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Introduction

In the theory of pure Hodge Modules of M. Saito, and in generalizations of it,
the nearby and vanishing cycle functors play a fundamental role, aside from the
other Grothendieck six operations. Indeed, it is used in the very definition of
a pure Module and is a convenient way to be sure that the properties that one
expects for a limit mixed Hodge structure are satisfied.

At the level of D-modules, these functors are introduced as the result of grading
with respect to the so-called Malgrange-Kashiwara filtration, also called the V -
filtration. We still call the graded D-modules the nearby or vanishing cycles of
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the original D-module, even if there are no cycles in the landscape, to keep in
mind the correspondence with the topological situation.

Pure D-modules are holonomic module with a supplementary structure, e.g. a
“Hodge” filtration, a polarization, a rational or real structure, a twistor structure,
a Hermitian form, etc., and one of the main points in the proofs concerning
purity (Decomposition Theorem, Local Invariant Cycle Theorem, etc.) consists
in proving, under certain assumptions, that this structure is compatible with
taking nearby or vanishing cycles.

At the topological level, an essential result concerning the nearby and vanishing
cycle functors is that they preserve perversity, when suitably shifted. At the level
of D-modules, this property is translated by the fact that the nearby or vanishing
cycle object associated to a D-module is a single D-module. Nevertheless, purity
is not, in general, preserved by this functor: starting from a pure object, its
associated nearby or vanishing cycle object is usually mixed; however, the weight
filtration is well understood, being the monodromy filtration.

The underlying D-module of a “pure” D-module has regular singularities. Nev-
ertheless, the V -filtration exists without this assumption, and may still be useful,
e.g. when studying the Fourier-Laplace transform of a pure D-module. However,
it may give very few information for a irregular D-module (it only gives informa-
tion concerning the formal nearby or vanishing cycles, or the formal monodromy).
Another construction, due to Malgrange, may then be more useful, and is related
to what is called a parabolic filtration in the theory of vector bundles.

1. The Malgrange-Kashiwara filtration and its properties

1.1. The formalism of the V -filtration. We briefly review the construction
of the Malgrange-Kashiwara filtration for coherent DX-modules (see e.g. [11]).
This filtration was introduced by M. Kashiwara [4] in order to generalize previous
results by B. Malgrange [7] to arbitrary regular holonomic D-modules. The pre-
sentation we give here comes from various published sources (e.g. [11, 14]) and
from an unpublished letter of B. Malgrange to P. Deligne dated january 1984.

1.1.1. The setting. We may consider an algebraic setting or a complex analytic
setting. So X denotes a complex algebraic variety and f : X → A1 denotes a
regular function, or X is a complex manifold and f : X → C is a holomorphic
function. According to Kashiwara’s equivalence for coherent D-modules, we may
(and do) assume that f is smooth, by replacing X with X × A1 and f by the



SPECIALIZATION OF D-MODULES 3

projection to A1. We replace the original D-module with its direct image by the
graph inclusion if : X ↪→ X × A1. We now denote by t the coordinate on A1.

Let t : X → A1 be a smooth regular function and put X0 = t−1(0). Denote
by V•DX the increasing filtration indexed by Z associated with t: in any local
coordinate system (t, x2, . . . , xn) = (t, x′) of X, the germ P ∈ DX is in VkDX if

• P =
∑

j=(j1,j′) aj(t, x
′)(t∂t)

j1∂j′

x′ , if k = 0:
• P = t|k|Q with Q ∈ V0DX , if k ∈ −N;
• P =

∑
06j6kQj∂

j
t with Qj ∈ V0DX , if k ∈ N.

In other words, if we denote by I the ideal (t), we have

P ∈ VkDX ⇐⇒ ∀ ` ∈ N, P · I` ⊂ I`−k.

The sheaf V0DX is also called the sheaf of logarithmic differential operators
along the smooth divisor t = 0. We have the following properties (see e.g. [11]):

• VkDX · V`DX ⊂ Vk+`DX with equality for k, ` 6 0 or k, ` > 0.
• VkDXrX0

= DXrX0
for any k ∈ Z.

• (∩kVkDX)|X0
= {0}.

1.1.2. Good V -filtrations. Let M be a left DX-module equipped with an exhaus-
tive increasing filtration U•M indexed by Z such that VkDX ·U`M⊂ Uk+`M for
any k, ` ∈ Z. The filtration is good if, for any compact set K ⊂ X, there exists
k0 > 0 such that, in a neighbourhood of K, we have for all k > k0

U−kM = tk−k0U−k0
M and UkM =

∑
06j6k−k0

∂jtUk0
M,

and each U`M is V0DX-coherent.

Introduce the Rees ring RVDX = ⊕kVkDX · qk, where q is a new variable. The
filtration U•M is good if and only if the Rees module ⊕kUkM · qk is coherent
over RVDX . Equivalently, there should exist locally a presentation Db

X → Da
X →

M → 0, inducing for each k ∈ Z a presentation UkDb
X → UkDa

X → UkM→ 0,
where the filtration on the free modules Da

X ,Db
X are obtained by suitably shifting

V•DX on each factor.

Proposition (Artin-Rees). If N is a coherent DX-submodule of M and U•M is
a good filtration of M, then U•N

def
= N ∩ U•M is also good.

1.1.3. Specializable D-modules. A coherent DX-module M is said to be special-
izable along {t = 0} if any local section m of M has a Bernstein polynomial
bm(s) ∈ C[s] r {0} such that bm(−∂tt)m ∈ V−1(DX) · m. If bm is the minimal
such polynomial, we define the order of m as max{α | bm(α) = 0}.
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For a coherentDX-module, to be specializable is equivalent to the local existence
of a good V -filtration U•M such that there exists a monic polynomial b(s) ∈ C[s]

such that

(∗) b(−(∂tt+ k)) · grUkM = 0 for all k ∈ Z.

Remarks
(1) It is straightforward to develop the theory below in the case of right DX-

modules. If U•(M) is a V -filtration of the left moduleM, then U•(ωX⊗OX
M)

def
=

ωX ⊗OX
U•(M) is the corresponding filtration of the corresponding right module.

This correspondence is compatible with taking the graded object with respect
to U•. The operator −∂tt (acting on the left) corresponds to t∂t (acting on the
right).

(2) Given an increasing filtration U• (lower indices), we define the associated
decreasing filtration (upper indices) by Uk = U−k−1. If b(−(∂tt+ k)) · grUkM = 0

for all k ∈ Z, we have b′(t∂t−`) ·gr`UM = 0 for all ` ∈ Z, if we put b′(s) = b(−s).
(3) It may happen that the constant filtration UkM = M satisfies (∗). In such a

case, the theory below is not very interesting, because all ψt,αM identically vanish.
For holonomic DX-modules, this may happen when the module has irregular
singularities along t = 0.

Fix a total order 6 on C, which induces the usual order on R and such that
α + a < β + a ⇔ α < β for any a ∈ R (this is not really necessary, but
is convenient). We may now define the increasing filtration V•M by the order,
indexed by C (in fact by a discrete subset A + Z, where A ⊂ C is finite). It is
globally defined along X0.

Notice that, in most interesting cases, the set A is already contained in R or
even in Q (quai-unipotence of monodromy).

If M is specializable along {t = 0}, then the filtration by the order V•M
is a good V -filtration of M indexed by a discrete subset of C. Each graded
piece ψt,αM

def
= grVαM = VαM/V<αM is a coherent DX0

-module, on which the
endomorphism N induced by −∂tt+ α is nilpotent. Put T = exp(2iπα Id +N) :

ψt,αM→ ψt,αM. Then T is invertible on ψt,αM.

For any α ∈ C, there are DX0
-linear morphisms

t : ψt,αM−→ ψt,α−1M and − ∂t : ψt,αM−→ ψt,α+1M

The first one is an isomorphism if α 6= 0 and the second one if α 6= −1. We
denote by Can : ψt,−1M → ψt,0M the morphism induced by −∂t and by var :

ψt,0M → ψt,−1M the morphism induced by t. We have var ◦Can = N (acting
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on ψt,−1M) and Can ◦ var = N (acting on ψt,0M). It is also convenient to
introduce can = −∂t

∑
n>1

(2iπ)n

n! · (−t∂t)n−1, so that can ◦ var = T − Idψt,0M and
var ◦ can = T − Idψt,−1M.

Any morphism between specializable DX-modules is strictly compatible with the
filtration V•. Any coherent sub or quotient module of a specializable DX-module
is so. For a specializable DX-module,

(1) Can : ψt,−1M→ ψt,0M is onto iff M has no coherent quotient DX-module
supported on X0,

(2) var : ψt,0M → ψt,−1M is injective iff M has no coherent sub DX-module
supported on X0,

(3) ψt,0M = Im Can⊕Ker var iff M = M′ ⊕ M′′ with M′ satisfying (1)
and (2) and M′′ supported on X0.

The nilpotent endomorphism

−(∂tt+ α) : ψt,αM−→ ψt,αM

is denoted by N . There exists a unique increasing filtration M(N)• of ψt,αM by
DX0

-submodules, indexed by Z, such that, for any ` > 0, N maps Mk into Mk−2

for all k and N ` induces an isomorphism grM`
∼−→ grM−` for any ` > 0. It is called

the monodromy filtration of N (cf. [3, § 1.6]). Each grMψt,αM has a Lefschetz
decomposition, with basic pieces the primitive parts (` > 0)

PgrM` ψt,αM
def
= Ker

[
N `+1 : grM` ψt,αM−→ grM−`−2ψt,αM

]
.

1.2. Some properties of the V -filtration. We state without proof the known
properties of the V -filtration. Let us recall first the fundamental result of Bern-
stein and Kashiwara that any holonomic DX-module is specializable along any
hypersurface (see a unified proof in [10]).

1.2.1. Algebraicity. Consider the algebraic setting, and denote by an exponent
“an” the corresponding analytic object. So Man = Oan

X ⊗OX
M, etc. If M is

specializable along {t = 0}, then so is Man and we have, for any α ∈ C,

Vα(Man) = (VαM)an = Oan
X ⊗OX

VαM.

This follows from the uniqueness of the V -filtration.

1.2.2. Direct image. Let f : X → Y be holomorphic map between complex
algebraic manifolds and let t ∈ C be a new variable. Put F = f × Id : X ×C →
Y × C. Let M be a right DX×C-module. Let U•M be a good V -filtration of M
along X × {0}. Define the direct image F+M viewing M as a DX×C/C-module,
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with a compatible ∂t-action. One may then define F+UkM as a subcomplex of
F+M. In such a way, one gets functorially a V -filtration

U•Hi(F+M) = image [Hi(U•F+M) −→ Hi(F+M)].

Assume that M is good and that F is proper on the support of M. Then the
V -filtration above on the DY×C-modules Hi(F+M) is good.

If moreover M is specializable along X × {0}, then Hi(F+M) are specializ-
able along Y × {0}. Moreover, for any α, we have a canonical and functorial
isomorphism

ψt,αHi(F+M) = Hi(f+ψt,αM).

1.2.3. Duality. Let D the duality functor, from the category of left holonomic
DX-modules to itself.

Theorem (cf. [11, 14, 15]). There exist natural isomorphisms of functors from
Modh(DX) to Modh(DZ)

δX,α : ψt,α ◦DX −→ DZ ◦ ψt,−1−α, (α ∈ ]− 1, 0[)

δX,−1 : ψt,−1 ◦DX −→ DZ ◦ ψt,−1

δX,0 : ψt,0 ◦DX −→ DZ ◦ ψt,0
which satisfy the following properties, putting δX = δX,α:

• δX = DZ ◦ δX ◦DX ;
• δX ◦N = DZ(N) ◦ δX ;
• δX,0 ◦ Can = DZ(var) ◦ δX,−1 and δX,−1 ◦ var = DZ(Can) ◦ δX,0.

1.2.4. Hermitian duality. Let DbXR (also denoted by DbX for short) be the sheaf
of distributions on XR. It acts on the sheaf C∞-forms ϕ with compact support
of maximal degree, which is a right DX and DX-module. Then DbX is a left DX

and DX-module by the formula (PQµ)(ϕ) = µ(ϕ ·PQ). The sheaf CXR = Db
(n,n)
X

of currents of maximal degree is a right DX and DX-module obtained from DbX
by “going from left to right”.

Denote by CX the Hermitian duality functor(1). Recall that CX is a contravari-
ant functor from the derived category D−(DX) to the category D+(DX) defined
as

CX(M•) = RHomDX
(M•,DbX).

It restricts as a functor from the full subcategory Db
hr(DX) of bounded com-

plexes with regular holonomic cohomology to Db
hr(DX) and is equal to the func-

tor HomDX
(•,DbX) on the category of regular holonomic DX-modules (see [5],

(1)It is called improperly the “conjugation functor” in [1].
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see also [1, Chap.VII]), defining there an anti-equivalence of categories between
Modhr(DX) and Modhr(DX), and between Db

hr(DX) and Db
hr(DX), CX being a

quasi-inverse functor. On Db
hr(DX) we have

HkCXM• =CXHkM•.

Theorem (cf. [13]). There exist natural isomorphisms of functors from Modhr(DX)

to Modhr(DZ)

γX,α : ψt,α ◦ CX −→ CZ ◦ ψt,α, (α ∈ [−1, 0])

which satisfy the following properties, putting γX = γX,α:

• γX = CZ ◦ γX ◦ CX ;
• γX ◦N = CZ(N) ◦ γX ;
• γX,0 ◦ Can = CZ(var) ◦ γX,−1 and γX,−1 ◦ var = CZ(Can) ◦ γX,0.

1.3. Examples. The V -filtration is mainly used when the DX-module is reg-
ular holonomic. Nevertheless, there exist holonomic DX-modules which are not
regular, but are regular only along some hypersurface; the V -filtration along this
hypersurface may be useful. The partial Fourier-Laplace transform of a regular
holonomic DX-module relative to a function f on X gives such an example.

1.3.1. Comparison with the topological nearby or vanishing cycles. Let M be a
holonomic DX-module. Assume that it is strongly regular along {t = 0}: this
means that for any α ∈ C, the holonomic DX-module M⊗ tα is regular along
{t = 0} in the sense of Mebkhout, i.e. its irregularity sheaf along {t = 0} is zero.

Theorem (Malgrange, Kashiwara). There are functorial isomorphisms in Db
c(C[T, T−1]):

pDRan(ψt,αM)
∼−→ pψt,exp 2iπα

pDRan(M) (α ∈ [−1, 0[)

pDRan(ψt,0M)
∼−→ pφt,1

pDRan(M),

which are compatible with the morphisms can and var.

1.3.2. Application to the partial Fourier transform. We work here in the algebraic
setting. Let f : X → A1 be a function on a smooth complex quasi-projective
variety X. Let M be a holonomic DX-module. Its partial Fourier transform M̂
with respect to f is the DX×Ǎ1 = DX [y]〈∂y〉-module M̂ = M[y]e−yf , where y is
the variable on Ǎ1. It is holonomic.

Proposition. Under these conditions, if M is regular holonomic even at infinity
on X, then M̂ is strongly regular along y = 0.
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It is therefore interesting to use the V -filtration of M̂ along y = 0. In such a
way, one may state Hodge properties concerning the monodromy of f near f = ∞
without using any compactification of X. Let us explain this with more details.

We continue to assume that M is regular even at infinity on X. Consider
the direct image f+M. Then the cohomology modules Hif+M of f+M are
regular holonomic (even at infinity) on the Weyl algebra C[t]〈∂t〉, if t denotes
the coordinate on the affine line (see e.g. . [2]). The Fourier transform Ĥif+M
obtained by “doing y = ∂t and ∂y = −t” is therefore a holonomic C[y]〈∂y〉-module
with a regular singularity at y = 0 and possibly an irregular singularity at y = ∞.
It has no other singularity, so that C[y, y−1]⊗C[y]Ĥif+M is a free C[y, y−1]-module
of rank µi. Hence this number µi is equal to dim Ĥif+M/(y − 1)Ĥif+M (one
proves this first for C[t]〈∂t〉-modules of the form C[t]〈∂t〉/(P ) with P ∈ C[t]〈∂t〉
nonzero and regular even at infinity, then, by an extension argument, for any
regular holonomic C[t]〈∂t〉-module; see for instance [8, Chap.V]).

Moreover, the monodromy of Ĥif+M around y = 0 (more precisely, the mon-
odromy on the vanishing cycles ψy,α for α 6= −1) is identified with the monodromy
at t = ∞ of Hif+M.

Consequently, we may compute the latter without using any compactification
of X.

Assume for instance that X is affine and that f behaves well at infinity along
fibers (cf. last part of N. Katz book [6]). For instance, consider a polynomial f :

An → A1 which is convenient and nondegenerate with respect to its Newton poly-
hedron at infinity: using this technique, one may relate the Newton filtration that
one naturally gets on ΩAn with the Hodge filtration on “limt→∞H

n−1(f−1(t))” at
f = ∞.

2. Strictness

Strictness is a basic property of pure or mixed objects. Its preservation under
various functor is usually nontrivial. It is the generalization of the degeneration
at E1 of the Hodge-Frölicher (also called Hodge ⇒ de Rham) spectral sequence.

2.1. RFDX and RX-modules. Let F•DX the increasing filtration of DX by the
order of differential operators, and let RFDX = ⊕k∈NFkDX ·zk be the correspond-
ing Rees ring, where z is a new variable. The Rees construction

(M, F•) 7−→ ⊕
k∈Z

FkM · zk
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gives a one-to-one correspondence between pairs (M, F•) ofDX-modules equipped
with a good filtration F•M, and graded RFDX-modules which have no C[z]-
torsion.

More generally, one may consider the sheaf RX = OX ⊗OX [z] RFDX on X =

X × C, where OX denotes the sheaf of analytic functions. It is written in local
coordinates as OX〈ðx1

, . . . ,ðxn
〉, where ðxi

= z∂xi
.

These rings have the same coherence properties as DX has. The direct image
functor is defined for any morphism f : X → Y , and coherence is preserved if f
is proper.

Say that a RX-module is strict if it has no OC-torsion (no nontrivial section is
killed by a function of z only).

Example. Considering non-graded RFDX-modules, and more generally sheaves
of RX-modules may be useful. For instance, a RX-module M which is OX-locally
free has two associated interesting locally free OX-modules: its restriction to
z = 1 is a DX-module, i.e. a vector bundle with a flat connection; its restriction
to z = 0 is a (non-graded) grFDX-module, i.e. a holomorphic vector bundle with
a Higgs field.

Usually, strictness is not preserved by proper direct image. Nevertheless, one
has an important result in M. Saito’s theory of mixed Hodge Modules (cf. [14,
16]):

Theorem. If (M, F•) is the filtered DX-module underlying a mixed Hodge Module
and if f : X → Y is proper, then the direct image complex f+RFM is strict, i.e.
its cohomology modules are strict.

This statement has, for instance, the following consequence (cf. [12]):

Theorem. Let X be a smooth complex quasi-projective variety and let f : X → A1

be a proper morphism. Let D be a normal crossing divisor in X. Then the
hypercohomology of the complexes (Ω•

X〈logD〉, d− df ∧ ) and (Ω•
X〈logD〉, df ∧ )

have the same (finite) dimension.

More generally,

Theorem. Let (M,F ) be a mixed Hodge Module on X. The hypercohomology
spaces on X of the complexes (Ω•

X ⊗OX
M,∇− df∧) and (Ω•

X ⊗OX
grFM, grF∇−

df∧) have the same (finite) dimension.
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Proof. Let (M,F ) be a well-filtered coherent DX-module. Let y be a new variable.
One puts on M ⊗C C[y, y−1] the filtration

Gk

(
M ⊗C C[y, y−1]

)
=⊕

j
Fj+kMy−j

so that Gk = ykG0 and

grG0 (M ⊗C C[y, y−1]) = G0/y
−1G0 ' grFM and G0/(y − 1)G0 = M.

The proof of the theorem relies on the

Proposition. Assume that the cohomology of the direct image f+M is holonomic
and regular at infinity, and that f+(M,F ) is strict. Then, for all i ∈ Z, the
C[y−1]-module

Ei = H i

(
X, (Ω•

X ⊗
OX

G0(M [y, y−1]), y−1∇− df∧)

)
is free of finite rank.

Let us now end the proof of the theorem. First, one consider the localized
Fourier transform:

C[y, y−1] ⊗
C[y]

Ĥif+M = H i

(
X, (Ω•+dimX

X ⊗
OX

M [y, y−1],∇− ydf∧)

)
= H i

(
X, (Ω•+dimX

X ⊗
OX

M [y, y−1], y−1∇− df∧)

)
is a free C[y, y−1]-module of rank µi. One interprets the free C[y−1]-module Ei

as a bundle on the chart with coordinate y−1, such that C[y, y−1] ⊗C[y−1] Ei is
the localized Fourier transform above. Therefore, µi is the rank of Ei as a free
C[y−1]-module. Consequently, the fibre of Ei at y−1 = 1 or at y−1 = 0 have the
same rank µi.

Remark. This number µi can be computed in terms of local analytic data of f :
this is the total number of vanishing cocycles of f in degree i, with respect to a
suitable constructible sheaf on Xan.

2.2. V -filtration and strictness. One may introduce the filtration V on the
rings RFDX or RX with X = X × C, and therefore define the notion of special-
izable module. the Bernstein relation takes the form

bm(−ðtt) ·m ∈ V−1RX ·m,

with
bm(s) =

∏
α∈A

∏
`∈Z

(s− (α+ `)z)να.
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It is important to find a good V -filtration such that the various graded pieces are
strict.

Definitions (Strict specializability)
(1) A specializable RX-module is said to be strictly specializable along X0 if one

can find, locally near any point (xo, zo) ∈ X0, a good filtration V•M satisfying
the analogue of (∗) and such that moreover

(a) for every α ∈ R, ψt,αM is a strict RX0
-module (hence V•M is its

Malgrange-Kashiwara filtration);
(b) t : ψt,αM→ ψt,α−1M is an isomorphism for α < 0;
(c) ðt : ψt,αM→ ψt,α+1M is isomorphism for α > −1.

(2) A morphism ϕ : M→N between two strictly specializable RX-modules is
strictly specializable if, for any α ∈ A+ Z, the morphisms ψt,αϕ are strict.

(3) Let f : X → C be an analytic function and let M be a RX-module.
Denote by if : X ↪→ X × C the graph inclusion. We say that M is strictly
specializable along f = 0 if if,+M is strictly specializable along X × {0}. We
then set ψf,αM = ψt,α(if,+M) for α 6= 0. These are coherent RX-modules. If
f = t is smooth, we have, by an easy verification, ψt,α(if,+M) = if,+(ψf,αM) for
any α.

Theorem (a criterion for strictness of the direct image, [14])
Let f : X → Y be holomorphic map between complex analytic or algebraic

manifolds and let t ∈ C be a new variable. Put F = f × Id : X × C → Y × C.
Let M be a right RX×C-module. Assume that M is good, strictly specializable
and regular along X × {0}, and that F is proper on the support of M. Assume
moreover that, for any α ∈ [−1, 0], the complexes f+ψt,αM are strict. Then the
RY×C-modules Hi(F+M) are strictly specializable and regular along Y × {0},
hence strict in a neighbourhood of Y × {0}. Moreover, for any α, we have a
canonical and functorial isomorphism

ψt,αHi(F+M) = Hi(f+ψt,αM).
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