Hermitian metrics on Frobenius manifolds

Claude Sabbah

Centre de Mathématiques Laurent Schwartz
UMR 7640 du CNRS
École polytechnique, Palaiseau, France

Laplace transform

Laplace transform

- V : a holomorphic vector bundle on the Riemann sphere \mathbb{P}^{1},

Laplace transform

- V : a holomorphic vector bundle on the Riemann sphere \mathbb{P}^{1},
- ∇ : a holomorphic connection having logarithmic poles at

$$
P=\left\{p_{1}, \ldots, p_{r}, p_{r+1}=\infty\right\} \subset \mathbb{P}^{1}
$$

Laplace transform

- V : a holomorphic vector bundle on the Riemann sphere \mathbb{P}^{1},
- ∇ : a holomorphic connection having logarithmic poles at

$$
P=\left\{p_{1}, \ldots, p_{r}, p_{r+1}=\infty\right\} \subset \mathbb{P}^{1}
$$

- t : the coordinate on the affine chart $\mathbb{A}^{1}=\mathbb{P}^{1} \backslash\{\infty\}$

Laplace transform

- Picard-Fuchs equation associated to (V, ∇) :

$$
\begin{aligned}
& \quad P\left(t, \nabla_{\partial_{t}}\right):=a_{d}(t)\left(\nabla_{\partial_{t}}\right)^{d}+\cdots+a_{0}(t)=0, \\
& a_{0}(t), \ldots, a_{d}(t) \in \mathbb{C}[t] .
\end{aligned}
$$

Laplace transform

- Picard-Fuchs equation associated to (V, ∇):

$$
P\left(t, \nabla_{\partial_{t}}\right):=a_{d}(t)\left(\nabla_{\partial_{t}}\right)^{d}+\cdots+a_{0}(t)=0,
$$

$a_{0}(t), \ldots, a_{d}(t) \in \mathbb{C}[t]$.

- Laplace transform : $\nabla_{\partial_{t}} \longleftrightarrow \tau$ and $t \longleftrightarrow-\widehat{\nabla}_{\partial_{\tau}}$.

Laplace transform

- Picard-Fuchs equation associated to (V, ∇) :

$$
P\left(t, \nabla_{\partial_{t}}\right):=a_{d}(t)\left(\nabla_{\partial_{t}}\right)^{d}+\cdots+a_{0}(t)=0,
$$

$$
a_{0}(t), \ldots, a_{d}(t) \in \mathbb{C}[t] .
$$

- Laplace transform : $\nabla_{\partial_{t}} \longleftrightarrow \tau$ and $t \longleftrightarrow-\widehat{\nabla}_{\partial_{\tau}}$.
- $t \cdot \nabla_{\partial_{t}}=\nabla_{\partial_{t}} \cdot t-1$,

Laplace transform

- Picard-Fuchs equation associated to (V, ∇) :

$$
P\left(t, \nabla_{\partial_{t}}\right):=a_{d}(t)\left(\nabla_{\partial_{t}}\right)^{d}+\cdots+a_{0}(t)=0,
$$ $a_{0}(t), \ldots, a_{d}(t) \in \mathbb{C}[t]$.

- Laplace transform : $\nabla_{\partial_{t}} \longleftrightarrow \tau$ and $t \longleftrightarrow-\widehat{\nabla}_{\partial_{\tau}}$.
?

$$
\hat{\nabla}_{\partial_{\tau}} \cdot \tau=\tau \cdot \widehat{\nabla}_{\partial_{\tau}}+1,
$$

Laplace transform

- Picard-Fuchs equation associated to (V, ∇) :

$$
P\left(t, \nabla_{\partial_{t}}\right):=a_{d}(t)\left(\nabla_{\partial_{t}}\right)^{d}+\cdots+a_{0}(t)=0,
$$

$$
a_{0}(t), \ldots, a_{d}(t) \in \mathbb{C}[t] .
$$

- Laplace transform : $\nabla_{\partial_{t}} \longleftrightarrow \tau$ and $t \longleftrightarrow-\widehat{\nabla}_{\partial_{\tau}}$.
,

$$
\hat{\nabla}_{\partial_{\tau}} \cdot \tau=\tau \cdot \hat{\nabla}_{\partial_{\tau}}+1
$$

- $P\left(t, \nabla_{\partial_{t}}\right)=\widehat{P}\left(\tau, \nabla_{\partial_{\tau}}\right)=c \tau^{d}\left(\widehat{\nabla}_{\partial_{\tau}}\right)^{\widehat{d}}+\cdots+b_{0}(\tau)$.

Laplace transform

- Picard-Fuchs equation associated to (V, ∇) :

$$
P\left(t, \nabla_{\partial_{t}}\right):=a_{d}(t)\left(\nabla_{\partial_{t}}\right)^{d}+\cdots+a_{0}(t)=0,
$$ $a_{0}(t), \ldots, a_{d}(t) \in \mathbb{C}[\boldsymbol{i}]$,

- Laplace transform : $\nabla_{\partial_{t}} \stackrel{\rightharpoonup}{\rightharpoonup} \tau$ and $t \longleftrightarrow-\widehat{\nabla}_{\partial_{\tau}}$.
,

$$
\hat{\nabla}_{\partial_{\tau}} \cdot \tau=\tau, \hat{\nabla}_{\partial_{\tau}}+1,
$$

- $P\left(t, \nabla_{\partial_{t}}\right)=\widehat{P}\left(\tau, \nabla_{\partial_{\tau}}\right)=c \tau^{d}\left(\widehat{\nabla}_{\partial_{\tau}}\right)^{\widehat{d}}+\cdots+b_{0}(\tau)$.

Laplace transform

- Picard-Fuchs equation associated to (V, ∇):

$$
P\left(t, \nabla_{\partial_{t}}\right):=a_{d}(t)\left(\nabla_{\partial_{t}}\right) d+\cdots+a_{0}(t)=0,
$$ $a_{0}(t), \ldots, a_{d}(t) \in \mathbb{C}[t]$.

- Laplace transform : $\nabla_{\partial_{t}} \longleftrightarrow \tau$ and $t \longleftrightarrow-\widehat{\nabla}_{\partial_{\tau}}$.
- $\hat{\nabla}_{\partial_{\tau}} \cdot \tau=\tau \cdot \hat{\nabla}_{\partial_{\tau}}+1$,
- $P\left(t, \nabla_{\partial_{t}}\right)=\widehat{P}\left(\tau, \nabla_{\partial_{\tau}}\right)=c \tau^{d}\left(\widehat{\nabla}_{\partial_{\tau}}\right)^{\widehat{d}}+\cdots+b_{0}(\tau)$.

Laplace transform

- Picard-Fuchs equation associated to (V, ∇) :

$$
P\left(t, \nabla_{\partial_{t}}\right):=a_{d}(t)\left(\nabla_{\partial_{t}}\right)^{d}+\cdots+a_{0}(t)=0,
$$ $a_{0}(t), \ldots, a_{d}(t) \in \mathbb{C}[t]$.

- Laplace transform : $\nabla_{\partial_{t}} \longleftrightarrow \tau$ and $t \longleftrightarrow-\widehat{\nabla}_{\partial_{\tau}}$.
,

$$
\hat{\nabla}_{\partial_{\tau}} \cdot \tau=\tau \cdot \hat{\nabla}_{\partial_{\tau}}+1
$$

- $P\left(t, \nabla_{\partial_{t}}\right)=\widehat{P}\left(\tau, \nabla_{\partial_{\tau}}\right)=c \tau^{d}\left(\widehat{\nabla}_{\partial_{\tau}}\right)^{\widehat{d}}+\cdots+b_{0}(\tau)$.
- \Longrightarrow

Laplace transform

- Picard-Fuchs equation associated to (V, ∇) :

$$
P\left(t, \nabla_{\partial_{t}}\right):=a_{d}(t)\left(\nabla_{\partial_{t}}\right)^{d}+\cdots+a_{0}(t)=0,
$$

$$
a_{0}(t), \ldots, a_{d}(t) \in \mathbb{C}[t] .
$$

- Laplace transform : $\nabla_{\partial_{t}} \longleftrightarrow \tau$ and $t \longleftrightarrow-\widehat{\nabla}_{\partial_{\tau}}$.
,

$$
\hat{\nabla}_{\partial_{\tau}} \cdot \tau=\tau \cdot \widehat{\nabla}_{\partial_{\tau}}+1,
$$

- $P\left(t, \nabla_{\partial_{t}}\right)=\widehat{P}\left(\tau, \nabla_{\partial_{\tau}}\right)=c \tau^{d}\left(\widehat{\nabla}_{\partial_{\tau}}\right)^{\widehat{d}}+\cdots+b_{0}(\tau)$.
- a holomorphic bundle \widehat{V} on the complex line $\widehat{\mathbb{A}}^{1 *}$ (τ-coordinate) of rank $\widehat{d}=\operatorname{deg}_{t} a_{d}(t)$,

Laplace transform

- Picard-Fuchs equation associated to (V, ∇) :

$$
P\left(t, \nabla_{\partial_{t}}\right):=a_{d}(t)\left(\nabla_{\partial_{t}}\right)^{d}+\cdots+a_{0}(t)=0,
$$

$$
a_{0}(t), \ldots, a_{d}(t) \in \mathbb{C}[t] .
$$

- Laplace transform : $\nabla_{\partial_{t}} \longleftrightarrow \tau$ and $t \longleftrightarrow-\widehat{\nabla}_{\partial_{\tau}}$.
,

$$
\hat{\nabla}_{\partial_{\tau}} \cdot \tau=\tau \cdot \hat{\nabla}_{\partial_{\tau}}+1,
$$

- $P\left(t, \nabla_{\partial_{t}}\right)=\widehat{P}\left(\tau, \nabla_{\partial_{\tau}}\right)=c \tau^{d}\left(\widehat{\nabla}_{\partial_{\tau}}\right)^{\widehat{d}}+\cdots+b_{0}(\tau)$.
- a holomorphic bundle \widehat{V} on the complex line $\widehat{\mathbb{A}}^{1 *}$ (τ-coordinate) of rank $\widehat{d}=\operatorname{deg}_{t} a_{d}(t)$,
- with a connection $\hat{\nabla}$ having a regular singularity at 0 but usually not at ∞, and no other pole.

Laplace transform and VHS

- Assume that (V, ∇) underlies a variation of polarized complex Hodge structure.

Laplace transform and VHS

- Assume that (V, ∇) underlies a variation of polarized complex Hodge structure.
- Question:

Laplace transform and VHS

- Assume that (V, ∇) underlies a variation of polarized complex Hodge structure.
- Question:

What kind of a structure underlies the Laplace transform $(\widehat{V}, \widehat{\nabla})$ of (V, ∇) ?

Variations of Hodge structures

e Data:

Variations of Hodge structures

- Data:
- A C^{∞} vector bundle H on $\mathbb{P}^{\mathbf{1}} \backslash P$,

Variations of Hodge structures

- Data:
- A C^{∞} vector bundle H on $\mathbb{P}^{1} \backslash \boldsymbol{P}$,
- a flat connection D,

Variations of Hodge structures

- Data:
- A C^{∞} vector bundle H on $\mathbb{P}^{1} \backslash P$,
- a flat connection D,
- a decomposition $\boldsymbol{H}=\oplus_{p \in \mathbb{Z}} \boldsymbol{H}^{p}$
($\boldsymbol{H}^{p}=\boldsymbol{H}^{p,-p}$, weight $\boldsymbol{w}=0$),

Variations of Hodge structures

- Data:
- A C^{∞} vector bundle H on $\mathbb{P}^{1} \backslash P$,
- a flat connection D,
- a decomposition $\boldsymbol{H}=\oplus_{p \in \mathbb{Z}} \boldsymbol{H}^{p}$
($\boldsymbol{H}^{p}=\boldsymbol{H}^{p,-p}$, weight $\boldsymbol{w}=0$),
- a Hermitian metric h on \boldsymbol{H}.

Variations of Hodge structures

- Data:
- A C^{∞} vector bundle H on $\mathbb{P}^{1} \backslash P$,
- a flat connection D,
- a decomposition $\boldsymbol{H}=\oplus_{p \in \mathbb{Z}} \boldsymbol{H}^{p}$
($\boldsymbol{H}^{p}=\boldsymbol{H}^{p,-p}$, weight $\boldsymbol{w}=0$),
- a Hermitian metric h on \boldsymbol{H}.
- Constraints :

Variations of Hodge structures

- Data:
- A C^{∞} vector bundle H on $\mathbb{P}^{1} \backslash P$,
- a flat connection D,
- a decomposition $\boldsymbol{H}=\oplus_{p \in \mathbb{Z}} \boldsymbol{H}^{p}$ ($\boldsymbol{H}^{p}=\boldsymbol{H}^{p,-p}$, weight $\boldsymbol{w}=0$),
- a Hermitian metric h on H.
- Constraints :
- the decomposition is orthogonal with respect to h and the nondegenerate Hermitian form $k=\oplus_{p}(-1)^{p} h_{\mid H^{p}}$ is D-flat,

Variations of Hodge structures

- Data:
- A C^{∞} vector bundle H on $\mathbb{P}^{1} \backslash \boldsymbol{P}$,
- a flat connection D,
- a decomposition $\boldsymbol{H}=\oplus_{p \in \mathbb{Z}} \boldsymbol{H}^{p}$ ($\boldsymbol{H}^{p}=\boldsymbol{H}^{p,-p}$, weight $\boldsymbol{w}=0$),
- a Hermitian metric h on H.
- Constraints :
- the decomposition is orthogonal with respect to h and the nondegenerate Hermitian form $k=\oplus_{p}(-1)^{p} h_{\mid H^{p}}$ is D-flat,
- Griffiths' transversality

Variations of Hodge structures

- Data:
- A C^{∞} vector bundle H on $\mathbb{P}^{1} \backslash \boldsymbol{P}$,
- a flat connection D,
- a decomposition $\boldsymbol{H}=\oplus_{p \in \mathbb{Z}} \boldsymbol{H}^{p}$ ($\boldsymbol{H}^{p}=\boldsymbol{H}^{p,-p}$, weight $\boldsymbol{w}=0$),
- a Hermitian metric h on H.
- Constraints :
- the decomposition is orthogonal with respect to h and the nondegenerate Hermitian form $k=\oplus_{p}(-1)^{p} h_{\mid H^{p}}$ is D-flat,
- Griffiths' transversality
- $(V, \nabla)=\left(\operatorname{ker} D^{\prime \prime}, D^{\prime}\right)$,

Variations of Hodge structures

- Data:
- A C^{∞} vector bundle H on $\mathbb{P}^{1} \backslash \boldsymbol{P}$,
- a flat connection D,
- a decomposition $\boldsymbol{H}=\oplus_{p \in \mathbb{Z}} \boldsymbol{H}^{p}$ ($\boldsymbol{H}^{p}=\boldsymbol{H}^{p,-p}$, weight $\boldsymbol{w}=0$),
- a Hermitian metric h on \boldsymbol{H}.
- Constraints :
- the decomposition is orthogonal with respect to h and the nondegenerate Hermitian form $k=\oplus_{p}(-1)^{p} h_{\mid H^{p}}$ is D-flat,
- Griffiths' transversality
- $(V, \nabla)=\left(\operatorname{ker} D^{\prime \prime}, D^{\prime}\right)$,
- Hodge filtration $\boldsymbol{F}^{p} \boldsymbol{H}=\oplus_{q \geqslant p} \boldsymbol{H}^{q}, \boldsymbol{F}^{p} \boldsymbol{V}=\boldsymbol{F}^{p} \boldsymbol{H} \cap \boldsymbol{V}$.

Theorem. In general, $(\widehat{\boldsymbol{V}}, \widehat{\nabla})$ underlies an integrable variation of polarized twistor structure of weight 0 , which is tame at $\tau=0$.

Variations of polarized twistor structures

Variations of polarized twistor structures

New complex variable z.
Closed unit disc $D_{0}=\{|z| \leqslant 1\}, S=\partial D_{0}=\{|z|=1\}$.

Variations of polarized twistor structures

- A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}}^{1 *} \times D_{0}$,

Variations of polarized twistor structures

- A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}}^{1 *} \times D_{0}$,
- a flat holomorphic z-connection $\hat{\nabla}_{z}$,

Variations of polarized twistor structures

- A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}}^{1 *} \times D_{0}$,
- a flat holomorphic z-connection $\hat{\nabla}_{z}$,
- a sesquilinear pairing for any $z \in S$
$C_{z}: \widehat{V}_{\mid \widehat{\mathbb{A}}^{1+} \times\{z\}} \otimes_{\mathbb{C}} \overline{\widehat{V}}_{\mid \widehat{\mathbb{A}}^{1+} \times\{-z\}} \longrightarrow \mathscr{C}_{\widehat{\mathbb{1}}^{1 *}}^{\infty}$ depending analytically on z

Variations of polarized twistor structures

- A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}}^{1 *} \times D_{0}$,
- a flat holomorphic z-connection $\hat{\nabla}_{z}$,
- a sesquilinear pairing for any $z \in S$ $C_{z}: \widehat{V}_{\mid \widehat{\mathbb{A}}^{1+} \times\{z\}} \otimes_{\mathbb{C}} \overline{\widehat{V}}_{\mid \widehat{\mathbb{A}}^{1+} \times\{-z\}} \longrightarrow \mathscr{C}_{\widehat{\mathbb{1}}^{1 *}}^{\infty}$ depending analytically on z
- Constraints :

Variations of polarized twistor structures

- A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}}^{1 *} \times D_{0}$,
- a flat holomorphic z-connection $\hat{\nabla}_{z}$,
- a sesquilinear pairing for any $z \in S$ $C_{z}: \widehat{V}_{\mid \widehat{\mathbb{A}}^{1} \times\{z\}} \otimes_{\mathbb{C}} \overline{\widehat{V}}_{\mid \widehat{\mathbb{A}}^{1+} \times\{-z\}} \longrightarrow \mathscr{C}_{\widehat{\mathbb{1}}^{1 *}}^{\infty}$ depending analytically on z
- Constraints :
- C is compatible with $\hat{\nabla}_{z}$ and is nondegenerate, i.e., defines a gluing between $\widehat{\mathscr{V}}^{\vee}$ and $\sigma^{*} \overline{\widehat{V}}$, $\sigma: z \longmapsto-1 / \bar{z}$,

Variations of polarized twistor structures

- A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}}^{1 *} \times D_{0}$,
- a flat holomorphic z-connection $\hat{\nabla}_{z}$,
- a sesquilinear pairing for any $z \in S$

$$
C_{z}: \widehat{\mathscr{V}}_{\mid \widehat{\mathbb{A}}^{*} \times\{z\}} \otimes_{\mathbb{C}} \overline{\widehat{V}}_{\mid \widehat{\mathbb{A}}^{1} \times\{-z\}} \longrightarrow \mathscr{C}_{\mathbb{\mathbb { A }}^{1 *}}^{\infty}
$$ depending analytically on z

- Constraints :
- C is compatible with $\hat{\nabla}_{z}$ and is nondegenerate, i.e., defines a gluing between $\widehat{\mathscr{V}}^{\vee}$ and $\sigma^{*} \overline{\widehat{V}}$, $\sigma: z \longmapsto-1 / \bar{z}$,
- for any $\tau_{0} \in \widehat{\mathbb{A}}^{1 *}$, the bundle on \mathbb{P}^{1} obtained by gluing $\widehat{\mathscr{V}}_{\tau_{0}}^{\vee}$ and $\sigma^{*} \overline{\mathscr{V}}_{\tau_{0}}$ along S with C is trivial,

Variations of polarized twistor structures

- A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}}^{1 *} \times D_{0}$,
- a flat holomorphic z-connection $\hat{\nabla}_{z}$,
- a sesquilinear pairing for any $z \in S$

$$
C_{z}: \hat{\mathscr{V}}_{\mid \widehat{\mathbb{A}}^{*} \times\{z\}} \otimes_{\mathbb{C}} \overline{\widehat{V}}_{\mid \widehat{\mathbb{A}}^{1} \times\{-z\}} \longrightarrow \mathscr{C}_{\widehat{\mathbb{A}}^{*}}^{\infty}
$$ depending analytically on z

- Constraints :
- C is compatible with $\hat{\nabla}_{z}$ and is nondegenerate, i.e., defines a gluing between $\widehat{\mathscr{V}}^{\vee}$ and $\sigma^{*} \overline{\widehat{V}}$, $\sigma: z \longmapsto-1 / \bar{z}$,
- for any $\tau_{0} \in \widehat{\mathbb{A}}^{1 *}$, the bundle on \mathbb{P}^{1} obtained by gluing $\widehat{\mathscr{V}}_{\tau_{0}}^{\vee}$ and $\sigma^{*} \widehat{\widehat{V}}_{\tau_{0}}$ along S with C is trivial,
- C induces, on the global sections of this bundle, a positive definite Hermitian form.

Variations of polarized twistor structures

- Taking z-global sections \Longrightarrow

Variations of polarized twistor structures

- Taking z-global sections \Longrightarrow
- Holomorphic bundle with flat connection $(\widehat{V}, \widehat{\nabla})$,

Variations of polarized twistor structures

- Taking z-global sections \Longrightarrow
- Holomorphic bundle with flat connection $(\widehat{V}, \widehat{\nabla})$,
- harmonic metric h

Variations of polarized twistor structures

- Taking z-global sections \Longrightarrow
- Holomorphic bundle with flat connection $(\widehat{V}, \widehat{\nabla})$,
- harmonic metric h
- Integrability:

Variations of polarized twistor structures

- Taking z-global sections \Longrightarrow
- Holomorphic bundle with flat connection $(\hat{V}, \widehat{\nabla})$,
- harmonic metric h
- Integrability:
- The z-connection $\hat{\nabla}_{z}$ comes from an absolute connection having Poincaré rank one along

$$
z=0,
$$

Variations of polarized twistor structures

- Taking z-global sections \Longrightarrow
- Holomorphic bundle with flat connection $(\widehat{V}, \widehat{\nabla})$,
- harmonic metric h
- Integrability:
- The z-connection $\hat{\nabla}_{z}$ comes from an absolute connection having Poincaré rank one along

$$
z=0,
$$

- C is compatible with this connection.

Variations of polarized twistor structures

- Taking z-global sections \Longrightarrow
- Holomorphic bundle with flat connection $(\hat{V}, \widehat{\nabla})$,
- harmonic metric h
- Integrability:
- The z-connection $\hat{\nabla}_{z}$ comes from an absolute connection having Poincaré rank one along

$$
z=0,
$$

- C is compatible with this connection.

Remark. Such a notion also appears in $t t^{*}$ structures (Cecotti-Vafa 1991, Dubrovin 1993, Hertling 2003).

Frobenius structure (or flat structure)

- Data:

Frobenius structure (or flat structure)

- Data:
- M : complex manifold of dimension μ

Frobenius structure (or flat structure)

- Data:
- M : complex manifold of dimension μ
- \star : commutative associative product with unit e on tangent vector fields, depending holomorphically on the point in M,

Frobenius structure (or flat structure)

- Data:
- M : complex manifold of dimension μ
- \star : commutative associative product with unit e on tangent vector fields, depending holomorphically on the point in M,
- g : flat nondegenerate bilinear form on vector fields, depending holomorphically on the point in M.

Frobenius structure (or flat structure)

- Data:
- M : complex manifold of dimension μ
- \star : commutative associative product with unit e on tangent vector fields, depending holomorphically on the point in M,
- g : flat nondegenerate bilinear form on vector fields, depending holomorphically on the point in M.
- \mathfrak{E} : homogeneity (Euler) holomorphic vector field on M.

Frobenius structure (or flat structure)

- Data:
- M : complex manifold of dimension μ
- * : commutative associative product with unit e on tangent vector fields, depending holomorphically on the point in M,
- g : flat nondegenerate bilinear form on vector fields, depending holomorphically on the point in M.
- E : homogeneity (Euler) holomorphic vector field on M.
- Constraints.

Theorem (A. Douai, C.S.). Let f be any Laurent polynomial on a torus

$$
U=\left(\mathbb{C}^{*}\right)^{n}=\operatorname{Spec} \mathbb{C}\left[u_{1}, u_{1}^{-1}, \ldots, u_{n}, u_{n}^{-1}\right]
$$

which is convenient and nondegenerate with respect to its Newton polyhedron; in particular,

$$
\mu:=\operatorname{dim} \mathbb{C}\left[\underline{u}, \underline{u}^{-1}\right] /(\underline{u} \partial f / \partial \underline{u})<+\infty
$$

Choose a family $\varphi_{0}=1, \varphi_{1}, \ldots, \varphi_{\mu-1}$ inducing a basis of this vector space. Then there exists a canonical Frobenius structure locally on the space M of parameters $x_{0}, \ldots, x_{\mu-1}$ of the unfolding $F=f+\sum x_{i} \varphi_{i}$.

An example

An example

- $w_{1}, \ldots, w_{n}(n \geqslant 1)$: positive integers.

An example

- $w_{1}, \ldots, w_{n}(n \geqslant 1)$: positive integers.
- $f\left(u_{1}, \ldots, u_{n}\right)=u_{1}+\cdots+u_{n}+\frac{1}{u_{1}^{w_{1}} \cdots u_{n}^{w_{n}}}$.

An example

An example

- $w_{1}, \ldots, w_{n}(n \geqslant 1)$: positive integers.
- $f\left(u_{1}, \ldots, u_{n}\right)=u_{1}+\cdots+u_{n}+\frac{1}{u_{1}^{w_{1}} \cdots u_{n}^{w_{n}}}$.

An example

- $w_{1}, \ldots, w_{n}(n \geqslant 1)$: positive integers.
- $f\left(u_{1}, \ldots, u_{n}\right)=u_{1}+\cdots+u_{n}+\frac{1}{u_{1}^{w_{1}} \cdots u_{n}^{w_{n}}}$.
- $\mu=1+w_{1}+\cdots+w_{n}, f$ has μ simple critical points.

An example

- $w_{1}, \ldots, w_{n}(n \geqslant 1)$: positive integers.
- $f\left(u_{1}, \ldots, u_{n}\right)=u_{1}+\cdots+u_{n}+\frac{1}{u_{1}^{w_{1}} \cdots u_{n}^{w_{n}}}$.
- $\mu=1+w_{1}+\cdots+w_{n}, f$ has μ simple critical points.
- Critical values : $\mu e^{2 i \pi k / \mu}(k=0, \ldots, \mu-1)$.

An example

- $w_{1}, \ldots, w_{n}(n \geqslant 1)$: positive integers.
- $f\left(u_{1}, \ldots, u_{n}\right)=u_{1}+\cdots+u_{n}+\frac{1}{u_{1}^{w_{1}} \cdots u_{n}^{w_{n}}}$.
- $\mu=1+w_{1}+\cdots+w_{n}$, f has μ simple critical points.
- Critical values : $\mu e^{2 i \pi k / \mu}(k=0, \ldots, \mu-1)$.

Remark. It is expected (Étienne Mann) that the canonical Frobenius structure attached to f is isomorphic to the orbifold quantum cohomology of the weighted projective space $\mathbb{P}\left(1, w_{1}, \ldots, w_{n}\right)$.

$t t^{*}$ structure

Other presentation of the constraints :

$t t^{*}$ structure

Other presentation of the constraints :

- Add a new variable z, hence $\pi: M \times \mathbb{C} \longrightarrow M$.

$t t^{*}$ structure

Other presentation of the constraints :

- Add a new variable z, hence $\pi: M \times \mathbb{C} \longrightarrow M$.
- flatness of the connection ∇ on $\pi^{*} T M$:

$$
\begin{aligned}
\nabla_{\xi} \eta & =\nabla_{\xi} \eta-\frac{\xi \star \eta}{z} \\
\nabla_{\partial_{z}} \eta & =\mathfrak{E} \star \eta \cdot \frac{1}{z^{2}}-\nabla_{\eta} \mathfrak{E} \cdot \frac{1}{z} .
\end{aligned}
$$

$t t^{*}$ structure

Other presentation of the constraints :

- Add a new variable z, hence $\pi: M \times \mathbb{C} \longrightarrow M$.
- flatness of the connection ∇ on $\pi^{*} T M$:

∇ : Levi-Civita connection of the bilinear form g on $T M$

$t t^{*}$ structure

Other presentation of the constraints :

- Add a new variable z, hence $\pi: M \times \mathbb{C} \longrightarrow M$.
- flatness of the connection ∇ on $\pi^{*} T M$:

$$
\begin{aligned}
& \nabla_{\xi} \eta=\nabla_{\xi} \eta-\frac{\xi \star \eta}{z} \\
& \nabla_{\partial_{z}} \eta=\mathfrak{E} \star \eta \cdot \frac{1}{z^{2}}-\nabla_{\eta} \mathfrak{E} \cdot \frac{1}{z} .
\end{aligned}
$$

* : product on $T M$

$t t^{*}$ structure

Other presentation of the constraints :

- Add a new variable z, hence $\pi: M \times \mathbb{C} \longrightarrow M$.
- flatness of the connection ∇ on $\pi^{*} T M$:

$t t^{*}$ structure

Other presentation of the constraints :

- Add a new variable z, hence $\pi: M \times \mathbb{C} \longrightarrow M$.
- flatness of the connection ∇ on $\pi^{*} T M$:

$$
\begin{aligned}
\nabla_{\xi} \eta & =\nabla_{\xi} \eta-\frac{\xi \star \eta}{z} \\
\nabla_{\partial_{z}} \eta & =\mathfrak{E} \star \eta \cdot \frac{1}{z^{2}}-\nabla_{\eta} \mathfrak{E} \cdot \frac{1}{z} .
\end{aligned}
$$

- The bilinear form g is also lifted to $\pi^{*} T M$ as a pairing between $\pi^{*} T M_{z}$ and $\pi^{*} T M_{-z}$.

$t t^{*}$ structure

Other presentation of the constraints :

- Add a new variable z, hence $\pi: M \times \mathbb{C} \longrightarrow M$.
- flatness of the connection ∇ on $\pi^{*} T M$:

$$
\begin{aligned}
\nabla_{\xi} \eta & =\nabla_{\xi} \eta-\frac{\xi \star \eta}{z} \\
\nabla_{\partial_{z}} \eta & =\mathfrak{E} \star \eta \cdot \frac{1}{z^{2}}-\nabla_{\eta} \mathfrak{E} \cdot \frac{1}{z}
\end{aligned}
$$

Definition (Cecotti-Vafa, Dubrovin, Hertling). A $t t^{*}$ structure consists of a the supplementary datum of
$C_{z}: \pi^{*} T M_{z} \otimes{\overline{\pi^{*} T M}}_{-z} \longrightarrow \mathscr{C}_{M}^{\infty}$ depending analytically on
$z \in S^{1}$, such that ($\pi^{*} T M, \nabla, C$) is an integrable variation of polarized twistor structure of weight 0 parametrized by M.

$t t^{*}$ structure for Laurent polynomials

The connection ∇ on $\pi^{*} \boldsymbol{T} M$ is obtained by

$t t^{*}$ structure for Laurent polynomials

The connection ∇ on $\pi^{*} T M$ is obtained by

- considering the Laplace transform of the Gauss-Manin connection associated to the unfolding $F=f+\sum x_{i} \varphi_{i}, \quad \underline{x} \in M$,

$t t^{*}$ structure for Laurent polynomials

The connection ∇ on $\pi^{*} \boldsymbol{T} M$ is obtained by

- considering the Laplace transform of the Gauss-Manin connection associated to the unfolding $F=f+\sum x_{i} \varphi_{i}, \quad \underline{x} \in M$,
- identifying the corresponding bundle with $\pi^{*} \boldsymbol{T M}$ through an infinitesimal period mapping.

$t t^{*}$ structure for Laurent polynomials

The connection ∇ on $\pi^{*} T M$ is obtained by

- considering the Laplace transform of the Gauss-Manin connection associated to the unfolding $F=f+\sum x_{i} \varphi_{i}, \quad \underline{x} \in M$,
- identifying the corresponding bundle with $\pi^{*} \boldsymbol{T M}$ through an infinitesimal period mapping.
Let us restrict to $0 \in M$ corresponding to the function f.

$t t^{*}$ structure for Laurent polynomials

The connection ∇ on $\pi^{*} \boldsymbol{T M}$ is obtained by

- considering the Laplace transform of the Gauss-Manin connection associated to the unfolding $F=f+\sum x_{i} \varphi_{i}, \quad \underline{x} \in M$,
- identifying the corresponding bundle with $\pi^{*} \boldsymbol{T M}$ through an infinitesimal period mapping.
Let us restrict to $0 \in M$ corresponding to the function f. The sheaf of horizontal sections of $\left(\pi^{*} T_{0} M, \nabla\right)$ is identified to the locally constant sheaf

$$
H_{\Phi_{z}}^{n}(U, \mathbb{Q}), \quad z \neq 0
$$

$t t^{*}$ structure for Laurent polynomials

The connection ∇ on $\pi^{*} \boldsymbol{T M}$ is obtained by

- considering the Laplace transform of the Gauss-Manin connection associated to the unfolding $F=f+\sum x_{i} \varphi_{i}, \quad \underline{x} \in M$,
- identifying the corresponding bundle with $\pi^{*} \boldsymbol{T M}$ through an infinitesimal period mapping.
Let us restrict to $0 \in M$ corresponding to the function f. The sheaf of horizontal sections of $\left(\pi^{*} T_{0} M, \nabla\right)$ is identified to the locally constant sheaf

$$
H_{\Phi_{z}}^{n}(U, \mathbb{Q}), \quad z \neq 0
$$

Φ_{z} : the family of closed sets in U on which
$\operatorname{Re}\left(f\left(u_{1}, \ldots, u_{n}\right) / z\right) \leqslant c<0$.

$t t^{*}$ structure for Laurent polynomials

There is a natural intersection pairing (made sesquilinear)

$$
\widehat{P}_{z}: H_{\Phi_{z}}^{n}(U, \mathbb{C}) \otimes \overline{\boldsymbol{H}_{\Phi_{-z}}^{n}(\boldsymbol{U}, \mathbb{C})} \longrightarrow \mathbb{C} .
$$

$t t^{*}$ structure for Laurent polynomials

There is a natural intersection pairing (made sesquilinear)

$$
\widehat{P}_{z}: \boldsymbol{H}_{\Phi_{z}}^{n}(\boldsymbol{U}, \mathbb{C}) \otimes \overline{\boldsymbol{H}_{\Phi_{-z}}^{n}(\boldsymbol{U}, \mathbb{C})} \longrightarrow \mathbb{C} .
$$

Theorem (conjectured by C. Hertling). $\left(\pi^{*} \boldsymbol{T}_{\mathbf{0}} M, \nabla, C\right)$ with
$C_{z}=\frac{(-1)^{(n-1) n / 2}}{(2 i \pi)^{n}} \widehat{P}_{z}$ gives a $t t^{*}$ structure on M near 0.

Theorem (conjectured by C. Hertling). $\left(\pi^{*} \boldsymbol{T}_{0} M, \nabla, C\right)$ with
$C_{z}=\frac{(-1)^{(n-1) n / 2}}{(2 i \pi)^{n}} \widehat{P}_{z}$ gives a $t t^{*}$ structure on M near 0 .

Sketch of proof :

Theorem (conjectured by C. Hertling). $\left(\pi^{*} \boldsymbol{T}_{0} M, \nabla, C\right)$ with
$C_{z}=\frac{(-1)^{(n-1) n / 2}}{(2 i \pi)^{n}} \widehat{P}_{z}$ gives att* structure on M near 0 .
Sketch of proof :

- The Gauss-Manin connection attached to f defines a variation of polarized mixed Hodge structures (variable t).

Theorem (conjectured by C. Hertling). $\left(\pi^{*} \boldsymbol{T}_{0} M, \nabla, C\right)$ with
$C_{z}=\frac{(-1)^{(n-1) n / 2}}{(2 i \pi)^{n}} \widehat{P}_{z}$ gives a $t t^{*}$ structure on M near 0 .
Sketch of proof:

- The Gauss-Manin connection attached to f defines a variation of polarized mixed Hodge structures (variable t).
- The graded pieces with weight \neq the expected weight are constant Hodge structures

Theorem (conjectured by C. Hertling). $\left(\pi^{*} T_{0} M, \nabla, C\right)$ with
$C_{z}=\frac{(-1)^{(n-1) n / 2}}{(2 i \pi)^{n}} \widehat{P}_{z}$ gives att* structure on M near 0 .
Sketch of proof :

- The Gauss-Manin connection attached to f defines a variation of polarized mixed Hodge structures (variable t).
- The graded pieces with weight \neq the expected weight are constant Hodge structures which are killed after Laplace transform and restriction to $|\tau|=1$.

Theorem (conjectured by C. Hertling). $\left(\pi^{*} \boldsymbol{T}_{0} M, \nabla, C\right)$ with
$C_{z}=\frac{(-1)^{(n-1) n / 2}}{(2 i \pi)^{n}} \widehat{P}_{z}$ gives a $t t^{*}$ structure on M near 0 .
Sketch of proof :

- The Gauss-Manin connection attached to f defines a variation of polarized mixed Hodge structures (variable t).
- The graded pieces with weight \neq the expected weight are constant Hodge structures which are killed after Laplace transform and restriction to $|\tau|=1$.
- Apply the first theorem to the right graded piece ($\boldsymbol{V}, \boldsymbol{\nabla}$) of the Gauss-Manin connection.

Theorem. In general, $(\widehat{V}, \widehat{\nabla})$ underlies an integrable variation of polarized twistor structure $\left(\widehat{\mathscr{V}}, \widehat{\nabla}_{z}, C_{z}\right)$ of weight 0 , which is tame at $\tau=0$.

Theorem. In general, $(\widehat{V}, \widehat{\nabla})$ underlies an integrable variation of polarized twistor structure $\left(\widehat{\mathscr{V}}, \widehat{\nabla}_{z}, C_{z}\right)$ of weight 0 , which is tame at $\tau=0$.

- Restrict ($\left.\widehat{\mathscr{V}}, \widehat{\nabla}_{z}, C_{z}\right)$ to $\tau=1$ to get $\left(\pi^{*} T_{0} M, \nabla, C\right)$ with its integrable polarized twistor structure.

