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RELATIVE LOCAL SYSTEMS

Setting.
X, S: smooth connected cplx mflds, p ∶ X×S → S = projection.

Definition ((Coherent) S-local system F ).
Loc. const. sheaf of (coherent) p−1OS-modules.

∙ Given F , ∃G (coh.) OS-module s.t.

locally on X × S, F ≃ p−1G.

Can choose G = i−1x F , any x ∈ X, ix ∶ {x} ×S → X ×S.

∙ F ⟷ � ∶ �1(X, xo)→ AutOS(i
−1
xo
F )

Definition (Flat relative connection).
Coherent OX×S-mod. ℳ with

∇ ∶ℳ ⟶ Ω1X×S∕S ⊗ℳ, ∇2 = 0.

Theorem (Deligne (1970): RH correspondence by DRX×S∕S).

Flat rel. connections ⟷ coh. S-local systems

RELATIVE LOCAL SYSTEMS: EXAMPLES

∙ Integrable case:
∙ F = p−1OS ⊗ℂ q−1L, L loc. syst. of ℂ-vect. spaces on
X × S,
∙ ∇ lifts to ∇ ∶ℳ → Ω1X×S ⊗ℳ with ∇2 = 0.

∙ Non-abelian Hodge theory:
∙ X projective, S = ℂ∗, (M,∇) simple vect. bdle with flat

conn. on X
∙ Simpson-Corlette: ∃ (ℳ,∇) flat on X × ℂ∗∕ℂ∗, ℳ1 =M

and lims→0ℳs is a stable Higgs bundle with vanishing Chern
classes.
∙ Integrable case ⟷ (M,∇) var. of pol. cplx Hodge struct.

∙ Kernel of integral transforms - Fourier-Mukai:
∙ X = A: abelian var., S = A♯: moduli space of bdles with

flat conn. on A,
∙ℳ = P : Poincaré bdle on A × A♯ with rel. flat conn.

∙ Kernel of integral transforms - Mellin:
∙ S = ℂd ∋ (s1,… , sd), f1,… , fd ∶ Y → ℂ holom. functs.,
X = Y ∖

⋃
i f

−1
i (0)

∙ℳ = (OX×S, f−s◦dX×S∕S◦f s), F = p−1OS ⋅ f−s.



MOTIVATIONS/QUESTIONS

∙ ¿Category of ℂ-constructible sheaves onX of p−1OS-modules?
(S-loc. cst on each X� × S, w.r.t. a stratif. (X�) of X)

∙ ¿Corresponding notion of perversity?

∙ Possible application: construction of moduli spaces of per-
verse sheaves onX w.r.t. a stratif. (X�) ofX (work of Nitsure-
CS (1996), Nitsure (1999, 2004)).

∙ ¿Corresponding notion of regular holonomic relativeD -module?

∙ ¿Riemann-Hilbert correspondence?
PhD thesis of Liqing Wang (Chicago, 2008) Adv. H. Gillet.

∙ Possible applications:
∙ Properties of integral transform of a reg. hol. D -module by

means of local properties on X × S
(analogous to what is done for Fourier transform).
∙ Realize the RH corresp. as a morphism between moduli

spaces.

RELATIVE ℂ-CONSTRUCTIBLE/PERVERSE SHEAVES

∙ F ∈ Dbℂ-c(p
−1OS) ⇔ ∃ (X�) Whitney strat. of X s.t. ∀ �, j,

ℋ jF|X�×S is coherent S-locally constant.

∙ t-structure: (Db,⩽0ℂ-c (p
−1OS),D

b,⩾0
ℂ-c (p

−1OS))
Support and cosupport cond. use ix ∶ {x} × S → X × S.

∙⇝ Perv(p−1OS).

∙ Caveat: not stable by duality. ⇝ dual perverse t-struct. (Fiorot
& Monteiro Fernandes)

∙ F strictly perverse: if F and DF are perverse.

(Cosupp+) ℋ ki!{x}×ΣF = 0,
{
∀ x ∈ X�, ∀Σ ⊂ S,
∀ k < codimS Σ + dimX�.

Example. L coherent S-loc. cst sheaf on X × S.

L[dimX] strictly perverse ⟺ L is p−1OS-loc. free.



RELATIVE HOLONOMIC D -MODULES

Definition.
ℳ coh. DX×S∕S-module. ℳ is rel. holonomic if ∃Λ ⊂ T ∗X
conic Lagrangian s.t. Charℳ ⊂ Λ × S.

Example.
S = ℂd, f1,… , fd ∶ X → ℂ, M holonomic DX-mod. such that
M =M[f−1], m a local section of M ,

ℳ = DX[s1,… , sd] ⋅ mf s ⊂ M[s]f s.
Theorem (Ph. Maisonobe).
ℳ is DX[s1,… , sd]-holonomic.

Theorem.
∙ℳ ∈ Dbhol(DX×S∕S). Then pDRℳ, pSolℳ areS-ℂ-construct.

∙ℳ ∈ Modbhol(DX×S∕S). Then pSolℳ is perverse and pDRℳ
is dual perverse.

Theorem. ℳ ∈ Dbhol(DX×S∕S). Equiv:

∙ℳ = ℋ 0ℳ and is strict (i.e., OS-flat).

∙ Dℳ = ℋ 0Dℳ and is strict.
∙ pDRℳ is strictly perverse.

PRESERVATION OF COHERENCE AND HOLONOMY

Proper pushforward and pullback w.r.t. X.
Theorem (Kashiwara’s estimate, Schapira-Schneiders).
∙ℳ rel. holonomic on X × S,

∙ f ∶ X → Y proper, ⇝ f ∶ X × S → Y × S.

Assume that ℳ is f -good. Then Df∗ℳ is rel. holonomic.

Proposition (easy).
∙ℳ rel. holonomic on Y × S,

∙ f ∶ X → Y smooth, ⇝ f ∶ X × S → Y × S.

Then Df ∗ℳ is rel. holonomic.

Problem. What if f not smooth?
Need a priori to restrict to some open subset of S depending onℳ.
Lack of a good theory of the Bernstein-Sato polynomial.

Proper pushforward and pullback w.r.t. S.
∙ � ∶ S → T , ⇝ � ∶ X × S → X × T .
∙ℳ rel. holonomic on X × S and �-good. Then R�∗ℳ is rel.

holonomic.
∙ℳ rel. holonomic on X × T and �-good. Then L�∗ℳ is rel.

holonomic.



RELATIVE REGULARITY

For each s ∈ S, is ∶ X × {s} → X × S.
Definition (Regularity). ℳ ∈ Dbhol(DX×S∕S).

ℳ is regular if ∀ s ∈ S, Li∗sℳ has regular DX-cohomologies.

Examples.
∙ N a regular holonomicDX×S-module withChar(N )⊂Λ × T ∗S,
Λ ⊂ T ∗X Lagrangian. Let ℳ ⊂ N be a coherent DX×S∕S-
submodule of N . Then ℳ is rel. regular holonomic.
∙ If ℳ comes from a regular twistor D -module, then ℳ is rel.

regular holonomic. (Probably true, I did not check.)
∙ f ∶ X → S = ℂd, D =

⋃
i f

−1
i (0), M = M(∗D) regular

holonomic DX-module
⇝ then M[s]f s is rel. regular holonomic.

Proposition.
∙Modrhol(DX×S∕S) is stable by sub-quotient in Modcoh(DX×S∕S)
∙ Dbrhol(DX×S∕S) is a full triangulated subcategory of Dbcoh(DX×S∕S)

which is stable by duality.

PRESERVATION OF REGULARITY

∙ f ∶ X → Y , ⇝ f ∶ X × S → Y × S
∙ � ∶ S → T , ⇝ � ∶ X × S → X × T

∙ℳ reg. holonomic on X × S and f - or �-good,
∙ f proper ⟹ Df∗ℳ reg. holonomic on Y × S (standard),
∙ � projective ⟹ R�∗ℳ reg. holonomic on X ×T (a little

tricky).
∙ℳ reg. holonomic on X × T ⟹ L�∗ℳ reg. holonomic on
X × S (obvious).

Theorem.
ℳ reg. holonomic on Y ×S ⟹ Df ∗ℳ reg. holonomic onX×S.

The proof relies on properties of Deligne’s canonical meromorphic
extension.



RELATIVE DX×S∕S-MODULES OF D-TYPE

∙ (X,D): complex manifold with a ncd. j ∶ X ∖D → X.
∙ F : coherent S-locally constant sheaf on (X ∖D) × S,
∙ EF = (O(X∖D)×S ⊗p−1OS F , d(X∖D)×S∕S ⊗ Id)
∙ F = ℋ 0DREF
∙ notion of moderate growth (loc. uniformly w.r.t. S)
∙ Deligne’s extension ẼF ⊂ j∗EF : moderate growth condition

in local poly-sectors.

Definition (D-type). A reg. holonomic DX×S∕S-module ℳ is of
D-type on (X,D)×S ifℳ =ℳ(∗D) andℳ smooth on (X ∖D) × S
(i.e., char. variety contained in the zero section of T ∗(X ∖D) ×S).
Theorem.
∙ For any F , ẼF is of D-type on (X,D) × S.

∙ Conversely,

ℳ of D-type ⟹ ℳ ≃ ẼF , with F = ℋ 0DRℳ|(X∖D)×S.

Main argument obtained when F is p−1OS-locally free. Reduction
to this case by means of base changes (flattening theorem).
⇝ need preservation of regularity by L�∗ and R�∗.

RELATIVE RH CORRESPONDENCE

Theorem (Fiorot, Monteiro Fernandes, CS).
(Assume dimS = 1). The functor

pSol ∶ Dbrhol(DX×S∕S)⟶ Dbℂ-c(p
−1OS)

is an equivalence of categories, having

RHS ∶ Dbℂ-c(p
−1OS)⟶ Dbrhol(DX×S∕S)

as a quasi-inverse functor.

∙ If F is locally constant,

RHS(F ) = Rℋomp−1OS(F ,OX×S)[dimX]

≃ D′F ⊗p−1OS OX×S[dimX]
satisfies pSol(RHS(F )) ≃ F .
∙ Near the singularities of F ∈ Dbℂ-c(p

−1OS), want to consider
solutions with moderate growth along any closed subset ofX.
∙⇝ can only consider closed X-subanalytic subsets.
∙⇝ work on the subanalytic site and define on it the “sheaf”

of holomorphic functions with moderate growth along any
closed X-subanalytic subset (Kashiwara-Schapira).



RELATIVE RH CORRESPONDENCE

∙ Work on Xsa × S (Monteiro Fernandes & Prelli)
∙ �S ∶ X × S → Xsa × S,
∙ O t,SX×S: X-tempered holomorphic “functions”.

Definition (of RHS, similar to Kashiwara’s RH).

RHS(F ) = �−1S Rℋom�S∗p−1OS(�S∗F ,O
t,S
X×S)[dimX].

Main points for the theorem:

∙ Check good behaviour ofRHS w.r.t. pullback and proper push-
forward by f ∶ X → Y and � ∶ S → T .
∙ F local system on (X ∖D) × S (D = ncd in X), then
∙ RHS(j!D′F ) ≃ ẼF (relative Deligne’s merom. exension),
∙ pSol(ẼF ) ≃ j!D′F .


