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Introduction

I will review(1) some results concerning semi-simple representations of the fundamental group
of an algebraic manifold. These representations are in one-to-one correspondence with semi-
simple holomorphic vector bundles with a flat holomorphic connection:

Given a representation ρ : π1(X, ?) → GLd(C), associate to it a local system L ( or locally
constant sheaf of C-vector spaces) of rank d. Then consider the holomorphic vector bundle (i.e.
locally free OX-module of rank d) V = OX ⊗C L with connection ∇(f ⊗ s) = df ⊗ s, so that
Ker∇ : V → Ω1

X ⊗ V is L.
Conversely, given (V,∇) with ∇ flat, put L = Ker∇.
It will be useful to consider the associated C∞-bundle:

H = C∞X ⊗OX
V

Connection DV = D′
V +D′′

V on H:

D′
V = d′ ⊗ Id + Id⊗∇ : H = C∞X ⊗OX

V −→ E (1,0)
X ⊗C∞X H = E (1,0)

X ⊗OX
V

D′′
V = d′′ ⊗ Id : H −→ E (0,1)

X ⊗C∞X H.

We therefore have V = KerD′′
V and ∇ = D′

V

∣∣
V

Moreover, DV has curvature 0.

INTAS program 97-1644.
(1)In this article, vector bundle will mean complex vector bundle, and metric will mean Hermitian metric.
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Conversely, given a C∞-bundle H with a flat connection DV , we have (D′′
V )2 = 0, hence, by

a standard result, V def
= KerD′′

V is a holomorphic subbundle of H. As D′
VD

′′
V +D′′

VD
′
V = 0, the

(1, 0)-part D′
V of DV induces a holomorphic connection on V , which is flat because (D′

V )2 = 0.

I will mainly explain some analytic tools concerning these objects, mainly the notion of a
harmonic metric.

1. Harmonic metrics

We would like to compute the cohomology H∗(X,L) of X with twisted coefficients in L with
harmonic forms. In order to define the Laplacian, one needs a metric to measure the length of
sections of L.

1.a. Unitary representations. The best situation is when there exists a metric h on the
C∞-bundle H = C∞X ⊗OX

V associated to V so that the connection DV is the Chern connection,
i.e. D′′

V defines the holomorphic structure and, for any local sections u, v of H,

d′h(u, v) = h(D′
V u, v) + h(u,D′′

V v) and d′′h(u, v) = h(D′′
V u, v) + h(u,D′

V v).

This means that the metric h is flat. The existence of such a metric is equivalent to the fact
that the representation ρ is conjugate to a unitary representation ρ′ : π1(X, ?) → U(d,C).

Let ω be a positive (1, 1)-form on X (i.e. a metric on TX). If X is compact, then
Hp,q(X,H) = Harmp,q(H) and, if moreover (X,ω) is Kähler, we have the Hodge decompo-
sition Hk(X,L) = ⊕p>0H

p,q(X,H) and the Hard Lefschetz Theorem which says that, for any
k > 1, ∧kω : HdimX−k(X,L) → HdimX+k(X,L) is an isomorphism.

1.b. Definition of a harmonic metric. Let (H,DV ) be a C∞-bundle on X with a flat
connection DV . If the associated representation ρ : π1(X, ?) → GLd(C) is not unitary, there
does not exist a metric on H for which DV is the Chern connection. We wish to find a metric
which is as good as possible for DV .

Let h be any Hermitian metric on H.

Lemma 1.1. There exists a unique metric connection DE = D′
E +D′′

E on H such that, if we put

θ′E = D′
V −D′

E ((1, 0)-form with values in End(H))

θ′′E = D′′
V −D′′

E ((0, 1)-form with values in End(H)),

then θ′′E is the h-adjoint of θ′E, i.e. for any local sections u, v of H, h(θ′Eu, v) = h(u, θ′′Ev).

Proof. Easy.

We have the following relations:

d′h(u, v) = h(D′
Eu, v) + h(u,D′′

Ev),

d′′h(u, v) = h(D′′
Eu, v) + h(u,D′

Ev),

h(θ′u, v) = h(u, θ′′v),

D′
V = D′

E + θ′E, D′′
V = D′′

E + θ′′E.

Notice that, by applying d′ or d′′ to each of the first three lines above, we see that D′′2
E is adjoint

to D′2
E , D′′(θ′) is adjoint to D′(θ′′) and D′

ED
′′
E +D′′

ED
′
E is selfadjoint with respect to h.
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Definition 1.2. The triple (H,DV , h) (or (V,∇, h), or simply h, if (V,∇) is fixed) is said to be
harmonic if the operator D′′

E + θ′E has square 0, i.e. the pseudo-curvature Rh = (D′′
E + θ′E)2

vanishes.

By looking at types, this is equivalent to

D′′2
E = 0, D′′

E(θ′E) = 0, θ′E ∧ θ′E = 0.

By adjunction, this implies

D′2
E = 0, D′(θ′′) = 0, θ′′E ∧ θ′′E = 0.

Moreover, the flatness of DV implies then

D′
E(θ′E) = 0, D′′

E(θ′′E) = 0, D′
ED

′′
E +D′′

ED
′
E = −(θ′Eθ

′′
E + θ′′Eθ

′
E).

Let E = KerD′′
E : H → H. This is a holomorphic vector bundle equipped with a holomorphic

End(E)-valued 1-form θ′E satisfying θ′E ∧ θ′E = 0. It is called a Higgs bundle and θ′E is its
associated Higgs field.

Examples 1.3
(1) If the metric h is flat and DV is the Chern connection, then DV = DE, V = E and

θE = 0.
(2) Let H = ⊕p∈ZH

p,w−p be a C∞ vector bundle on X, where w ∈ Z is fixed, equipped with
a flat connection DV = D′

V + D′′
V and a flat nondegenerate Hermitian bilinear form k such

that the direct sum decomposition of H is k-orthogonal, (−1)pi−wk is a metric on Hp,w−p, i.e.
(−1)pi−wk is positive definite on the fibers of Hp,w−p for each p, and

D′
V (Hp,w−p) ⊂

(
Hp,w−p ⊕Hp−1,w−p+1

)
⊗C∞X E (1,0)

X

D′′
V (Hp,w−p) ⊂

(
Hp,w−p ⊕Hp+1,w−p−1

)
⊗C∞X E (0,1)

X .

Denote by D′
V = D′

E + θ′E and D′′
V = D′′

E + θ′′E the corresponding decomposition. Then the
metric h defined as (−1)pi−wk on Hp,w−p and such that the direct sum decomposition of H is
h-orthogonal is a harmonic metric and the objects D′

E, D′′
E, θ′E and θ′′E are the one associated

with (h,DV ) by Lemma 1.1.

1.c. Harmonic theory for harmonic metrics. If (X,ω) is a Kähler manifold of dimension
n, one may develop harmonic theory for a harmonic metric. Let (H,DV , h) be a harmonic
bundle on X as above, with associated operators D′

E, D′′
E, θ′E and θ′′E. Put D∞ = D′

E + θ′′E and
D0 = D′′

E + θ′E, so that DV = D∞ + D0. The main observation of C. Simpson [6, § 2] is that
the Kähler identities

∆DV
= 2∆D∞ = 2∆D0 ,

are satisfied for the Laplacian, and that the Lefschetz operator L = ω ∧ commutes with these
Laplacians. However, as D∞,D0 are not of pure type (1, 0) or (0, 1), one does not have a Hodge
decomposition, in general.

It follows from classical Hodge Theory that, when X is compact, Hk(X,L) is equal to the
space of harmonic sections Harmk(H) and that Hard Lefschetz Theorem holds:

ωk ∧ : Hn−k(X,L)
∼−→ Hn+k(X,L).

If X is noncompact, the space of harmonic forms computes a L2-cohomology space. If the
metric h is well controlled at infinity on X, this will be the intersection cohomology IH∗(X,L)

for some compactification X of X.
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2. Existence of a harmonic metric

The main problem concerns the existence of a harmonic metric on a flat holomorphic bundle.

2.a. The theorem of K. Corlette (compact case). Let X be a compact Kähler manifold
and let (V,∇) be a holomorphic bundle equipped with a flat connection. Define H and DV as
above.

Theorem 2.1 (K. Corlette [2], C. Simpson [6]). There exists a harmonic metric on (H,DV ) if
and only if the representation associated to (V,∇) is semisimple. In such a case, the harmonic
metric is essentially unique.

Brief indication of proof. Given any metric h, consider the associated operators DE, θE. Given
any C∞ automorphism ϕ of H, there is an associated connection ϕ ◦DV ◦ ϕ−1 and metric hϕ.
One can construct operators D(ϕ)

E and θ(ϕ)
E .

The first observation is that the metric is harmonic if and only if the energy map ϕ 7→
∥∥θ(ϕ)

E

∥∥2

has a critical point at ϕ = Id.
If ψ is an endomorphism of H which is selfadjoint with respect to h, consider the family of

automorphisms ϕt = etψ, for t ∈ R, and put fψ(t) =
∥∥θ(ϕt)

E

∥∥2. Then, if f ′ψ(0) = 0, Corlette
shows that f ′′ψ(t) > 0 for all t ∈ R, i.e. the function fψ is strictly convex.

Assume that (V,DV ) is not semisimple and that h is a harmonic metric. There exists an
exact sequence

0 −→ (V1,∇) −→ (V,∇) −→ (V2,∇) −→ 0

which is not split. Put d1 = rkV1, d2 = rkV2. Consider the endomorphism ψ of H equal to
d2 · p1 − d1 · p2, where p1, p2 are the h-orthogonal projections on H1 and H⊥

1 . Write

DV =

(
DV1 η

0 DV2

)
with η 6= 0 a one-form with values in Hom(V2, V1). Then a simple computation gives

θ
(ϕt)
E =

(
θE1

1
2
et(d1+d2)η

1
2
et(d1+d2)η∗ θE2

)
and has a finite limit when t→ −∞. By strict convexity, fψ(t) cannot have a critical point, a
contradiction.

The converse result, namely the existence of a harmonic metric when (V,∇) is semisimple,
is far more difficult. The strict convexity property above also gives the uniqueness.

Corollary 2.2. Let f : Y → X be a holomorphic mapping between compact Kähler manifolds. If
L is a semisimple local system on X, then f ∗L is a semisimple local system on Y .

This result mean that, if ρ : π1(X, ?) → GLd(C) is an irreducible representation, then
ρ ◦ f∗π1(Y, ?) → GLd(C) is still semisimple. In some sense, from the point of view of represen-
tations, π1(Y, ?) is “bigger” than π1(X, ?).

Proof. Indeed, if h be a metric on (V,∇), then the metric f ∗h on f ∗V has pseudo-curvature
f ∗Rh. Consequently, if h is harmonic, then f ∗h also, so f ∗V is semisimple.
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2.b. A theorem of C. Simpson and its generalizations (quasi-projective case)

The first result is due to C. Simpson and concerns vector bundle with connections on a
Riemann surface. We need to fix a model metric near the singularities.

Let X̃ be a compact Riemann surface, and let X be the complement of a finite set Σ of
points. Let Ṽ be a holomorphic vector bundle on X̃, put V = Ṽ|X and ∇ : Ṽ → Ω1eX⊗O eX Ṽ be a
connection with logarithmic poles. Assume that, near each singular point, with local coordinate
t, there exists a basis of Ṽ for which the matrix of ∇ is Adt/t where A is constant. Put A into
Jordan normal form and let H be the corresponding diagonal weight matrix: it is decomposed
in diagonal blocks following the decomposition of A and for a Jordan block of A of size k + 1,
the corresponding block of H is diag(k, k− 2, · · · ,−k+2,−k). Near the singular point, a basis
vector of Ṽ which is an eigenvector of A with eigenvalue α ∈ C and weight w ∈ Z should have
norm |t|Reα

∣∣log tt
∣∣w/2 in the local model metric.

Theorem 2.3 (C. Simpson [5]). If (Ṽ ,∇) is irreducible (or semisimple), i.e. if the representa-
tion π1(X, ?) → GLd(C) defined by (V,∇) is irreducible (or semisimple), then there exists a
harmonic metric on (V,∇), which is comparable to the local model metric near each singularity.

This result has been extended in various directions:

(1) for local systems on the complement of a smooth divisor on a Kähler manifold by O. Bi-
quard [1];

(2) for certain kind of local systems on the complement of a divisor with normal crossings
on a Kähler manifold by Jost/Zuo [3];

(3) for connections with possible irregular singularities on a Riemann surface by C. Sabbah
[4]; here, it is assumed that the bundle (Ṽ ,∇) is irreducible (or semisimple), which is implied
by, but not equivalent to (due to irregular singularities) the irreducibility or semisimplicity of
the associated representation.

2.c. A nonisomonodromic deformation associated with a harmonic metric. Let us
go back to the general situation. One can consider, for any nonzero complex number ~, the
two operators D′′

E + ~θ′′E and ~D′
E + θ′E on the C∞ vector bundle H associated to V . If h is a

harmonic metric on (V,∇), the various relations given after Definition 1.2 imply that D′′
E +~θ′′E

has square zero, hence, by a classical integrability result, defines a new holomorphic structure
on H. We get therefore a new holomorphic vector bundle V~ so that V1 = V , and ~D′

E + θ′E
induces a flat holomorphic connection ∇~ on it.

In general, this one-parameter deformation of (V,∇) is nonconstant:

Lemma 2.4. This deformation of (V,∇) is constant if and only if (V,∇, h) is like in example
1.3(2).

Moreover, this deformation is not isomonodromic in general. In the situation of Theorem 2.3,
Simpson also shows that each V~ can be extended as a bundle Ṽ~ on X̃ and ∇~ is logarithmic
with respect to this extension. Results of O. Biquard in [1] allow to control very precisely the
local behaviour of ∇~ near the singularities. In particular, the deformation (V~,∇~)~∈C∗ is not
locally isomonodromic near a singularity: if e2iπα is an eigenvalue of the local monodromy of
(V,∇) with α = α′ + iα′′ ∈ C, then exp

(
2iπ(~α′ + i(~2 + 1)α′′/2)

)
is an eigenvalue of (V~,∇~).
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