Stokes phenomenon and real singularities

Claude Sabbah
Centre de Mathématiques Laurent Schwartz
UMR 7640 du CNRS
École polytechnique, Palaiseau, France
Programme SEDIGA ANR-08-BLAN-0317-01

Stokes phenomenon in dim. one

Stokes phenomenon in dim. one

- $\Delta=$ complex disc, complex coord. z.

Stokes phenomenon in dim. one

- $\Delta=$ complex disc, complex coord. z.
- Linear cplx diff. eqn. $d u / d z=A(z) \cdot u$,

Stokes phenomenon in dim. one

- $\Delta=$ complex disc, complex coord. z.
- Linear cplx diff. eqn. $d u / d z=A(z) \cdot u$,
- $A(z)$ matrix of size d, merom. pole at $z=0$.

Stokes phenomenon in dim. one

- $\Delta=$ complex disc, complex coord. z.
- Linear cplx diff. eqn. $d u / d z=A(z) \cdot u$,
- $A(z)$ matrix of size d, merom. pole at $z=0$.
- Gauge equiv.: $P \in \mathrm{GL}_{d}(\mathbb{C}(\{z\}))$,

$$
A \sim B=P^{-1} A P+P^{-1} P^{\prime}
$$

Stokes phenomenon in dim. one

- $\Delta=$ complex disc, complex coord. z.
- Linear cplx diff. eqn. $d u / d z=A(z) \cdot u$,
- $A(z)$ matrix of size d, merom. pole at $z=0$.
- Gauge equiv.: $P \in \mathrm{GL}_{d}(\mathbb{C}(\{z\}))$,

$$
A \sim B=P^{-1} A P+P^{-1} P^{\prime}
$$

- Norm. form:

Stokes phenomenon in dim. one

- $\Delta=$ complex disc, complex coord. z.
- Linear cplx diff. eqn. $d u / d z=A(z) \cdot u$,
- $A(z)$ matrix of size d, merom. pole at $z=0$.
- Gauge equiv.: $P \in \mathrm{GL}_{d}(\mathbb{C}(\{z\}))$,

$$
A \sim B=P^{-1} A P+P^{-1} P^{\prime}
$$

- Norm. form: $\boldsymbol{B}=\left(\begin{array}{lll}\varphi_{1}^{\prime} & & \\ & \ddots & \\ & & \\ & & \varphi_{d}^{\prime}\end{array}\right)+\frac{C}{z}$

Stokes phenomenon in dim. one

- $\Delta=$ complex disc, complex coord. z.
- Linear cplx diff. eqn. $d u / d z=A(z) \cdot u$,
- $A(z)$ matrix of size d, merom. pole at $z=0$.
- Gauge equiv.: $P \in \mathrm{GL}_{d}(\mathbb{C}(\{z\}))$,

$$
A \sim B=P^{-1} A P+P^{-1} P^{\prime}
$$

- Norm. form: $B=\left(\begin{array}{llll}\varphi_{1}^{\prime} & & \\ & \ddots & \\ & & & \\ & & \varphi_{d}^{\prime}\end{array}\right)+\frac{C}{z} \quad \begin{aligned} & \varphi_{k} \in \frac{1}{z} \mathbb{C}\left[\frac{1}{z}\right] \\ & C=\text { const. }\end{aligned}$

Stokes phenomenon in dim. one

- $\Delta=$ complex disc, complex coord. z.
- Linear cplx diff. eqn. $d u / d z=A(z) \cdot u$,
- $A(z)$ matrix of size d, merom. pole at $z=0$.
- Gauge equiv.: $P \in \mathrm{GL}_{d}(\mathbb{C}(\{z\}))$,

$$
A \sim B=P^{-1} A P+P^{-1} P^{\prime}
$$

- Norm. form: $\boldsymbol{B}=\left(\begin{array}{lll}\varphi_{1}^{\prime} & & \\ & \ddots & \\ & & \\ & & \varphi_{d}^{\prime}\end{array}\right)+\frac{C}{z}$
$\varphi_{k} \in \frac{1}{z} \mathbb{C}\left[\frac{1}{z}\right]$
$C=$ const.

Theorem (Levelt-Turrittin).

Stokes phenomenon in dim. one

- $\Delta=$ complex disc, complex coord. z.
- Linear cplx diff. eqn. $d u / d z=A(z) \cdot u$,
- $A(z)$ matrix of size d, merom. pole at $z=0$.
- Gauge equiv.: $P \in \mathrm{GL}_{d}(\mathbb{C}(\{z\}))$,

$$
A \sim B=P^{-1} A P+P^{-1} P^{\prime}
$$

- Norm. form:

$$
B=\left(\begin{array}{lll}
\varphi_{1}^{\prime} & & \\
& \ddots & \\
& & \\
& & \varphi_{d}^{\prime}
\end{array}\right)+\frac{C}{z}
$$

$$
\begin{aligned}
& \varphi_{k} \in \frac{1}{z} \mathbb{C}\left[\frac{1}{z}\right] \\
& C=\text { const. }
\end{aligned}
$$

Theorem (Levelt-Turrittin). Given A, \exists a formal gauge transf. $\widehat{\boldsymbol{P}} \in \mathrm{GL}_{d}\left(\mathbb{C}\left(\left(z^{1 / q}\right)\right)\right)$ s.t. $\widehat{B}=\widehat{P}^{-1} A \widehat{P}+\widehat{P}^{-1} \widehat{P}^{\prime}$ is a normal form.

Asympt. analysis in dim. one

Asympt. analysis in dim. one

- Oriented real blow-up: $\widetilde{\Delta}=S^{1} \times[0, \varepsilon)$, coord. $\rho, e^{i \theta}$.

Asympt. analysis in dim. one

- Oriented real blow-up: $\widetilde{\Delta}=S^{1} \times[0, \varepsilon)$, coord. $\rho, e^{i \theta}$.

$$
\varpi: \widetilde{\Delta} \longrightarrow \Delta, \quad\left(\rho, e^{i \theta}\right) \longmapsto z=\rho e^{i \theta}
$$

Asympt. analysis in dim. one

- Oriented real blow-up: $\widetilde{\Delta}=S^{1} \times[0, \varepsilon)$, coord. $\rho, e^{i \theta}$.

$$
\varpi: \widetilde{\Delta} \longrightarrow \Delta, \quad\left(\rho, e^{i \theta}\right) \longmapsto z=\rho e^{i \theta}
$$

- Sheaf $\mathscr{A}_{\tilde{\Delta}}$:

Asympt. analysis in dim. one

- Oriented real blow-up: $\widetilde{\Delta}=S^{1} \times[0, \varepsilon)$, coord. $\rho, e^{i \theta}$.

$$
\varpi: \widetilde{\Delta} \longrightarrow \Delta, \quad\left(\rho, e^{i \theta}\right) \longmapsto z=\rho e^{i \theta}
$$

- Sheaf $\mathscr{A}_{\widetilde{\Delta}}$: on $\Delta^{*}: \mathscr{A}=\mathscr{O}$,

Asympt. analysis in dim. one

- Oriented real blow-up: $\widetilde{\Delta}=S^{1} \times[0, \varepsilon)$, coord. $\rho, e^{i \theta}$.

$$
\varpi: \widetilde{\Delta} \longrightarrow \Delta, \quad\left(\rho, e^{i \theta}\right) \longmapsto z=\rho e^{i \theta}
$$

- Sheaf $\mathscr{A}_{\widetilde{\Delta}}$: on $\Delta^{*}: \mathscr{A}=\mathscr{O}$,

$$
\text { on } S^{1}: \mathscr{A}=\operatorname{ker} \bar{z} \partial_{\bar{z}}: \mathscr{C}_{\Delta}^{\infty} \rightarrow \mathscr{C}_{\Delta}^{\infty}
$$

Asympt. analysis in dim. one

- Oriented real blow-up: $\widetilde{\Delta}=S^{1} \times[0, \varepsilon)$, coord. $\rho, e^{i \theta}$.

$$
\varpi: \widetilde{\Delta} \longrightarrow \Delta, \quad\left(\rho, e^{i \theta}\right) \longmapsto z=\rho e^{i \theta}
$$

- Sheaf $\mathscr{A}_{\widetilde{\Delta}}$: on $\Delta^{*}: \mathscr{A}=\mathscr{O}$,

$$
\text { on } S^{1}: \mathscr{A}=\operatorname{ker} \bar{z} \partial_{\bar{z}}: \mathscr{C}_{\Delta}^{\infty} \rightarrow \mathscr{C}_{\Delta}^{\infty}
$$

- Basic exact sequence:

Asympt. analysis in dim. one

- Oriented real blow-up: $\widetilde{\Delta}=S^{1} \times[0, \varepsilon)$, coord. $\rho, e^{i \theta}$.

$$
\varpi: \widetilde{\Delta} \longrightarrow \Delta, \quad\left(\rho, e^{i \theta}\right) \longmapsto z=\rho e^{i \theta}
$$

- Sheaf $\mathscr{A}_{\widetilde{\Delta}}$: on $\Delta^{*}: \mathscr{A}=\mathscr{O}$,

$$
\text { on } S^{1}: \mathscr{A}=\operatorname{ker} \bar{z} \partial_{\bar{z}}: \mathscr{C}_{\Delta}^{\infty} \rightarrow \mathscr{C}_{\Delta}^{\infty}
$$

- Basic exact sequence:

$$
0 \longrightarrow \mathscr{A}_{S^{1}}^{\mathrm{rd} 0} \longrightarrow \mathscr{A}_{S^{1}}[1 / z] \longrightarrow \varpi^{-1} \mathbb{C}((z)) \longrightarrow 0
$$

Asympt. analysis in dim. one

Theorem (Hukuhara-Turrittin).

Asympt. analysis in dim. one

Theorem (Hukuhara-Turrittin).
Locally on S^{1}, \exists a lifting $\widetilde{P} \in \mathrm{GL}_{d}\left(\mathscr{A}_{S^{1}}[1 / z]\right)$ of \widehat{P} s.t. \widetilde{B} is a normal form.

Asympt. analysis in dim. one

Theorem (Hukuhara-Turrittin).
Locally on S^{1}, \exists a lifting $\widetilde{P} \in \mathrm{GL}_{d}\left(\mathscr{A}_{S^{1}}[1 / z]\right)$ of \widehat{P} s.t. \widetilde{B} is a normal form.

Corollary.

Asympt. analysis in dim. one

Theorem (Hukuhara-Turrittin).
Locally on S^{1}, \exists a lifting $\widetilde{P} \in \mathrm{GL}_{d}\left(\mathscr{A}_{S^{1}}[1 / z]\right)$ of \widehat{P} s.t. \widetilde{B} is a normal form.

Corollary. The sheaf on $\widetilde{\Delta}$ of sols of

$$
d u / d z=A(z) \cdot u
$$

having entries in $\mathscr{A}_{\tilde{\Delta}}$, resp. in $\mathscr{A}_{\widetilde{X}}^{\text {rd } 0}$, is a real constr. sheaf,

Asympt. analysis in dim. one

Theorem (Hukuhara-Turrittin).
Locally on S^{1}, \exists a lifting $\widetilde{P} \in \mathrm{GL}_{d}\left(\mathscr{A}_{S^{1}}[1 / z]\right)$ of \widehat{P} s.t. \widetilde{B} is a normal form.

Corollary. The sheaf on $\widetilde{\Delta}$ of sols of

$$
d u / d z=A(z) \cdot u
$$

having entries in $\mathscr{A}_{\widetilde{\Delta}}$, resp. in $\mathscr{A}_{\widetilde{X}}^{\text {rd } 0}$, is a real constr. sheaf, constant on any interval of S^{1} on which $\operatorname{Re}\left(\varphi_{k}\right)$ does not vanish $\forall k$.

Asympt. analysis in dim. one

Theorem (Hukuhara-Turrittin).
Locally on S^{1}, \exists a lifting $\widetilde{P} \in \mathrm{GL}_{d}\left(\mathscr{A}_{S^{1}}[1 / z]\right)$ of \widehat{P} s.t. \widetilde{B} is a normal form.

Corollary. The sheaf on $\widetilde{\Delta}$ of sols of

$$
d u / d z=A(z) \cdot u
$$

having entries in $\mathscr{A}_{\tilde{\Delta}}$, resp. in $\mathscr{A}_{\widetilde{X}}^{\text {rd } 0}$, is a real constr. sheaf, constant on any interval of S^{1} on which $\operatorname{Re}\left(\varphi_{k}\right)$ does not vanish $\forall k$.
Example.

Asympt. analysis in dim. one

Theorem (Hukuhara-Turrittin).
Locally on S^{1}, \exists a lifting $\widetilde{P} \in \mathrm{GL}_{d}\left(\mathscr{A}_{S^{1}}[1 / z]\right)$ of \widehat{P} s.t. \widetilde{B} is a normal form.

Corollary. The sheaf on $\widetilde{\Delta}$ of sols of

$$
d u / d z=A(z) \cdot u
$$

having entries in $\mathscr{A}_{\widetilde{\Delta}}$, resp. in $\mathscr{A}_{\widetilde{X}}^{\text {rd } 0}$, is a real constr. sheaf, constant on any interval of S^{1} on which $\operatorname{Re}\left(\varphi_{k}\right)$ does not vanish $\forall k$.
Example. $\varphi=z^{-m} u(z), u(0) \neq 0$,

Asympt. analysis in dim. one

Theorem (Hukuhara-Turrittin).
Locally on S^{1}, \exists a lifting $\widetilde{P} \in \mathrm{GL}_{d}\left(\mathscr{A}_{S^{1}}[1 / z]\right)$ of \widehat{P} s.t. \widetilde{B} is a normal form.

Corollary. The sheaf on $\widetilde{\Delta}$ of sols of

$$
d u / d z=A(z) \cdot u
$$

having entries in $\mathscr{A}_{\tilde{\Delta}}$, resp. in $\mathscr{A}_{\widetilde{X}}^{\text {rd } 0}$, is a real constr. sheaf, constant on any interval of S^{1} on which $\operatorname{Re}\left(\varphi_{k}\right)$ does not vanish $\forall k$.
Example. $\varphi=z^{-m} u(z), u(0) \neq 0$,
On $S^{1}, \quad \operatorname{Re} \varphi=0 \Longleftrightarrow \theta=\frac{1}{m}(\arg u(0)+\pi / 2) \bmod \mathbb{Z} \pi / m$.

Connections in dim. $\geqslant 2$

Connections in dim. $\geqslant 2$

Local approach.

Connections in dim. $\geqslant 2$

Local approach.

- Δ^{n}, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$.

Connections in dim. $\geqslant 2$

Local approach.

- Δ^{n}, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$.
- Linear diff. system: $\frac{d u}{d z_{i}}=A_{i}(z) \cdot u, \quad i=1, \ldots, n$.

Connections in dim. $\geqslant 2$

Local approach.

- Δ^{n}, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$.
- Linear diff. system: $\frac{d u}{d z_{i}}=A_{i}(z) \cdot u, \quad i=1, \ldots, n$.
- $\boldsymbol{A}_{i}(z)$ matrix of size d, merom., pole along a div. D.

Connections in dim. $\geqslant 2$

Local approach.

- Δ^{n}, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$.
- Linear diff. system: $\frac{d u}{d z_{i}}=A_{i}(z) \cdot u, \quad i=1, \ldots, n$.
- $\boldsymbol{A}_{i}(z)$ matrix of size d, merom., pole along a div. D.
- Gauge equiv.: $P \in \mathrm{GL}_{d}(\mathbb{C}\{z\}(* D))$,

$$
A_{i} \sim B_{i}=P^{-1} A_{i} P+P^{-1} \partial P / \partial z_{i}
$$

Connections in dim. $\geqslant 2$

Local approach.

- Δ^{n}, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$.
- Linear diff. system: $\frac{d u}{d z_{i}}=A_{i}(z) \cdot u, \quad i=1, \ldots, n$.
- $\boldsymbol{A}_{i}(z)$ matrix of size d, merom., pole along a div. D.
- Gauge equiv.: $P \in \mathrm{GL}_{d}(\mathbb{C}\{z\}(* D))$,

$$
A_{i} \sim B_{i}=P^{-1} A_{i} P+P^{-1} \partial P / \partial z_{i}
$$

- Integrability cond.:

Connections in dim. $\geqslant 2$

Local approach.

- Δ^{n}, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$.
- Linear diff. system: $\frac{d u}{d z_{i}}=A_{i}(z) \cdot u, \quad i=1, \ldots, n$.
- $\boldsymbol{A}_{i}(z)$ matrix of size d, merom., pole along a div. D.
- Gauge equiv.: $P \in \mathrm{GL}_{d}(\mathbb{C}\{z\}(* D))$,

$$
A_{i} \sim B_{i}=P^{-1} A_{i} P+P^{-1} \partial P / \partial z_{i}
$$

- Integrability cond.:

$$
\frac{\partial A_{i}}{\partial z_{j}}-\frac{\partial A_{j}}{\partial z_{i}}=\left[A_{i}, A_{j}\right] \quad \forall i, j .
$$

Connections in dim. $\geqslant 2$

Global approach.

Connections in dim. $\geqslant 2$

Global approach.

- $\boldsymbol{X}=\mathrm{cplx}$. manifold, $\boldsymbol{D}=$ hypersurface.

Connections in dim. $\geqslant 2$

Global approach.

- $\boldsymbol{X}=\mathrm{cplx}$. manifold, $\boldsymbol{D}=$ hypersurface.
- Linear diff. system:

Connections in dim. $\geqslant 2$

Global approach.

- $\boldsymbol{X}=\mathrm{cplx}$. manifold, $\boldsymbol{D}=$ hypersurface.
- Linear diff. system:
- holom. vect. bdle \boldsymbol{E} on \boldsymbol{X},

Connections in dim. $\geqslant 2$

Global approach.

- $\boldsymbol{X}=\mathrm{cplx}$. manifold, $\boldsymbol{D}=$ hypersurface.
- Linear diff. system:
- holom. vect. bdle \boldsymbol{E} on \boldsymbol{X},
- merom. connection $\nabla: E \longrightarrow \Omega_{X}^{1}(* D) \otimes E$

Connections in dim. $\geqslant 2$

Global approach.

- $\boldsymbol{X}=\mathrm{cplx}$. manifold, $\boldsymbol{D}=$ hypersurface.
- Linear diff. system:
- holom. vect. bdle \boldsymbol{E} on \boldsymbol{X},
- merom. connection $\nabla: E \longrightarrow \Omega_{X}^{1}(* D) \otimes E$
- Integrability cond.:

Connections in dim. $\geqslant 2$

Global approach.

- $\boldsymbol{X}=\mathrm{cplx}$. manifold, $\boldsymbol{D}=$ hypersurface.
- Linear diff. system:
- holom. vect. bdle \boldsymbol{E} on \boldsymbol{X},
- merom. connection $\nabla: E \longrightarrow \Omega_{X}^{1}(* D) \otimes E$
- Integrability cond.: $\nabla^{2}=0$.

Connections in dim. $\geqslant 2$

Global approach.

- $\boldsymbol{X}=\mathrm{cplx}$. manifold, $\boldsymbol{D}=$ hypersurface.
- Linear diff. system:
- holom. vect. bdle \boldsymbol{E} on \boldsymbol{X},
- merom. connection $\nabla: E \longrightarrow \Omega_{X}^{1}(* D) \otimes E$
- Integrability cond.: $\quad \nabla^{2}=0$.
- In local coord. $\left(z_{1}, \ldots, z_{n}\right)$ and in a local basis of E,

Connections in dim. $\geqslant 2$

Global approach.

- $\boldsymbol{X}=\mathrm{cplx}$. manifold, $\boldsymbol{D}=$ hypersurface.
- Linear diff. system:
- holom. vect. bdle \boldsymbol{E} on \boldsymbol{X},
- merom. connection $\nabla: E \longrightarrow \Omega_{X}^{1}(* D) \otimes E$
- Integrability cond.: $\quad \nabla^{2}=0$.
- In local coord. $\left(z_{1}, \ldots, z_{n}\right)$ and in a local basis of E,

$$
\nabla \Longleftrightarrow \sum_{i=1}^{n} A_{i}(z) d z_{i}, \quad A_{i} \in \operatorname{Mat}_{d}(\mathbb{C}\{z\}(* D))
$$

Connections in dim. $\geqslant 2$

Global approach.

- $\boldsymbol{X}=\mathrm{cplx}$. manifold, $\boldsymbol{D}=$ hypersurface.
- Linear diff. system:
- holom. vect. bdle \boldsymbol{E} on \boldsymbol{X},
- merom. connection $\nabla: E \longrightarrow \Omega_{X}^{1}(* D) \otimes E$
- Integrability cond.: $\nabla^{2}=0$.
- In local coord. $\left(z_{1}, \ldots, z_{n}\right)$ and in a local basis of E,

$$
\begin{gathered}
\nabla \Longleftrightarrow \sum_{i=1}^{n} A_{i}(z) d z_{i}, \quad A_{i} \in \operatorname{Mat}_{d}(\mathbb{C}\{z\}(* D)) \\
\nabla^{2}=0 \Longleftrightarrow \frac{\partial A_{i}}{\partial z_{j}}-\frac{\partial A_{j}}{\partial z_{i}}=\left[A_{i}, A_{j}\right]
\end{gathered}
$$

Rapid decay sols in dim. $\geqslant 2$

Rapid decay sols in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, D hypersurface,

Rapid decay sols in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, D hypersurface,
- $\varpi: \widetilde{X} \rightarrow X$: oriented real blow-up of X along D.

Rapid decay sols in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, D hypersurface,
- $\varpi: \widetilde{X} \rightarrow X$: oriented real blow-up of X along D. Locally, $\widetilde{X} \simeq(X \backslash D) \sqcup\left(D \times S^{1}\right)$.

Rapid decay sols in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, \boldsymbol{D} hypersurface,
- $\varpi: \widetilde{\boldsymbol{X}} \rightarrow \boldsymbol{X}$: oriented real blow-up of \boldsymbol{X} along D. Locally, $\widetilde{X} \simeq(X \backslash D) \sqcup\left(D \times S^{1}\right)$.
- Choose $\pi: X^{\prime} \longrightarrow X$ s.t. $\pi^{-1}(D)=D^{\prime}$ is a n.c.d., $\varpi^{\prime}: \widetilde{\boldsymbol{X}^{\prime}} \longrightarrow X^{\prime}$ or. real blow-up of the components of D^{\prime}.

Rapid decay sols in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, D hypersurface,
- $\varpi: \widetilde{X} \rightarrow X$: oriented real blow-up of X along D. Locally, $\widetilde{X} \simeq(X \backslash D) \sqcup\left(D \times S^{1}\right)$.
- Choose $\pi: X^{\prime} \longrightarrow X$ s.t. $\pi^{-1}(D)=D^{\prime}$ is a n.c.d., $\varpi^{\prime}: \widetilde{X}^{\prime} \longrightarrow X^{\prime}$ or. real blow-up of the components of D^{\prime}.
- Loc. coord. on $X^{\prime}:\left(z_{1}, \ldots, z_{n}\right)$, $D^{\prime}=\left\{z_{1} \cdots z_{\ell}=0\right\}$.

Rapid decay sols in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, \boldsymbol{D} hypersurface,
- $\varpi: \widetilde{\boldsymbol{X}} \rightarrow X$: oriented real blow-up of X along D. Locally, $\widetilde{X} \simeq(X \backslash D) \sqcup\left(D \times S^{1}\right)$.
- Choose $\pi: X^{\prime} \longrightarrow X$ s.t. $\pi^{-1}(D)=D^{\prime}$ is a n.c.d., $\varpi^{\prime}: \widetilde{X}^{\prime} \longrightarrow X^{\prime}$ or. real blow-up of the components of D^{\prime}.
- Loc. coord. on $X^{\prime}:\left(z_{1}, \ldots, z_{n}\right)$, $D^{\prime}=\left\{z_{1} \cdots z_{\ell}=0\right\}$.
Loc. coord. on $\widetilde{X^{\prime}}$:
$\left(\rho_{1}, e^{i \theta_{1}}, \ldots, \rho_{\ell}, e^{i \theta_{\ell}}, z_{\ell+1}, \ldots, z_{n}\right)$.

Rapid decay sols in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, \boldsymbol{D} hypersurface,
- $\varpi: \widetilde{X} \rightarrow X$: oriented real blow-up of X along D. Locally, $\widetilde{X} \simeq(X \backslash D) \sqcup\left(D \times S^{1}\right)$.
- Choose $\pi: X^{\prime} \longrightarrow X$ s.t. $\pi^{-1}(D)=D^{\prime}$ is a n.c.d., $\varpi^{\prime}: \widetilde{X}^{\prime} \longrightarrow X^{\prime}$ or. real blow-up of the components of D^{\prime}.
- Loc. coord. on $X^{\prime}:\left(z_{1}, \ldots, z_{n}\right)$, $D^{\prime}=\left\{z_{1} \cdots z_{\ell}=0\right\}$.
Loc. coord. on \widetilde{X}^{\prime} :
$\left(\rho_{1}, e^{i \theta_{1}}, \ldots, \rho_{\ell}, e^{i \theta_{\ell}}, z_{\ell+1}, \ldots, z_{n}\right)$.
$\widetilde{X}^{\prime}=\left(S^{1}\right)^{\ell} \times[0, \varepsilon)^{\ell} \times \Delta^{n-\ell}$ is a PL manifold.

Rapid decay sols in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, \boldsymbol{D} hypersurface,
- $\varpi: \widetilde{\boldsymbol{X}} \rightarrow \boldsymbol{X}$: oriented real blow-up of \boldsymbol{X} along D. Locally, $\widetilde{X} \simeq(X \backslash D) \sqcup\left(D \times S^{1}\right)$.
- Choose $\pi: X^{\prime} \longrightarrow X$ s.t. $\pi^{-1}(D)=D^{\prime}$ is a n.c.d., $\varpi^{\prime}: \widetilde{X}^{\prime} \longrightarrow X^{\prime}$ or. real blow-up of the components of D^{\prime}.
- Loc. coord. on $X^{\prime}:\left(z_{1}, \ldots, z_{n}\right)$, $D^{\prime}=\left\{z_{1} \cdots z_{\ell}=0\right\}$.
Loc. coord. on \widetilde{X}^{\prime} :
$\left(\rho_{1}, e^{i \theta_{1}}, \ldots, \rho_{\ell}, e^{i \theta_{\ell}}, z_{\ell+1}, \ldots, z_{n}\right)$.
$\widetilde{X}^{\prime}=\left(S^{1}\right)^{\ell} \times[0, \varepsilon)^{\ell} \times \Delta^{n-\ell}$ is a PL manifold.
- $\exists \widetilde{\pi}: \widetilde{X}^{\prime} \longrightarrow \widetilde{X}$ lifting π.

Rapid decay sols in dim. $\geqslant 2$

Rapid decay sols in dim.
 $\geqslant 2$

- Sheaves $\mathscr{A}_{\widetilde{X}^{\prime}}^{\text {rd } D^{\prime}} \subset \mathscr{A}_{\widetilde{X}^{\prime}} \subset \mathscr{C}_{\widetilde{X}^{\prime}}^{\infty}$.

Rapid decay sols in dim.
 $\geqslant 2$

- Sheaves $\mathscr{A}_{\widetilde{X}^{\prime}}^{\text {rd } D^{\prime}} \subset \mathscr{A}_{\widehat{X}^{\prime}} \subset \mathscr{C}_{\widetilde{X}^{\prime}}^{\infty}$.
- $\left(E^{\prime}, \nabla^{\prime}\right)=\pi^{*}(E, \nabla)$.

Rapid decay sols in dim. $\geqslant 2$

- Sheaves $\mathscr{A} \frac{{ }_{\overline{X^{\prime}}}}{\text { dd }} D^{\prime} \subset \mathscr{A}_{\widehat{X}^{\prime}} \subset \mathscr{C}_{\widehat{X}^{\prime}}^{\infty}$.
- $\left(E^{\prime}, \nabla^{\prime}\right)=\pi^{*}(E, \nabla)$.
- Complex of sheaves of horizontal sections of ∇^{\prime} with rapid decay is well-defined.

Rapid decay sols in dim. $\geqslant 2$

- Sheaves $\mathscr{A}_{\widetilde{X}^{\prime}}^{\text {rd } D^{\prime}} \subset \mathscr{A}_{\widehat{X}^{\prime}} \subset \mathscr{C}_{\widetilde{X}^{\prime}}^{\infty}$.
- $\left(E^{\prime}, \nabla^{\prime}\right)=\pi^{*}(E, \nabla)$.
- Complex of sheaves of horizontal sections of ∇^{\prime} with rapid decay is well-defined.
- Definition. Its push-forward by $\widetilde{\pi}^{\prime}: \widetilde{X}^{\prime} \longrightarrow \widetilde{X}$ is the complex of sheaves of horizontal sections of ∇ with rapid decay.

Rapid decay sols in dim. $\geqslant 2$

- Sheaves $\mathscr{A} \frac{{ }^{\text {rd }}}{} D^{\prime} \subset \mathscr{A}_{\widehat{X}^{\prime}} \subset \mathscr{C}_{\widehat{X}^{\prime}}^{\infty}$.
- $\left(E^{\prime}, \nabla^{\prime}\right)=\pi^{*}(E, \nabla)$.
- Complex of sheaves of horizontal sections of ∇^{\prime} with rapid decay is well-defined.
- Definition. Its push-forward by $\widetilde{\pi}^{\prime}: \widetilde{X}^{\prime} \longrightarrow \widetilde{X}$ is the complex of sheaves of horizontal sections of ∇ with rapid decay.

Theorem.
If $\operatorname{dim} X=2$, this complex is real constr. on $\widetilde{\boldsymbol{X}}$.

Rapid decay sols in dim. $\geqslant 2$

- Sheaves $\mathscr{A}_{\widetilde{X}^{\prime}}^{\text {rd } D^{\prime}} \subset \mathscr{A}_{\widetilde{X}^{\prime}} \subset \mathscr{C}_{\widetilde{X}^{\prime}}^{\infty}$.
- $\left(E^{\prime}, \nabla^{\prime}\right)=\pi^{*}(E, \nabla)$.
- Complex of sheaves of horizontal sections of ∇^{\prime} with rapid decay is well-defined.
- Definition. Its push-forward by $\widetilde{\pi}^{\prime}: \widetilde{X}^{\prime} \longrightarrow \widetilde{X}$ is the complex of sheaves of horizontal sections of ∇ with rapid decay.

Theorem.
If $\operatorname{dim} X=2$, this complex is real constr. on $\widetilde{\boldsymbol{X}}$.
Problem. To describe a stratif. of $\widetilde{\boldsymbol{X}}$ adapted to this complex.

Normal form in dim. $\geqslant 2$

Normal form in dim.
 $\geqslant 2$

- $X=\Delta^{n}$, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$,

Normal form in dim. $\geqslant 2$

- $X=\Delta^{n}$, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$,
- $D=\left\{z_{1} \cdots z_{\ell}=0\right\}$, n.c.d.

Normal form in dim. $\geqslant 2$

- $X=\Delta^{n}$, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$,
- $D=\left\{z_{1} \cdots z_{\ell}=0\right\}$, n.c.d.
- $\varphi_{1}, \ldots, \varphi_{d} \in \mathscr{O}_{X}\left[\left(z_{1} \cdots z_{\ell}\right)^{-1}\right] / \mathscr{O}_{X}$,

Normal form in dim. $\geqslant 2$

- $X=\Delta^{n}$, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$,
- $D=\left\{z_{1} \cdots z_{\ell}=0\right\}$, n.c.d.
- $\varphi_{1}, \ldots, \varphi_{d} \in \mathscr{O}_{X}\left[\left(z_{1} \cdots z_{\ell}\right)^{-1}\right] / \mathscr{O}_{X}$,
- $A_{i}(z)$ matrix of size d, merom., pole along D.

Normal form in dim. $\geqslant 2$

- $X=\Delta^{n}$, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$,
- $D=\left\{z_{1} \cdots z_{\ell}=0\right\}$, n.c.d.
- $\varphi_{1}, \ldots, \varphi_{d} \in \mathscr{O}_{X}\left[\left(z_{1} \cdots z_{\ell}\right)^{-1}\right] / \mathscr{O}_{X}$,
- $A_{i}(z)$ matrix of size d, merom., pole along D.
- $A_{i}=\left(\begin{array}{lll}\partial \varphi_{1} / \partial z_{i} & & \\ & \ddots & \\ & & \\ & & \partial \varphi_{d} / \partial z_{i}\end{array}\right)+\frac{C_{i}}{z_{i}} \quad C_{i}=$ const.

Normal form in dim. $\geqslant 2$

- $X=\Delta^{n}$, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$,
- $D=\left\{z_{1} \cdots z_{\ell}=0\right\}$, n.c.d.
- $\varphi_{1}, \ldots, \varphi_{d} \in \mathscr{O}_{X}\left[\left(z_{1} \cdots z_{\ell}\right)^{-1}\right] / \mathscr{O}_{X}$,
- $A_{i}(z)$ matrix of size d, merom., pole along D.
- $A_{i}=\left(\begin{array}{lll}\partial \varphi_{1} / \partial z_{i} & & \\ & \ddots & \\ & & \partial \varphi_{d} / \partial z_{i}\end{array}\right)+\frac{C_{i}}{z_{i}} \quad C_{i}=$ const.
- + Integrability cond.: $\left[C_{i}, C_{j}\right]=0$.

Normal form in dim. $\geqslant 2$

- $X=\Delta^{n}$, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$,
- $D=\left\{z_{1} \cdots z_{\ell}=0\right\}$, n.c.d.
- $\varphi_{1}, \ldots, \varphi_{d} \in \mathscr{O}_{X}\left[\left(z_{1} \cdots z_{\ell}\right)^{-1}\right] / \mathscr{O}_{X}$,
- $A_{i}(z)$ matrix of size d, merom., pole along D.
- $A_{i}=\left(\begin{array}{ccc}\partial \varphi_{1} / \partial z_{i} & & \\ & \ddots & \\ & & \partial \varphi_{d} / \partial z_{i}\end{array}\right)+\frac{C_{i}}{z_{i}} \quad C_{i}=$ const.
- + Integrability cond.: $\left[C_{i}, C_{j}\right]=0$.
- New condition: goodness.

Normal form in dim. $\geqslant 2$

- $\boldsymbol{X}=\Delta^{n}$, coord. $z=\left(z_{1}, \ldots, z_{n}\right)$,
- $D=\left\{z_{1} \cdots z_{\ell}=0\right\}$, n.c.d.
- $\varphi_{1}, \ldots, \varphi_{d} \in \mathscr{O}_{X}\left[\left(z_{1} \cdots z_{\ell}\right)^{-1}\right] / \mathscr{O}_{X}$,
- $A_{i}(z)$ matrix of size d, merom., pole along D.
- $A_{i}=\left(\begin{array}{lll}\partial \varphi_{1} / \partial z_{i} & & \\ & \ddots & \\ & & \\ & & \partial \varphi_{d} / \partial z_{i}\end{array}\right)+\frac{C_{i}}{z_{i}} \quad C_{i}=$ const.
- + Integrability cond.: $\left[C_{i}, C_{j}\right]=0$.
- New condition: goodness.
$\forall j, k \quad \varphi_{j}-\varphi_{k}\left\{\begin{array}{l}=z^{-m_{j k}} \cdot \text { unit, } \quad m_{j k} \in \mathbb{N}^{\ell} \backslash\{0\}, \\ \equiv 0\end{array}\right.$

Normal form in dim. $\geqslant 2$

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya).

Normal form in dim. $\geqslant 2$

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya). Given $(\boldsymbol{E}, \boldsymbol{\nabla})$ on \boldsymbol{X} with poles along D,

Normal form in dim. $\geqslant 2$

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya). Given $(\boldsymbol{E}, \boldsymbol{\nabla})$ on \boldsymbol{X} with poles along D,

- \exists projective modif. $\pi: X^{\prime} \rightarrow \boldsymbol{X}$ s.t.

Normal form in dim. $\geqslant 2$

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya).
Given $(\boldsymbol{E}, \boldsymbol{\nabla})$ on \boldsymbol{X} with poles along D,

- \exists projective modif. $\pi: X^{\prime} \rightarrow X$ s.t.
- $D^{\prime}=\pi^{-1}(D)$ is a n.c.d.,

Normal form in dim. $\geqslant 2$

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya).
Given $(\boldsymbol{E}, \boldsymbol{\nabla})$ on \boldsymbol{X} with poles along D,

- \exists projective modif. $\pi: X^{\prime} \rightarrow X$ s.t.
- $D^{\prime}=\pi^{-1}(D)$ is a n.c.d.,
- and $\pi^{*}(E, \nabla)$ has a good formal normal form near each point of D^{\prime},

Normal form in dim. $\geqslant 2$

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya).
Given $(\boldsymbol{E}, \boldsymbol{\nabla})$ on \boldsymbol{X} with poles along D,

- \exists projective modif. $\pi: X^{\prime} \rightarrow X$ s.t.
- $D^{\prime}=\pi^{-1}(D)$ is a n.c.d.,
- and $\pi^{*}(E, \nabla)$ has a good formal normal form near each point of D^{\prime}, i.e. $\forall x_{o}^{\prime} \in Y^{\prime} \in \operatorname{Strat}\left(D^{\prime}\right)$,
$\exists \widehat{P} \in \mathrm{GL}_{d}\left(\mathscr{O}_{\widehat{X^{\prime} \mid Y^{\prime}}, x_{o}^{\prime}}\left(* D^{\prime}\right)\right)$.

Normal form in dim. $\geqslant 2$

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya).
Given $(\boldsymbol{E}, \boldsymbol{\nabla})$ on \boldsymbol{X} with poles along D,

- \exists projective modif. $\pi: X^{\prime} \rightarrow X$ s.t.
- $D^{\prime}=\pi^{-1}(D)$ is a n.c.d.,
- and $\pi^{*}(E, \nabla)$ has a good formal normal form near each point of D^{\prime}, i.e. $\forall x_{o}^{\prime} \in Y^{\prime} \in \operatorname{Strat}\left(D^{\prime}\right)$,
$\exists \widehat{P} \in \mathrm{GL}_{d}\left(\mathscr{O}_{\widehat{X^{\prime} \mid Y^{\prime}, x_{o}^{\prime}}}\left(* D^{\prime}\right)\right)$.
Remarks.

Normal form in dim. $\geqslant 2$

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya).
Given $(\boldsymbol{E}, \boldsymbol{\nabla})$ on \boldsymbol{X} with poles along D,

- \exists projective modif. $\pi: X^{\prime} \rightarrow X$ s.t.
- $D^{\prime}=\pi^{-1}(D)$ is a n.c.d.,
- and $\pi^{*}(E, \nabla)$ has a good formal normal form near each point of D^{\prime}, i.e. $\forall x_{o}^{\prime} \in Y^{\prime} \in \operatorname{Strat}\left(D^{\prime}\right)$,
$\exists \widehat{P} \in \mathrm{GL}_{d}\left(\mathscr{O}_{\widehat{X^{\prime} \mid Y^{\prime}, x_{o}^{\prime}}}\left(* D^{\prime}\right)\right)$.
Remarks.
- Conj. by C.S. in 2000 and proved in particular cases in dim. 2.

Normal form in dim. $\geqslant 2$

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya).
Given $(\boldsymbol{E}, \boldsymbol{\nabla})$ on \boldsymbol{X} with poles along D,

- \exists projective modif. $\pi: X^{\prime} \rightarrow X$ s.t.
- $D^{\prime}=\pi^{-1}(D)$ is a n.c.d.,
- and $\pi^{*}(E, \nabla)$ has a good formal normal form near each point of D^{\prime}, i.e. $\forall x_{o}^{\prime} \in Y^{\prime} \in \operatorname{Strat}\left(D^{\prime}\right)$,
$\exists \widehat{P} \in \mathrm{GL}_{d}\left(\mathscr{O}_{\widehat{X^{\prime} \mid Y^{\prime}, x_{o}^{\prime}}}\left(* D^{\prime}\right)\right)$.
Remarks.
- Conj. by C.S. in 2000 and proved in particular cases in dim. 2.
- Proved by T. Mochizuki in 2008, if $\boldsymbol{X}, \boldsymbol{E}, \nabla$ are algebraic.

Normal form in dim. $\geqslant 2$

Theorem (Levelt-Turrittin, T. Mochizuki, K. Kedlaya).
Given $(\boldsymbol{E}, \boldsymbol{\nabla})$ on \boldsymbol{X} with poles along D,

- \exists projective modif. $\pi: X^{\prime} \rightarrow X$ s.t.
- $D^{\prime}=\pi^{-1}(D)$ is a n.c.d.,
- and $\pi^{*}(E, \nabla)$ has a good formal normal form near each point of D^{\prime}, i.e. $\forall x_{o}^{\prime} \in Y^{\prime} \in \operatorname{Strat}\left(D^{\prime}\right)$,
$\exists \widehat{P} \in \mathrm{GL}_{d}\left(\mathscr{O}_{\widehat{X^{\prime} \mid Y^{\prime}, x_{o}^{\prime}}}\left(* D^{\prime}\right)\right)$.
Remarks.
- Conj. by C.S. in 2000 and proved in particular cases in dim. 2.
- Proved by T. Mochizuki in 2008, if $\boldsymbol{X}, \boldsymbol{E}, \nabla$ are algebraic.
- Proved by K. Kedlaya in 2009 in the local (formal) setting, if $\operatorname{dim} X=2$. Higher dim. in progress.

Asympt. analysis in dim.
 $\geqslant 2$

Asympt. analysis in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, D n.c.d,

Asympt. analysis in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, \boldsymbol{D} n.c.d,
- (E, ∇) with good formal normal form near each point of D.

Asympt. analysis in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, \boldsymbol{D} n.c.d,
- (E, ∇) with good formal normal form near each point of D.
- $\varpi: \widetilde{\boldsymbol{X}} \rightarrow \boldsymbol{X}$: oriented real blow-up of \boldsymbol{X} along the comp. of D.

Asympt. analysis in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, \boldsymbol{D} n.c.d,
- (E, ∇) with good formal normal form near each point of D.
- $\varpi: \widetilde{\boldsymbol{X}} \rightarrow \boldsymbol{X}$: oriented real blow-up of \boldsymbol{X} along the comp. of D.
- Loc. coord. on X : $\left(z_{1}, \ldots, z_{n}\right)$,
$D=\left\{z_{1} \cdots z_{\ell}=0\right\}$.

Asympt. analysis in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, \boldsymbol{D} n.c.d,
- (E, ∇) with good formal normal form near each point of D.
- $\varpi: \widetilde{\boldsymbol{X}} \rightarrow \boldsymbol{X}$: oriented real blow-up of \boldsymbol{X} along the comp. of D.
- Loc. coord. on X : $\left(z_{1}, \ldots, z_{n}\right)$,
$D=\left\{z_{1} \cdots z_{\ell}=0\right\}$.
Loc. coord. on $\widetilde{\boldsymbol{X}}$:
$\left(\rho_{1}, e^{i \theta_{1}}, \ldots, \rho_{\ell}, e^{i \theta_{\ell}}, z_{\ell+1}, \ldots, z_{n}\right)$.

Asympt. analysis in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, \boldsymbol{D} n.c.d,
- (E, ∇) with good formal normal form near each point of D.
- $\varpi: \widetilde{\boldsymbol{X}} \rightarrow X$: oriented real blow-up of \boldsymbol{X} along the comp. of D.
- Loc. coord. on X : $\left(z_{1}, \ldots, z_{n}\right)$,
$D=\left\{z_{1} \cdots z_{\ell}=0\right\}$.
Loc. coord. on $\widetilde{\boldsymbol{X}}$:
$\left(\rho_{1}, e^{i \theta_{1}}, \ldots, \rho_{\ell}, e^{i \theta_{\ell}}, z_{\ell+1}, \ldots, z_{n}\right)$.
Theorem (Hukuhara-Turrittin, H. Majima '84, C.S. '00).

Asympt. analysis in dim. $\geqslant 2$

- \boldsymbol{X} cplx manifold, \boldsymbol{D} n.c.d,
- (E, ∇) with good formal normal form near each point of D.
- $\varpi: \widetilde{\boldsymbol{X}} \rightarrow \boldsymbol{X}$: oriented real blow-up of \boldsymbol{X} along the comp. of D.
- Loc. coord. on X : $\left(z_{1}, \ldots, z_{n}\right)$,
$D=\left\{z_{1} \cdots z_{\ell}=0\right\}$.
Loc. coord. on $\widetilde{\boldsymbol{X}}$:
$\left(\rho_{1}, e^{i \theta_{1}}, \ldots, \rho_{\ell}, e^{i \theta_{\ell}}, z_{\ell+1}, \ldots, z_{n}\right)$.
Theorem (Hukuhara-Turrittin, H. Majima '84, C.S. '00). Locally on $\partial \widetilde{X}, \exists$ a lifting $\widetilde{P} \in \mathrm{GL}_{d}\left(\mathscr{A}_{\widetilde{X}}(* D)\right)$ of \widehat{P} s.t. \widetilde{B} is a normal form.

Char. varieties and Stokes varieties

Char. varieties and Stokes varieties

- $Y \subset X$: smooth component of D (n.c.d.) or smooth codim. ons stratum.

Char. varieties and Stokes varieties

- $Y \subset X$: smooth component of D (n.c.d.) or smooth codim. ons stratum.

Theorem (Y. Laurent).

Char. varieties and Stokes varieties

- $Y \subset X$: smooth component of D (n.c.d.) or smooth codim. ons stratum.

Theorem (Y. Laurent).
$\forall r \in \mathbb{Q}_{+}^{*}, \exists \operatorname{Ch}_{Y, r}(E, \nabla) \subset T^{*}\left(N_{Y} X\right)$ which is a closed anal., Lagrangean and r-homogeneous.

Char. varieties and Stokes varieties

- $Y \subset X$: smooth component of D (n.c.d.) or smooth codim. ons stratum.

Theorem (Y. Laurent).
$\forall r \in \mathbb{Q}_{+}^{*}, \exists \operatorname{Ch}_{Y, r}(\boldsymbol{E}, \nabla) \subset T^{*}\left(N_{Y} X\right)$ which is a closed anal., Lagrangean and r-homogeneous. The subset $r \in \mathbb{Q}_{+}^{*}$ s.t. $\mathrm{Ch}_{Y, r}(E, \nabla) \neq \varnothing$ is finite.

Char. varieties and Stokes varieties

- $Y \subset X$: smooth component of D (n.c.d.) or smooth codim. ons stratum.

Theorem (Y. Laurent).
$\forall r \in \mathbb{Q}_{+}^{*}, \exists \operatorname{Ch}_{Y, r}(\boldsymbol{E}, \nabla) \subset T^{*}\left(N_{Y} X\right)$ which is a closed anal., Lagrangean and r-homogeneous. The subset $r \in \mathbb{Q}_{+}^{*}$ s.t. $\mathrm{Ch}_{Y, r}(E, \nabla) \neq \varnothing$ is finite.

- \exists a well-defined $\Theta: T^{*}\left(N_{Y} X\right) \longrightarrow \mathbb{C}$,

Char. varieties and Stokes varieties

- $Y \subset X$: smooth component of D (n.c.d.) or smooth codim. ons stratum.

Theorem (Y. Laurent).
$\forall r \in \mathbb{Q}_{+}^{*}, \exists \operatorname{Ch}_{Y, r}(\boldsymbol{E}, \nabla) \subset T^{*}\left(N_{Y} X\right)$ which is a closed anal., Lagrangean and r-homogeneous. The subset $r \in \mathbb{Q}_{+}^{*}$ s.t. $\mathrm{Ch}_{Y, r}(E, \nabla) \neq \varnothing$ is finite.

- \exists a well-defined $\Theta: T^{*}\left(N_{Y} X\right) \longrightarrow \mathbb{C}$, loc. $z_{1} \zeta_{1}$ if $Y=\left\{z_{1}=0\right\}$.

Char. varieties and Stokes varieties

- Properties if (\boldsymbol{E}, ∇) has a good norm. form, dim. 2:

Char. varieties and Stokes varieties

- Properties if $(\boldsymbol{E}, \boldsymbol{\nabla})$ has a good norm. form, dim. 2:
- $\mathrm{Ch}_{Y, r}(E, \nabla) / \mathbb{R}_{+}^{*}$ is smooth $(r>0)$.

Char. varieties and Stokes varieties

- Properties if $(\boldsymbol{E}, \boldsymbol{\nabla})$ has a good norm. form, dim. 2:
- $\mathrm{Ch}_{Y, r}(E, \nabla) / \mathbb{R}_{+}^{*}$ is smooth $(r>0)$.
- mapped into $\partial \widetilde{X} \times S^{1}$ by (p, Θ).

Char. varieties and Stokes varieties

- Properties if $(\boldsymbol{E}, \boldsymbol{\nabla})$ has a good norm. form, dim. 2:
- $\mathrm{Ch}_{Y, r}(E, \nabla) / \mathbb{R}_{+}^{*}$ is smooth $(r>0)$.
- mapped into $\partial \widetilde{X} \times S^{1}$ by (p, Θ).
- The union $(r>0)$ of the images is the Stokes space $\mathrm{St}_{Y}(\boldsymbol{E}, \boldsymbol{\nabla})$.

Char. varieties and Stokes varieties

- Properties if $(\boldsymbol{E}, \boldsymbol{\nabla})$ has a good norm. form, dim. 2:
- $\mathrm{Ch}_{Y, r}(E, \nabla) / \mathbb{R}_{+}^{*}$ is smooth $(r>0)$.
- mapped into $\partial \widetilde{X} \times S^{1}$ by (p, Θ).
- The union $(r>0)$ of the images is the Stokes space $\operatorname{St}_{Y}(\boldsymbol{E}, \nabla)$.
- The closure $\operatorname{St}(E, \nabla)$ of $\operatorname{St}_{Y}(E, \nabla)$ in $\widetilde{X} \times S^{1}$ is real semi-analytic.

Char. varieties and Stokes varieties

- Properties if $(\boldsymbol{E}, \boldsymbol{\nabla})$ has a good norm. form, dim. 2:
- $\mathrm{Ch}_{Y, r}(E, \nabla) / \mathbb{R}_{+}^{*}$ is smooth $(r>0)$.
- mapped into $\partial \widetilde{X} \times S^{1}$ by (p, Θ).
- The union $(r>0)$ of the images is the Stokes space $\operatorname{St}_{Y}(\boldsymbol{E}, \nabla)$.
- The closure $\operatorname{St}(E, \nabla)$ of $\operatorname{St}_{Y}(E, \nabla)$ in $\widetilde{X} \times S^{1}$ is real semi-analytic.
- Theorem.

Char. varieties and Stokes varieties

- Properties if $(\boldsymbol{E}, \boldsymbol{\nabla})$ has a good norm. form, dim. 2:
- $\mathrm{Ch}_{Y, r}(E, \nabla) / \mathbb{R}_{+}^{*}$ is smooth $(r>0)$.
- mapped into $\partial \widetilde{X} \times S^{1}$ by (p, Θ).
- The union $(r>0)$ of the images is the Stokes space $\operatorname{St}_{Y}(\boldsymbol{E}, \nabla)$.
- The closure $\operatorname{St}(E, \nabla)$ of $\operatorname{St}_{Y}(E, \nabla)$ in $\widetilde{X} \times S^{1}$ is real semi-analytic.
- Theorem. The sheaf of rapid decay sols of ∇ is real constr. w.r.t. any stratification compatible with the projection of $\operatorname{St}(\boldsymbol{E}, \nabla)$ on $\widetilde{\boldsymbol{X}}$.

Char. varieties and Stokes varieties

- Properties if $(\boldsymbol{E}, \boldsymbol{\nabla})$ has a good norm. form, dim. 2:
- $\mathrm{Ch}_{Y, r}(E, \nabla) / \mathbb{R}_{+}^{*}$ is smooth $(r>0)$.
- mapped into $\partial \widetilde{X} \times S^{1}$ by (p, Θ).
- The union $(r>0)$ of the images is the Stokes space $\operatorname{St}_{Y}(\boldsymbol{E}, \nabla)$.
- The closure $\operatorname{St}(E, \nabla)$ of $\operatorname{St}_{Y}(E, \nabla)$ in $\widetilde{X} \times S^{1}$ is real semi-analytic.
- Theorem. The sheaf of rapid decay sols of ∇ is real constr. w.r.t. any stratification compatible with the projection of $\operatorname{St}(\boldsymbol{E}, \nabla)$ on $\widetilde{\boldsymbol{X}}$.
- Corollary.

Char. varieties and Stokes varieties

- Properties if $(\boldsymbol{E}, \boldsymbol{\nabla})$ has a good norm. form, dim. 2:
- $\mathrm{Ch}_{Y, r}(E, \nabla) / \mathbb{R}_{+}^{*}$ is smooth $(r>0)$.
- mapped into $\partial \widetilde{X} \times S^{1}$ by (p, Θ).
- The union $(r>0)$ of the images is the Stokes space $\operatorname{St}_{Y}(\boldsymbol{E}, \boldsymbol{\nabla})$.
- The closure $\operatorname{St}(E, \nabla)$ of $\operatorname{St}_{Y}(E, \nabla)$ in $\widetilde{X} \times S^{1}$ is real semi-analytic.
- Theorem. The sheaf of rapid decay sols of ∇ is real constr. w.r.t. any stratification compatible with the projection of $\operatorname{St}(\boldsymbol{E}, \nabla)$ on $\widetilde{\boldsymbol{X}}$.
- Corollary. If $\operatorname{dim} X=2$, and $\operatorname{any}(E, \nabla)$, then the complex of rapid decay sols of ∇ is real constructible on \widetilde{X}.

