Wild ramification in complex algebraic geometry

Claude Sabbah

Centre de Mathématiques Laurent Schwartz

UMR 7640 du CNRS
École polytechnique, Palaiseau, France
Programme SEDIGA ANR-08-BLAN-0317-01

"Tame" complex algebraic geometry

"Tame" complex algebraic geometry

- Underlying space: complex algebraic variety (or cplx analytic space)

"Tame" complex algebraic geometry

- Underlying space: complex algebraic variety (or cplx analytic space)
- Monodromy \longleftrightarrow local systems, coefficients in $k=\mathbb{Q}, \mathbb{R}, \mathbb{C}$.

"Tame" complex algebraic geometry

- Underlying space: complex algebraic variety (or cplx analytic space)
- Monodromy \longleftrightarrow local systems, coefficients in $k=\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- Monodr. + (tame) sing. $\longrightarrow k$-perverse sheaf.

"Tame" complex algebraic geometry

- Underlying space: complex algebraic variety (or cplx analytic space)
- Monodromy \longleftrightarrow local systems, coefficients in $k=\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- Monodr. + (tame) sing. $\longrightarrow \boldsymbol{k}$-perverse sheaf.
- Riemann-Hilbert correspondence:

'Tame" complex algebraic geometry

- Underlying space: complex algebraic variety (or cplx analytic space)
- Monodromy \longleftrightarrow local systems, coefficients in $k=\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- Monodr. + (tame) sing. $\longrightarrow k$-perverse sheaf.
- Riemann-Hilbert correspondence:

Regular holon. \mathscr{D}-modules $\longleftrightarrow \mathbb{C}$-perverse sheaves

"Tame" complex algebraic geometry

- Underlying space: complex algebraic variety (or cplx analytic space)
- Monodromy \longleftrightarrow local systems, coefficients in $k=\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- Monodr. + (tame) sing. $\longrightarrow k$-perverse sheaf.
- Riemann-Hilbert correspondence:

Regular holon. \mathscr{D}-modules $\longleftrightarrow \mathbb{C}$-perverse sheaves

- Hodge Theory in the singular setting:

'Tame" complex algebraic geometry

- Underlying space: complex algebraic variety (or cplx analytic space)
- Monodromy \longleftrightarrow local systems, coefficients in $k=\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- Monodr. + (tame) sing. $\longrightarrow k$-perverse sheaf.
- Riemann-Hilbert correspondence:

Regular holon. \mathscr{D}-modules $\longleftrightarrow \mathbb{C}$-perverse sheaves

- Hodge Theory in the singular setting:
- Deligne's Mixed Hodge complexes

'Tame" complex algebraic geometry

- Underlying space: complex algebraic variety (or cplx analytic space)
- Monodromy \longleftrightarrow local systems, coefficients in $k=\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- Monodr. + (tame) sing. $\longrightarrow k$-perverse sheaf.
- Riemann-Hilbert correspondence:

Regular holon. \mathscr{D}-modules $\longleftrightarrow \mathbb{C}$-perverse sheaves

- Hodge Theory in the singular setting:
- Deligne's Mixed Hodge complexes
- Saito's Hodge \mathscr{D}-modules
'Tame" complex algebraic geometry
- Underlying space: complex algebraic variety (or cplx analytic space)
- Monodromy \longleftrightarrow local systems, coefficients in $k=\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- Monodr. + (tame) sing. $\longrightarrow k$-perverse sheaf.
- Riemann-Hilbert correspondence:

Regular holon. \mathscr{D}-modules $\longleftrightarrow \mathbb{C}$-perverse sheaves

- Hodge Theory in the singular setting:
- Deligne's Mixed Hodge complexes
- Saito's Hodge \mathscr{D}-modules
- Conversely, Hodge Theory requires tame sing. (Griffiths-Schmid) and \mathbb{C}-Alg. Geom. produces tame sing. (Gauss-Manin systems)

"Wild" complex algebraic geometry

"Wild" complex algebraic geometry

- Problem: Extend these properties to diff. eqns. with irregular sing. (i.e., general holon. \mathscr{D}-modules).

"Wild" complex algebraic geometry

- Problem: Extend these properties to diff. eqns. with irregular sing. (i.e., general holon. \mathscr{D}-modules).
- What for?

"Wild" complex algebraic geometry

- Problem: Extend these properties to diff. eqns. with irregular sing. (i.e., general holon. \mathscr{D}-modules).
- What for?
- Exp. integrals: $f: X \longrightarrow \mathbb{A}^{1}, \int_{\Gamma} e^{f} \omega$,

"Wild" complex algebraic geometry

- Problem: Extend these properties to diff. eqns. with irregular sing. (i.e., general holon. \mathscr{D}-modules).
- What for?
- Exp. integrals: $f: X \longrightarrow \mathbb{A}^{1}, \int_{\Gamma} e^{f} \omega$,
ω : alg. diff. form on X of degree d, Γ : locally closed cycle of dim. d

"Wild" complex algebraic geometry

- Problem: Extend these properties to diff. eqns. with irregular sing. (i.e., general holon. \mathscr{D}-modules).
- What for?
- Exp. integrals: $f: X \longrightarrow \mathbb{A}^{1}, \int_{\Gamma} e^{f} \omega$,
ω : alg. diff. form on X of degree d,
Γ : locally closed cycle of dim. d
\longrightarrow cohom. $\boldsymbol{H}^{*}(X, f)$ of the complex ($\Omega_{X}^{\circ}, \mathrm{d}+\mathrm{d} f \wedge$).

"Wild" complex algebraic geometry

- Problem: Extend these properties to diff. eqns. with irregular sing. (i.e., general holon. \mathscr{D}-modules).
- What for?
- Exp. integrals: $f: X \longrightarrow \mathbb{A}^{1}, \int_{\Gamma} e^{f} \omega$, ω : alg. diff. form on X of degree d, Γ : locally closed cycle of dim. d
\longrightarrow cohom. $H^{*}(X, f)$ of the complex ($\Omega_{X}^{\circ}, \mathrm{d}+\mathrm{d} f \wedge$).
Deligne: $\int_{\mathbb{R}} e^{-x^{2}} d x=\pi^{1 / 2} \leftrightarrow$
$H^{1}\left(\mathbb{A}^{1},-x^{2}\right)$ should have Hodge filtr. $1 / 2$.

"Wild" complex algebraic geometry

- Problem: Extend these properties to diff. eqns. with irregular sing. (i.e., general holon. \mathscr{D}-modules).
- What for?
- Exp. integrals: $f: X \longrightarrow \mathbb{A}^{1}, \int_{\Gamma} e^{f} \omega$,
ω : alg. diff. form on X of degree d,
Γ : locally closed cycle of dim. d
\longrightarrow cohom. $H^{*}(X, f)$ of the complex ($\Omega_{X}^{\circ}, \mathrm{d}+\mathrm{d} f \wedge$).
Deligne: $\int_{\mathbb{R}} e^{-x^{2}} d x=\pi^{1 / 2} \leftrightarrow$
$H^{1}\left(\mathbb{A}^{1},-x^{2}\right)$ should have Hodge filtr. $1 / 2$.
- Katzarkov-Kontsevich-Pantev: Periodic cyclic cohom. of "smooth compact $\mathbb{Z} / 2$-graded dg. algebra" should underly an irreg. Hodge structure.

"Wild" complex algebraic geometry

- Problem: Extend these properties to diff. eqns. with irregular sing. (i.e., general holon. \mathscr{D}-modules).
- What for?
- Exp. integrals: $f: X \longrightarrow \mathbb{A}^{1}, \int_{\Gamma} e^{f} \omega$,
ω : alg. diff. form on X of degree d,
Γ : locally closed cycle of dim. d
\longrightarrow cohom. $H^{*}(X, f)$ of the complex ($\Omega_{X}^{\circ}, \mathrm{d}+\mathrm{d} f \wedge$).
Deligne: $\int_{\mathbb{R}} e^{-x^{2}} d x=\pi^{1 / 2} \leftrightarrow$
$H^{1}\left(\mathbb{A}^{1},-x^{2}\right)$ should have Hodge filtr. $1 / 2$.
- Katzarkov-Kontsevich-Pantev: Periodic cyclic cohom. of "smooth compact $\mathbb{Z} / 2$-graded dg. algebra" should underly an irreg. Hodge structure.
\longrightarrow nc. \mathbb{Q}-Hodge structure.

"Wild" complex algebraic geometry

- Problem: Extend these properties to diff. eqns. with irregular sing. (i.e., general holon. \mathscr{D}-modules).
- What for?
- Exp. integrals: $f: X \longrightarrow \mathbb{A}^{1}, \int_{\Gamma} e^{f} \omega$,
ω : alg. diff. form on X of degree d,
Γ : locally closed cycle of dim. d
\longrightarrow cohom. $\boldsymbol{H}^{*}(X, f)$ of the complex ($\Omega_{X}^{\circ}, \mathrm{d}+\mathrm{d} f \wedge$).
Deligne: $\int_{\mathbb{R}} e^{-x^{2}} d x=\pi^{1 / 2} \leftrightarrow$
$H^{1}\left(\mathbb{A}^{1},-x^{2}\right)$ should have Hodge filtr. $1 / 2$.
- Katzarkov-Kontsevich-Pantev: Periodic cyclic cohom. of "smooth compact $\mathbb{Z} / 2$-graded dg. algebra" should underly an irreg. Hodge structure. \longrightarrow nc. \mathbb{Q}-Hodge structure.
- Better analogy with constr. $\overline{\mathbb{Q}}_{\ell}$-sheaves on $X_{\mathbb{F}_{q}}$.

A panorama of "wild" results

A panorama of "wild" results

- Theorem (C.S.):

A panorama of "wild" results

- THEOREM (C.S.): A var. of polarized \mathbb{Q}-Hodge struct. on $\mathbb{A}^{1} \backslash\left\{p_{1}, \ldots, p_{r}\right\}$;

A panorama of "wild" results

- Theorem (C.S.): A var. of polarized \mathbb{Q}-Hodge struct. on $\mathbb{A}^{1} \backslash\left\{p_{1}, \ldots, p_{r}\right\}$; Its Fourier transf. is a var. of polarized nc. \mathbb{Q}-Hodge structure on $\mathbb{A}^{1} \backslash\{0\}$.

A panorama of "wild" results

- Theorem (C.S.): A var. of polarized \mathbb{Q}-Hodge struct. on $\mathbb{A}^{1} \backslash\left\{p_{1}, \ldots, p_{r}\right\}$; Its Fourier transf. is a var. of polarized $n c$. \mathbb{Q}-Hodge structure on $\mathbb{A}^{1} \backslash\{0\}$. (compare with Katz-Laumon 1985).

A panorama of "wild" results

- Theorem (C.S.): A var. of polarized \mathbb{Q}-Hodge struct. on $\mathbb{A}^{1} \backslash\left\{p_{1}, \ldots, p_{r}\right\}$; Its Fourier transf. is a var. of polarized $n c$. \mathbb{Q}-Hodge structure on $\mathbb{A}^{1} \backslash\{0\}$. (compare with Katz-Laumon 1985).
- Theorem (T. Mochizuki):

A panorama of "wild" results

- Theorem (C.S.): A var. of polarized \mathbb{Q}-Hodge struct. on $\mathbb{A}^{1} \backslash\left\{p_{1}, \ldots, p_{r}\right\}$; Its Fourier transf. is a var. of polarized nc. \mathbb{Q}-Hodge structure on $\mathbb{A}^{1} \backslash\{0\}$. (compare with Katz-Laumon 1985).
- Theorem (T. Mochizuki): \boldsymbol{X} smooth projective $/ \mathbb{C}$, \mathscr{M} a simple holon. \mathscr{D}_{X}-mod. \Longrightarrow Hard Lefschetz holds for $\boldsymbol{H}^{*}(\boldsymbol{X}, \mathrm{DR} \mathscr{M})$.

A panorama of "wild" results

- Theorem (C.S.): A var. of polarized \mathbb{Q}-Hodge struct. on $\mathbb{A}^{1} \backslash\left\{p_{1}, \ldots, p_{r}\right\}$; Its Fourier transf. is a var. of polarized nc. \mathbb{Q}-Hodge structure on $\mathbb{A}^{1} \backslash\{0\}$. (compare with Katz-Laumon 1985).
- Theorem (T. Mochizuki): \boldsymbol{X} smooth projective $/ \mathbb{C}$, \mathscr{M} a simple holon. \mathscr{D}_{X}-mod. \Longrightarrow Hard Lefschetz holds for $\boldsymbol{H}^{*}(\boldsymbol{X}, \mathrm{DR} \mathscr{M})$.
- Theorem (C. Hertling, H. Iritani, Reichelt-Sevenheck, C.S.):

A panorama of "wild" results

- Theorem (C.S.): A var. of polarized \mathbb{Q}-Hodge struct. on $\mathbb{A}^{1} \backslash\left\{p_{1}, \ldots, p_{r}\right\}$; Its Fourier transf. is a var. of polarized nc. \mathbb{Q}-Hodge structure on $\mathbb{A}^{1} \backslash\{0\}$. (compare with Katz-Laumon 1985).
- Theorem (T. Mochizuki): \boldsymbol{X} smooth projective $/ \mathbb{C}$, \mathscr{M} a simple holon. \mathscr{D}_{X}-mod. \Longrightarrow Hard Lefschetz holds for $\boldsymbol{H}^{*}(\boldsymbol{X}, \mathrm{DR} \mathscr{M})$.
- Theorem (C. Hertling, H. Iritani, Reichelt-Sevenheck, C.S.): Quantum cohom. of Fano toric varieties underlies a var. of polarized nc. \mathbb{Q}-Hodge structure on a Zariski dense open set of the Kähler moduli space.

Irregular singularities on curves

Irregular singularities on curves

- \boldsymbol{X} : smooth curve $/ \mathbb{C}, \mathscr{M}$: holonomic \mathscr{D}_{X}-module $D \subset X$: singular set of \mathscr{M}.

Irregular singularities on curves

- \boldsymbol{X} : smooth curve $/ \mathbb{C}, \mathscr{M}$: holonomic \mathscr{D}_{X}-module $D \subset X$: singular set of \mathscr{M}.
- If \mathscr{M} has regular sing., Riemann-Hilbert corr.:

Irregular singularities on curves

- X : smooth curve $/ \mathbb{C}, \mathscr{M}$: holonomic \mathscr{D}_{X}-module $D \subset X$: singular set of \mathscr{M}.
- If \mathscr{M} has regular sing., Riemann-Hilbert corr.: $\mathrm{DR}: \mathscr{M} \longmapsto \mathrm{DR} \mathscr{M}$ is an equiv:
$\operatorname{Mod}_{\text {hol-reg }}\left(\mathscr{D}_{X}\right) \xrightarrow{\sim} \operatorname{Perv}_{\mathbb{C}}(X)$.

Irregular singularities on curves

- X : smooth curve $/ \mathbb{C}, \mathscr{M}$: holonomic \mathscr{D}_{X}-module $D \subset X$: singular set of \mathscr{M}.
- If \mathscr{M} has regular sing., Riemann-Hilbert corr.: $\mathrm{DR}: \mathscr{M} \longmapsto \mathrm{DR} \mathscr{M}$ is an equiv:
$\operatorname{Mod}_{\text {hol-reg }}\left(\mathscr{D}_{X}\right) \xrightarrow{\sim} \operatorname{Perv}_{\mathbb{C}}(X)$.
- If \mathscr{M} is a vect. bdle with connection $(D=\varnothing)$, possible irreg. sing. at ∞ :

Irregular singularities on curves

- X : smooth curve $/ \mathbb{C}, \mathscr{M}$: holonomic \mathscr{D}_{X}-module $D \subset X$: singular set of \mathscr{M}.
- If \mathscr{M} has regular sing., Riemann-Hilbert corr.: $\mathrm{DR}: \mathscr{M} \longmapsto \mathrm{DR} \mathscr{M}$ is an equiv:
$\operatorname{Mod}_{\text {hol-reg }}\left(\mathscr{D}_{X}\right) \xrightarrow{\sim} \operatorname{Perv}_{\mathbb{C}}(X)$.
- If \mathscr{M} is a vect. bdle with connection $(D=\varnothing)$, possible irreg. sing. at $\infty: \longrightarrow$ Stokes phenom.

Irregular singularities on curves

- X : smooth curve $/ \mathbb{C}, \mathscr{M}$: holonomic \mathscr{D}_{X}-module $D \subset X$: singular set of \mathscr{M}.
- If \mathscr{M} has regular sing., Riemann-Hilbert corr.: $\mathrm{DR}: \mathscr{M} \longmapsto \mathrm{DR} \mathscr{M}$ is an equiv:
$\operatorname{Mod}_{\text {hol-reg }}\left(\mathscr{D}_{X}\right) \xrightarrow{\sim} \operatorname{Perv}_{\mathbb{C}}(X)$.
- If \mathscr{M} is a vect. bdle with connection $(D=\varnothing)$, possible irreg. sing. at $\infty: \longrightarrow$ Stokes phenom.
- Formal decomposition (Levelt-Turrittin) + Stokes matrices.

Irregular singularities on curves

- X : smooth curve $/ \mathbb{C}, \mathscr{M}$: holonomic \mathscr{D}_{X}-module $D \subset X$: singular set of \mathscr{M}.
- If \mathscr{M} has regular sing., Riemann-Hilbert corr.: $\mathrm{DR}: \mathscr{M} \longmapsto \mathrm{DR} \mathscr{M}$ is an equiv:
$\operatorname{Mod}_{\text {hol-reg }}\left(\mathscr{D}_{X}\right) \xrightarrow{\sim} \operatorname{Perv}_{\mathbb{C}}(X)$.
- If \mathscr{M} is a vect. bdle with connection $(D=\varnothing)$, possible irreg. sing. at $\infty: \longrightarrow$ Stokes phenom.
- Formal decomposition (Levelt-Turrittin) + Stokes matrices. Well-suited to Diff. Galois theory.

Irregular singularities on curves

- X : smooth curve $/ \mathbb{C}, \mathscr{M}$: holonomic \mathscr{D}_{X}-module $D \subset X$: singular set of \mathscr{M}.
- If \mathscr{M} has regular sing., Riemann-Hilbert corr.: $\mathrm{DR}: \mathscr{M} \longmapsto \mathrm{DR} \mathscr{M}$ is an equiv:
$\operatorname{Mod}_{\text {hol-reg }}\left(\mathscr{D}_{X}\right) \xrightarrow{\sim} \operatorname{Perv}_{\mathbb{C}}(X)$.
- If \mathscr{M} is a vect. bdle with connection $(D=\varnothing)$, possible irreg. sing. at $\infty: \longrightarrow$ Stokes phenom.
- Formal decomposition (Levelt-Turrittin) + Stokes matrices. Well-suited to Diff. Galois theory.
- Stokes-filtered local systems (Deligne, Malgrange) + R-H corresp. Well-suited to holon. \mathscr{D}_{X}-modules and higher dim.

Irregular singularities on curves

- X : smooth curve $/ \mathbb{C}, \mathscr{M}$: holonomic \mathscr{D}_{X}-module $D \subset X$: singular set of \mathscr{M}.
- If \mathscr{M} has regular sing., Riemann-Hilbert corr.: $\mathrm{DR}: \mathscr{M} \longmapsto \mathrm{DR} \mathscr{M}$ is an equiv: $\operatorname{Mod}_{\text {hol-reg }}\left(\mathscr{D}_{X}\right) \xrightarrow{\sim} \operatorname{Perv}_{\mathbb{C}}(X)$.
- If \mathscr{M} is a vect. bdle with connection $(D=\varnothing)$, possible irreg. sing. at $\infty: \longrightarrow$ Stokes phenom.
- Formal decomposition (Levelt-Turrittin) + Stokes matrices. Well-suited to Diff. Galois theory.
- Stokes-filtered local systems (Deligne, Malgrange) + R-H corresp. Well-suited to holon. \mathscr{D}_{X}-modules and higher dim.
- R-H : $\operatorname{Mod}_{\text {hol }}\left(\mathscr{D}_{X}\right) \xrightarrow{\sim}$ Stokes-Perv $_{\mathbb{C}}(X)$

Stokes-filtered local systems (dim. one)

Stokes-filtered local systems (dim. one)

$\mathscr{M}=\mathbb{C}(\{x\})$-vect. space with conn. ∇.

Stokes-filtered local systems (dim. one)

$\mathscr{M}=\mathbb{C}(\{x\})$-vect. space with conn. ∇.
$\widehat{\mathscr{M}}=\mathbb{C}((x)) \otimes \mathscr{M}$ with conn. $\widehat{\nabla}$

Stokes-filtered local systems (dim. one)

$\mathscr{M}=\mathbb{C}(\{x\})$-vect. space with conn. ∇.
$\widehat{\mathscr{M}}=\mathbb{C}((x)) \otimes \mathscr{M}$ with conn. $\widehat{\nabla}$
Levelt-Turrittin (without ramif.): $(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \bigoplus_{\eta}\left(\widehat{\mathscr{E}}^{\eta} \otimes \widehat{\mathscr{R}}_{\eta}\right)$

Stokes-filtered local systems (dim. one)

$\mathscr{M}=\mathbb{C}(\{x\})$-vect. space with conn. ∇.
$\widehat{\mathscr{M}}=\mathbb{C}((x)) \otimes \mathscr{M}$ with conn. $\widehat{\nabla}$ Levelt-Turrittin (without ramif.): $(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \bigoplus_{\eta}\left(\widehat{\mathscr{E}}^{\eta} \otimes \widehat{\mathscr{R}}_{\eta}\right)$ $\eta \in \Phi \subset x^{-1} \mathbb{C}\left[x^{-1}\right]$,

Stokes-filtered local systems (dim. one)

$\mathscr{M}=\mathbb{C}(\{x\})$-vect. space with conn. ∇.
$\widehat{\mathscr{M}}=\mathbb{C}((x)) \otimes \mathscr{M}$ with conn. $\widehat{\nabla}$ Levelt-Turrittin (without ramif.): $(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \bigoplus_{\eta}\left(\widehat{\mathscr{E}}^{\eta} \otimes \widehat{\mathscr{R}}_{\eta}\right)$ $\eta \in \Phi \subset x^{-1} \mathbb{C}\left[x^{-1}\right], \widehat{\mathscr{E}}^{\eta}=(\mathbb{C}((x)), \mathrm{d}+\mathrm{d} \eta)$,

Stokes-filtered local systems (dim. one)

$\mathscr{M}=\mathbb{C}(\{x\})$-vect. space with conn. ∇.
$\widehat{\mathscr{M}}=\mathbb{C}((x)) \otimes \mathscr{M}$ with conn. $\widehat{\nabla}$ Levelt-Turrittin (without ramif.): $(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \bigoplus_{\eta}\left(\widehat{\mathscr{E}}^{\eta} \otimes \widehat{\mathscr{R}}_{\eta}\right)$ $\eta \in \Phi \subset x^{-1} \mathbb{C}\left[x^{-1}\right], \widehat{\mathscr{E}} \eta=(\mathbb{C}((x)), \mathrm{d}+\mathrm{d} \eta), \widehat{\mathscr{R}}_{\eta}$ reg. sing.

Stokes-filtered local systems (dim. one)

$\mathscr{M}=\mathbb{C}(\{x\})$-vect. space with conn. ∇.
$\widehat{\mathscr{M}}=\mathbb{C}((x)) \otimes \mathscr{M}$ with conn. $\widehat{\nabla}$ Levelt-Turrittin (without ramif.): $(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \bigoplus_{\eta}\left(\widehat{\mathscr{E}}^{\eta} \otimes \widehat{\mathscr{R}}_{\eta}\right)$ $\eta \in \Phi \subset x^{-1} \mathbb{C}\left[x^{-1}\right], \widehat{\mathscr{E}} \eta=(\mathbb{C}((x)), \mathrm{d}+\mathrm{d} \eta), \widehat{\mathscr{R}}_{\eta}$ reg. sing.

Stokes-filtered local systems (dim. one)

$\mathscr{M}=\mathbb{C}(\{x\})$-vect. space with conn. ∇.
$\widehat{\mathscr{M}}=\mathbb{C}((x)) \otimes \mathscr{M}$ with conn. $\widehat{\nabla}$ Levelt-Turrittin (without ramif.): $(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \bigoplus_{\eta}\left(\widehat{\mathscr{E}}^{\eta} \otimes \widehat{\mathscr{R}}_{\eta}\right)$ $\eta \in \Phi \subset x^{-1} \mathbb{C}\left[x^{-1}\right], \widehat{\mathscr{E}} \eta=(\mathbb{C}((x)), \mathrm{d}+\mathrm{d} \eta), \widehat{\mathscr{R}}_{\eta}$ reg. sing.

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Order on $x^{-1} \mathbb{C}\left[x^{-1}\right]$ depending on $e^{i \theta} \in S^{1}$:

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Order on $x^{-1} \mathbb{C}\left[x^{-1}\right]$ depending on $e^{i \theta} \in S^{1}$:
$\eta \leqslant_{\theta_{o}} \psi$ iff $\operatorname{Re}(\eta-\psi)(x) \leqslant 0$ for $\arg x \sim \theta_{o}$ and $0<|x| \ll 1$.

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Order on $x^{-1} \mathbb{C}\left[x^{-1}\right]$ depending on $e^{i \theta} \in S^{1}$: $\eta \leqslant_{\theta_{o}} \psi$ iff $\operatorname{Re}(\eta-\psi)(x) \leqslant 0$ for $\arg x \sim \theta_{o}$ and $0<|x| \ll 1$.

- η not comparable to ψ

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Order on $x^{-1} \mathbb{C}\left[x^{-1}\right]$ depending on $e^{i \theta} \in S^{1}$: $\eta \leqslant_{\theta_{o}} \psi$ iff $\operatorname{Re}(\eta-\psi)(x) \leqslant 0$ for $\arg x \sim \theta_{o}$ and $0<|x| \ll 1$.

- η not comparable to ψ
o η not comparable to φ

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Order on $x^{-1} \mathbb{C}\left[x^{-1}\right]$ depending on $e^{i \theta} \in S^{1}$: $\eta \leqslant_{\theta_{o}} \psi$ iff $\operatorname{Re}(\eta-\psi)(x) \leqslant 0$ for $\arg x \sim \theta_{o}$ and $0<|x| \ll 1$.

- η not comparable to ψ

O η not comparable to φ

- η not comparable to ω

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Order on $x^{-1} \mathbb{C}\left[x^{-1}\right]$ depending on $e^{i \theta} \in S^{1}$: $\eta \leqslant_{\theta_{o}} \psi$ iff $\operatorname{Re}(\eta-\psi)(x) \leqslant 0$ for $\arg x \sim \theta_{o}$ and $0<|x| \ll 1$.

- \mathscr{L} local syst. on S^{1} (e.g., $\left.\mathscr{L}=(\mathscr{M})^{\nabla}\right)$

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Order on $x^{-1} \mathbb{C}\left[x^{-1}\right]$ depending on $e^{i \theta} \in S^{1}$: $\eta \leqslant_{\theta_{o}} \psi$ iff $\operatorname{Re}(\eta-\psi)(x) \leqslant 0$ for $\arg x \sim \theta_{o}$ and $0<|x| \ll 1$.

- \mathscr{L} local syst. on S^{1} (e.g., $\left.\mathscr{L}=(\mathscr{M})^{\nabla}\right)$
- For each $\eta \in x^{-1} \mathbb{C}\left[x^{-1}\right], \mathbb{R}$-constr. subsheaf $\mathscr{L} \leqslant \eta \subset \mathscr{L}$, s.t.

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Order on $x^{-1} \mathbb{C}\left[x^{-1}\right]$ depending on $e^{i \theta} \in S^{1}$: $\eta \leqslant_{\theta_{o}} \psi$ iff $\operatorname{Re}(\eta-\psi)(x) \leqslant 0$ for $\arg x \sim \theta_{o}$ and $0<|x| \ll 1$.

- \mathscr{L} local syst. on S^{1} (e.g., $\left.\mathscr{L}=(\mathscr{M})^{\nabla}\right)$
- For each $\eta \in x^{-1} \mathbb{C}\left[x^{-1}\right]$, \mathbb{R}-constr. subsheaf $\mathscr{L} \leqslant \eta \subset \mathscr{L}$, s.t.
- $\eta \leqslant_{\theta_{o}} \psi \Longrightarrow \mathscr{L}_{\leqslant \eta, \theta_{o}} \subset \mathscr{L}_{\leqslant \psi, \theta_{o}}$ (filtr. cond.)

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Order on $x^{-1} \mathbb{C}\left[x^{-1}\right]$ depending on $e^{i \theta} \in S^{1}$: $\eta \leqslant_{\theta_{o}} \psi$ iff $\operatorname{Re}(\eta-\psi)(x) \leqslant 0$ for $\arg x \sim \theta_{o}$ and $0<|x| \ll 1$.

- \mathscr{L} local syst. on S^{1} (e.g., $\left.\mathscr{L}=(\mathscr{M})^{\nabla}\right)$
- For each $\eta \in x^{-1} \mathbb{C}\left[x^{-1}\right], \mathbb{R}$-constr. subsheaf $\mathscr{L} \leqslant \eta \subset \mathscr{L}$, s.t.
- $\eta \leqslant_{\theta_{o}} \psi \Longrightarrow \mathscr{L}_{\leqslant \eta, \theta_{o}} \subset \mathscr{L}_{\leqslant \psi, \theta_{o}}$ (filtr. cond.)
- Set $\mathscr{L}_{<\eta}=\sum_{\psi<\eta} \mathscr{L}_{\leqslant \psi}$,

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Order on $x^{-1} \mathbb{C}\left[x^{-1}\right]$ depending on $e^{i \theta} \in S^{1}$: $\eta \leqslant_{\theta_{o}} \psi$ iff $\operatorname{Re}(\eta-\psi)(x) \leqslant 0$ for $\arg x \sim \theta_{o}$ and $0<|x| \ll 1$.

- \mathscr{L} local syst. on S^{1} (e.g., $\left.\mathscr{L}=(\mathscr{M})^{\nabla}\right)$
- For each $\eta \in x^{-1} \mathbb{C}\left[x^{-1}\right], \mathbb{R}$-constr. subsheaf $\mathscr{L}_{\leqslant \eta} \subset \mathscr{L}$, s.t.
- $\eta \leqslant_{\theta_{o}} \psi \Longrightarrow \mathscr{L}_{\leqslant \eta, \theta_{o}} \subset \mathscr{L}_{\leqslant \psi, \theta_{o}}$ (filtr. cond.)
- Set $\mathscr{L}_{<\eta}=\sum_{\psi<\eta} \mathscr{L}_{\leqslant \psi}, \operatorname{gr}_{\eta} \mathscr{L}=\mathscr{L}_{\leqslant \eta} / \mathscr{L}_{<\psi}$.

Then

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Order on $x^{-1} \mathbb{C}\left[x^{-1}\right]$ depending on $e^{i \theta} \in S^{1}$: $\eta \leqslant_{\theta_{o}} \psi$ iff $\operatorname{Re}(\eta-\psi)(x) \leqslant 0$ for $\arg x \sim \theta_{o}$ and $0<|x| \ll 1$.

- \mathscr{L} local syst. on S^{1} (e.g., $\left.\mathscr{L}=(\mathscr{M})^{\nabla}\right)$
- For each $\eta \in x^{-1} \mathbb{C}\left[x^{-1}\right], \mathbb{R}$-constr. subsheaf $\mathscr{L}_{\leqslant \eta} \subset \mathscr{L}$, s.t.
- $\eta \leqslant_{\theta_{o}} \psi \Longrightarrow \mathscr{L}_{\leqslant \eta, \theta_{o}} \subset \mathscr{L}_{\leqslant \psi, \theta_{o}}$ (filtr. cond.)
- Set $\mathscr{L}_{<\eta}=\sum_{\psi<\eta} \mathscr{L}_{\leqslant \psi}, \operatorname{gr}_{\eta} \mathscr{L}=\mathscr{L}_{\leqslant \eta} / \mathscr{L}_{<\psi}$. Then loc. on $S^{1}, \mathscr{L} \simeq \bigoplus_{\eta} \mathrm{gr}_{\eta} \mathscr{L}$.

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Order on $x^{-1} \mathbb{C}\left[x^{-1}\right]$ depending on $e^{i \theta} \in S^{1}$: $\eta \leqslant_{\theta_{o}} \psi$ iff $\operatorname{Re}(\eta-\psi)(x) \leqslant 0$ for $\arg x \sim \theta_{o}$ and $0<|x| \ll 1$.

- \mathscr{L} local syst. on S^{1} (e.g., $\left.\mathscr{L}=(\mathscr{M})^{\nabla}\right)$
- For each $\eta \in x^{-1} \mathbb{C}\left[x^{-1}\right]$, \mathbb{R}-constr. subsheaf $\mathscr{L} \leqslant \eta \subset \mathscr{L}$, s.t.
- $\eta \leqslant_{\theta_{o}} \psi \Longrightarrow \mathscr{L}_{\leqslant \eta, \theta_{o}} \subset \mathscr{L}_{\leqslant \psi, \theta_{o}}$ (filtr. cond.)
- Set $\mathscr{L}_{<\eta}=\sum_{\psi<\eta} \mathscr{L}_{\leqslant \psi}, \operatorname{gr}_{\eta} \mathscr{L}=\mathscr{L}_{\leqslant \eta} / \mathscr{L}_{<\psi}$. Then loc. on $S^{1}, \mathscr{L} \simeq \oplus_{\eta} \mathrm{gr}_{\eta} \mathscr{L} .(\Longrightarrow$ each $\mathrm{gr}_{\eta} \mathscr{L}$ is a loc. syst. on S^{1})

Stokes-filtered local systems (dim. one)

Deligne (1978): Stokes filtration

- Polar coord. $x=|x| e^{i \theta}, S^{1}=\{|x|=0\}$

Order on $x^{-1} \mathbb{C}\left[x^{-1}\right]$ depending on $e^{i \theta} \in S^{1}$: $\eta \leqslant_{\theta_{o}} \psi$ iff $\operatorname{Re}(\eta-\psi)(x) \leqslant 0$ for $\arg x \sim \theta_{o}$ and $0<|x| \ll 1$.

- \mathscr{L} local syst. on S^{1} (e.g., $\left.\mathscr{L}=(\mathscr{M})^{\nabla}\right)$
- For each $\eta \in x^{-1} \mathbb{C}\left[x^{-1}\right]$, \mathbb{R}-constr. subsheaf $\mathscr{L} \leqslant \eta \subset \mathscr{L}$, s.t.
- $\eta \leqslant_{\theta_{o}} \psi \Longrightarrow \mathscr{L}_{\leqslant \eta, \theta_{o}} \subset \mathscr{L}_{\leqslant \psi, \theta_{o}}$ (filtr. cond.)
- Set $\mathscr{L}_{<\eta}=\sum_{\psi<\eta} \mathscr{L}_{\leqslant \psi}, \operatorname{gr}_{\eta} \mathscr{L}=\mathscr{L}_{\leqslant \eta} / \mathscr{L}_{<\psi}$. Then loc. on $S^{1}, \mathscr{L} \simeq \oplus_{\eta} \mathrm{gr}_{\eta} \mathscr{L}$. $(\Longrightarrow$ each $\mathrm{gr}_{\eta} \mathscr{L}$ is a loc. syst. on S^{1}) (loc. grad. cond.)

Riemann-Hilbert corr. (local case)

Riemann-Hilbert corr. (local case)

- $(\mathscr{M}, \nabla): \mathbb{C}(\{x\})$-vect. space with conn.

Riemann-Hilbert corr. (local case)

- $(\mathscr{M}, \nabla): \mathbb{C}(\{x\})$-vect. space with conn.
- $\left(\mathscr{L}, \mathscr{L}_{\bullet}\right)$: Stokes-filtered \mathbb{C}-loc. syst.

Riemann-Hilbert corr. (local case)

- $(\mathscr{M}, \nabla): \mathbb{C}(\{x\})$-vect. space with conn.
- $\left(\mathscr{L}, \mathscr{L}_{\bullet}\right)$: Stokes-filtered \mathbb{C}-loc. syst.
- For each $\eta \in x^{-1} \mathbb{C}\left[x^{-1}\right], \mathbb{R}$-constr. subsheaf $\mathscr{L} \leqslant \eta \subset \mathscr{L}$

Riemann-Hilbert corr. (local case)

- $(\mathscr{M}, \nabla): \mathbb{C}(\{x\})$-vect. space with conn.
- $\left(\mathscr{L}, \mathscr{L}_{\bullet}\right)$: Stokes-filtered \mathbb{C}-loc. syst.
- For each $\eta \in x^{-1} \mathbb{C}\left[x^{-1}\right], \mathbb{R}$-constr. subsheaf $\mathscr{L} \leqslant \eta \subset \mathscr{L}$
- filtr. cond.,

Riemann-Hilbert corr. (local case)

- $(\mathscr{M}, \nabla): \mathbb{C}(\{x\})$-vect. space with conn.
- $\left(\mathscr{L}, \mathscr{L}_{\bullet}\right)$: Stokes-filtered \mathbb{C}-loc. syst.
- For each $\eta \in x^{-1} \mathbb{C}\left[x^{-1}\right], \mathbb{R}$-constr. subsheaf $\mathscr{L} \leqslant \eta \subset \mathscr{L}$
- filtr. cond.,
- loc. grad. cond.

Riemann-Hilbert corr. (local case)

- $(\mathscr{M}, \nabla): \mathbb{C}(\{x\})$-vect. space with conn.
- $\left(\mathscr{L}, \mathscr{L}_{\bullet}\right)$: Stokes-filtered \mathbb{C}-loc. syst.
- For each $\eta \in x^{-1} \mathbb{C}\left[x^{-1}\right], \mathbb{R}$-constr. subsheaf $\mathscr{L}_{\leqslant \eta} \subset \mathscr{L}$
- filtr. cond.,
- loc. grad. cond.
- Theorem (Deligne): \exists a R-H corr. (equivalence)

Riemann-Hilbert corr. (local case)

- $(\mathscr{M}, \nabla): \mathbb{C}(\{x\})$-vect. space with conn.
- $\left(\mathscr{L}, \mathscr{L}_{\bullet}\right)$: Stokes-filtered \mathbb{C}-loc. syst.
- For each $\eta \in x^{-1} \mathbb{C}\left[x^{-1}\right]$, \mathbb{R}-constr. subsheaf $\mathscr{L}_{\leqslant \eta} \subset \mathscr{L}$
- filtr. cond.,
- loc. grad. cond.
- Theorem (Deligne): \exists a R-H corr. (equivalence)

Stokes-perverse sheaves (dim. one)

Stokes-perverse sheaves (dim. one)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth proj. curve $/ \mathbb{C}$ with div. \boldsymbol{D}.

Stokes-perverse sheaves (dim. one)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth proj. curve $/ \mathbb{C}$ with div. \boldsymbol{D}.
- $\varpi: \widetilde{X}(D) \longrightarrow X=$ real oriented blow-up of X at D

Stokes-perverse sheaves (dim. one)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth proj. curve $/ \mathbb{C}$ with div. \boldsymbol{D}.
- $\varpi: \widetilde{X}(D) \longrightarrow X=$ real oriented blow-up of X at D
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X}, zero on $X^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$

Stokes-perverse sheaves (dim. one)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth proj. curve $/ \mathbb{C}$ with div. \boldsymbol{D}.
- $\varpi: \widetilde{X}(D) \longrightarrow X=$ real oriented blow-up of X at D
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X},
zero on $X^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$
(should take "ramified polar parts" instead)

Stokes-perverse sheaves (dim. one)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth proj. curve $/ \mathbb{C}$ with div. \boldsymbol{D}.
- $\varpi: \widetilde{X}(D) \longrightarrow X=$ real oriented blow-up of X at D
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X},
zero on $X^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$
- J: sheaf of ordered groups

Stokes-perverse sheaves (dim. one)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth proj. curve $/ \mathbb{C}$ with div. \boldsymbol{D}.
- $\varpi: \widetilde{X}(D) \longrightarrow X=$ real oriented blow-up of X at D
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X},
zero on $\boldsymbol{X}^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$
- J: sheaf of ordered groups
- Jét. étale space of \mathcal{J} (not Hausdorff over D)

Stokes-perverse sheaves (dim. one)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth proj. curve $/ \mathbb{C}$ with div. \boldsymbol{D}.
- $\varpi: \widetilde{X}(D) \longrightarrow X=$ real oriented blow-up of X at D
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X}, zero on $\boldsymbol{X}^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$
- J: sheaf of ordered groups
- Jét: étale space of \mathcal{J} (not Hausdorff over D): point of fét $=$ germ η

Stokes-perverse sheaves (dim. one)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth proj. curve $/ \mathbb{C}$ with div. \boldsymbol{D}.
- $\varpi: \widetilde{X}(D) \longrightarrow X=$ real oriented blow-up of X at D
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X}, zero on $\boldsymbol{X}^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$
- J: sheaf of ordered groups
- Jét: étale space of \mathcal{J} (not Hausdorff over D): point of Jét $^{\text {en }}=$ germ η
k a field (coeffs)

Stokes-perverse sheaves (dim. one)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth proj. curve $/ \mathbb{C}$ with div. \boldsymbol{D}.
- $\varpi: \widetilde{X}(D) \longrightarrow X=$ real oriented blow-up of X at D
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X}, zero on $\boldsymbol{X}^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$
- J: sheaf of ordered groups
- Jét: étale space of \mathcal{J} (not Hausdorff over D): point of Jét $^{\text {en }}=$ germ η
k a field (coeffs)
Definition:

Stokes-perverse sheaves (dim. one)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth proj. curve $/ \mathbb{C}$ with div. \boldsymbol{D}.
- $\varpi: \widetilde{X}(D) \longrightarrow X=$ real oriented blow-up of X at D
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X}, zero on $\boldsymbol{X}^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$
- J: sheaf of ordered groups
- Jét: étale space of \mathcal{J} (not Hausdorff over D): point of Jét $^{\text {et }}=$ germ η
k a field (coeffs)
Definition:
k-Loc. syst. on X^{*} with Stokes filtr. at $D \Longleftrightarrow$ sheaf $\mathscr{F} \leqslant$ on fét comp. with order s.t. $\mathscr{F}_{\leqslant \mid X^{*}}=k$-loc syst. on X^{*} and $\mathscr{F}_{\leqslant \mid \varpi^{-1}(D)}=: \mathscr{L} \leqslant=k$-Stokes filtr.

Riemann-Hilbert corr. (global case)

DEfinition:
k-Loc. syst. on X^{*} with Stokes filtr. at D sheaf $\mathscr{F} \leqslant$ on Jét comp. with order s.t. $\mathscr{F} \leqslant \mid X^{*}=k$-loc syst. on X^{*} and $\mathscr{F}_{\leqslant \mid \varpi^{-1}(D)}=: \mathscr{L}_{\leqslant}=\boldsymbol{k}$-Stokes filtr.

Riemann-Hilbert corr. (global case)

DEfinition:
k-Loc. syst. on X^{*} with Stokes filtr. at D sheaf $\mathscr{F} \leqslant$ on Jét comp. with order s.t. $\mathscr{F} \leqslant \mid X^{*}=k$-loc syst. on X^{*} and $\mathscr{F}_{\leqslant \mid \varpi^{-1}(D)}=: \mathscr{L}_{\leqslant}=\boldsymbol{k}$-Stokes filtr.

Proposition: Abelian category, morphisms strictly filtered.

Riemann-Hilbert corr. (global case)

DEFINITION:
k-Loc. syst. on X^{*} with Stokes filtr. at D sheaf $\mathscr{F} \leqslant$ on Jét comp. with order s.t. $\mathscr{F} \leqslant \mid X^{*}=\boldsymbol{k}$-loc syst. on X^{*} and $\mathscr{F} \leqslant \mid \varpi^{-1}(D)=: \mathscr{L}_{\leqslant}=\boldsymbol{k}$-Stokes filtr.

Proposition: Abelian category, morphisms strictly filtered.

Theorem (Deligne): \exists R-H equivalence "alg. bdles with connection on $X^{* "} \longleftrightarrow$ " \mathbb{C}-Loc. syst. on X^{*} with Stokes filtr. at D ".

Riemann-Hilbert corr. (global case)

DEFINITION:
k-Loc. syst. on X^{*} with Stokes filtr. at D
 sheaf $\mathscr{F} \leqslant$ on Jét comp. with order s.t. $\mathscr{F} \leqslant \mid X^{*}=\boldsymbol{k}$-loc syst. on X^{*} and $\mathscr{F}_{\leqslant \mid \varpi^{-1}(D)}=: \mathscr{L}_{\leqslant}=k$-Stokes filtr.
PROPOSITION: Abelian category, morphisms strictly filtered.

THEOREM (Deligne): $\exists \mathrm{R}$-H equivalence
"alg. bdles with connection on $X^{* "} \longleftrightarrow$
" \mathbb{C}-Loc. syst. on X^{*} with Stokes filtr. at D ".
Adding data at $\boldsymbol{D} \longrightarrow \boldsymbol{k}$-Stokes perverse sheaves on (X, D).

Riemann-Hilbert corr. (global case)

DEFINITION:
k-Loc. syst. on X^{*} with Stokes filtr. at $D \Longleftrightarrow$ sheaf \mathscr{F}_{\leqslant}on Jét comp. with order s.t. $\mathscr{F} \leqslant \mid X^{*}=k$-loc syst.
on X^{*} and $\mathscr{F} \leqslant \mid \varpi^{-1}(D)=: \mathscr{L} \leqslant=k$-Stokes filtr.
PROPOSITION: Abelian category, morphisms strictly filtered.

THEOREM (Deligne): \exists R-H equivalence
"alg. bdles with connection on $X^{* "} \longleftrightarrow$
" \mathbb{C}-Loc. syst. on X^{*} with Stokes filtr. at D ".
Adding data at $\boldsymbol{D} \longrightarrow \boldsymbol{k}$-Stokes perverse sheaves on (\boldsymbol{X}, D).

THEOREM (Deligne, Malgrange): $\exists \mathrm{R}-\mathrm{H}$ equivalence "hol. \mathscr{D}_{X}-modules on $(\boldsymbol{X}, \boldsymbol{D})$ " \longleftrightarrow " \mathbb{C}-Stokes perverse sheaves on $(\boldsymbol{X}, \boldsymbol{D})$ ".

Riemann-Hilbert corr. (global case)

DEFINITION:
k-Loc. syst. on X^{*} with Stokes filtr. at $D \Longleftrightarrow$ sheaf \mathscr{F}_{\leqslant}on Jét comp. with order s.t. $\mathscr{F} \leqslant \mid X^{*}=k$-loc syst.
on X^{*} and $\mathscr{F} \leqslant \mid \varpi^{-1}(D)=: \mathscr{L} \leqslant=k$-Stokes filtr.
PROPOSITION: Abelian category, morphisms strictly filtered.

THEOREM (Deligne): \exists R-H equivalence
"alg. bdles with connection on $X^{* "} \longleftrightarrow$
" \mathbb{C}-Loc. syst. on X^{*} with Stokes filtr. at D ".
Adding data at $\boldsymbol{D} \longrightarrow \boldsymbol{k}$-Stokes perverse sheaves on (\boldsymbol{X}, D).

Theorem (Deligne, Malgrange): $\exists \mathrm{R}-\mathrm{H}$ equivalence "hol. \mathscr{D}_{X}-modules on $(\boldsymbol{X}, \boldsymbol{D})$ " \longleftrightarrow " \mathbb{C}-Stokes perverse sheaves on $(\boldsymbol{X}, \boldsymbol{D})$ ". Compatible with duality.

Levelt-Turrittin in dim. $\geqslant 2$

Levelt-Turrittin in dim. $\geqslant 2$

QUESTION (2 variables):

Levelt-Turrittin in dim. $\geqslant 2$

Question (2 variables):
$(\widehat{\mathscr{M}}, \widehat{\nabla})$: free $\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right]$-module with flat connect.

Levelt-Turrittin in dim. $\geqslant 2$

Question (2 variables):
$(\widehat{\mathscr{M}}, \widehat{\nabla})$: free $\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right]$-module with flat connect. \exists ? (maybe after ramif. $x_{1}=y_{1}^{r_{1}}, x_{2}=y_{2}^{r_{2}}$) a decomp.

$$
(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \oplus_{\eta}\left(\widehat{\mathscr{E}} \eta \widehat{\mathscr{R}}_{\eta}\right)
$$

Levelt-Turrittin in dim. $\geqslant 2$

Question (2 variables):
($\widehat{\mathscr{M}}, \widehat{\nabla})$: free $\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right]$-module with flat connect. \exists ? (maybe after ramif. $x_{1}=y_{1}^{r_{1}}, x_{2}=y_{2}^{r_{2}}$) a decomp.

$$
(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \oplus_{\eta}\left(\widehat{\mathscr{E}} \eta \quad \otimes \widehat{\mathscr{R}}_{\eta}\right)
$$

$\eta \in \Phi \subset \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right] / \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket$,

Levelt-Turrittin in dim. $\geqslant 2$

Question (2 variables):
($\widehat{\mathscr{M}}, \widehat{\nabla})$: free $\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right]$-module with flat connect. \exists ? (maybe after ramif. $x_{1}=y_{1}^{r_{1}}, x_{2}=y_{2}^{r_{2}}$) a decomp.

$$
(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \bigoplus_{\eta}\left(\widehat{\mathscr{E}} \eta \otimes \widehat{\mathscr{R}}_{\eta}\right)
$$

$$
\begin{aligned}
& \eta \in \Phi \subset \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right] / \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket, \\
& \widehat{\mathscr{E}} \boldsymbol{}=\left(\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right], \mathrm{d}+\mathrm{d} \eta\right),
\end{aligned}
$$

Levelt-Turrittin in dim. $\geqslant 2$

Question (2 variables):
($\widehat{\mathscr{M}}, \widehat{\nabla})$: free $\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right]$-module with flat connect. \exists ? (maybe after ramif. $x_{1}=y_{1}^{r_{1}}, x_{2}=y_{2}^{r_{2}}$) a decomp.

$$
(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \bigoplus_{\eta}\left(\widehat{\mathscr{E}} \eta \otimes \widehat{\mathscr{R}}_{\eta}\right)
$$

$\eta \in \Phi \subset \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right\rfloor / \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket$,
$\widehat{\mathscr{E} \eta}=\left(\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right\rfloor, \mathrm{d}+\mathrm{d} \eta\right)$,
$\widehat{\mathscr{R}}_{\eta}$ reg. sing. along $D=\left\{x_{1} x_{2}=0\right\}$.

Levelt-Turrittin in dim. $\geqslant 2$

Question (2 variables):
($\widehat{\mathscr{M}}, \widehat{\nabla})$: free $\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right]$-module with flat connect. \exists ? (maybe after ramif. $x_{1}=y_{1}^{r_{1}}, x_{2}=y_{2}^{r_{2}}$) a decomp.

$$
(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \bigoplus_{\eta}\left(\widehat{\mathscr{E}} \eta \otimes \widehat{\mathscr{R}}_{\eta}\right)
$$

$\eta \in \Phi \subset \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right\rfloor / \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket$,
$\widehat{\mathscr{E} \eta}=\left(\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right\rfloor, \mathrm{d}+\mathrm{d} \eta\right)$,
$\widehat{\mathscr{R}}_{\eta}$ reg. sing. along $D=\left\{x_{1} x_{2}=0\right\}$.
ANSWER: no, \exists counter-ex.

Levelt-Turrittin in dim. $\geqslant 2$

Question (2 variables):
($\widehat{\mathscr{M}}, \widehat{\nabla})$: free $\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right]$-module with flat connect. \exists ? (maybe after ramif. $x_{1}=y_{1}^{r_{1}}, x_{2}=y_{2}^{r_{2}}$) a decomp.

$$
(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \bigoplus_{\eta}\left(\widehat{\mathscr{E}} \eta \otimes \widehat{\mathscr{R}}_{\eta}\right)
$$

$\eta \in \Phi \subset \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1} \rrbracket / \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\right.$,
$\widehat{\mathscr{E} \eta}=\left(\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right\rfloor, \mathrm{d}+\mathrm{d} \eta\right)$,
$\widehat{\mathscr{R}}_{\eta}$ reg. sing. along $D=\left\{x_{1} x_{2}=0\right\}$.
ANSWER: no, \exists counter-ex.
Tentative statement (C.S., 1993): Local formal existence after a sequence of blowing-up ?

Levelt-Turrittin in dim. $\geqslant 2$

Question (2 variables):
($\widehat{\mathscr{M}}, \widehat{\nabla}$): free $\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right]$-module with flat connect. \exists ? (maybe after ramif. $x_{1}=y_{1}^{r_{1}}, x_{2}=y_{2}^{r_{2}}$) a decomp.

$$
(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \bigoplus_{\eta}\left(\widehat{\mathscr{E}} \eta \otimes \widehat{\mathscr{R}}_{\eta}\right)
$$

$\eta \in \Phi \subset \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right] / \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket$,
$\widehat{\mathscr{E}} \eta=\left(\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right\rfloor, \mathrm{d}+\mathrm{d} \eta\right)$,
$\widehat{\mathscr{R}}_{\eta}$ reg. sing. along $D=\left\{x_{1} x_{2}=0\right\}$.
ANSWER: no, \exists counter-ex.
Tentative statement (C.S., 1993): Local formal existence after a sequence of blowing-up ?

Refined tentative statement (C.S., 1993): Add a "goodness" condition in order to avoid e.g. $\eta=x_{1} / x_{2}$.

Levelt-Turrittin in dim. $\geqslant 2$

Question (2 variables):
($\widehat{\mathscr{M}}, \widehat{\nabla})$: free $\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right]$-module with flat connect. \exists ? (maybe after ramif. $x_{1}=y_{1}^{r_{1}}, x_{2}=y_{2}^{r_{2}}$) a decomp.

$$
(\widehat{\mathscr{M}}, \widehat{\nabla}) \simeq \oplus_{\eta}\left(\widehat{\mathscr{E}} \eta \quad \otimes \widehat{\mathscr{R}}_{\eta}\right)
$$

$\eta \in \Phi \subset \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right] / \mathbb{C} \llbracket x_{1}, x_{2} \rrbracket$,
$\widehat{\mathscr{E}} \eta=\left(\mathbb{C} \llbracket x_{1}, x_{2} \rrbracket\left[x_{1}^{-1}, x_{2}^{-1}\right\rfloor, \mathrm{d}+\mathrm{d} \eta\right)$,
$\widehat{\mathscr{R}}_{\eta}$ reg. sing. along $D=\left\{x_{1} x_{2}=0\right\}$.
ANSWER: no, \exists counter-ex.
Tentative statement (C.S., 1993): Local formal existence after a sequence of blowing-up ?

Refined tentative statement (C.S., 1993): Add a "goodness" condition in order to avoid e.g. $\eta=x_{1} / x_{2}$. (good formal structure, import. for asympt. analysis)

Levelt-Turrittin in dim. $\geqslant 2$

Levelt-Turrittin in dim. $\geqslant 2$

Defintion: $\boldsymbol{D}=$ nc. divisor in \boldsymbol{X}. A family $\Phi \subset \mathscr{O}_{X}(* D) / \mathscr{O}_{X}$ of local sect. is good if $\forall \eta, \psi \in \Phi, \operatorname{div}(\eta-\psi)=\sum_{i} n_{i} D_{i}$, with $n_{i} \leqslant 0 \forall i$.

Levelt-Turrittin in dim. $\geqslant 2$

Defintion: $\boldsymbol{D}=$ nc. divisor in \boldsymbol{X}. A family $\Phi \subset \mathscr{O}_{X}(* D) / \mathscr{O}_{X}$ of local sect. is good if

$$
\forall \eta, \psi \in \Phi, \operatorname{div}(\eta-\psi)=\sum_{i} n_{i} D_{i}, \text { with } n_{i} \leqslant 0 \forall i
$$

Theorem (K. Kedlaya, T. Mochizuki, 2008-2009): (M, ∇) coh. $\mathscr{O}_{X}(* D)$-module with flat conn. Then \exists a finite seq. of blow-ups $e: X^{\prime} \longrightarrow X$ centered in D s.t. $e^{*}(\mathscr{M}, \nabla)$ has good formal structure at each point of $e^{-1}(D)$.

Levelt-Turrittin in dim. $\geqslant 2$

DEFINTION: $\boldsymbol{D}=$ nc. divisor in \boldsymbol{X}. A family $\Phi \subset \mathscr{O}_{X}(* D) / \mathscr{O}_{X}$ of local sect. is good if

$$
\forall \eta, \psi \in \Phi, \operatorname{div}(\eta-\psi)=\sum_{i} n_{i} D_{i}, \text { with } n_{i} \leqslant 0 \forall i
$$

Theorem (K. Kedlaya, T. Mochizuki, 2008-2009): (M, ∇) coh. $\mathscr{O}_{X}(* D)$-module with flat conn. Then \exists a finite seq. of blow-ups $e: X^{\prime} \longrightarrow X$ centered in D s.t. $e^{*}(\mathscr{M}, \nabla)$ has good formal structure at each point of $e^{-1}(D)$.
Previous work: Gérard-Sibuya (1979), Levelt-van den Essen (1982), H. Majima (1984), C.S. (2000): rk $\mathscr{M} \leqslant 5$,
Y. André (2007): direct proof of Malgrange's conj.

Levelt-Turrittin in dim. $\geqslant 2$

Defintion: $\boldsymbol{D}=$ nc. divisor in \boldsymbol{X}. A family $\Phi \subset \mathscr{O}_{X}(* D) / \mathscr{O}_{X}$ of local sect. is good if

$$
\forall \eta, \psi \in \Phi, \operatorname{div}(\eta-\psi)=\sum_{i} n_{i} D_{i}, \text { with } n_{i} \leqslant 0 \forall i
$$

Theorem (K. Kedlaya, T. Mochizuki, 2008-2009): (\mathscr{M}, ∇) coh. $\mathscr{O}_{X}(* D)$-module with flat conn. Then \exists a finite seq. of blow-ups $e: X^{\prime} \longrightarrow X$ centered in D s.t. $e^{*}(\mathscr{M}, \nabla)$ has good formal structure at each point of $e^{-1}(D)$.
Previous work: Gérard-Sibuya (1979), Levelt-van den Essen (1982), H. Majima (1984), C.S. (2000): rk $\mathscr{M} \leqslant 5$,
Y. André (2007): direct proof of Malgrange's conj.

Application to asympt. ANAlysis: Y. Sibuya (70's), H. Majima (1984), C.S. (1993, 2000): $\operatorname{dim} X=2$,
T. Mochizuki (2010): $\operatorname{dim} X \geqslant 2$.

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth variety $/ \mathbb{C}$ with nc div. \boldsymbol{D}.

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth variety $/ \mathbb{C}$ with nc div. \boldsymbol{D}.

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth variety $/ \mathbb{C}$ with nc div. \boldsymbol{D}.

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth variety $/ \mathbb{C}$ with nc div. \boldsymbol{D}.

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth variety $/ \mathbb{C}$ with nc div. \boldsymbol{D}.
- $\varpi: \widetilde{X}(D) \rightarrow X=$ real oriented blow-up of X at $\left(D_{i}\right)$

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

- (X, D) smooth variety $/ \mathbb{C}$ with nc div. D.
- $\varpi: \widetilde{X}(D) \rightarrow X=$ real oriented blow-up of X at $\left(D_{i}\right)$
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X}, zero on $X^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

- (X, D) smooth variety $/ \mathbb{C}$ with nc div. D.
- $\varpi: \widetilde{X}(D) \rightarrow X=$ real oriented blow-up of X at $\left(D_{i}\right)$
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X}, zero on $X^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$
(should take "ramified polar parts" instead)

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

- (X, D) smooth variety $/ \mathbb{C}$ with nc div. D.
- $\varpi: \widetilde{X}(D) \rightarrow X=$ real oriented blow-up of X at $\left(D_{i}\right)$
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X}, zero on $X^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$
- J: sheaf of ordered groups

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth variety $/ \mathbb{C}$ with nc div. \boldsymbol{D}.
- $\varpi: \widetilde{X}(D) \rightarrow X=$ real oriented blow-up of X at $\left(D_{i}\right)$
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X}, zero on $\boldsymbol{X}^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$
- J: sheaf of ordered groups
- Jét. étale space of \mathcal{J} (not Hausdorff over D)

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

- $(\boldsymbol{X}, \boldsymbol{D})$ smooth variety $/ \mathbb{C}$ with nc div. \boldsymbol{D}.
- $\varpi: \widetilde{X}(D) \rightarrow X=$ real oriented blow-up of X at $\left(D_{i}\right)$
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X}, zero on $\boldsymbol{X}^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$
- J: sheaf of ordered groups
- Jét: étale space of \mathcal{J} (not Hausdorff over D): point of fét $=$ germ η

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

- (X, D) smooth variety $/ \mathbb{C}$ with nc div. D.
- $\varpi: \widetilde{X}(D) \rightarrow X=$ real oriented blow-up of X at $\left(D_{i}\right)$
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X}, zero on $\boldsymbol{X}^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$
- J: sheaf of ordered groups
- Jét: étale space of \mathcal{J} (not Hausdorff over D): point of fét $=$ germ η

Definition:

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

- (X, D) smooth variety $/ \mathbb{C}$ with nc div. D.
- $\varpi: \widetilde{X}(D) \rightarrow X=$ real oriented blow-up of X at $\left(D_{i}\right)$
- $\mathcal{J}=\varpi^{-1}\left(\mathscr{O}_{X}(* D) / \mathscr{O}_{X}\right)$ sheaf on \widetilde{X}, zero on $\boldsymbol{X}^{*}:=\boldsymbol{X} \backslash \boldsymbol{D}$
- J: sheaf of ordered groups
- Jét: étale space of \mathcal{J} (not Hausdorff over D): point of Jét $^{\text {et }}=$ germ η

Definition: k-Loc. syst. on X^{*} with Stokes filtr. at D \Longleftrightarrow sheaf $\mathscr{F} \leqslant$ on jét s.t., on each stratum
filtr. cond. and loc. grad. cond. compatibility cond. between strata.

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

Definition: \boldsymbol{k}-Loc. syst. on \boldsymbol{X}^{*} with Stokes filtr. at D \Longleftrightarrow sheaf $\mathscr{F} \leqslant$ on Jét s.t., on each stratum filtr. cond. and loc. grad. cond. compatibility cond. between strata.

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

Definition: \boldsymbol{k}-Loc. syst. on \boldsymbol{X}^{*} with Stokes filtr. at D \Longleftrightarrow sheaf $\mathscr{F} \leqslant$ on Jét $^{\text {s.t., on each stratum }}$ filtr. cond. and loc. grad. cond. compatibility cond. between strata.

Loc. grad. cond. \Rightarrow loc. on $\widetilde{X}, \mathscr{F} \leqslant \simeq \operatorname{gr} \mathscr{F} \leqslant=\bigoplus_{\eta} \operatorname{gr}_{\eta} \mathscr{F}_{\leqslant}$.

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

Definition: k-Loc. syst. on X^{*} with Stokes filtr. at D \Longleftrightarrow sheaf $\mathscr{F} \leqslant$ on Jet s.t., on each stratum filtr. cond. and loc. grad. cond. compatibility cond. between strata.

Loc. grad. cond. \Rightarrow loc. on $\widetilde{X}, \mathscr{F} \leqslant \simeq \operatorname{gr} \mathscr{F} \leqslant=\bigoplus_{\eta} \operatorname{gr}_{\eta} \mathscr{F} \leqslant$.
Definition (goodness): $\mathscr{F} \leqslant$ is good if locally on X, the family (η) is good.

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

Definition: k-Loc. syst. on X^{*} with Stokes filtr. at D \Longleftrightarrow sheaf $\mathscr{F} \leqslant$ on jét s.t., on each stratum filtr. cond. and loc. grad. cond. compatibility cond. between strata.

Loc. grad. cond. \Rightarrow loc. on $\widetilde{X}, \mathscr{F} \leqslant \simeq \operatorname{gr} \mathscr{F} \leqslant=\bigoplus_{\eta} \operatorname{gr}_{\eta} \mathscr{F} \leqslant$.
Definition (goodness): $\mathscr{F} \leqslant$ is good if locally on \boldsymbol{X}, the family (η) is good.

Support $\widetilde{\Sigma}(\mathrm{gr} \mathscr{F} \leqslant) \subset$ Jét: stratified covering of $\partial \widetilde{X}(D)$.

Stokes-filtered loc. syst. (dim. $\geqslant 2$)

Definition: \boldsymbol{k}-Loc. syst. on \boldsymbol{X}^{*} with Stokes filtr. at \boldsymbol{D} \Longleftrightarrow sheaf $\mathscr{F} \leqslant$ on Jet s.t., on each stratum filtr. cond. and loc. grad. cond. compatibility cond. between strata.
Loc. grad. cond. \Rightarrow loc. on $\widetilde{X}, \mathscr{F} \leqslant \simeq \operatorname{gr} \mathscr{F} \leqslant=\bigoplus_{\eta} \operatorname{gr}_{\eta} \mathscr{F} \leqslant$.
Definition (goodness): $\mathscr{F} \leqslant$ is good if locally on \boldsymbol{X}, the family (η) is good.

Support $\widetilde{\Sigma}\left(\mathrm{gr} \mathscr{F}_{\leqslant}\right) \subset$ jét: stratified covering of $\partial \widetilde{X}(D)$.
Theorem: Fix a good $\widetilde{\Sigma} \subset$ jét. $^{\text {. Then the category of } \mathscr{F} \leqslant}$ with support $\subset \widetilde{\Sigma}$ is abelian and every morphism is strict.

Riemann-Hilbert corr. (global case)

Riemann-Hilbert corr. (global case)

Theorem (T. Mochizuki, C.S.): \exists R-H equivalence "hol. bdles with connection on ($\boldsymbol{X}, \boldsymbol{D}$) with good formal struct." \longleftrightarrow "good Stokes filtered \mathbb{C}-loc. syst. on jét".

Riemann-Hilbert corr. (global case)

Theorem (T. Mochizuki, C.S.): \exists R-H equivalence "hol. bdles with connection on (X, D) with good formal struct." \longleftrightarrow "good Stokes filtered \mathbb{C}-loc. syst. on Jét".

Question: General notion of Stokes-perverse sheaf?

Riemann-Hilbert corr. (global case)

Theorem (T. Mochizuki, C.S.): \exists R-H equivalence "hol. bdles with connection on (X, D) with good formal struct." \longleftrightarrow "good Stokes filtered \mathbb{C}-loc. syst. on Jét". Question: General notion of Stokes-perverse sheaf?
Problem: Behaviour of the Stokes filtration by proper push-forward?

Riemann-Hilbert corr. (global case)

Theorem (T. Mochizuki, C.S.): \exists R-H equivalence "hol. bdles with connection on ($\boldsymbol{X}, \boldsymbol{D}$) with good formal struct." \longleftrightarrow "good Stokes filtered \mathbb{C}-loc. syst. on Jet". Question: General notion of Stokes-perverse sheaf?
Problem: Behaviour of the Stokes filtration by proper push-forward?
Other answer (T. Mochizuki): Embed the Stokes filtration inside a hol. \mathscr{D}-module \longrightarrow hol. \mathscr{D}-module with k-Betti structure.

Riemann-Hilbert corr. (global case)

Theorem (T. Mochizuki, C.S.): \exists R-H equivalence "hol. bdles with connection on ($\boldsymbol{X}, \boldsymbol{D}$) with good formal struct." \longleftrightarrow "good Stokes filtered \mathbb{C}-loc. syst. on Jét". Question: General notion of Stokes-perverse sheaf?
Problem: Behaviour of the Stokes filtration by proper push-forward?
Other answer (T. Mochizuki): Embed the Stokes filtration inside a hol. \mathscr{D}-module \longrightarrow hol. \mathscr{D}-module with k-Betti structure.
Deligne, 2007: "La théorie des structures de Stokes fournit une notion de structure de $\operatorname{Betti} \operatorname{sim}(\boldsymbol{\operatorname { d i m }})=1$. On voudrait une définition en toute dimension, et une stabilité par les six opérations ($\left.\boldsymbol{R} f_{*}, R f_{!}, f^{*}, R f^{!}, \otimes^{L}, R H o m\right)$. On est loin du compte."

Example

Example

Example

Example

Example

Example

$$
\mathbb{P}^{\mathbf{1}} \times \mathbb{A}^{1} \xrightarrow{p} \mathbb{A}^{\mathbf{1}}
$$

$\mathscr{M}=$ reg. hol. $\mathscr{D}_{\mathbb{P}^{1} \times \mathbb{A}^{1}}$-mod. $S=\bigcup_{j} S_{j}=$ sing. set of \mathscr{M}

Example

$\mathbb{P}^{\mathbf{1}} \times \mathbb{A}^{\mathbf{1}} \xrightarrow{p} \mathbb{A}^{\mathbf{1}}$
$\mathscr{M}=$ reg. hol. $\mathscr{D}_{\mathbb{P}^{1} \times \mathbb{A}^{1}}$-mod. $S=\bigcup_{j} S_{j}=$ sing. set of \mathscr{M}
Pb : Levelt-Turrittin of
$\mathscr{N}:=p_{*}\left(\mathscr{E}^{\mathscr{x}} \otimes \mathscr{M}\right)$
i.e. diff. eqn for $\int_{\gamma_{z}} f(x, z) e^{x} d x$
$f:$ sol. of \mathscr{M}

Example

