A SURVEY ON SEMI-SIMPLE LOCAL SYSTEMS ON ALGEBRAIC MANIFOLDS (PRELIMINARY VERSION)

Claude Sabbah

Contents

Introduction	1
1. Harmonic metrics	2
1.a. Unitary representations	2
1.b. Definition of a harmonic metric	2
1.c. Harmonic theory for harmonic metrics	3
2. Existence of a harmonic metric	4
2.a. The theorem of K. Corlette (compact case)	4
2.b. A theorem of C. Simpson and its generalizations (quasi-projective case)	5
2.c. A nonisomonodromic deformation associated with a harmonic metric	5
References	6

Introduction

I will review⁽¹⁾ some results concerning semi-simple representations of the fundamental group of an algebraic manifold. These representations are in one-to-one correspondence with semisimple holomorphic vector bundles with a *flat* holomorphic connection:

Given a representation $\rho : \pi_1(X, \star) \to \operatorname{GL}_d(\mathbb{C})$, associate to it a local system \mathcal{L} (or locally constant sheaf of \mathbb{C} -vector spaces) of rank d. Then consider the holomorphic vector bundle (*i.e.* locally free \mathcal{O}_X -module of rank d) $V = \mathcal{O}_X \otimes_{\mathbb{C}} \mathcal{L}$ with connection $\nabla(f \otimes s) = df \otimes s$, so that $\operatorname{Ker} \nabla : V \to \Omega^1_X \otimes V$ is \mathcal{L} .

Conversely, given (V, ∇) with ∇ flat, put $\mathcal{L} = \operatorname{Ker} \nabla$.

It will be useful to consider the associated C^{∞} -bundle:

$$H = \mathcal{C}_X^\infty \otimes_{\mathcal{O}_X} V$$

Connection $D_V = D'_V + D''_V$ on H:

$$D'_{V} = d' \otimes \operatorname{Id} + \operatorname{Id} \otimes \nabla : H = \mathcal{C}^{\infty}_{X} \otimes_{\mathcal{O}_{X}} V \longrightarrow \mathcal{E}^{(1,0)}_{X} \otimes_{\mathcal{C}^{\infty}_{X}} H = \mathcal{E}^{(1,0)}_{X} \otimes_{\mathcal{O}_{X}} V$$
$$D''_{V} = d'' \otimes \operatorname{Id} : H \longrightarrow \mathcal{E}^{(0,1)}_{X} \otimes_{\mathcal{C}^{\infty}_{X}} H.$$

We therefore have $V = \operatorname{Ker} D_V''$ and $\nabla = D_V'|_V$. Moreover, D_V has curvature 0.

INTAS program 97-1644.

⁽¹⁾In this article, vector bundle will mean complex vector bundle, and metric will mean Hermitian metric.

C. SABBAH

Conversely, given a C^{∞} -bundle H with a *flat* connection D_V , we have $(D''_V)^2 = 0$, hence, by a standard result, $V \stackrel{\text{def}}{=} \text{Ker } D''_V$ is a holomorphic subbundle of H. As $D'_V D''_V + D''_V D'_V = 0$, the (1,0)-part D'_V of D_V induces a holomorphic connection on V, which is flat because $(D'_V)^2 = 0$.

I will mainly explain some analytic tools concerning these objects, mainly the notion of a *harmonic metric*.

1. Harmonic metrics

We would like to compute the cohomology $H^*(X, \mathcal{L})$ of X with twisted coefficients in \mathcal{L} with harmonic forms. In order to define the Laplacian, one needs a metric to measure the length of sections of \mathcal{L} .

1.a. Unitary representations. The best situation is when there exists a metric h on the C^{∞} -bundle $H = \mathcal{C}_X^{\infty} \otimes_{\mathcal{O}_X} V$ associated to V so that the connection D_V is the *Chern connection*, *i.e.* D''_V defines the holomorphic structure and, for any local sections u, v of H,

$$d'h(u,v) = h(D'_V u, v) + h(u, D''_V v)$$
 and $d''h(u,v) = h(D''_V u, v) + h(u, D'_V v).$

This means that the metric h is *flat*. The existence of such a metric is equivalent to the fact that the representation ρ is conjugate to a *unitary* representation $\rho' : \pi_1(X, \star) \to U(d, \mathbb{C})$.

Let ω be a positive (1,1)-form on X (*i.e.* a metric on TX). If X is compact, then $H^{p,q}(X,H) = \operatorname{Harm}^{p,q}(H)$ and, if moreover (X,ω) is Kähler, we have the Hodge decomposition $H^k(X,\mathcal{L}) = \bigoplus_{p \ge 0} H^{p,q}(X,H)$ and the Hard Lefschetz Theorem which says that, for any $k \ge 1, \wedge^k \omega : H^{\dim X-k}(X,\mathcal{L}) \to H^{\dim X+k}(X,\mathcal{L})$ is an isomorphism.

1.b. Definition of a harmonic metric. Let (H, D_V) be a C^{∞} -bundle on X with a flat connection D_V . If the associated representation $\rho : \pi_1(X, \star) \to \operatorname{GL}_d(\mathbb{C})$ is not unitary, there does not exist a metric on H for which D_V is the Chern connection. We wish to find a metric which is as good as possible for D_V .

Let h be any Hermitian metric on H.

Lemma 1.1. There exists a unique metric connection $D_E = D'_E + D''_E$ on H such that, if we put

$$\begin{aligned} \theta'_E &= D'_V - D'_E \quad ((1,0)\text{-form with values in End}(H))\\ \theta''_E &= D''_V - D''_E \quad ((0,1)\text{-form with values in End}(H)) \end{aligned}$$

then θ''_E is the h-adjoint of θ'_E , i.e. for any local sections u, v of H, $h(\theta'_E u, v) = h(u, \theta''_E v)$.

Proof. Easy.

We have the following relations:

$$\begin{aligned} d'h(u,v) &= h(D'_E u,v) + h(u,D''_E v), \\ d''h(u,v) &= h(D''_E u,v) + h(u,D'_E v), \\ h(\theta' u,v) &= h(u,\theta'' v), \\ D'_V &= D'_E + \theta'_E, \quad D''_V = D''_E + \theta''_E. \end{aligned}$$

Notice that, by applying d' or d'' to each of the first three lines above, we see that D''_E is adjoint to D'_E , $D''(\theta')$ is adjoint to $D'(\theta'')$ and $D'_E D''_E + D''_E D'_E$ is selfadjoint with respect to h.

Definition 1.2. The triple (H, D_V, h) (or (V, ∇, h) , or simply h, if (V, ∇) is fixed) is said to be harmonic if the operator $D''_E + \theta'_E$ has square 0, *i.e.* the pseudo-curvature $R_h = (D''_E + \theta'_E)^2$ vanishes.

By looking at types, this is equivalent to

$$D_E''^2 = 0, \quad D_E''(\theta_E') = 0, \quad \theta_E' \wedge \theta_E' = 0$$

By adjunction, this implies

$$D_E^{\prime 2} = 0, \quad D^{\prime}(\theta^{\prime\prime}) = 0, \quad \theta_E^{\prime\prime} \wedge \theta_E^{\prime\prime} = 0.$$

Moreover, the flatness of D_V implies then

$$D'_E(\theta'_E) = 0, \quad D''_E(\theta''_E) = 0, \quad D'_E D''_E + D''_E D'_E = -(\theta'_E \theta''_E + \theta''_E \theta'_E).$$

Let $E = \text{Ker } D''_E : H \to H$. This is a holomorphic vector bundle equipped with a holomorphic End(E)-valued 1-form θ'_E satisfying $\theta'_E \wedge \theta'_E = 0$. It is called a *Higgs bundle* and θ'_E is its associated Higgs field.

Examples 1.3

(1) If the metric h is flat and D_V is the Chern connection, then $D_V = D_E$, V = E and $\theta_E = 0$.

(2) Let $H = \bigoplus_{p \in \mathbb{Z}} H^{p,w-p}$ be a C^{∞} vector bundle on X, where $w \in \mathbb{Z}$ is fixed, equipped with a flat connection $D_V = D'_V + D''_V$ and a flat nondegenerate Hermitian bilinear form k such that the direct sum decomposition of H is k-orthogonal, $(-1)^{p_i - w_k}$ is a metric on $H^{p,w-p}$, *i.e.* $(-1)^{p_i - w_k}$ is positive definite on the fibers of $H^{p,w-p}$ for each p, and

$$D'_{V}(H^{p,w-p}) \subset \left(H^{p,w-p} \oplus H^{p-1,w-p+1}\right) \otimes_{\mathcal{C}_{X}^{\infty}} \mathcal{E}_{X}^{(1,0)}$$
$$D''_{V}(H^{p,w-p}) \subset \left(H^{p,w-p} \oplus H^{p+1,w-p-1}\right) \otimes_{\mathcal{C}_{X}^{\infty}} \mathcal{E}_{X}^{(0,1)}.$$

Denote by $D'_V = D'_E + \theta'_E$ and $D''_V = D''_E + \theta''_E$ the corresponding decomposition. Then the metric h defined as $(-1)^{p_i-w_k}$ on $H^{p,w-p}$ and such that the direct sum decomposition of H is h-orthogonal is a harmonic metric and the objects D'_E , D''_E , θ'_E and θ''_E are the one associated with (h, D_V) by Lemma 1.1.

1.c. Harmonic theory for harmonic metrics. If (X, ω) is a Kähler manifold of dimension n, one may develop harmonic theory for a harmonic metric. Let (H, D_V, h) be a harmonic bundle on X as above, with associated operators D'_E , D''_E , θ'_E and θ''_E . Put $\mathcal{D}_{\infty} = D'_E + \theta''_E$ and $\mathcal{D}_0 = D''_E + \theta'_E$, so that $D_V = \mathcal{D}_{\infty} + \mathcal{D}_0$. The main observation of C. Simpson [6, §2] is that the Kähler identities

$$\Delta_{D_V} = 2\Delta_{\mathcal{D}_\infty} = 2\Delta_{\mathcal{D}_0},$$

are satisfied for the Laplacian, and that the Lefschetz operator $L = \omega \wedge$ commutes with these Laplacians. However, as \mathcal{D}_{∞} , \mathcal{D}_0 are not of pure type (1,0) or (0,1), one does not have a Hodge decomposition, in general.

It follows from classical Hodge Theory that, when X is compact, $H^k(X, \mathcal{L})$ is equal to the space of harmonic sections $\operatorname{Harm}^k(H)$ and that Hard Lefschetz Theorem holds:

$$\omega^k \wedge : H^{n-k}(X, \mathcal{L}) \xrightarrow{\sim} H^{n+k}(X, \mathcal{L}).$$

If X is noncompact, the space of harmonic forms computes a L^2 -cohomology space. If the metric h is well controlled at infinity on X, this will be the intersection cohomology $IH^*(\overline{X}, \mathcal{L})$ for some compactification \overline{X} of X.

C. SABBAH

2. Existence of a harmonic metric

The main problem concerns the existence of a harmonic metric on a flat holomorphic bundle.

2.a. The theorem of K. Corlette (compact case). Let X be a compact Kähler manifold and let (V, ∇) be a holomorphic bundle equipped with a flat connection. Define H and D_V as above.

Theorem 2.1 (K. Corlette [2], C. Simpson [6]). There exists a harmonic metric on (H, D_V) if and only if the representation associated to (V, ∇) is semisimple. In such a case, the harmonic metric is essentially unique.

Brief indication of proof. Given any metric h, consider the associated operators D_E, θ_E . Given any C^{∞} automorphism φ of H, there is an associated connection $\varphi \circ D_V \circ \varphi^{-1}$ and metric h_{φ} . One can construct operators $D_E^{(\varphi)}$ and $\theta_E^{(\varphi)}$.

The first observation is that the metric is harmonic if and only if the energy map $\varphi \mapsto \|\theta_E^{(\varphi)}\|^2$ has a critical point at $\varphi = \text{Id}$.

If ψ is an endomorphism of H which is selfadjoint with respect to h, consider the family of automorphisms $\varphi_t = e^{t\psi}$, for $t \in \mathbb{R}$, and put $f_{\psi}(t) = \|\theta_E^{(\varphi_t)}\|^2$. Then, if $f'_{\psi}(0) = 0$, Corlette shows that $f''_{\psi}(t) > 0$ for all $t \in \mathbb{R}$, *i.e.* the function f_{ψ} is strictly convex.

Assume that (V, D_V) is not semisimple and that h is a harmonic metric. There exists an exact sequence

$$0 \longrightarrow (V_1, \nabla) \longrightarrow (V, \nabla) \longrightarrow (V_2, \nabla) \longrightarrow 0$$

which is not split. Put $d_1 = \operatorname{rk} V_1$, $d_2 = \operatorname{rk} V_2$. Consider the endomorphism ψ of H equal to $d_2 \cdot p_1 - d_1 \cdot p_2$, where p_1, p_2 are the *h*-orthogonal projections on H_1 and H_1^{\perp} . Write

$$D_V = \begin{pmatrix} D_{V_1} & \eta \\ 0 & D_{V_2} \end{pmatrix}$$

with $\eta \neq 0$ a one-form with values in Hom (V_2, V_1) . Then a simple computation gives

$$\theta_E^{(\varphi_t)} = \begin{pmatrix} \theta_{E_1} & \frac{1}{2}e^{t(d_1+d_2)}\eta \\ \frac{1}{2}e^{t(d_1+d_2)}\eta^* & \theta_{E_2} \end{pmatrix}$$

and has a finite limit when $t \to -\infty$. By strict convexity, $f_{\psi}(t)$ cannot have a critical point, a contradiction.

The converse result, namely the existence of a harmonic metric when (V, ∇) is semisimple, is far more difficult. The strict convexity property above also gives the uniqueness.

Corollary 2.2. Let $f: Y \to X$ be a holomorphic mapping between compact Kähler manifolds. If \mathcal{L} is a semisimple local system on X, then $f^*\mathcal{L}$ is a semisimple local system on Y.

This result mean that, if $\rho : \pi_1(X, \star) \to \operatorname{GL}_d(\mathbb{C})$ is an irreducible representation, then $\rho \circ f_*\pi_1(Y, \star) \to \operatorname{GL}_d(\mathbb{C})$ is still semisimple. In some sense, from the point of view of representations, $\pi_1(Y, \star)$ is "bigger" than $\pi_1(X, \star)$.

Proof. Indeed, if h be a metric on (V, ∇) , then the metric f^*h on f^*V has pseudo-curvature f^*R_h . Consequently, if h is harmonic, then f^*h also, so f^*V is semisimple.

2.b. A theorem of C. Simpson and its generalizations (quasi-projective case)

The first result is due to C. Simpson and concerns vector bundle with connections on a Riemann surface. We need to fix a model metric near the singularities.

Let \widetilde{X} be a compact Riemann surface, and let X be the complement of a finite set Σ of points. Let \widetilde{V} be a holomorphic vector bundle on \widetilde{X} , put $V = \widetilde{V}_{|X}$ and $\nabla : \widetilde{V} \to \Omega^1_{\widetilde{X}} \otimes_{\mathcal{O}_{\widetilde{X}}} \widetilde{V}$ be a connection with logarithmic poles. Assume that, near each singular point, with local coordinate t, there exists a basis of \widetilde{V} for which the matrix of ∇ is Adt/t where A is constant. Put A into Jordan normal form and let \mathcal{H} be the corresponding diagonal weight matrix: it is decomposed in diagonal blocks following the decomposition of A and for a Jordan block of A of size k + 1, the corresponding block of \mathcal{H} is diag $(k, k - 2, \cdots, -k + 2, -k)$. Near the singular point, a basis vector of \widetilde{V} which is an eigenvector of A with eigenvalue $\alpha \in \mathbb{C}$ and weight $w \in \mathbb{Z}$ should have norm $|t|^{\operatorname{Re}\alpha} |\log t\overline{t}|^{w/2}$ in the local model metric.

Theorem 2.3 (C. Simpson [5]). If (\tilde{V}, ∇) is irreducible (or semisimple), i.e. if the representation $\pi_1(X, \star) \to \operatorname{GL}_d(\mathbb{C})$ defined by (V, ∇) is irreducible (or semisimple), then there exists a harmonic metric on (V, ∇) , which is comparable to the local model metric near each singularity.

This result has been extended in various directions:

(1) for local systems on the complement of a smooth divisor on a Kähler manifold by O. Biquard [1];

(2) for certain kind of local systems on the complement of a divisor with normal crossings on a Kähler manifold by Jost/Zuo [3];

(3) for connections with possible irregular singularities on a Riemann surface by C. Sabbah [4]; here, it is assumed that the bundle (\tilde{V}, ∇) is irreducible (or semisimple), which is implied by, but *not* equivalent to (due to irregular singularities) the irreducibility or semisimplicity of the associated representation.

2.c. A nonisomonodromic deformation associated with a harmonic metric. Let us go back to the general situation. One can consider, for any nonzero complex number \hbar , the two operators $D''_E + \hbar \theta''_E$ and $\hbar D'_E + \theta'_E$ on the C^{∞} vector bundle H associated to V. If h is a harmonic metric on (V, ∇) , the various relations given after Definition 1.2 imply that $D''_E + \hbar \theta''_E$ has square zero, hence, by a classical integrability result, defines a new holomorphic structure on H. We get therefore a new holomorphic vector bundle V_{\hbar} so that $V_1 = V$, and $\hbar D'_E + \theta'_E$ induces a flat holomorphic connection ∇_{\hbar} on it.

In general, this one-parameter deformation of (V, ∇) is nonconstant:

Lemma 2.4. This deformation of (V, ∇) is constant if and only if (V, ∇, h) is like in example 1.3(2).

Moreover, this deformation is not isomonodromic in general. In the situation of Theorem 2.3, Simpson also shows that each V_{\hbar} can be extended as a bundle \tilde{V}_{\hbar} on \tilde{X} and ∇_{\hbar} is logarithmic with respect to this extension. Results of O. Biquard in [1] allow to control very precisely the local behaviour of ∇_{\hbar} near the singularities. In particular, the deformation $(V_{\hbar}, \nabla_{\hbar})_{\hbar \in \mathbb{C}^*}$ is not locally isomonodromic near a singularity: if $e^{2i\pi\alpha}$ is an eigenvalue of the local monodromy of (V, ∇) with $\alpha = \alpha' + i\alpha'' \in \mathbb{C}$, then exp $(2i\pi(\hbar\alpha' + i(\hbar^2 + 1)\alpha''/2))$ is an eigenvalue of $(V_{\hbar}, \nabla_{\hbar})$.

C. SABBAH

References

- O. BIQUARD Fibrés de Higgs et connexions intégrables: le cas logarithmique (diviseur lisse), Ann. scient. Éc. Norm. Sup. 4^e série 30 (1997), p. 41–96.
- [2] K. CORLETTE Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988), p. 361–382.
- [3] J. JOST & K. ZUO Harmonic maps and SL(r, C)-representations of fundamental groups of quasiprojective manifolds, J. Algebraic Geometry 5 (1996), p. 77–106.
- [4] C. SABBAH Harmonic metrics and connections with irregular singularities, Ann. Inst. Fourier (Grenoble) 49 (1999), p. 1265–1291.
- [5] C. SIMPSON Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), p. 713–770.
- [6] _____, Higgs bundles and local systems, Publ. Math. Inst. Hautes Études Sci. 75 (1992), p. 5–95.

Moscow, September 2000

 C. SABBAH, UMR 7640 du CNRS, Centre de Mathématiques, École polytechnique, F-91128 Palaiseau cedex, France • E-mail : sabbah@math.polytechnique.fr
Url : http://www.math.polytechnique.fr/cmat/sabbah.html