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1. The main problems

The goal of this introductory talk is to explain the main problems one encounters
when trying to extend to higher dimension (e.g., dimension 2) the Levelt-Turrittin
theorem for finite-dimensional differential vector spaces over the differential field
(K((x)), d), where K is any algebraically closed field of characteristic zero. One can
first think of K = C.
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recherche.
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1.1. Dimension one

Theorem 1.1.1 (Levelt-Turrittin). Let V̂ be a finite-dimensional differential vector
spaces over (K((x)), d). Then there exists e ∈ N∗ and a finite set Φ ⊂ K((y))/K[[y]]
such that, through the ramification y 7→ x = ye, K((y))⊗K((x)) V̂ '

⊕
ϕ∈Φ(E(ϕ)⊗Rϕ),

where E(ϕ) = (K((y)), d+ dϕ̃), with ϕ̃ ∈ K((y)) (a representative of ϕ) and Rϕ has a
regular singularity.

In matrix terms, this means that, given a matrix A(x)dx/x with entries
in K((x)), there exists an invertible matrix P (y) ∈ GLd(K((y))) such that
B(y)dy/y := eP−1A(ye)Pdy/y+P−1dP is block-diagonal, with blocks dϕ̃ Id +Cϕdy/y
for some constant matrix Cϕ.

We notice that E(ϕ̃) ∼−→ E(ψ̃) if ϕ̃− ψ̃ ∈ K[[y]]. This is why one can assume that
the sum is indexed by a finite set of ϕ ∈ K((y))/K[[y]] = y−1K[y−1].

Remark 1.1.2. There is no nonzero morphism E(ϕ)⊗Rϕ → E(ψ)⊗Rψ if ϕ 6= ψ. Hence
the decomposition is unique. Moreover, by considering invariants under the Galois
action of Z/eZ, one finds a decomposition defined over K((x)), and the classification
of irreducible objects and indecomposable objects is known and there are irreducible
objects of arbitrary rank.

In practice, one starts with a smooth curve X (in the algebraic or complex analytic
setting), which is equipped with a reduced divisor D (locally finite set of points), and
a locally free OX(∗D)-module M of finite rank equipped with a connection ∇. For
each xo ∈ D, we set V̂ = Ôxo

⊗OX,xo
Mxo

.

1.2. Dimension one with parameter. Assume now that K = C((z)). This field is
not algebraically closed, but the Levelt-Turrittin theorem extends to non algebraically
closed fields K, by working with a finite extension K ′ of K in the conclusion. Here,
a finite extension would be C((z1/e)).

Let us now replace K with a Noetherian ring A, e.g., A = C[z] or A = C[[z]].
Assume that V̂ is a free A((x))-module of finite rank with a connection. Then the
conclusion of the Levelt-Turrittin holds if one replaces, in the conclusion, the ring A
with the integral closure of a suitable localization. For instance, one replaces A = C[z]
with A′ = C[z, t, q(z)−1]/(p(z, t)), where q(z) is the resultant of p(z, t) and p′t(z, t).
On the other hand, if A = C[[z]], one replaces A with C((z1/e′)) for a suitable e′.

The proof of this result is obtained by following precisely the proof of the Levelt-
Turrittin theorem (cf. e.g., [BV85]).

One can give a much more precise result (cf. [BV85], [And07, Th. 3.4.1]), but I
will state and use it later. In fact, one cannot go much further and analyze precisely
what happens, since in this very general setting one encounters confluence phenom-
ena, which may be very difficult to understand. Moreover, the method of “changing
coordinates by blowing-up”, which will play an important role later, cannot be applied
in this setting, since one variable is privileged among all variables.
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1.3. Dimension two. Let now X be a smooth surface and let D be a reduced
divisor of X. Let M be locally free OX(∗D)-module of finite rank equipped with an
integrable connection ∇.

Remark 1.3.1 (“Locally free” condition). A priori, one should consider coherent
OX(∗D)-modules. However, each such object is locally a direct summand of a free
OX(∗D)-module, the other summand being also free. By using the trivial connection
d on this other summand, one reduces the study to locally free OX(∗D)-modules
when we are interested in local properties.

Remark 1.3.2 (Integrability condition). The integrability condition ∇2 = 0 is essential
in order to get generalizations of Levelt-Turrittin. Otherwise, one finds confluence
phenomena which are very difficult to classify.

Example 1.3.3. It is not easy to produce explicit examples of locally free OX(∗D)-
module of rank > 2 with an integrable connection and having interesting irregular
singularities. One way to produce them is to start from a connection having regular
singularity, twist it by an irregular connection, and apply various functors from the
theory of D-modules, like taking the Gauss-Manin connection (direct image) by an
algebraic map to a surface.

An example of such a procedure is given by the Fourier transform, or the partial
Fourier transform. Assume that M is presented as C[x1, x2]〈∂x1 , ∂x2〉/(Pi∈I), where
(Pi∈I) is the left ideal generated by the operators Pi for i ∈ I, then the partial
Fourier transform with respect to x1 consists in composing with the automorphism
x1 7→ −∂x1 , ∂x1 7→ x1. The total Fourier transform uses the automorphism with
respect to both variables. An example of such objects are the hypergeometric D-
modules of Gelfand, Kapranov and Zelevinski.

Other examples are confluent hypergeometric systems of many variables, like the
following:

P1 = x1∂
2
x1

+x2∂x1∂x2 +(γ−x1)∂x1−β1, P2 = x2∂
2
x2

+x1∂x1∂x2 +(γ−x2)∂x2−β2.

Remark 1.3.4. There are various possibilities for defining the formalization Ôxo
at

xo ∈ D. The most natural ones are Obxo
and O bD,xo

. The latter allows “moving the
Levelt-Turrittin decomposition along D”, but it is not the right one to use in general.

Remark 1.3.5. It can be expected that the singularities of the divisor make things more
complicated. One first reduces them by a sequence of point blowing-ups, in order to
get a divisor with normal crossings. This reduction is relatively easy in dimension
two, but becomes more complicated in higher dimension. From now on, I will assume
that D has only normal crossing singularities. Then Obxo

(∗D) is either K[[x1, x2]][x−1
1 ]

or K[[x1, x2]][(x1x2)−1].

Question 1.3.6 (Levelt-Turrittin in dimension two). Let M̂ be a free C[[x1, x2]][x−1
1 ]

(resp. C[[x1, x2]][(x1x2)−1]) module of finite rank, equipped with an integrable
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connection. Does there exist e1 ∈ N∗ (resp. e1, e2 ∈ N∗) and a finite set Φ̂ ⊂
C[[y1, x2]][1/y1]/C[[y1, x2]] (resp. Φ̂ ⊂ C[[y1, y2]][1/y1y2]/C[[y1, y2]]) such that, through
the ramification y1 7→ ye11 = x1 (resp. and y2 7→ ye22 = x2), C[[y1, x2]][1/y1] ⊗ M̂

(resp. C[[y1, y2]][1/y1y2] ⊗ M̂ ) decomposes as
⊕

ϕ∈bΦ(E(ϕ) ⊗ Rϕ) where Rϕ has a
regular singularity ?

In matrix terms, this is expressed as follows. Let Ω = A1(x1, x2)dx1+A2(x1, x2)dx2

be a matrix differential form, where A1, A2 have entries in C[[x1, x2]][x−1
1 ] (resp. in

C[[x1, x2]][(x1x2)−1]), satisfying the integrability condition
∂A2

∂x1
− ∂A1

∂x2
= [A1, A2].

Does there exist e1 and a matrix P ∈ GLd(C[[y1, y2]][y−1
1 ]) (resp. e1, e2 and P ∈

GLd(C[[y1, y2]][(y1y2)−1])) such that, setting Ω′ = A1(ye11 , y
e2
2 )dye11 +A2(ye11 , y

e2
2 )dye22 ,

the matrix P−1Ω′P + P−1dP is block-diagonal, with diagonal blocks of the form
dϕ̃ Id +Ω′ϕ, and Ω′ϕ having at most logarithmic poles along y1 = 0 (resp. y1y2 = 0).

If it exists, the decomposition is unique, and the set Φ̂ is uniquely determined.
However, the answer is “no” in general.

Example 1.3.7 (Counter-example to L.-T., cf. [And07]). Let us set

A =
(
x2/x1 −1

0 0

)
and consider the connection ∇m = m ·A(dx1/x1 − dx2/x2) on the rank-two module
M̂ =

(
C[[x1, x2]][(x1x2)−1]

)2 with basis m = (m1,m2). The integrability condition
to be checked is

x1∂x1A2 − x2∂x2A1 = [A1, A2], A1 = A, A2 = −A,

that is, (x1∂x1 + x2∂x2)A = 0, which is obvious.
There is an exact sequence

0 −→ M̂1 −→ M̂ −→ M̂2 −→ 0,

where M1 is generated by m1 and M2 by the class of m2. Then M1 = E(x2/x1)
and M2 = (C[[x1, x2]][(x1x2)−1], d) is regular. The exact sequence splits if one works
over K((x1)) with K = C((x2)), and this gives the Levelt-Turrittin decomposition of
M̂K . On the other hand, the image of [m2] by a section compatible with connection
of M̂ → M̂2 must be of the form m2 + a(x1, x2)m1 with

∇x1∂x1
(m2 + am1) = 0, ∇x2∂x2

(m2 + am1) = 0,

that is
(x1∂x1 + x2∂x2)a = 0, (x1∂x1 + x2/x1)a = 1,

whose solutions are of the form

a(x1, x2) = cex2/x1 +
∑
`>0

(−1)``!(x1/x2)`+1, c ∈ C,
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none of them belong to C[[x1, x2]][(x1x2)−1], so the sequence does not split over
C[[x1, x2]][(x1x2)−1].

Remark 1.3.8. Given any formal curve C[[x1, x2]] → C[[x]] expressed by formal power
series x1(x), x2(x) ∈ xC[[x]], the restriction C[[x]] ⊗C[[x1,x2]] M̂ is a differential vector
space on C((x)), and thus has a Levelt-Turrittin decomposition.

Question 1.3.9 (Main finiteness question). How does this Levelt-Turrittin decomposi-
tion vary with the choice of the curve? Can one recover the exponential factors ϕ(x)
for all possible curves from a finite set Φ̂ of ϕ(x1, x2)?

In Example 1.3.7 one can take Φ̂ = {x2/x1, 0}.

Question 1.3.10. Assume M is OX(∗D)-locally free. If we have a two-dimensional
Levelt-Turrittin decomposition at xo ∈ D (cf. Question 1.3.6), is Φ̂ included in
OX,xo

(∗D)/OX,xo
(better than in Obxo

(∗D)/Obxo
)?

The answer to Question 1.3.10 is “yes” (cf. Theorem 2.2.1 below), and this is not
much difficult. But one should be aware that the same question in dimension > 3
does not have a clear answer in general.

Definition 1.3.11 (Semi-stable points, cf. [And07]). Let M be a locally free OX(∗D)-
module with integrable connection. A point xo ∈ D is said to be semi-stable for M

if Levelt-Turrittin holds for Obxo
⊗OX,xo

M .

Definition 1.3.12 (Goodness). Let us consider a finite set

Φ̂ ⊂ C[[x1, x2]][x−1
1 ]/C[[x1, x2]] (resp. Φ̂ ⊂ C[[x1, x2]][(x1x2)−1]/C[[x1, x2]]).

We say that Φ̂ is good if, given ϕ,ψ ∈ Φ̂, with ϕ 6= ψ, for one choice (or any choice) of
representatives ϕ̃, ψ̃ in C[[x1, x2]][x−1

1 ] (resp. C[[x1, x2]][(x1x2)−1]), the divisor of ϕ̃− ψ̃
is 6 0.

Examples.

(1) If #Φ̂ = 1, then Φ̂ is good.
(2) If D = {x1 = 0}, the family Φ̂ = {0, x2/x1} is not good.
(3) If D = {x1x2 = 0}, the family Φ̂ = {1/x1, 1/x2} is not good.
(4) Given η, Φ̂ is good if and only if Φ̂ + η is good. In particular, one can often

reduce to the case where 0 ∈ Φ̂.
(5) If Φ̂ is good and contains 0, then the order ord(ϕ) ∈ Z2 of ϕ ∈ Φ̂ r {0} is

well-defined and the family {ord(ϕ) | ϕ ∈ Φ̂} is totally ordered.

Lemma 1.3.13. Given a finite set Φ̂ ⊂ Obxo
(∗D), there exists a finite sequence of point

blowing-up such that the pull-back of Φ̂ becomes good.
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Example 1.3.14. Let Φ̂ = {0, x2/x1}. The blowing-up of the origin produces two charts
with respective coordinate systems (x′1, x

′
2) and (x′′1 , x

′′
2), and the blowing-up map is

given by x1 = x′1, x2 = x′1x
′
2, resp. x1 = x′′1x

′′
2 , x2 = x′′2 . Then, in the first chart, the

pull-back of Φ̂ reduces to {0} and, in the second chart, it reduces to {0, 1/x′′1}, and
both are good.

Definition 1.3.15 (Good formal structure/stable points). Let M̂ be a free Obxo
(∗D)-

module with integrable connection.

(1) We say that M̂ has a good decomposition if it has a decomposition as in Ques-
tion 1.3.6 with e1 = 1 (resp. e1 = e2 = 1) indexed by a good set Φ̂.

(2) We say that M̂ has a good formal structure or that xo is a stable point for M̂ ,
if it has a good decomposition after some ramification around the components of D.

(3) If xo is not a stable point for M̂ , it is called a turning point for M̂ .

Theorem 1.3.16 (Kedlaya [Ked10], Mochizuki [Moc09a] (algebraic case))
Let M̂ be a free Obxo

(∗D)-module with integrable connection. There exists a finite
sequence of point blowing-ups e : (Y,E) → (X,xo) such that e∗M̂ has a good formal
structure at each point of E (equivalently, each point of E is stable for e∗M̂ ).

In Example 1.3.7, a single blow-up of the origin is enough to realize stability of all
points of the exceptional divisor.

2. Improvements and applications

In this talk, I will give, mainly without proof, some consequences of the theorem of
Kedlaya and Mochizuki. Firstly, I will give some improvements of the main statement,
which are due to Mochizuki. I will assume that D is a divisor with normal crossings
in the algebraic (or complex analytic) surface X and that M is a locally free OX(∗D)-
module of finite rank, equipped with a integrable connection.

2.1. Genericity and turning points

Lemma 2.1.1. There is a Zariski dense open set U ∈ D such that each point of U is
semi-stable with respect to M .

Proof. By reducing to an open set, one can assume that D is smooth, and one essen-
tially can work with local coordinates x1, x2 such that D = {x1 = 0}. Considering M

with respect to∇x1∂x1
, one finds a Zariski open set of semi-stable points (cf. § 1.2) and

one uses integrability to show that the corresponding Levelt-Turrittin decomposition
is stable by ∇∂x2

.

It follows from Lemma 1.3.13 that there is a Zariski dense open set of D consisting
of stable points for M . One can characterize the stable points on the smooth locus
of D.
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Theorem 2.1.2 ([BV85] for “if”, [And07, Th. 3.4.1]). Set A = C[x1, x2, p(x2)−1] with
p(0) 6= 0. Let M be a free A[x−1

1 ]-module with an integrable connection. Then the
origin is a stable point of M if and only if C((x2))((x1/e1

1 )) ⊗A[x−1
1 ] M has a good

Levelt -Turrittin decomposition.

2.2. Openness of the good formal structure

Theorem 2.2.1. Let M be a locally free OX(∗D)-module with an integrable connection.
Assume that M̂xo

has a good decomposition. Then the subset Φ̂xo
⊂Obxo

(∗D)/Obxo
is in

fact a subset Φxo
⊂OX,xo

(∗D)/OX,xo
and, in some neighbourhood of xo, each point x

is stable and Φx is the restriction to x of a representative of Φxo . Moreover, the good
model as xo is also a good model at each x near xo.

In dimension two, the proof can be done by comparing various formalizations at xo
(cf. [Sab00, § I.2.4]). In dimension > 3, the openness of the set of stable points (which
is a direct consequence of the theorem) is already less obvious. It relies on the notion
of a good lattice, which is explained below.

In any case, the global picture is as follows.

Corollary 2.2.2. Let M be a locally free OX(∗D)-module with an integrable connection.
Let Di be the irreducible components of D and Do

i be the intersection of Di with the
smooth part of D. Lastly, let C denote the set of crossing points of D. Assume that
all points of D are stable for M . Then

(1) for each i, M cDo
i

admits locally on Do
i a Levelt-Turrittin decomposition after a

local finite ramification around Do
i ,

(2) for each c ∈ C, Mbc admits a Levelt-Turrittin decomposition after a local finite
ramification around the components of D going through c,

(3) and the good model at c is also a good model at each x ∈ D in some neighbour-
hood of c.

Definition 2.2.3 (T. Mochizuki [Moc09b, Moc10]). Let Exo
⊂ Mxo

be a free OX,xo
-

module generating Mxo over OX,xo(∗D). We say that Exo is a non-ramified good
lattice if (Ebxo

, ∇̂) decomposes as in the L.-T. decomposition, where Rϕ is now a free
OX,xo-module with logarithmic connection.

Theorem 2.2.4 (T. Mochizuki [Moc10]). If M has a good formal decomposition at
each x in some neighbourhood of xo, it has a non-ramified good lattice at xo.

Theorem 2.2.5 (T. Mochizuki [Moc08]). Let (E,∇) be a free OX,xo
-module with flat

meromorphic connection. If (E,∇) is a (non-ramified) good lattice with formal ex-
ponential factors Φ̂xo

, then Φ̂xo
= Φxo

⊂ OX,xo
(∗D)/OX,xo

and (E,∇) has a good
Φx-decomposition at each x near xo with the same formal model.

Remark 2.2.6. Malgrange has shown (cf. [Mal96]) that any meromorphic connec-
tion M has a canonical lattice, that Mochizuki calls the Deligne-Malgrange lattice,
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which generalizes the notion of Deligne lattice in the case of regular singularities.
If M is good along D, then Mochizuki has shown that the Deligne-Malgrange lattice
is a good lattice. This is useful when considering global questions on X.

2.3. Malgrange’s conjecture. Let X be a complex surface let Z be a divisor in X
and let xo ∈ Z. Let (M ,∇) be a locally free OX(∗Z)-module of finite rank equipped
with an integrable connection. Let γ : (C, 0) → (X,xo) be a germ of analytic curve
whose image is not contained in (Z, xo). The following result was given as a corollary
of the expected theorem 1.3.16:

Corollary 2.3.1 (of Th. 1.3.16, cf. [Sab00, Th. I.3.2.3]). The irregularity number of the
pull-back connection γ+(M ,∇) satisfies

irxo

(
γ+(M ,∇)

)
6
∑
i

(γ, Zi)xo
· irZi

(M ,∇),

where Zi are the local irreducible components of Z at xo, (γ, Zi)xo
is the valuation

of the ideal of Zi through γ, and irZi
(M ,∇) is the generic irregularity number of

(M ,∇) along Zi, or equivalently the irregularity of the pull-back of (M ,∇) to a
curve transverse to the smooth part of Zi.

However, this result can be proved without using the full strength of Theorem
1.3.16, as was done by Y. André [And07], who proved

Theorem 2.3.2 (cf. [And07]). With the same assumptions,

irxo

(
γ+(M ,∇)

)
6
∑
i

(γ, Zi)xo · irZi(M ,∇),

ρxo

(
γ+(M ,∇)

)
6
∑
i

(γ, Zi)xo
· ρZi

(M ,∇),

where ρ is the Katz rank of the connection (maximal slope of the Newton polygon).

2.4. Concluding remarks. The theorem of Kedlaya and Mochizuki has been gen-
eralized by the same authors in higher dimensions (Mochizuki proves the algebraic
case, but with analytic methods). Complemented with Theorems 2.2.4 and 2.2.5, it
allows to develop the methods of asymptotic analysis originated in the work of Sibuya
and Majima, and produces a Riemann-Hilbert correspondence for good meromorphic
connections.

A nice application, considered in [Sab00] for dimension two and due to Mochizuki
in higher dimension [Moc10], is the solution of the following conjecture of Kashiwara
concerning distribution solutions of holonomic systems of differential equations:

Corollary 2.4.1. Let M be a holonomic D-module on a complex analytic variety X.
Then Hom DX

(M ,DbX) is a holonomic module on the complex conjugate manifold,
and the higher Ext vanish.
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