closure $\operatorname{St}(E, \nabla)$ of $\operatorname{St}_Y(E, \nabla)$ in $\widetilde{X} \times S^1$ is real semi-analytic.

- **Properties** if (E, ∇) has a good norm. form, dim. 2:
 - $\operatorname{Ch}_{Y,r}(E, \nabla)/\mathbb{R}^*_+$ is smooth (r > 0).
 - mapped into $\partial \widetilde{X} \times S^1$ by (p, Θ) .
 - The union (r > 0) of the images is the Stokes space $St_Y(E, \nabla)$.
 - The closure $\operatorname{St}(E, \nabla)$ of $\operatorname{St}_Y(E, \nabla)$ in $\widetilde{X} \times S^1$ is real semi-analytic.
 - **•** Theorem.

- **Properties** if (E, ∇) has a good norm. form, dim. 2:
 - $\operatorname{Ch}_{Y,r}(E, \nabla)/\mathbb{R}^*_+$ is smooth (r > 0).
 - mapped into $\partial \widetilde{X} \times S^1$ by (p, Θ) .
 - The union (r > 0) of the images is the Stokes space $St_Y(E, \nabla)$.
 - The closure $\operatorname{St}(E, \nabla)$ of $\operatorname{St}_Y(E, \nabla)$ in $\widetilde{X} \times S^1$ is real semi-analytic.
 - **Theorem.** The sheaf of rapid decay sols of ∇ is real constr. w.r.t. any stratification compatible with the projection of $St(E, \nabla)$ on \widetilde{X} .

- **Properties** if (E, ∇) has a good norm. form, dim. 2:
 - $\operatorname{Ch}_{Y,r}(E, \nabla)/\mathbb{R}^*_+$ is smooth (r > 0).
 - mapped into $\partial \widetilde{X} \times S^1$ by (p, Θ) .
 - The union (r > 0) of the images is the Stokes space $St_Y(E, \nabla)$.
 - The closure $\operatorname{St}(E, \nabla)$ of $\operatorname{St}_Y(E, \nabla)$ in $\widetilde{X} \times S^1$ is real semi-analytic.
 - **Theorem.** The sheaf of rapid decay sols of ∇ is real constr. w.r.t. any stratification compatible with the projection of $St(E, \nabla)$ on \widetilde{X} .

• Corollary.

- **Properties** if (E, ∇) has a good norm. form, dim. 2:
 - $\operatorname{Ch}_{Y,r}(E, \nabla)/\mathbb{R}^*_+$ is smooth (r > 0).
 - mapped into $\partial \widetilde{X} \times S^1$ by (p, Θ) .
 - The union (r > 0) of the images is the Stokes space $St_Y(E, \nabla)$.
 - The closure $\operatorname{St}(E, \nabla)$ of $\operatorname{St}_Y(E, \nabla)$ in $\widetilde{X} \times S^1$ is real semi-analytic.
 - **Theorem.** The sheaf of rapid decay sols of ∇ is real constr. w.r.t. any stratification compatible with the projection of $St(E, \nabla)$ on \widetilde{X} .
- Corollary. If dim X = 2, and any (E, ∇) , then the complex of rapid decay sols of ∇ is real constructible on \widetilde{X} .