An overview on the relative Riemann-Hilbert correspondence

Claude Sabbah Joint work with Luisa Fiorot (Padova) and Teresa Monteiro Fernandes (Lisbon)

Centre de Mathématiques Laurent Schwartz CNRS, École polytechnique, Institut Polytechnique de Paris Palaiseau, France

RELATIVE LOCAL SYSTEMS

Setting.

X, *S*: smooth connected cplx mflds, $p : X \times S \rightarrow S =$ projection.

Definition ((Coherent) *S***-local system** *F***).**

Loc. const. sheaf of (coherent) $p^{-1}\mathcal{O}_S$ -modules.

• Given F, $\exists G$ (coh.) \mathcal{O}_S -module s.t.

locally on $X \times S$, $F \simeq p^{-1}G$.

Can choose $G = i_x^{-1} F$, any $x \in X$, $i_x : \{x\} \times S \hookrightarrow X \times S$.

• $F \longleftrightarrow \rho : \pi_1(X, x_o) \to \operatorname{Aut}_{\mathcal{O}_S}(i_{x_o}^{-1}F)$

Definition (Flat relative connection).

Coherent $\mathcal{O}_{X \times S}$ -mod. \mathcal{M} with

 $\nabla : \mathscr{M} \longrightarrow \Omega^1_{X \times S/S} \otimes \mathscr{M}, \quad \nabla^2 = 0.$

Theorem (Deligne (1970): RH correspondence by $DR_{X \times S/S}$ **).**

Flat rel. connections \leftrightarrow *coh. S-local systems*

RELATIVE LOCAL SYSTEMS: EXAMPLES

- Integrable case:
 - $F = p^{-1} \mathcal{O}_S \otimes_{\mathbb{C}} q^{-1}L$, *L* loc. syst. of \mathbb{C} -vect. spaces on $X \times S$,
 - ∇ lifts to ∇ : $\mathcal{M} \to \Omega^1_{X \times S} \otimes \mathcal{M}$ with $\nabla^2 = 0$.
- Non-abelian Hodge theory:
 - X projective, $S = \mathbb{C}^*$, (M, ∇) *simple* vect. bdle with flat conn. on X
 - Simpson-Corlette: $\exists (\mathcal{M}, \nabla)$ flat on $X \times \mathbb{C}^*/\mathbb{C}^*$, $\mathcal{M}_1 = M$ and $\lim_{s \to 0} \mathcal{M}_s$ is a stable Higgs bundle with vanishing Chern classes.
 - Integrable case $\longleftrightarrow (M, \nabla)$ var. of pol. cplx Hodge struct.
- Kernel of integral transforms Fourier-Mukai:
 - X = A: abelian var., $S = A^{\sharp}$: moduli space of bdles with flat conn. on A,
 - $\mathcal{M} = \mathcal{P}$: Poincaré bdle on $A \times A^{\sharp}$ with rel. flat conn.
- Kernel of integral transforms Mellin:
 - $S = \mathbb{C}^d \ni (s_1, \dots, s_d), f_1, \dots, f_d : Y \to \mathbb{C}$ holom. functs., $X = Y \setminus \bigcup_i f_i^{-1}(0)$ • $\mathcal{M} = (\mathcal{O}_{X \times S}, f^{-s} \circ d_{X \times S/S} \circ f^s), \quad F = p^{-1} \mathcal{O}_S \cdot f^{-s}.$

MOTIVATIONS/QUESTIONS

- ¿Category of C-constructible sheaves on X of $p^{-1}\mathcal{O}_S$ -modules? (S-loc. cst on each $X_a \times S$, w.r.t. a stratif. (X_a) of X)
- ¿Corresponding notion of perversity?
- Possible application: construction of moduli spaces of perverse sheaves on X w.r.t. a stratif. (X_α) of X (work of Nitsure-CS (1996), Nitsure (1999, 2004)).
- ¿Corresponding notion of *regular holonomic* relative D-module?
- ¿Riemann-Hilbert correspondence? PhD thesis of Liqing Wang (Chicago, 2008) Adv. H. Gillet.
- Possible applications:
 - Properties of integral transform of a reg. hol. \mathscr{D} -module by means of *local properties* on $X \times S$

(analogous to what is done for Fourier transform).

• Realize the RH corresp. as a *morphism* between moduli spaces.

RELATIVE C-CONSTRUCTIBLE/PERVERSE SHEAVES

- $F \in \mathsf{D}^{\mathsf{b}}_{\mathbb{C}-\mathsf{c}}(p^{-1}\mathcal{O}_S) \Leftrightarrow \exists (X_{\alpha})$ Whitney strat. of X s.t. $\forall \alpha, j$, $\mathscr{H}^{j}F_{|X_{\alpha}\times S}$ is *coherent S-locally constant*.
- t-structure: $(\mathsf{D}^{\mathrm{b},\leqslant 0}_{\mathbb{C}-\mathrm{c}}(p^{-1}\mathcal{O}_S), \mathsf{D}^{\mathrm{b},\geqslant 0}_{\mathbb{C}-\mathrm{c}}(p^{-1}\mathcal{O}_S))$ Support and cosupport cond. use $i_x : \{x\} \times S \hookrightarrow X \times S$.
- \rightarrow Perv $(p^{-1}\mathcal{O}_S)$.
- *F strictly perverse*: if *F* and *DF* are perverse.

(Cosupp+) $\mathscr{H}^{k}i^{!}_{\{x\}\times\Sigma}F = 0, \begin{cases} \forall x \in X_{\alpha}, \ \forall \Sigma \subset S, \\ \forall k < \operatorname{codim}_{S}\Sigma + \dim X_{\alpha}. \end{cases}$

Example. *L* coherent *S*-loc. cst sheaf on $X \times S$.

 $L[\dim X]$ strictly perverse $\iff L$ is $p^{-1}\mathcal{O}_S$ -loc. free.

Definition.

 \mathscr{M} coh. $\mathscr{D}_{X \times S/S}$ -module. \mathscr{M} is *rel. holonomic* if $\exists \Lambda \subset T^*X$ conic Lagrangian s.t. Char $\mathscr{M} \subset \Lambda \times S$.

Example.

 $S = \mathbb{C}^d, f_1, \dots, f_d : X \to \mathbb{C}, M$ holonomic \mathcal{D}_X -mod. such that $M = M[f^{-1}], m$ a local section of M, $\mathcal{M} = \mathcal{D}_X[s_1, \dots, s_d] \cdot mf^s \subset M[s]f^s.$

Theorem (Ph. Maisonobe).

 \mathcal{M} is $\mathcal{D}_X[s_1, \ldots, s_d]$ -holonomic.

Theorem.

- $\mathcal{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{hol}}(\mathcal{D}_{X \times S/S})$. Then ^pDR \mathcal{M} , ^pSol \mathcal{M} are S- \mathbb{C} -construct.
- $\mathcal{M} \in \mathsf{Mod}^{\mathsf{b}}_{\mathsf{hol}}(\mathcal{D}_{X \times S/S})$. Then ${}^{\mathsf{p}}\mathsf{Sol} \,\mathcal{M}$ is perverse and ${}^{\mathsf{p}}\mathsf{DR} \,\mathcal{M}$ is dual perverse.

Theorem. $\mathcal{M} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathcal{D}_{X \times S/S})$. Equiv:

- $\mathcal{M} = \mathcal{H}^0 \mathcal{M}$ and is strict (i.e., \mathcal{O}_S -flat).
- $D\mathcal{M} = \mathcal{H}^0 D\mathcal{M}$ and is strict.
- ^pDR *M* is strictly perverse.

PRESERVATION OF COHERENCE AND HOLONOMY

Proper pushforward and pullback w.r.t. X. Theorem (Kashiwara's estimate, Schapira-Schneiders).

- \mathcal{M} rel. holonomic on $X \times S$,
- $f : X \to Y$ proper, $\twoheadrightarrow f : X \times S \to Y \times S$.

Assume that \mathcal{M} is f-good. Then ${}_{\mathsf{D}}f_*\mathcal{M}$ is rel. holonomic.

Proposition (easy).

- \mathcal{M} rel. holonomic on $Y \times S$,
- $f : X \to Y$ smooth, $\rightsquigarrow f : X \times S \to Y \times S$.

Then ${}_{\mathsf{D}}f^*\mathcal{M}$ is rel. holonomic.

Problem. What if *f* not smooth?

Need a priori to restrict to some open subset of S depending on \mathcal{M} . Lack of a good theory of the Bernstein-Sato polynomial.

Proper pushforward and pullback w.r.t. S.

- π : $S \to T$, $\Rightarrow \pi$: $X \times S \to X \times T$.
- \mathcal{M} rel. holonomic on $X \times S$ and π -good. Then $R\pi_* \mathcal{M}$ is rel. holonomic.
- \mathcal{M} rel. holonomic on $X \times T$ and π -good. Then $L\pi^* \mathcal{M}$ is rel. holonomic.

RELATIVE REGULARITY

For each $s \in S$, $i_s : X \times \{s\} \hookrightarrow X \times S$.

Definition (Regularity). $\mathcal{M} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathcal{D}_{X \times S/S}).$

 \mathcal{M} is regular if $\forall s \in S$, $Li_s^* \mathcal{M}$ has regular \mathcal{D}_X -cohomologies.

Examples.

- \mathcal{N} a regular holonomic $\mathcal{D}_{X \times S}$ -module with $\operatorname{Char}(\mathcal{N}) \subset \Lambda \times T^*S$, $\Lambda \subset T^*X$ Lagrangian. Let $\mathcal{M} \subset \mathcal{N}$ be a coherent $\mathcal{D}_{X \times S/S}$ submodule of \mathcal{N} . Then \mathcal{M} is rel. regular holonomic.
- If *M* comes from a regular twistor *D*-module, then *M* is rel. regular holonomic. (Probably true, I did not check.)
- $f : X \to S = \mathbb{C}^d$, $D = \bigcup_i f_i^{-1}(0)$, M = M(*D) regular holonomic \mathcal{D}_X -module
 - \rightsquigarrow then $M[s]f^s$ is rel. regular holonomic.

Proposition.

- $Mod_{rhol}(\mathcal{D}_{X \times S/S})$ is stable by sub-quotient in $Mod_{coh}(\mathcal{D}_{X \times S/S})$
- $\mathsf{D}^{\mathsf{b}}_{\mathsf{rhol}}(\mathscr{D}_{X \times S/S})$ is a full triangulated subcategory of $\mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(\mathscr{D}_{X \times S/S})$ which is stable by duality.

PRESERVATION OF REGULARITY

- $f : X \to Y$, $\Rightarrow f : X \times S \to Y \times S$ • $\pi : S \to T$, $\Rightarrow \pi : X \times S \to X \times T$
- \mathcal{M} reg. holonomic on $X \times S$ and f or π -good,
 - f proper $\implies {}_{\mathrm{D}}f_*\mathcal{M}$ reg. holonomic on $Y \times S$ (standard),
 - π projective $\implies R\pi_* \mathcal{M}$ reg. holonomic on $X \times T$ (a little tricky).
- \mathcal{M} reg. holonomic on $X \times T \implies L\pi^* \mathcal{M}$ reg. holonomic on $X \times S$ (obvious).

Theorem.

 \mathcal{M} reg. holonomic on $Y \times S \implies {}_{\mathrm{D}}f^*\mathcal{M}$ reg. holonomic on $X \times S$.

The proof relies on properties of Deligne's canonical meromorphic extension.

RELATIVE $\mathscr{D}_{X \times S/S}$ -MODULES OF D-TYPE

- (X, D): complex manifold with a ncd. $j : X \setminus D \hookrightarrow X$.
- *F*: coherent *S*-locally constant sheaf on $(X \setminus D) \times S$,
- $E_F = (\mathcal{O}_{(X \setminus D) \times S} \bigotimes_{p^{-1} \mathcal{O}_S} F, \mathbf{d}_{(X \setminus D) \times S/S} \bigotimes \mathrm{Id})$ • $F = \mathscr{H}^0 \operatorname{DR} E_F$
- notion of *moderate growth* (loc. uniformly w.r.t. *S*)
- Deligne's extension $\widetilde{E}_F \subset j_*E_F$: moderate growth condition in local poly-sectors.

Definition (D-type). A reg. holonomic $\mathcal{D}_{X \times S/S}$ -module \mathcal{M} is of D-type on $(X, D) \times S$ if $\mathcal{M} = \mathcal{M}(*D)$ and \mathcal{M} smooth on $(X \setminus D) \times S$ (i.e., char. variety contained in the zero section of $T^*(X \setminus D) \times S$). **Theorem.**

- For any F, \tilde{E}_F is of D-type on $(X, D) \times S$.
- Conversely,

 $\mathcal{M} \text{ of } D\text{-type} \implies \mathcal{M} \simeq \widetilde{E}_F, \text{ with } F = \mathcal{H}^0 \operatorname{DR} \mathcal{M}_{|(X \setminus D) \times S}.$

Main argument obtained when F is $p^{-1}\mathcal{O}_S$ -locally free. Reduction to this case by means of base changes (flattening theorem). \Rightarrow need preservation of regularity by $L\pi^*$ and $R\pi_*$.

RELATIVE RH CORRESPONDENCE

Theorem (Fiorot, Monteiro Fernandes, CS).

(Assume dim S = 1). The functor

^pSol :
$$\mathsf{D}^{\mathsf{b}}_{\mathsf{rhol}}(\mathscr{D}_{X \times S/S}) \longrightarrow \mathsf{D}^{\mathsf{b}}_{\mathbb{C}^{-\mathsf{c}}}(p^{-1}\mathscr{O}_S)$$

is an equivalence of categories, having

$$\operatorname{RH}^{S} : \mathsf{D}^{\mathrm{b}}_{\mathbb{C}-\mathrm{c}}(p^{-1}\mathcal{O}_{S}) \longrightarrow \mathsf{D}^{\mathrm{b}}_{\operatorname{rhol}}(\mathcal{D}_{X \times S/S})$$

as a quasi-inverse functor.

• If *F* is locally constant,

$$RH^{S}(F) = R\mathscr{H}om_{p^{-1}\mathscr{O}_{S}}(F, \mathscr{O}_{X \times S})[\dim X]$$
$$\simeq D'F \otimes_{p^{-1}\mathscr{O}_{S}} \mathscr{O}_{X \times S}[\dim X]$$

satisfies ${}^{p}Sol(RH^{S}(F)) \simeq F$.

- Near the singularities of $F \in D^{b}_{\mathbb{C}-c}(p^{-1}\mathcal{O}_{S})$, want to consider solutions with moderate growth along *any* closed subset of *X*.
- \rightsquigarrow can only consider closed *X*-subanalytic subsets.
- work on the subanalytic site and define on it the "sheaf" of holomorphic functions with moderate growth along any closed *X*-subanalytic subset (Kashiwara-Schapira).

RELATIVE RH CORRESPONDENCE

- Work on $X_{sa} \times S$ (Monteiro Fernandes & Prelli)
- ρ_S : $X \times S \to X_{sa} \times S$,
- $\mathcal{O}_{X \times S}^{t,S}$: X-tempered holomorphic "functions".

Definition (of RH^S, similar to Kashiwara's RH).

 $\mathrm{RH}^{S}(F) = \rho_{S}^{-1} \operatorname{R}\mathscr{H}om_{\rho_{S*}p^{-1}\mathscr{O}_{S}}(\rho_{S*}F, \mathscr{O}_{X\times S}^{\mathfrak{t},S})[\dim X].$

Main points for the theorem:

- Check good behaviour of \mathbb{RH}^S w.r.t. pullback and proper pushforward by $f : X \to Y$ and $\pi : S \to T$.
- *F* local system on $(X \setminus D) \times S$ (D = ncd in X), then
 - $\operatorname{RH}^{S}(j_{!}D'F) \simeq \widetilde{E}_{F}$ (relative Deligne's merom. exension),
 - ${}^{\mathrm{p}}\mathrm{Sol}(\widetilde{E}_F) \simeq j_! D' F.$