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Laplace transform

V : a holomorphic vector bundle on the Riemann
sphere P1,

∇ : a holomorphic connection having logarithmic
poles at

P = {p1, . . . , pr, pr+1 =∞} ⊂ P1.

t : the coordinate on the affine chart A1 = P1 r {∞}
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) := ad(t)(∇∂t
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Laplace transform

Picard-Fuchs equation associated to (V,∇):

P (t,∇∂t
) := ad(t)(∇∂t

)d + · · ·+ a0(t) = 0,

a0(t), . . . , ad(t) ∈ C[t].

Laplace transform : ∇∂t
←→ τ and t←→ −∇̂∂τ

.

∇̂∂τ
· τ = τ · ∇̂∂τ

+ 1,

P (t,∇∂t
) = P̂ (τ,∇∂τ

) = cτd(∇̂∂τ
)d̂ + · · ·+ b0(τ ).

=⇒

a holomorphic bundle V̂ on the complex line Â1∗

(τ -coordinate) of rank d̂ = degt ad(t),

with a connection ∇̂ having a regular singularity
at 0 but usually not at∞, and no other pole.
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variation of polarized complex Hodge structure .
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Laplace transform and VHS

Assume that (V,∇) underlies a
variation of polarized complex Hodge structure .

Question :

What kind of a structure underlies the Laplace
transform (V̂ , ∇̂) of (V,∇)?

Hermitian metrics on Frobenius manifolds – p. 4/??



Variations of Hodge structures

Data :

Hermitian metrics on Frobenius manifolds – p. 5/??



Variations of Hodge structures

Data :
A C∞ vector bundle H on P1 r P ,

Hermitian metrics on Frobenius manifolds – p. 5/??



Variations of Hodge structures

Data :
A C∞ vector bundle H on P1 r P ,
a flat connection D,

Hermitian metrics on Frobenius manifolds – p. 5/??



Variations of Hodge structures

Data :
A C∞ vector bundle H on P1 r P ,
a flat connection D,
a decomposition H = ⊕p∈ZHp

(Hp = Hp,−p, weight w = 0),

Hermitian metrics on Frobenius manifolds – p. 5/??



Variations of Hodge structures

Data :
A C∞ vector bundle H on P1 r P ,
a flat connection D,
a decomposition H = ⊕p∈ZHp

(Hp = Hp,−p, weight w = 0),
a Hermitian metric h on H.

Hermitian metrics on Frobenius manifolds – p. 5/??



Variations of Hodge structures

Data :
A C∞ vector bundle H on P1 r P ,
a flat connection D,
a decomposition H = ⊕p∈ZHp

(Hp = Hp,−p, weight w = 0),
a Hermitian metric h on H.

Constraints :

Hermitian metrics on Frobenius manifolds – p. 5/??



Variations of Hodge structures

Data :
A C∞ vector bundle H on P1 r P ,
a flat connection D,
a decomposition H = ⊕p∈ZHp

(Hp = Hp,−p, weight w = 0),
a Hermitian metric h on H.

Constraints :
the decomposition is orthogonal with respect to h
and the nondegenerate Hermitian form
k = ⊕p(−1)ph|Hp is D-flat ,

Hermitian metrics on Frobenius manifolds – p. 5/??



Variations of Hodge structures

Data :
A C∞ vector bundle H on P1 r P ,
a flat connection D,
a decomposition H = ⊕p∈ZHp

(Hp = Hp,−p, weight w = 0),
a Hermitian metric h on H.

Constraints :
the decomposition is orthogonal with respect to h
and the nondegenerate Hermitian form
k = ⊕p(−1)ph|Hp is D-flat ,

Griffiths’ transversality

Hermitian metrics on Frobenius manifolds – p. 5/??



Variations of Hodge structures

Data :
A C∞ vector bundle H on P1 r P ,
a flat connection D,
a decomposition H = ⊕p∈ZHp

(Hp = Hp,−p, weight w = 0),
a Hermitian metric h on H.

Constraints :
the decomposition is orthogonal with respect to h
and the nondegenerate Hermitian form
k = ⊕p(−1)ph|Hp is D-flat ,

Griffiths’ transversality

(V,∇) = (ker D′′, D′),

Hermitian metrics on Frobenius manifolds – p. 5/??



Variations of Hodge structures

Data :
A C∞ vector bundle H on P1 r P ,
a flat connection D,
a decomposition H = ⊕p∈ZHp

(Hp = Hp,−p, weight w = 0),
a Hermitian metric h on H.

Constraints :
the decomposition is orthogonal with respect to h
and the nondegenerate Hermitian form
k = ⊕p(−1)ph|Hp is D-flat ,

Griffiths’ transversality

(V,∇) = (ker D′′, D′),

Hodge filtration F pH = ⊕q>pHq, F pV = F pH ∩ V .
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Theorem. In general, (V̂ , ∇̂) underlies an integrable variation of
polarized twistor structure of weight 0, which is tame at τ = 0.
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Variations of polarized twistor structures
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Variations of polarized twistor structures

New complex variable z.
Closed unit disc D0 = {|z| 6 1}, S = ∂D0 = {|z| = 1}.

Hermitian metrics on Frobenius manifolds – p. 7/??



Variations of polarized twistor structures
A holomorphic vector bundle V̂ on Â1∗ ×D0,
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Variations of polarized twistor structures
A holomorphic vector bundle V̂ on Â1∗ ×D0,

a flat holomorphic z-connection ∇̂z ,
a sesquilinear pairing for any z ∈ S

Cz : V̂
|bA1∗×{z}

⊗C V̂
|bA1∗×{−z}

−→ C∞
bA1∗

depending analytically on z

Constraints :
C is compatible with ∇̂z and is nondegenerate ,

i.e., defines a gluing between V̂ ∨ and σ∗V̂ ,
σ : z 7−→ −1/z,

for any τ0 ∈ Â1∗, the bundle on P1 obtained by

gluing V̂ ∨

τ0
and σ∗V̂ τ0

along S with C is trivial ,

C induces, on the global sections of this bundle, a
positive definite Hermitian form.
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Variations of polarized twistor structures

Taking z-global sections =⇒

Holomorphic bundle with flat connection (V̂ , ∇̂),
harmonic metric h

Integrability :

The z-connection ∇̂z comes from an absolute
connection having Poincaré rank one along
z = 0,
C is compatible with this connection.

Remark. Such a notion also appears in tt∗ structures (Cecotti-Vafa
1991, Dubrovin 1993, Hertling 2003).
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Data :
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Frobenius structure (or flat structure)

Data :
M : complex manifold of dimension µ

⋆ : commutative associative product with unit e
on tangent vector fields, depending
holomorphically on the point in M ,
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Frobenius structure (or flat structure)

Data :
M : complex manifold of dimension µ

⋆ : commutative associative product with unit e
on tangent vector fields, depending
holomorphically on the point in M ,
g : flat nondegenerate bilinear form on vector
fields, depending holomorphically on the point
in M .
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Frobenius structure (or flat structure)

Data :
M : complex manifold of dimension µ

⋆ : commutative associative product with unit e
on tangent vector fields, depending
holomorphically on the point in M ,
g : flat nondegenerate bilinear form on vector
fields, depending holomorphically on the point
in M .
E : homogeneity (Euler) holomorphic vector field
on M .
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Frobenius structure (or flat structure)

Data :
M : complex manifold of dimension µ

⋆ : commutative associative product with unit e
on tangent vector fields, depending
holomorphically on the point in M ,
g : flat nondegenerate bilinear form on vector
fields, depending holomorphically on the point
in M .
E : homogeneity (Euler) holomorphic vector field
on M .

Constraints .
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Theorem (A. Douai, C.S.). Let f be any Laurent polynomial on
a torus

U = (C∗)n = Spec C[u1, u−1
1 , . . . , un, u−1

n ],

which is convenient and nondegenerate with respect to its Newton
polyhedron; in particular,

µ := dim C[u, u−1]/(u∂f/∂u) < +∞.

Choose a family ϕ0 = 1, ϕ1, . . . , ϕµ−1 inducing a basis of this
vector space. Then there exists a canonical Frobenius structure
locally on the space M of parameters x0, . . . , xµ−1 of the

unfolding F = f +
∑

xiϕi.
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An example
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w1, . . . , wn (n > 1) : positive integers.
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An example

w1, . . . , wn (n > 1) : positive integers.

f(u1, . . . , un) = u1 + · · ·+ un +
1

uw1

1 · · ·u
wn
n

.
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An example

exponent of u1

exponent of u2

exponent of u3

1

1

1

−(w1, w2, w3)
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w1, . . . , wn (n > 1) : positive integers.

f(u1, . . . , un) = u1 + · · ·+ un +
1

uw1

1 · · ·u
wn
n

.

µ = 1 + w1 + · · ·+ wn, f has µ simple critical
points.
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An example

w1, . . . , wn (n > 1) : positive integers.

f(u1, . . . , un) = u1 + · · ·+ un +
1

uw1

1 · · ·u
wn
n

.

µ = 1 + w1 + · · ·+ wn, f has µ simple critical
points.

Critical values : µe2iπk/µ (k = 0, . . . , µ− 1).
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An example

w1, . . . , wn (n > 1) : positive integers.

f(u1, . . . , un) = u1 + · · ·+ un +
1

uw1

1 · · ·u
wn
n

.

µ = 1 + w1 + · · ·+ wn, f has µ simple critical
points.

Critical values : µe2iπk/µ (k = 0, . . . , µ− 1).

Remark. It is expected (Étienne Mann) that the canonical Frobenius
structure attached to f is isomorphic to the orbifold quantum
cohomology of the weighted projective space P(1, w1, . . . , wn).

Hermitian metrics on Frobenius manifolds – p. 13/??



tt∗ structure

Other presentation of the constraints :
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tt∗ structure

Other presentation of the constraints :

Add a new variable z, hence π : M × C −→M .

flatness of the connection∇ on π∗TM :

∇ξη = ▽ξη −
ξ ⋆ η

z

∇∂z
η = E ⋆ η ·

1

z2
−▽ηE ·

1

z
.
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tt∗ structure

Other presentation of the constraints :

Add a new variable z, hence π : M × C −→M .

flatness of the connection∇ on π∗TM :

∇ξη = ▽ξη −
ξ ⋆ η

z

∇∂z
η = E ⋆ η ·

1

z2
−▽ηE ·

1

z
.

▽ : Levi-Civita connection of the bilinear form g on
TM
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tt∗ structure

Other presentation of the constraints :

Add a new variable z, hence π : M × C −→M .

flatness of the connection∇ on π∗TM :

∇ξη = ▽ξη −
ξ ⋆ η

z

∇∂z
η = E ⋆ η ·

1

z2
−▽ηE ·

1

z
.

⋆ : product on TM
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tt∗ structure

Other presentation of the constraints :

Add a new variable z, hence π : M × C −→M .

flatness of the connection∇ on π∗TM :

∇ξη = ▽ξη −
ξ ⋆ η

z

∇∂z
η = E ⋆ η ·

1

z2
−▽ηE ·

1

z
.

E : Euler vector field
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tt∗ structure

Other presentation of the constraints :

Add a new variable z, hence π : M × C −→M .

flatness of the connection∇ on π∗TM :

∇ξη = ▽ξη −
ξ ⋆ η

z

∇∂z
η = E ⋆ η ·

1

z2
−▽ηE ·

1

z
.

The bilinear form g is also lifted to π∗TM as a
pairing between π∗TMz and π∗TM−z.
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tt∗ structure

Other presentation of the constraints :

Add a new variable z, hence π : M × C −→M .

flatness of the connection∇ on π∗TM :

∇ξη = ▽ξη −
ξ ⋆ η

z

∇∂z
η = E ⋆ η ·

1

z2
−▽ηE ·

1

z
.

Definition (Cecotti-Vafa, Dubrovin, Hertling). A tt∗ structure
consists of a the supplementary datum of

Cz : π∗TMz ⊗ π∗TM−z −→ C∞M depending analytically on

z ∈ S1, such that (π∗TM,∇, C) is an integrable variation of
polarized twistor structure of weight 0 parametrized by M .
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tt∗ structure for Laurent polynomials

The connection∇ on π∗TM is obtained by
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tt∗ structure for Laurent polynomials

The connection∇ on π∗TM is obtained by

considering the Laplace transform of the
Gauss-Manin connection associated to the unfolding
F = f +

∑
xiϕi, x ∈M ,
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tt∗ structure for Laurent polynomials

The connection∇ on π∗TM is obtained by

considering the Laplace transform of the
Gauss-Manin connection associated to the unfolding
F = f +

∑
xiϕi, x ∈M ,

identifying the corresponding bundle with π∗TM
through an infinitesimal period mapping .
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tt∗ structure for Laurent polynomials

The connection∇ on π∗TM is obtained by

considering the Laplace transform of the
Gauss-Manin connection associated to the unfolding
F = f +

∑
xiϕi, x ∈M ,

identifying the corresponding bundle with π∗TM
through an infinitesimal period mapping .

Let us restrict to 0 ∈M corresponding to the function f .
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tt∗ structure for Laurent polynomials

The connection∇ on π∗TM is obtained by

considering the Laplace transform of the
Gauss-Manin connection associated to the unfolding
F = f +

∑
xiϕi, x ∈M ,

identifying the corresponding bundle with π∗TM
through an infinitesimal period mapping .

Let us restrict to 0 ∈M corresponding to the function f .
The sheaf of horizontal sections of (π∗T0M,∇) is
identified to the locally constant sheaf

Hn
Φz

(U, Q), z 6= 0
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tt∗ structure for Laurent polynomials

The connection∇ on π∗TM is obtained by

considering the Laplace transform of the
Gauss-Manin connection associated to the unfolding
F = f +

∑
xiϕi, x ∈M ,

identifying the corresponding bundle with π∗TM
through an infinitesimal period mapping .

Let us restrict to 0 ∈M corresponding to the function f .
The sheaf of horizontal sections of (π∗T0M,∇) is
identified to the locally constant sheaf

Hn
Φz

(U, Q), z 6= 0

Φz : the family of closed sets in U on which
Re(f(u1, . . . , un)/z) 6 c < 0.
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tt∗ structure for Laurent polynomials

There is a natural intersection pairing (made
sesquilinear)

P̂z : Hn
Φz

(U, C)⊗Hn
Φ−z

(U, C) −→ C.
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tt∗ structure for Laurent polynomials

There is a natural intersection pairing (made
sesquilinear)

P̂z : Hn
Φz

(U, C)⊗Hn
Φ−z

(U, C) −→ C.

µ

µζµζ2

µζµ−1

µ

µζµζ2

µζµ−1
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Theorem (conjectured by C. Hertling). (π∗T0M,∇, C) with

Cz =
(−1)(n−1)n/2

(2iπ)n
P̂z gives a tt∗ structure on M near 0.
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Sketch of proof :

Hermitian metrics on Frobenius manifolds – p. 17/??



Theorem (conjectured by C. Hertling). (π∗T0M,∇, C) with

Cz =
(−1)(n−1)n/2

(2iπ)n
P̂z gives a tt∗ structure on M near 0.

Sketch of proof :

The Gauss-Manin connection attached to f defines a
variation of polarized mixed Hodge structures
(variable t).
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Cz =
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(2iπ)n
P̂z gives a tt∗ structure on M near 0.

Sketch of proof :

The Gauss-Manin connection attached to f defines a
variation of polarized mixed Hodge structures
(variable t).

The graded pieces with weight 6= the expected
weight are constant Hodge structures
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Theorem (conjectured by C. Hertling). (π∗T0M,∇, C) with

Cz =
(−1)(n−1)n/2

(2iπ)n
P̂z gives a tt∗ structure on M near 0.

Sketch of proof :

The Gauss-Manin connection attached to f defines a
variation of polarized mixed Hodge structures
(variable t).

The graded pieces with weight 6= the expected
weight are constant Hodge structures
which are killed after Laplace transform and
restriction to |τ | = 1.
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Theorem (conjectured by C. Hertling). (π∗T0M,∇, C) with

Cz =
(−1)(n−1)n/2

(2iπ)n
P̂z gives a tt∗ structure on M near 0.

Sketch of proof :

The Gauss-Manin connection attached to f defines a
variation of polarized mixed Hodge structures
(variable t).

The graded pieces with weight 6= the expected
weight are constant Hodge structures
which are killed after Laplace transform and
restriction to |τ | = 1.

Apply the first theorem to the right graded piece
(V,∇) of the Gauss-Manin connection.
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Theorem. In general, (V̂ , ∇̂) underlies an integrable variation of

polarized twistor structure (V̂ , ∇̂z, Cz) of weight 0, which is
tame at τ = 0.
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Theorem. In general, (V̂ , ∇̂) underlies an integrable variation of

polarized twistor structure (V̂ , ∇̂z, Cz) of weight 0, which is
tame at τ = 0.

Restrict (V̂ , ∇̂z, Cz) to τ = 1 to get (π∗T0M,∇, C)
with its integrable polarized twistor structure .
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	Laplace transform
	Laplace transform
	Laplace transform
	Laplace transform

	Laplace transform
	Laplace transform
	Laplace transform
	Laplace transform
	Laplace transform
	Laplace transform
	Laplace transform
	Laplace transform
	Laplace transform
	Laplace transform

	Laplace transform and VHS
	Laplace transform and VHS
	Laplace transform and VHS

	Variations of Hodge structures
	Variations of Hodge structures
	Variations of Hodge structures
	Variations of Hodge structures
	Variations of Hodge structures
	Variations of Hodge structures
	Variations of Hodge structures
	Variations of Hodge structures
	Variations of Hodge structures
	Variations of Hodge structures

	Variations of polarized twistor structures
	Variations of polarized twistor structures
	Variations of polarized twistor structures
	Variations of polarized twistor structures
	Variations of polarized twistor structures
	Variations of polarized twistor structures
	Variations of polarized twistor structures
	Variations of polarized twistor structures
	Variations of polarized twistor structures

	Variations of polarized twistor structures
	Variations of polarized twistor structures
	Variations of polarized twistor structures
	Variations of polarized twistor structures
	Variations of polarized twistor structures
	Variations of polarized twistor structures
	Variations of polarized twistor structures

	Frobenius structure (or flat structure)
	Frobenius structure (or flat structure)
	Frobenius structure (or flat structure)
	Frobenius structure (or flat structure)
	Frobenius structure (or flat structure)
	Frobenius structure (or flat structure)

	vspace *{2cm}
	An example
	An example
	An example

	An example
	An example
	An example
	An example
	An example

	$tt^*$ structure
	$tt^*$ structure
	$tt^*$ structure
	$tt^*$ structure
	$tt^*$ structure
	$tt^*$ structure
	$tt^*$ structure
	$tt^*$ structure

	$tt^*$ structure for Laurent polynomials
	$tt^*$ structure for Laurent polynomials
	$tt^*$ structure for Laurent polynomials
	$tt^*$ structure for Laurent polynomials
	$tt^*$ structure for Laurent polynomials
	$tt^*$ structure for Laurent polynomials

	$tt^*$ structure for Laurent polynomials
	$tt^*$ structure for Laurent polynomials


