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LUMINY, NOVEMBER 28 – DECEMBER 2, 2022

Claude Sabbah

Abstract. These notes explain a series of joint works with Javier Fresán and Jeng-Daw Yu
[7, 8, 9], motivated by conjectures made by Broadhurst and Roberts on arithmetic properties
of moments of Bessel functions [1, 4, 2, 3, 10, 5, 6]. The purpose is to introduce the notion of
irregular Hodge filtration, in the special case of an exponential mixed Hodge structure, and to
illustrate the interest of considering this notion for computing Hodge filtrations of mixed Hodge
structures related with Bessel moments. A Betti variant of this method is also introduced, in
order to compute explicitly a period matrix of a pure motive associated to Bessel moments.
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LECTURE 1

INTRODUCTION, MOTIVATIONS, RESULTS

1.1. Periods and quadratic relations

Let X be a smooth complex quasi-projective variety of dimension n. The com-
parison isomorphism (in the middle dimension, say) is

Hn
dR(X)

comp
≃ Hn(X,Q)⊗ C.

If X is defined over Q, Hn
dR(X) = Hn

dR(XQ)⊗C. By choosing Q-bases of Hn
dR(XQ)

and Hn(X,Q), the matrix P of the period isomorphism has transcendental entries.
Let the index mid denote the image from the cohomology with compact support
to the cohomology (in dimension n). Then Hn

dR,mid(XQ) and Hn
mid(X,Q) are self-

dual by de Rham or Poincaré duality, and this leads to “quadratic relations”:
(2πi)nIB = P · I−1dR ·

tP,

where IB and IdR are respectively the Betti and the de Rham intersection matrices
(the latter uses the isomorphism trX = (1/ 2πi)n

∫
X : H2n

dR,c(X) → C). If X is
defined over Q, these are polynomial relations of degree 2 with coefficients in Q
between the entries of the period matrix.
If X is affine, the entries of P can be expressed as integrals

∫
γ ω, where γ is an

n-cycle and ω an algebraic n-form on X.

1.2. Bessel functions and their moments

The modified Bessel differential equation on the unknown u(t) (“modified” because
of the minus sign, instead of +)

(t∂t)
2u− t2u = 0

has two independent solutions (I0 entire, K0 multivalued)

I0(t) =
1

2πi

∮
exp

(
− t

2

(
y + 1/y

))dy
y
,

K0(t) =
1

2

∫ ∞

0

exp
(
− t

2

(
y + 1/y

))dy
y

(| arg t| < π/2).

Note: setting z = (t/2)2 and x = (t/2)y, we have (t/2)(y+1/y) = x+ z/x. The
modified Bessel differential operator reads, in the variable z, as (z∂z)

2 − z: this
is the Kloosterman differential operator.
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Two physicists, Broadhurst and Roberts, were interested in Bessel moments,
e.g. for k = 2ℓ+ 1 odd

BMk(i, j) = csti,j

∫ ∞

0

I0(t)
iK0(t)

k−it2j−1dt, i, j ∈ [1, ℓ]

and have cooked up by experimental computation a conjectural quadratic relation

(−2πi)kBk = BMk ·Dk · tBMk,

where Bk is explicit has entries of the form: product of factorials times a Bernoulli
number, while Dk is defined over Q by a complicated induction on k.

Theorem A (F-S-Y, Zhu). There exists such a relation.

Proof by means of a geometric interpretation to relate with classical period ma-
trices. That such a geometric interpretation should exist is suggested by the
following relation was found by P.Vanhove:∫ ∞

0

I0(t)K0(t)
ℓ+1t dt =

1

2ℓ

∫
xi⩾0

1

(1 +
∑ℓ

i=1 xi)(1 +
∑ℓ

i=1 1/xi)− 1

ℓ∏
i=1

dxi
xi

.

However, the (modified) Bessel differential equation is not a Picard-Fuchs equa-
tion because it has an irregular singularity at infinity. Hence the notion of “geo-
metric interpretation” has to be made precise.

1.3. Bessel moments and arithmetic

B-R also knew that the Kloosterman differential equation is a heuristic analogue
of the Kloosterman ℓ-adic sheaves related to Kloosterman exponential sums.
p: a prime number, q: power of p, Fp ⊂ Fq ⊂ Fp, trFq/Fp

: Fq → Fp: trace map.
Kloosterman sum: ∀ z ∈ F×q , the real number

Kl2(z; q) =
∑
x∈F×

q

exp
[
2πi(trFq/Fp

(x+ z/x))/p
]
.

Weil: ∃αz ∈ Q, |αz| =
√
q s.t. Kl2(z; q) = −(αz + q/αz).

∀ k ⩾ 1, the k-th symmetric powers of Kloosterman sums

KlSym
k

2 (z; q) =
k∑

i=0

αi
z(q/αz)

k−i

and the moments
mk

2(q) =
∑
z∈F×

q

KlSym
k

2 (z; q).
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Generating series:

Zk(p;T ) = exp

( ∞∑
n=1

mk
2(p

n)
T n

n

)
,

In fact, Zk(p;T ) = (1− T )Mk(p;T ), Mk(p;T ) ∈ Z[T ], |roots| = p−(k+1)/2.
Complete L-function (e.g. k odd, k = 2ℓ+ 1):

Λk(s) = Lk,∞(s) · Lk(s) = π−ℓs/2
ℓ∏

j=1

Γ
(s− j

2

)
· (Nk)

s/2
∏

p prime

1

Mk(p; p−s)
.

Theorem (Conj. of Broadhurst & Roberts, F-S-Y). Assume k is odd (similar
result for even k). The function Λk(s) admits a meromorphic continuation to the
complex plane and satisfies the functional equation

Λk(s) = Λk(k + 2− s).

Remark (Arithmetic and Bessel moments). Deligne conjectures the value of the
function Lk(s) at some integers called “critical integers” (i.e., neither a pole of
s 7→ Lk,∞(s) nor of s 7→ Lk,∞(k+2− s)). We prove that these conjectural values
are equal to some explicit sub-determinants of the matrix BMk.

1.4. The geometry behind

We consider the Laurent polynomial
g1(y) = y + 1/y

as a regular function on C∗ and its k-Thom-Sebastiani relative (k ⩾ 1)
gk : (C∗)k −→ C, gk(y

(1), . . . , y(k)) = g1(y
(1)) + · · ·+ g1(y

(k)).

The group µ2 acts diagonally on (C∗)k by (y(1), . . . , y(k)) 7→ ±(y(1), . . . , y(k)), and
the group Sk acts by permutation y(j) 7→ y(σ(j)).
Then Hk = g−1k (0) is preserved by the action of Sk × µ2. It has at most isolated
singularities. Let χ : Sk × µ2 → {±1} defined by χ(σ, ε) = sgn(σ).
The cohomology

Hk−1
mid (Hk,C)Sk×µ2,χ := Im

[
Hk−1

c Hk,C)Sk×µ2,χ −→ Hk−1(Hk,C)Sk×µ2,χ
]

is pure of weight k − 1.

Theorem B (F-S-Y). The nonzero Hodge numbers of Hk−1
mid (Hk,C)Sk×µ2,χ are

all equal to one (∃ a precise formula).

Arithmetic methods + Thm of Patrikis-Taylor on potential automorphy =⇒
the functional equation if the property of Theorem B is fulfilled.





LECTURE 2

COMPUTATION OF HODGE NUMBERS

In this chapter, we explain a method for computing the Hodge numbers of
Hk−1

mid (Hk,C)Sk×µ2,χ.

2.1. Computation of Hodge number via Laplace transformation

It is well-known in analysis that the Fourier transformation can be helpful for
computing various integrals. In Hodge theory, the Laplace transformation cannot
be used similarly because

• the Laplace transform of a vector bundle with regular meromorphic con-
nection on the affine line is in general a vector bundle with an irregular
meromorphic connection,
• and a theorem of Griffiths asserts the regularity of the connection under-
lying a polarizable variation of Hodge structure,

so Laplace transformation does not preserve the category of pVHS. We will see
that, in some way, one can overcome this difficulty.
Let g : Y → A1 be a regular function on a smooth quasi-projective variety Y . Set
H = g−1(0), X = A1

t × Y and f = tg : X → A1. Consider the twisted de Rham
complex

(Ω•
X , d + df).

Proposition. There are isomorphisms

(∗)

{
Hr

dR,c(X, f) := Hr
c(X, (Ω•

X , d + df)) ≃ Hr
dR,c(A1

t ×H) ≃ Hr−2
dR,c(H),

Hr
dR(X, f) := Hr(X, (Ω•

X , d + df)) ≃ Hr
H(Y ) = Hr(Y, Y ∖H).

On noting that d+df = e−tg ◦d◦ etg, the first line is an analogue of the property
that the Fourier transform of the constant function on R is the Dirac distribution
at the origin.
In 1984, Deligne emphasized that, when X is a curve and f is any regular function
on it, the twisted cohomology H1(X, (Ω•

X , d + df)) can be equipped canonically
with a decreasing filtration F •

irr (the irregular Hodge filtration), that is in general



6 LECTURE 2. COMPUTATION OF HODGE NUMBERS

indexed by Q. More recently J.-D. Yu has extended this construction to any pair
(X, f), yielding a filtration F •

irrH
r
∗(X, f).

Computation of Hr
dR(X, f) and Hr

dR,c(X, f) and their irregular Hodge filtration

Let f : X → P1 a projectivization of f s.t. D := X∖X is a sncd. Set P = f
∗
(∞)

the pole divisor of f .
Recall: Hr

dR(X) is the hypercohomology of the log-dR complex (Ω•

X
(logD), d)

and Hr
dR,c(X) that of (Ω•

X
(logD)(−D), d). The Hodge filtration is obtained by

the “stupid” truncation of these complexes.
Similarly, Hr

dR(X, f) is the hypercohomology of the complex

OX

d + df−−−−−−→ Ω1
X
(logD)(P ) −→ · · · −→ Ωn

X
(logD)(nP ),

and similarly for Hr
dR,c(X, f). The irregular Hodge filtration F p

irrH
r
dR(X, f) is also

defined by the stupid truncation of this complex. However, one can extend it so
that it is indexed by Q: For α ∈ (0, 1) ∩Q,

F p−α
irr (Ω•

X
(∗D), d + df)

=
{
0 −→ · · · −→ Ωp

X
(logD)([αP ])

d + df−−−−−−→ Ωp

X
(logD)([(α + 1)P ]) −→ · · ·

}
and an analogous formula for F p−α

irr Hr
c(X, f). Clearly, the jumps are governed by

the multiplicities of the components of P .

Theorem. Under the isomorphism (∗), we have

{
F •

(
Hr−2

c (H)(−1)
)
≃ F •Hr

c(A1
t ×H) ≃ F •

irrH
•
c(X, f),

F •Hr
H(Y ) ≃ F •

irrH
•(X, f).

In particular, the jumps of the irregular Hodge filtration are integers.

2.2. The Kloosterman connection and its symmetric powers

On Gm,z, diff. eqn (z∂z)
2 − z ←→ Kloosterman connection:

Kl2 =
(
O2

Gm
, d +

(
0 z

1 0

)
dz

z

)
, basis v0, v1 :

{
z∂zv0 = v1

z∂zv1 = zv0.

z = (t/2)2, ⇝ modified Bessel eqn (t∂t)
2 − t2 and corresponding K̃l2 on Gm,t.
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Observation. Recall gk =
∑k

i=1(y
(i) + 1/y(i)) on Gk

m, set fk = tgk on A1
t × Gk

m.
Then, pushing forward by the projection Gm,t ×Gk

m → Gm,t one finds (? =!, ∗)

H1
dR,?(Gm,t,

k⊗
K̃l2) ≃ Hk+1

? (Gm,t ×Gk
m, fk),

and thus
H1

dR,?(Gm,z, Sym
k Kl2) ≃ Hk+1

? (Gm,t ×Gk
m, fk)

Sk×µ2,χ.

After a little work, one finally finds

Hk−1
dR,mid(Hk,C)Sk×µ2,χ ≃ Hk+1

dR,mid(Gm,t ×Gk
m, fk)

Sk×µ2,χ ≃ H1
dR,mid(Gm,z, Sym

k Kl2)

2.3. Sketch of the proof of Theorem B

The proof goes as follows:

(1) Find a natural basis of H1
dR,mid(Gm,z, Sym

k Kl2): rather easy as the base
has dimension 1 and the connection matrix of Symk Kl2 is rather simple.
Explicitly:

{wj = vk0z
jdz/z | j = 1, . . . , ⌊(k − 1)/2⌋} if k is not a multiple of 4,

and a variant of this formula if 4 | k. This defines a filtration G• of
H1

dR,mid(Gm,z, Sym
k Kl2) such that the graded quotients have dimension 0

or 1. Explicitly (if 4 ∤ k):

GpH1
dR,mid(Gm,z, Sym

k Kl2) =
〈
wj

∣∣∣ 1 ⩽ j ⩽ ⌊(k + 1− p)/2⌋
〉
.

(2) Lift each wj as the (k + 1)-differential form

ωj = t2j
dt

t
· dy1
y1
· · · dyk

yk

on Gm,t × Gk
m and compute the order of its poles in a suitable good com-

pactification of Gm,t ×Gk
m. Deduce, via the above isomorphisms,

Gp ⊂ F p
irr = F pHk−1

dR,mid(Hk,C)Sk×µ2,χ(−1).

(3) The middle cohomology of Hk is pure of weight k−1, hence F p satisfies a
symmetry property. On the other hand, a simple calculation shows that Gp

satisfies the same symmetry property.

(4) One concludes that F p = Gp, and thus the nonzero Hodge numbers of
Hk−1

dR,mid(Hk,C)Sk×µ2,χ(−1) are all equal to 1.
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Final remark. This programs works well if k is odd. If k is even, various problems
occur:

• The hypersurface Hk has some isolated singularities,
• the Laurent polynomial fk on Gm,t ×Gk

m is degenerate,
• the definition of the basis has to be a little modified if 4 | k.

Solving these problems require some other technical tools involving more infor-
mation from the Laplace transform of K̃l2.



LECTURE 3

PERIODS AND LAPLACE TRANSFORMATION

What is the Betti (i.e., topological) analogue of the isomorphism (∗) between
de Rham cohomologies?

3.1. Moderate and rapid decay cohomologies

We consider the general setting of a regular function f : X → A1 (X smooth quasi-
projective). We will describe the Betti analogues of Hr

dR,c(X, f) and Hr
dR(X, f)

and the corresponding period isomorphism.
• Choose f : X → P1 extending f with X smooth projective and D = X a
sncd.
• Set D = H ∪ P , P = f

−1
(∞).

• ϖ : X̃(D) = X̃ → X: real oriented blowing up of the components of D.
Loc.: coord. (x1, . . . , xn) ∈ Cn, D = {x1 · · ·xℓ = 0},
• C̃n = (R+)

ℓ × (S1)ℓ × Cn−ℓ,
• coord.: (reiθ, x′) = (rj, e

iθj)j=1,...,ℓ, xℓ+1, . . . , xn,
• ϖ : (rj, e

iθj) 7→ rje
iθj = xj.

• ∃ f̃ : X̃ → P̃1(∞). Locally:
• f = u(x)/xm1

1 · · ·x
mℓ

ℓ , mj > 0, u holom. invertible if ℓ ⩾ 1, but possibly
ℓ = 0.
• |t|eiθ ∈ P1.
• f̃ : |t| = |f | and θ = arg u(x)−

∑
j mjθj.

• Commutative diagram:

X
� u

((

� y

++f

��

X

f

��

X̃
ϖ

oo

f̃

��

A1
� u

((

� y

++P1 P̃1oo

• Subsets X̃rd ⊂ X̃mod ⊂ X̃ : e−f has rapid decay resp. moderate growth.
Locally:
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• Above A1: X̃rd|A1 = X, X̃mod|A1 = X̃|A1,
• Above ∞: ϖ−1(P )rd = ϖ−1(P )mod. Locally:

arg u(x)−
∑
j

mjθj ∈ (−π/2, π/2) mod 2π.

Theorem.

Hr
dR,c(X, f)

comp
≃ Hr

c(X̃rd,C), Hr
dR(X, f)

comp
≃ Hr

c(X̃mod,C)

The space X̃ is a complex manifold with C∞ corners. It is equipped with a sheaf
of “holomorphic functions” AX̃ : this is the sheaf of C∞ functions on X̃ annihilated
by the Cauchy-Riemann operator (if h is a local reduced equation of D, then the
action of h∂ on C∞X can be lifted to C∞

X̃
). This sheaf AX̃ is however not coherent.

It has two companions:
• the sub-sheaf Ard

X̃
consisting of those functions whose Taylor expansion

vanishes identically on ∂X̃ = ϖ−1(D) (rapid decay),
• the sup-sheaf Amod

X̃
consisting of functions whose restrictions to X ∖ D

has moderate growth along D.
These sheaves satisfy the following properties:

• They are flat over ϖ−1OX (T. Mochizuki).
• ϖ∗A

mod
X̃

= OX(∗D) and Rjϖ∗A
mod
X̃

= 0 for j ⩾ 1.
• (ϖ∗A

rd
X̃
)|D = 0 and (R1ϖ∗A

rd
X̃
)|D ≃ OD̂/(OX)|D.

Sketch of proof of the theorem. Let us consider the mod case. The twisted
de Rham complex DR(Ef) = (Ω•

X
(∗D), d + df) can be lifted to the moderate

twisted de Rham complex DRmod(Ef) on X̃: the p-th term is Amod
X̃
⊗ϖ−1OX

Ωj

X̃
(∗D),

and the differential is the lift of d + df . Then, from the properties above one
obtains Rϖ∗DR

mod(Ef) ≃ DR(Ef), and thus

Hr
dR(X, f) ≃ Hr(X̃,DRmod(Ef)).

It is not difficult to compute that H0DRmod(Ef) is the constant sheaf on X̃mod

extended by zero to X̃. It is less obvious (but follows from asymptotic analysis)
that Hj DRmod(Ef) = 0 for j ⩾ 1. This concludes the proof.

Let g : Y → A1, H = g−1(0) and f = tg : X = A1
t × Y → A1.

Corollary. The isomorphism (∗) extends as an isomorphism of period structures(
Hr−2

dR,c(H),Hr−2
c (H,Q), comp

)
≃

(
Hr

dR,c(X, f),Hr
c(X̃rd,Q), comp

)
.
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3.2. Period structure of Symk Kl2 and quadratic relations

The advantage of considering the period structure of Symk Kl2 is that it lives in
dimension one, so that the geometry is very simple.

De Rham Q-structure and pairing. The bundle with connection (Kl2,∇) has a
natural OGm

-basis (v0, v1) and a natural non-degenerate skew-symmetric pairing
such that ⟨v0, v1⟩ = 1.

• ⇝ Natural non-degenerate (−1)k-symmetric pairing on (Symk Kl2,∇).
• ⇝Natural non-degenerate (−1)k+1-symmetric pairing on H1

dR,mid(Gm, Sym
k Kl2).

• Computation shows that the matrix Sk of this pairing in the basis (wj)

has rational entries.
• ⇝ Define the de Rham Q-structure on H1

dR,mid(Gm, Sym
k Kl2) by means

of (wj).

Betti Q-structure and pairing. The sheaf of horizontal section Kl∇2 on C∗ is natu-
rally endowed with a Q-structure. Bloch and Esnault have introduced the notion
of rapid-decay (or moderate growth) cycle with respect to a vector bundle with
connection.
We obtain the vector spaces (that are naturally equipped with a Q-structure and
a Q-basis)

Hrd
1 (Gm, Sym

k Kl2), Hmod
1 (Gm, Sym

k Kl2), Hmid
1 (Gm, Sym

k Kl2).

It is a straightforward calculation to obtain the ‘middle’ period matrix (Pi,j) with
respect to this basis and the basis (wj). Lifting the bases first to the setting of
(Gm ×Gk

m, fk) and then to that of Hk, we obtain:

Theorem (F-S-Y). Assume k odd (there is a modified statement for k even).
There exist bases of Hmid

k−1(Hk,Q)Sk×µ2,χ and of Hk−1
dR,mid(Hk,Q)

Sk×µ2,χ such that
the corresponding period matrix P = (Pi,j) is the matrix of Bessel moments
(i, j = 1, . . . , (k − 1)/2)

Pi,j = csti,j

∫ ∞

0

I0(t)
iK0(t)

k−i t2j
dt

t
.
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