Hermitian metrics on Frobenius manifolds

Claude Sabbah

Centre de Mathématiques Laurent Schwartz UMR 7640 du CNRS École polytechnique, Palaiseau, France

• V : a holomorphic vector bundle on the Riemann sphere \mathbb{P}^1 ,

- V : a holomorphic vector bundle on the Riemann sphere \mathbb{P}^1 ,
- Image: second state in the second state is a second state

$$P=\{p_1,\ldots,p_r,p_{r+1}=\infty\}\subset \mathbb{P}^1.$$

- V : a holomorphic vector bundle on the Riemann sphere \mathbb{P}^1 ,
- Image: second state in the second state is a second state

$$P = \{p_1, \ldots, p_r, p_{r+1} = \infty\} \subset \mathbb{P}^1.$$

• t: the coordinate on the affine chart $\mathbb{A}^1 = \mathbb{P}^1 \setminus \{\infty\}$

• Picard-Fuchs equation associated to (V, ∇) : $P(t, \nabla_{\partial_t}) := a_d(t) (\nabla_{\partial_t})^d + \dots + a_0(t) = 0,$ $a_0(t), \dots, a_d(t) \in \mathbb{C}[t].$

- Picard-Fuchs equation associated to (V, ∇) : $P(t, \nabla_{\partial_t}) := a_d(t) (\nabla_{\partial_t})^d + \dots + a_0(t) = 0,$ $a_0(t), \dots, a_d(t) \in \mathbb{C}[t].$
- Laplace transform : $\nabla_{\partial_t} \longleftrightarrow \tau$ and $t \longleftrightarrow -\widehat{\nabla}_{\partial_\tau}$.

- Picard-Fuchs equation associated to (V, ∇) : $P(t, \nabla_{\partial_t}) := a_d(t) (\nabla_{\partial_t})^d + \cdots + a_0(t) = 0,$ $a_0(t), \ldots, a_d(t) \in \mathbb{C}[t].$
- Laplace transform : $\nabla_{\partial_t} \longleftrightarrow \tau$ and $t \longleftrightarrow -\widehat{\nabla}_{\partial_\tau}$.

- Picard-Fuchs equation associated to (V, ∇) : $P(t, \nabla_{\partial_t}) := a_d(t) (\nabla_{\partial_t})^d + \dots + a_0(t) = 0,$ $a_0(t), \dots, a_d(t) \in \mathbb{C}[t].$
- Laplace transform: $\nabla_{\partial_t} \longleftrightarrow \tau$ and $t \longleftrightarrow -\widehat{\nabla}_{\partial_\tau}$. • $\widehat{\nabla}_{\partial_\tau} \cdot \tau = \tau \cdot \widehat{\nabla}_{\partial_\tau} + 1$,

- Picard-Fuchs equation associated to (V, ∇) : $P(t, \nabla_{\partial_t}) := a_d(t) (\nabla_{\partial_t})^d + \cdots + a_0(t) = 0,$ $a_0(t), \ldots, a_d(t) \in \mathbb{C}[t].$
- Laplace transform: $\nabla_{\partial_t} \longleftrightarrow \tau$ and $t \longleftrightarrow -\widehat{\nabla}_{\partial_\tau}$. • $\widehat{\nabla}_{\partial_\tau} \cdot \tau = \tau \cdot \widehat{\nabla}_{\partial_\tau} + 1$,
- $P(t, \nabla_{\partial_t}) = \widehat{P}(\tau, \nabla_{\partial_\tau}) = c\tau^d (\widehat{\nabla}_{\partial_\tau})^{\widehat{d}} + \cdots + b_0(\tau).$

- Picard-Fuchs equation associated to (V, ∇) : $P(t, \nabla_{\partial_t}) := a_d(t) (\nabla_{\partial_t})^d + \dots + a_0(t) = 0,$ $a_0(t), \dots, a_d(t) \in \mathbb{C}[t].$
- Laplace transform: $\nabla_{\partial_t} \leftrightarrow \tau$ and $t \leftrightarrow -\widehat{\nabla}_{\partial_\tau}$. • $\widehat{\nabla}_{\partial_\tau} \cdot \tau = \tau \quad \widehat{\nabla}_{\partial_\tau} + 1$,
- $P(t, \nabla_{\partial_t}) = \widehat{P}(\tau, \nabla_{\partial_\tau}) = c\tau^d (\widehat{\nabla}_{\partial_\tau})^{\widehat{d}} + \cdots + b_0(\tau).$

- Picard-Fuchs equation associated to (V, ∇) : $P(t, \nabla_{\partial_t}) := a_d(t) (\nabla_{\partial_t})^d + \dots + a_0(t) = 0,$ $a_0(t), \dots, a_d(t) \in \mathbb{C}[t].$
- Laplace transform: $\nabla_{\partial_t} \leftrightarrow \tau$ and $t \leftrightarrow -\widehat{\nabla}_{\partial_\tau}$. • $\widehat{\nabla}_{\partial_\tau} \cdot \tau = \tau \cdot \widehat{\nabla}_{\partial_\tau} + 1$, • $P(t, \nabla_{\partial_t}) = \widehat{P}(\tau, \nabla_{\partial_\tau}) = c\tau^d (\widehat{\nabla}_{\partial_\tau})^d + \dots + b_0(\tau)$.

- Picard-Fuchs equation associated to (V, ∇) : $P(t, \nabla_{\partial_t}) := a_d(t) (\nabla_{\partial_t})^d + \cdots + a_0(t) = 0,$ $a_0(t), \ldots, a_d(t) \in \mathbb{C}[t].$
- Laplace transform: $\nabla_{\partial_t} \longleftrightarrow \tau$ and $t \longleftrightarrow -\widehat{\nabla}_{\partial_\tau}$. • $\widehat{\nabla}_{\partial_\tau} \cdot \tau = \tau \cdot \widehat{\nabla}_{\partial_\tau} + 1$,
- $P(t, \nabla_{\partial_t}) = \widehat{P}(\tau, \nabla_{\partial_\tau}) = c\tau^d (\widehat{\nabla}_{\partial_\tau})^{\widehat{d}} + \dots + b_0(\tau).$ • \Longrightarrow

- Picard-Fuchs equation associated to (V, ∇) : $P(t, \nabla_{\partial_t}) := a_d(t) (\nabla_{\partial_t})^d + \cdots + a_0(t) = 0,$ $a_0(t), \ldots, a_d(t) \in \mathbb{C}[t].$
- Laplace transform: $\nabla_{\partial_t} \longleftrightarrow \tau$ and $t \longleftrightarrow -\widehat{\nabla}_{\partial_\tau}$. • $\widehat{\nabla}_{\partial_\tau} \cdot \tau = \tau \cdot \widehat{\nabla}_{\partial_\tau} + 1$,
- $P(t, \nabla_{\partial_t}) = \widehat{P}(\tau, \nabla_{\partial_\tau}) = c \tau^d (\widehat{\nabla}_{\partial_\tau})^{\widehat{d}} + \cdots + b_0(\tau).$

 \implies

• a holomorphic bundle \widehat{V} on the complex line $\widehat{\mathbb{A}}^{1*}$ (τ -coordinate) of rank $\widehat{d} = \deg_t a_d(t)$,

- Picard-Fuchs equation associated to (V, ∇) : $P(t, \nabla_{\partial_t}) := a_d(t) (\nabla_{\partial_t})^d + \dots + a_0(t) = 0,$ $a_0(t), \dots, a_d(t) \in \mathbb{C}[t].$
- Laplace transform: $\nabla_{\partial_t} \longleftrightarrow \tau$ and $t \longleftrightarrow -\widehat{\nabla}_{\partial_\tau}$. • $\widehat{\nabla}_{\partial_\tau} \cdot \tau = \tau \cdot \widehat{\nabla}_{\partial_\tau} + 1$,
- $P(t, \nabla_{\partial_t}) = \widehat{P}(\tau, \nabla_{\partial_\tau}) = c \tau^d (\widehat{\nabla}_{\partial_\tau})^{\widehat{d}} + \cdots + b_0(\tau).$

 \implies

- a holomorphic bundle \widehat{V} on the complex line $\widehat{\mathbb{A}}^{1*}$ (τ -coordinate) of rank $\widehat{d} = \deg_t a_d(t)$,
- with a connection $\widehat{\nabla}$ having a *regular singularity* at 0 but usually *not* at ∞ , and no other pole.

Laplace transform and VHS

Solution Assume that (V, ∇) underlies a variation of polarized complex Hodge structure.

Laplace transform and VHS

- Assume that (V, ∇) underlies a variation of polarized complex Hodge structure.
- Question :

Laplace transform and VHS

- Assume that (V, ∇) underlies a variation of polarized complex Hodge structure.
- **Question** :

What kind of a structure underlies the Laplace transform $(\hat{V}, \hat{\nabla})$ of (V, ∇) ?

Data :

• A C^{∞} vector bundle **H** on $\mathbb{P}^1 \setminus \mathbf{P}$,

- A C^{∞} vector bundle **H** on $\mathbb{P}^1 \setminus \mathbf{P}$,
- a flat connection D,

- A C^{∞} vector bundle **H** on $\mathbb{P}^1 \setminus \mathbf{P}$,
- a flat connection **D**,
- a decomposition $H = \bigoplus_{p \in \mathbb{Z}} H^p$ $(H^p = H^{p,-p}, \text{ weight } w = 0),$

- A C^{∞} vector bundle **H** on $\mathbb{P}^1 \setminus \mathbf{P}$,
- a flat connection **D**,
- a decomposition $H = \bigoplus_{p \in \mathbb{Z}} H^p$ $(H^p = H^{p,-p}, \text{ weight } w = 0),$
- a Hermitian metric h on H.

- A C^{∞} vector bundle **H** on $\mathbb{P}^1 \setminus \mathbf{P}$,
- a flat connection **D**,
- a decomposition $H = \bigoplus_{p \in \mathbb{Z}} H^p$ $(H^p = H^{p,-p}, \text{ weight } w = 0),$
- a Hermitian metric h on H.
- Constraints :

Data :

- A C^{∞} vector bundle H on $\mathbb{P}^1 \setminus P$,
- a flat connection **D**,
- a decomposition $H = \bigoplus_{p \in \mathbb{Z}} H^p$ $(H^p = H^{p,-p}, \text{ weight } w = 0),$
- a Hermitian metric h on H.

Constraints :

• the decomposition is orthogonal with respect to hand the nondegenerate Hermitian form $k = \bigoplus_p (-1)^p h_{|H^p}$ is *D*-flat,

Data :

- A C^{∞} vector bundle H on $\mathbb{P}^1 \setminus P$,
- a flat connection **D**,
- a decomposition $H = \bigoplus_{p \in \mathbb{Z}} H^p$ $(H^p = H^{p,-p}, \text{ weight } w = 0),$
- a Hermitian metric h on H.

- the decomposition is orthogonal with respect to hand the nondegenerate Hermitian form $k = \bigoplus_p (-1)^p h_{|H^p}$ is *D*-flat,
- Griffiths' transversality

Data :

- A C^{∞} vector bundle H on $\mathbb{P}^1 \setminus P$,
- a flat connection **D**,
- a decomposition $H = \bigoplus_{p \in \mathbb{Z}} H^p$ $(H^p = H^{p,-p}, \text{ weight } w = 0),$
- a Hermitian metric h on H.

- the decomposition is orthogonal with respect to hand the nondegenerate Hermitian form $k = \bigoplus_p (-1)^p h_{|H^p}$ is *D*-flat,
- Griffiths' transversality
- $\, {} \, {} \, {} \, {} \, (V, \nabla) = (\ker D'', D'),$

Data :

- A C^{∞} vector bundle H on $\mathbb{P}^1 \setminus P$,
- a flat connection **D**,
- a decomposition $H = \bigoplus_{p \in \mathbb{Z}} H^p$ $(H^p = H^{p,-p}, \text{ weight } w = 0),$
- a Hermitian metric h on H.

- the decomposition is orthogonal with respect to hand the nondegenerate Hermitian form $k = \bigoplus_p (-1)^p h_{|H^p}$ is *D*-flat,
- Griffiths' transversality
- $\ \, {} (V,\nabla)=(\ker D'',D'),$
- Hodge filtration $F^p H = \bigoplus_{q \ge p} H^q$, $F^p V = F^p H \cap V$.

Theorem. In general, $(\widehat{V}, \widehat{\nabla})$ underlies an integrable variation of polarized twistor structure of weight 0, which is tame at $\tau = 0$.

New complex variable z. Closed unit disc $D_0 = \{|z| \leq 1\}, S = \partial D_0 = \{|z| = 1\}.$

• A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}^{1*}} \times D_0$,

- A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}}^{1*} \times D_0$,
 - a flat holomorphic *z*-connection $\widehat{\nabla}_z$,

- A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}^{1*}} \times D_0$,
 - a flat holomorphic *z*-connection $\widehat{\nabla}_z$,
 - a sesquilinear pairing for any $z \in S$

$$\begin{array}{c} C_{z}: \widehat{\mathscr{V}}_{|\widehat{\mathbb{A}}^{1*} \times \{z\}} \otimes_{\mathbb{C}} \overline{\widehat{\mathscr{V}}}_{|\widehat{\mathbb{A}}^{1*} \times \{-z\}} \longrightarrow \mathscr{C}_{\widehat{\mathbb{A}}^{1}}^{\infty} \\ \text{depending analytically on } z \end{array}$$

- A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}}^{1*} \times D_0$,
 - a flat holomorphic *z*-connection $\widehat{\nabla}_z$,
 - a sesquilinear pairing for any $z \in S$

$$\begin{array}{c} C_{z}:\widehat{\mathscr{V}}_{|\widehat{\mathbb{A}}^{1*}\times\{z\}}\otimes_{\mathbb{C}}\overline{\mathscr{V}}_{|\widehat{\mathbb{A}}^{1*}\times\{-z\}}\longrightarrow \mathscr{C}^{\infty}_{\widehat{\mathbb{A}}^{1*}}\\ \text{depending analytically on } z \end{array}$$

- A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}^{1*}} \times D_0$,
 - a flat holomorphic *z*-connection $\widehat{\nabla}_z$,
 - a sesquilinear pairing for any $z \in S$

 $\begin{array}{c} C_{z}: \widehat{\mathscr{V}}_{|\widehat{\mathbb{A}}^{1*} \times \{z\}} \otimes_{\mathbb{C}} \overline{\widehat{\mathscr{V}}}_{|\widehat{\mathbb{A}}^{1*} \times \{-z\}} \longrightarrow \mathscr{C}_{\widehat{\mathbb{A}}^{1*}}^{\infty} \\ \text{depending analytically on } z \end{array}$

- Constraints :
 - C is compatible with $\widehat{\nabla}_z$ and is nondegenerate,

i.e., defines a gluing between $\widehat{\mathscr{V}}$ and $\sigma^* \widehat{\mathscr{V}}$, $\sigma: z \longmapsto -1/\overline{z}$,
- A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}^{1*}} \times D_0$,
 - a flat holomorphic *z*-connection $\widehat{\nabla}_z$,
 - a sesquilinear pairing for any $z \in S$

 $\begin{array}{c} C_{z}: \widehat{\mathscr{V}}_{|\widehat{\mathbb{A}}^{1*} \times \{z\}} \otimes_{\mathbb{C}} \overline{\widehat{\mathscr{V}}}_{|\widehat{\mathbb{A}}^{1*} \times \{-z\}} \longrightarrow \mathscr{C}_{\widehat{\mathbb{A}}^{1*}}^{\infty} \\ \text{depending analytically on } z \end{array}$

Constraints :

• C is compatible with $\widehat{\nabla}_z$ and is nondegenerate,

i.e., defines a gluing between $\widehat{\mathscr{V}}$ and $\sigma^* \widehat{\mathscr{V}}$, $\sigma: z \longmapsto -1/\overline{z}$,

• for any $\tau_0 \in \widehat{\mathbb{A}}^{1*}$, the bundle on \mathbb{P}^1 obtained by gluing $\widehat{\mathscr{V}}_{\tau_0}^{\vee}$ and $\sigma^* \overline{\widehat{\mathscr{V}}}_{\tau_0}$ along *S* with *C* is *trivial*,

- A holomorphic vector bundle $\widehat{\mathscr{V}}$ on $\widehat{\mathbb{A}^{1*}} \times D_0$,
 - a flat holomorphic *z*-connection $\widehat{\nabla}_z$,
 - a sesquilinear pairing for any $z \in S$

 $\begin{array}{c} C_{z}: \widehat{\mathscr{V}}_{|\widehat{\mathbb{A}}^{1*} \times \{z\}} \otimes_{\mathbb{C}} \widehat{\mathscr{V}}_{|\widehat{\mathbb{A}}^{1*} \times \{-z\}} \longrightarrow \mathscr{C}_{\widehat{\mathbb{A}}^{1*}}^{\infty} \\ \text{depending analytically on } z \end{array}$

Constraints :

• C is compatible with $\widehat{\nabla}_z$ and is nondegenerate,

i.e., defines a gluing between $\widehat{\mathscr{V}}$ and $\sigma^* \widehat{\mathscr{V}}$, $\sigma: z \longmapsto -1/\overline{z}$,

- for any $\tau_0 \in \widehat{\mathbb{A}}^{1*}$, the bundle on \mathbb{P}^1 obtained by gluing $\widehat{\mathscr{V}_{\tau_0}}$ and $\sigma^* \overline{\widehat{\mathscr{V}}_{\tau_0}}$ along *S* with *C* is *trivial*,
- *C* induces, on the global sections of this bundle, a positive definite Hermitian form.

• Taking z-global sections \Longrightarrow

- Taking z-global sections \Longrightarrow
 - Holomorphic bundle with *flat connection* $(\widehat{V}, \widehat{\nabla})$,

- Taking z-global sections \Longrightarrow
 - Holomorphic bundle with *flat connection* $(\hat{V}, \hat{\nabla})$,
 - harmonic metric h

- Taking z-global sections \Longrightarrow
 - Holomorphic bundle with *flat connection* $(\hat{V}, \hat{\nabla})$,
 - harmonic metric h
- Integrability :

- Taking z-global sections \Longrightarrow
 - Holomorphic bundle with *flat connection* $(\widehat{V}, \widehat{\nabla})$,
 - harmonic metric h
- Integrability :
 - The *z*-connection $\widehat{\nabla}_z$ comes from an absolute connection having *Poincaré rank one* along z = 0,

- Taking z-global sections \Longrightarrow
 - Holomorphic bundle with *flat connection* $(\widehat{V}, \widehat{\nabla})$,
 - harmonic metric h
- Integrability :
 - The *z*-connection $\widehat{\nabla}_z$ comes from an absolute connection having *Poincaré rank one* along z = 0,
 - C is compatible with this connection.

- Taking z-global sections \Longrightarrow
 - Holomorphic bundle with *flat connection* $(\widehat{V}, \widehat{\nabla})$,
 - harmonic metric h
- Integrability :
 - The *z*-connection $\widehat{\nabla}_z$ comes from an absolute connection having *Poincaré rank one* along z = 0,
 - C is compatible with this connection.

Remark. Such a notion also appears in tt^* structures (Cecotti-Vafa 1991, Dubrovin 1993, Hertling 2003).

Data :

Data :

• M : complex manifold of dimension μ

Data :

- M : complex manifold of dimension μ
- *: commutative associative product with unit e on tangent vector fields, depending holomorphically on the point in M,

- Data :
 - M : complex manifold of dimension μ
 - *: commutative associative product with unit e on tangent vector fields, depending holomorphically on the point in M,
 - g: flat nondegenerate bilinear form on vector fields, depending holomorphically on the point in M.

- Data :
 - M : complex manifold of dimension μ
 - *: commutative associative product with unit e on tangent vector fields, depending holomorphically on the point in M,
 - g: flat nondegenerate bilinear form on vector fields, depending holomorphically on the point in M.
 - Contraction in the sector is the sector field on *M*.

- Data :
 - M : complex manifold of dimension μ
 - *: commutative associative product with unit e on tangent vector fields, depending holomorphically on the point in M,
 - g: flat nondegenerate bilinear form on vector fields, depending holomorphically on the point in M.
 - Contraction in the sector is the sector field on *M*.
- **•** Constraints.

Theorem (A. Douai, C.S.). Let f be any Laurent polynomial on a torus

$$U = (\mathbb{C}^*)^n = \operatorname{Spec} \mathbb{C}[u_1, u_1^{-1}, \dots, u_n, u_n^{-1}],$$

which is **convenient and nondegenerate** with respect to its Newton polyhedron; in particular,

$$\mu := \dim \mathbb{C}[\underline{u}, \underline{u}^{-1}]/(\underline{u}\partial f/\partial \underline{u}) < +\infty.$$

Choose a family $\varphi_0 = 1, \varphi_1, \dots, \varphi_{\mu-1}$ inducing a basis of this vector space. Then there exists a **canonical Frobenius structure** locally on the space M of parameters $x_0, \dots, x_{\mu-1}$ of the unfolding $\mathbf{F} = \mathbf{f} + \sum x_i \varphi_i$.

• $w_1, \ldots, w_n \ (n \ge 1)$: positive integers.

• $w_1, \ldots, w_n \ (n \ge 1)$: positive integers.

•
$$f(u_1, \ldots, u_n) = u_1 + \cdots + u_n + rac{1}{u_1^{w_1} \cdots u_n^{w_n}}$$

• $w_1, \ldots, w_n \ (n \ge 1)$: positive integers.

•
$$f(u_1,\ldots,u_n)=u_1+\cdots+u_n+rac{1}{u_1^{w_1}\cdots u_n^{w_n}}$$

- $w_1, \ldots, w_n \ (n \ge 1)$: positive integers.
- $f(u_1,...,u_n) = u_1 + \cdots + u_n + rac{1}{u_1^{w_1} \cdots u_n^{w_n}}.$

• $w_1, \ldots, w_n \ (n \ge 1)$: positive integers.

•
$$f(u_1, \ldots, u_n) = u_1 + \cdots + u_n + rac{1}{u_1^{w_1} \cdots u_n^{w_n}}.$$

- Critical values : $\mu e^{2i\pi k/\mu}$ $(k = 0, \dots, \mu 1)$.

• $w_1, \ldots, w_n \ (n \ge 1)$: positive integers.

•
$$f(u_1,...,u_n) = u_1 + \cdots + u_n + rac{1}{u_1^{w_1} \cdots u_n^{w_n}}$$

- $\mu = 1 + w_1 + \dots + w_n$, *f* has μ simple critical points.
- Critical values : $\mu e^{2i\pi k/\mu}$ $(k = 0, \dots, \mu 1)$.

Remark. It is expected (Étienne Mann) that the canonical Frobenius structure attached to f is isomorphic to the orbifold quantum cohomology of the weighted projective space $\mathbb{P}(1, w_1, \ldots, w_n)$.

Other presentation of the constraints :

Other presentation of the constraints :

■ Add a new variable z, hence $\pi : M \times \mathbb{C} \longrightarrow M$.

Other presentation of the constraints :

- Add a new variable *z*, hence $\pi : M \times \mathbb{C} \longrightarrow M$.
- **flatness** of the connection ∇ on π^*TM :

$$egin{aligned}
abla_{\xi}\eta &= igarlow_{\xi}\eta - rac{\xi\star\eta}{z} \
abla_{z}\eta &= \mathfrak{E}\star\eta\cdotrac{1}{z^2} - iggarrow_{\eta}\mathfrak{E}\cdotrac{1}{z}. \end{aligned}$$

Other presentation of the constraints :

- Add a new variable *z*, hence $\pi : M \times \mathbb{C} \longrightarrow M$.
- **flatness** of the connection ∇ on π^*TM :

 $-\frac{\xi\star\eta}{}$

 $abla_{\xi}\eta = igtarrow_{\xi}\eta - rac{\xi\star\eta}{z}$ $abla_{\partial_z}\eta = \mathfrak{E}\star\eta\cdotrac{1}{z^2} - igtarrow_{\eta}\mathfrak{E}\cdotrac{1}{z}.$

Other presentation of the constraints :

- Add a new variable z, hence $\pi : M \times \mathbb{C} \longrightarrow M$.
- **flatness** of the connection ∇ on π^*TM :

 \star : product on TM

Other presentation of the constraints :

- Add a new variable *z*, hence $\pi : M \times \mathbb{C} \longrightarrow M$.
- **flatness** of the connection ∇ on π^*TM :

Other presentation of the constraints :

- Add a new variable *z*, hence $\pi : M \times \mathbb{C} \longrightarrow M$.
- **flatness** of the connection ∇ on π^*TM :

$$abla_{\xi}\eta = igtarrow_{\xi}\eta - rac{\xi\star\eta}{z}
onumber \
abla_{z}\eta = \mathfrak{E}\star\eta\cdotrac{1}{z^{2}} - igtarrow_{\eta}\mathfrak{E}\cdotrac{1}{z}.$$

• The bilinear form g is also lifted to π^*TM as a pairing between π^*TM_z and π^*TM_{-z} .

Other presentation of the constraints :

- Add a new variable *z*, hence $\pi : M \times \mathbb{C} \longrightarrow M$.
- **flatness** of the connection ∇ on π^*TM :

$$abla_{\xi}\eta = igtarrow_{\xi}\eta - rac{\xi\star\eta}{z}
onumber \
abla_{z}\eta = \mathfrak{E}\star\eta\cdotrac{1}{z^{2}} - igtarrow_{\eta}\mathfrak{E}\cdotrac{1}{z}.$$

Definition (Cecotti-Vafa, Dubrovin, Hertling). A tt^* structure consists of a the supplementary datum of $C_z: \pi^*TM_z \otimes \overline{\pi^*TM}_{-z} \longrightarrow \mathscr{C}^{\infty}_M$ depending analytically on $z \in S^1$, such that (π^*TM, ∇, C) is an integrable variation of polarized twistor structure of weight 0 parametrized by M.

tt^{*} structure for Laurent polynomials

The connection ∇ on π^*TM is obtained by

tt* structure for Laurent polynomials

The connection ∇ on π^*TM is obtained by

• considering the Laplace transform of the Gauss-Manin connection associated to the unfolding $F = f + \sum x_i \varphi_i, \quad \underline{x} \in M,$

tt* structure for Laurent polynomials

The connection ∇ on π^*TM is obtained by

- considering the Laplace transform of the Gauss-Manin connection associated to the unfolding $F = f + \sum x_i \varphi_i, \quad \underline{x} \in M,$
- identifying the corresponding bundle with π^*TM through an *infinitesimal period mapping*.

tt* structure for Laurent polynomials

The connection ∇ on π^*TM is obtained by

- considering the Laplace transform of the Gauss-Manin connection associated to the unfolding $F = f + \sum x_i \varphi_i, \quad \underline{x} \in M,$
- identifying the corresponding bundle with π^*TM through an *infinitesimal period mapping*.

Let us restrict to $0 \in M$ corresponding to the function f.
The connection ∇ on π^*TM is obtained by

- considering the Laplace transform of the Gauss-Manin connection associated to the unfolding $F = f + \sum x_i \varphi_i, \quad \underline{x} \in M,$
- identifying the corresponding bundle with π^*TM through an *infinitesimal period mapping*.

Let us restrict to $0 \in M$ corresponding to the function f. The sheaf of horizontal sections of (π^*T_0M, ∇) is identified to the locally constant sheaf

 $H^n_{\Phi_z}(U,\mathbb{Q}), \quad z
eq 0$

The connection ∇ on π^*TM is obtained by

- considering the Laplace transform of the Gauss-Manin connection associated to the unfolding $F = f + \sum x_i \varphi_i, \quad \underline{x} \in M,$
- identifying the corresponding bundle with π^*TM through an *infinitesimal period mapping*.

Let us restrict to $0 \in M$ corresponding to the function f. The sheaf of horizontal sections of (π^*T_0M, ∇) is identified to the locally constant sheaf

 $H^n_{\Phi_z}(U,\mathbb{Q}), \quad z
eq 0$

 Φ_z : the family of closed sets in U on which $\operatorname{Re}(f(u_1,\ldots,u_n)/z)\leqslant c<0.$

There is a natural intersection pairing (made sesquilinear)

 $\widehat{P}_z: H^n_{\Phi_z}(U,\mathbb{C})\otimes \overline{H^n_{\Phi_{-z}}(U,\mathbb{C})} \longrightarrow \mathbb{C}.$

There is a natural intersection pairing (made sesquilinear)

Sketch of proof :

The Gauss-Manin connection attached to *f* defines a variation of polarized *mixed* Hodge structures (variable *t*).

- The Gauss-Manin connection attached to *f* defines a variation of polarized *mixed* Hodge structures (variable *t*).
- The graded pieces with weight ≠ the expected weight are constant Hodge structures

- The Gauss-Manin connection attached to *f* defines a variation of polarized *mixed* Hodge structures (variable *t*).
- The graded pieces with weight \neq the expected weight are *constant* Hodge structures which are killed after Laplace transform and restriction to $|\tau| = 1$.

- The Gauss-Manin connection attached to *f* defines a variation of polarized *mixed* Hodge structures (variable *t*).
- The graded pieces with weight \neq the expected weight are *constant* Hodge structures which are killed after Laplace transform and restriction to $|\tau| = 1$.
- Apply the first theorem to the right graded piece (V, ∇) of the Gauss-Manin connection.

Theorem. In general, $(\hat{V}, \hat{\nabla})$ underlies an integrable variation of polarized twistor structure $(\hat{V}, \hat{\nabla}_z, C_z)$ of weight 0, which is tame at $\tau = 0$.

Theorem. In general, $(\widehat{V}, \widehat{\nabla})$ underlies an integrable variation of polarized twistor structure $(\widehat{V}, \widehat{\nabla}_z, C_z)$ of weight 0, which is tame at $\tau = 0$.

• Restrict $(\widehat{\mathscr{V}}, \widehat{\nabla}_z, C_z)$ to $\tau = 1$ to get (π^*T_0M, ∇, C) with its *integrable polarized twistor structure*.