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FILTERED HOLONOMIC D-MODULES
IN DIMENSION ONE

KYOTO, DECEMBER 1ST-2ND, 2016

Claude Sabbah

Abstract. Holonomic D-modules on the affine complex line offer a simple prototype
of various properties also occurring in higher dimensions. The interesting holonomic
D-modules occurring in Algebraic Geometry often come equipped with a natural
filtration. In the first lecture, we will focus on filtered holonomic D-modules from
various points of view.

In the second lecture, we focus on rigid irreducible holonomic D-modules on the
affine line. Generic (possibly confluent) hypergeometric differential equations give
naturally rise to examples of such objects. After having explained the Katz algorithm
(respectively the Arinkin-Deligne algorithm) for reducing the regular (respectively
possibly irregular) such D-modules to ones having generic rank one, we will consider
the behaviour of Hodge (respectively Deligne) filtrations along the algorithm (joint
work with M. Dettweiler) and we will state a result in the irregular case, like a
confluent hypergeometric differential equation.
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LECTURE 1

THE DELIGNE FILTRATION

Summary. In the first lecture, we start from a filtered regular holonomic
D-module M underlying a Hodge module, and we explain the construction an
some properties of the associated Deligne filtration on the D-module obtained
from M by applying an exponential twist. This is strongly related to consider-
ing the Laplace transform of M . We will give motivations for considering such
a filtration.

Notation. Let t be a coordinate on the affine line A1, with ring C[t] = Γ(A1,OA1). Let

Σ ⊂ A1 be a finite set, and set j : U = A1 r Σ ↪→ A1. We identify O(U) with C[t, ∗Σ]

of rational functions of t with poles in Σ. Given an O(U)-module V , we denote by

j∗V the module V regarded as a C[t]-module.

Let C[t]〈∂t〉 be the ring of differential operators with polynomial coefficients. A left

C[t]〈∂t〉-module is nothing but an C[t]-module with a connection. We have a similar

property for O(U)〈∂t〉-modules. For such a module V , j∗V as defined above is a

C[t]〈∂t〉-module. For an operator P =
∑d
i=1 ai(t)∂

i
t ∈ C[t]〈∂t〉 with ad 6= 0, we set

ordP =−d and F pC[t]〈∂t〉={P | ordP > p} (convention: ord(0)=−∞). This defines

a decreasing filtration.

The singularities of such a P are the roots of ad. We say that P is Fuchsian at

infinity if deg ai− i 6 deg ad− d for every i, and that P is Fuchsian at finite distance

if i− vc(ai) 6 d− vc(ad) for every i and every singularity c of P .

1.0. Motivations

Due to a theorem of Griffiths, classical Hodge theory and irregular singularities

are incompatible. Deligne (1984, see [Del07]) has proposed a framework enlarging

Hodge theory which is compatible with some irregular singularities. The goal of this

lecture is to explain this framework revisited.

1.1. A review of holonomic C[t]〈∂t〉-modules in one complex variable

A C[t]〈∂t〉-module M of finite type is holonomic if any element m is annihilated

by some nonzero differential operator P ∈ C[t]〈∂t〉, i.e., Pm = 0. It is said to have a
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regular singularity at infinity (resp. at finite distance) if for any m, P can be chosen

to be Fuchsian at infinity (resp. at finite distance).

Some properties.

(i) If V is a free O(U)-module of finite rank with connection, then j∗V is holonomic.

(ii) For any holonomic M there exists a finite set Σ such that M|U :=O(U)⊗M is

free of finite rank, but M may be different of j∗M|U .

(iii) There is a duality (contravariant) functor M 7→ M∨, so that (M∨)|U is the

dual free O(U)-module HomO(U)(M|U ,O(U)) with the dual connection.

(iv) Given a free O(U)-module with connection V , there is a unique C[t]〈∂t〉-
submodule of j∗V which has no quotient supported on a discrete set (in fact, on Σ).

We denote it by j!∗V . It is called the intermediate extension of V . It satisfies

(j!∗V )∨ ' j!∗(V ∨).

(v) There is a one-to-one correspondence between irreducible free O(U)-modules

with connection V and irreducible C[t]〈∂t〉-modules with singular set contained in Σ,

and not of the form C[t]〈∂t〉/C[t]〈∂t〉 · (t− c) for some c ∈ C. It is given by V 7→ j!∗V .

(vi) Given M holonomic, the exponential twist M ⊗Et is the C[t]-module M with

the action of ∂t changed as follows: ∂t(m ⊗ “et”) = (∂t + 1)m. It is also holonomic.

It satisfies (M ⊗ Et)∨ 'M∨ ⊗ E−t.

Examples.

(GM) (Gauss-Manin systems) X: smooth quasi-projective variety, f : X→A1,

complex Rf∗(Ω
•
X [τ ],d + τdf)[dimX]. The cohomology sheaves Mk

f are known to

be holonomic with regular singularity. The C[t]〈∂t〉-module structure is defined as

follows: the action of ∂t is induced by multiplication by −τ ; the action of t is induced

by t · ωkτk = fωkτ
k + kωkτ

k−1.

• If X is affine, then Mk
f = Hk+dimX(Ω•(X)[τ ],d + τdf).

• If f is projective, each Mk
f is known to be semi-simple (i.e., direct sum of irre-

ducible C[t]〈∂t〉-modules): this is provided by the decomposition theorem (M. Saito).

(Hyp) (Hypergeometric systems) Fix α1, . . . , αm, β1, . . . , βn ∈C, consider the hy-

pergeometric differential equation

Pα,β =
m∏
i=1

(t∂t − αi)− t
n∏
j=1

(t∂t − βj),

and set Hα,β := C[t]〈∂t〉/C[t]〈∂t〉 · Pα,β.

• If m = n, Hα,β has regular singularities at 0, 1,∞.

• If n < m, Hα,β has a regular singularity at ∞ and an irregular singularity at 0,

and vice-versa if n > m.

Assume that


αi − αi′ ∈ Z =⇒ αi = αi′ ,

βj − βj′ ∈ Z =⇒ βj = βj′ ,

αi − βj /∈ Z ∀ i, j.

Then (Beukers-Heckman, Katz) Hα,β is irreducible.
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Definition (De Rham cohomology and de Rham complex). If M is a C[t]〈∂t〉-module,

H−1
dRM and H0

dRM are respectively the kernel and cokernel of the complex

p
DRM :=

{
0 −→M

∂t−−−→M
•
−→ 0

}
.

If M is holonomic, Hj
dRM are finite dimensional vector spaces.

1.2. Laplace transformation

We consider the involution C[t]〈∂t〉
∼−→ C[t]〈∂t〉 given by t 7→ ∂t, ∂t 7→ −t. Iterating

it twice gives the involution ι = − Id. It is clearer to change the name of the variables

and regard it as an isomorphism C[τ ]〈∂τ 〉
∼−→ C[t]〈∂t〉, τ 7→ −∂t, ∂τ 7→ t.

Given a C[t]〈∂t〉-module M , its Laplace transform FM is the C-vector space M

endowed with the C[τ ]〈∂τ 〉-structure induced by the above correspondence. We thus

have F(FM) = ι∗M .

Some properties. Assume that M is an holonomic C[t]〈∂t〉-module.

(1) Then, so is FM .

(2) We have F(M∨) ' ι∗(FM)∨.

(3) FM can be recovered by an “integral formula”. Set M [τ ] = C[τ ]⊗CM with its

natural structure of C[t, τ ]〈∂t, ∂τ 〉-module, and denote byM [τ ]⊗Etτ the exponentially

twisted module. Then the C[τ ]〈∂τ 〉-linear morphism

M [τ ]⊗ Etτ ∂t−−−→M [τ ]⊗ Etτ

is injective, and its cokernel is identified with FM as a C[τ ]〈∂τ 〉-module, by means of

the morphism induced by
∑
k>0mkτ

k 7→
∑
k(−∂t)kmk.

(4) Note also that the exponentially twisted module M⊗Et is the cokernel of

M [τ ]⊗ Etτ τ − 1−−−−−→M [τ ]⊗ Etτ .

Similarly, the restriction at τ = 1 of FM , that is, the complex

FM
τ − 1−−−−−→ FM

•

is identified with
p
DR(M ⊗ Et).

(5) If M has a regular singularity at∞, then FM has a regular singularity at τ = 0

and no other singularity at finite distance. In particular, τ = 1 is not a singularity,

and therefore Hi
dRM = 0 for j 6= 0.

1.3. Filtered holonomic D-modules

Most holonomic C[t]〈∂t〉-modules coming from geometry (e.g. given by a Picard-

Fuchs equation) come naturally equipped with a coherent (decreasing) filtration F •M .

Definition. A coherent filtration on M is an decreasing filtration F •M bounded from

below by C[t]-modules of finite type, such that

F kC[t]〈∂t〉 · F `M ⊂ F `+kM, with equality for any ` 6 `o.
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Example.
(GM) We can filter the complex (Ω•X [τ ],d + τdf) by setting

F p(Ω
•
X [τ ],d + τdf) = (Ω

•
X [τ ]6−p+•,d + τdf).

For p > 0, F p(Ω•X [τ ],d + τdf) starts in degree p with ΩpX . If f is proper, this gives

rise to a coherent filtration on each Mk
f .

1.4. Laplace transformation and coherent filtrations

Let (M,F •M) be a holonomic C[t]〈∂t〉-module equipped with a coehernt filtration.

By the identification of the C-vector spaces M = FM , we can regard FkM as a C[∂τ ]-

submodule of FM . In this way, F •M does not form, however, a coherent filtration

of FM as a C[τ ]〈∂τ 〉-module. We will associate to F •M another object, called the

Brieskorn lattice.(1)

We denote by G the holonomic C[t]〈∂t〉-module C[∂t, ∂
−1
t ]⊗C[∂t] M . If we identify

C[t]〈∂t〉 with C[τ ]〈∂τ 〉 by the Laplace correspondence t 7→ ∂τ , ∂t 7→ −τ , we also

regard G as a holonomic C[τ ]〈∂τ 〉-module on which the multiplication by τ is bijective.

It is therefore also a C[τ, τ−1]-module. We will denote by l̂oc the natural morphism

M → G.

The Brieskorn lattice G
(F )
0 of the filtration F •M is defined as the saturation of the

filtration by the operator ∂−1
t , that is,

(∗) G
(F )
0 :=

∑
j

∂jt l̂oc(F jM) ⊂ G.

It is naturally a C[∂−1
t ]-module (equivalently, a C[θ]-module, with θ = τ−1). More-

over, we have

t · ∂jt l̂oc(F jM) ⊂ ∂jt l̂oc(tF jM) + ∂j−1
t l̂oc(F jM) ⊂ ∂jt l̂oc(F jM) + ∂j−1

t l̂oc(F j−1M),

hence tG
(F )
0 ⊂ G

(F )
0 and so θ2∂θG

(F )
0 ⊂ G

(F )
0 . In other words, the meromorphic

connection on G induces a connection with a pole of order two on G
(F )
0 .

We can compute G
(F )
0 by only using one generating term of the filtration. Indeed,

let po be an index of generation, so that F po−`M = F poM + · · · + ∂`tF
poM for any

` > 0. Then we have

(∗∗) G
(F )
0 = ∂pot

∑
j>0

∂−jt l̂oc(F poM).

Let us check that (∗) = (∗∗). Let us write (∗) as

G
(F )
0 = ∂pot

∑
j

∂jt l̂oc(F po+jM).

Firstly, for j > 0, we have

∂jt l̂oc(F po+jM) = l̂oc(∂jtF
po+jM) ⊂ l̂oc(F poM),

(1)The name refers to an object considered by Brieskorn in [Bri70] in his study of isolated critical

points of holomorphic functions. The terminology “lattice”, meaning a free C[τ−1]-module of finite

rank which generates G, will be justified in the proposition at the end of this section.
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so we can also write (∗) as

G
(F )
0 = ∂pot

∑
`>0

∂−`t l̂oc(F po−`M) = ∂pot
∑
`>0

∂−`t
[
l̂oc(F poM) + · · ·+ ∂`t l̂oc(F poM)

]
= ∂pot

∑
j>0

∂−jt l̂oc(F poM).

Proposition. Assume M has a regular singularity at infinity and F •M is a coherent

filtration of M . Then the Brieskorn lattice G0 = G
(F )
0 is a lattice.

Proof. One checks the assertion on M of the form M = C[t]〈∂t〉/C[t]〈∂t〉 ·P for some

algebraic differential operator with a regular singularity at infinity and the coherent

filtration on M naturally induced by F •C[t]〈∂t〉. Then one deduces the general case

by comparing Brieskorn lattices for various filtrations.

1.5. The irregular Hodge filtration on H0
dR(M ⊗ Et)

We assume that M has only regular singularities (at infinity is enough). For sim-

plicity, we assume that the eigenvalues of the monodromy at infinity have absolute

value equal to one. In particular, G/(θ−1)G = H0
dR(M ⊗Et), and Hi

dR(M ⊗Et) = 0

for i 6= 0. Since the connection on G has a regular singularity at τ = 0, we can

consider, for every β ∈ R, the Deligne extension V βG, that is, the C[τ ]-submodule

of G which satisfies the following properties:

(1) C[τ, τ−1]⊗C[τ ] V
βG = G,

(2) τ∂τV
βG ⊂ V βG,

(3) the residue of the connection on V βG has its eigenvalues in (β−1, β], i.e., there

exist νγ ∈ N such that
∏
γ∈(β−1,β](τ∂τ − γ)νγ vanishes on V βG/τ · V βG.

This defines an decreasing filtration of G indexed by R, with a finite modZ index

set. We have V β+1G = τV βG. We obtain a bundle G β
0 on P1 by gluing V βG and G0

by means of the isomorphism

C[τ, τ−1]⊗C[τ ] V
βG = G = C[θ, θ−1]G0.

We have Γ(P1,G β
0 ) = V βG ∩G0, where the intersection is taken in G.

Definition (Irregular Hodge filtration). The irregular Hodge filtration is the decreasing

filtration indexed by R naturally induced by V λ ∩G0 on H := G0/(θ − 1)G0:

FλirrH := (V λ ∩G0)
/

(V λ ∩G0) ∩ (θ − 1)G0.

A trivializing lattice for G0 is a free C[τ ]-lattice Go of G (i.e., C[τ ]-submodule

of maximal rank) such that the bundle G o
0 on P1 obtained by gluing G0 and Go is

trivializable. Such lattices do exist (any basis of G0 as a C[θ]-module generates such

a C[τ ]-module). Then Γ(P1,G o
0 ) = Go ∩G0 is a finite-dimensional C-vector space of

dimension rkG0 and we have

G0 =
⊕
j>0

θj(Go ∩G0), Go =
⊕
j>0

τ j(Go ∩G0), G =
⊕
j∈Z

θj(Go ∩G0).



6 LECTURE 1. THE DELIGNE FILTRATION

Definition (V -adapted trivializing lattice). We say that Go is a V -adapted trivializing

lattice for G0 if it moreover satisfies the following property. For every β ∈ R,

V βG ∩G0 =
⊕
j>0

θj(V β+jG ∩Go ∩G0) =
⊕
j>0

τ−j(V β+jG ∩Go ∩G0).

Proposition (J.-D. Yu).

(1) There exists a V -adapted trivializing lattice for G0.

(2) For a trivializing lattice Go, we have natural identifications of filtered vector

spaces (induced by G0 → G0/(θ − 1)G0)

(Go ∩G0, V
•
G ∩Go ∩G0)

∼−→ (H,F
•
irrH).

Some properties. By using V -adapted trivializing lattices, one can show the good

behaviour of F •irr with respect to tensor product and duality of G0. Such properties

go back to the work of Varchenko for isolated hypersurface singularities.

1.6. The Deligne filtration

We consider the inclusion i : A1 ↪→ P1. We now consider DP1-modules. If M is

a C[t]〈∂t〉-module, it corresponds to a sheaf M of DA1-modules, and one can define

M̃ := i∗M, which is a sheaf of DP1-modules. We can also compute H0
dR(M ⊗Et) is a

sheaf-theoretical way: we have

H = H0
dR(M ⊗ Et) = H0(P1,

p
DR(M̃⊗ Et)).

We are now interested in finding a filtration F •Del(M̃⊗ Et) which coincides with F •M

on C, such that F •irrH is obtained from F •(M̃ ⊗ Et) by the standard procedure: the

latter filtration can be used to filter the de Rham complex

FλDel
p
DR(M̃⊗ Et) =

{
0 −→ Fλ+1

Del (M̃⊗ Et)
∇−−−→ Ω1

P1 ⊗ FλDel(M̃⊗ Et) −→ 0
}
,

and by taking the filtration

FλDelH
0(P1,

p
DR(M̃⊗ Et))

:= image
[
H0(P1, FλDel

p
DR(M̃⊗ Et))→H0(P1,

p
DR(M̃⊗ Et))

]
.

Deligne [Del07] has considered this question when trying to define an irregular

Hodge theory. The problem of extending the filtration is a local problem at infinity,

so we will first work in the analytic setting of a disc X with coordinate x and a free

OX [1/x]-module M̃ of finite rank with a connection having a regular singularity at

x = 0 and no other singularity.

As a preliminary, let us consider the localization problem for coherent filtrations.

Assume that M̃ = OX [1/x] ⊗OX N for some regular holonomic DX -module N and

that N is endowed with a coherent filtration F •N. How to obtain a natural coherent

filtration on M̃ which “extends” F •N. The point is that localizing each term of the

filtration does not lead to a coherent filtration. The following construction is used in

Hodge module theory. We consider the Deligne filtration V •N. The natural morphism



1.6. THE DELIGNE FILTRATION 7

N → M̃ induces an isomorphism V βN ' V βM̃ for β > −1 and V −1M̃ = x−1V 0N.

Moreover, M̃ = DX · V −1M. Then one sets

F pV βM̃ =

{
F pN ∩ V βM̃ if β > −1,

x−1F pV 0N if β = 0.

Then we extend this as F pM̃ :=
∑
j>0 ∂

j
xF

p+jV −1M̃. This usually gives the desired

coherent filtration (with some assumptions).

The construction of the Deligne filtration has some similarity. We identify M̃⊗E1/x

with M̃ as an OX -module, but with the twisted DX -structure, i.e., ∂x acts as ∂x−x−2.

For each λ ∈ R we set

FλDelM̃ :=
∑
k>0

(∂x − x−2)kx−1F dλe+kV λ−dλeM̃.

We note that λ− dλe ∈ (−1, 0].

Theorem. Assume that (M,F •M) underlies a mixed Hodge module. Then

FλDelH
0
dR(M ⊗ Et) = FλirrH

0
dR(M ⊗ Et)

and we have the E1-degeneration property: the map

H0(P1, FλDel
p
DR(M̃⊗ Et)) −→H0(P1,

p
DR(M̃⊗ Et))

is injective.

Idea of proof. Let us fix β ∈ (−1, 0] and consider the filtration F p+βDel indexed by Z.

It is enough to check the statement of the theorem for every fixed β. It is then usual

ton consider the Rees C[z]-module

RFβDel
(M̃⊗ Et) :=

⊕
p
F p+βDel (M̃⊗ Et) · z−p

and its de Rham complex. The E1-degeneration property is equivalent to the property

that the complex H0(P1,
p
DR(RFβDel

(M̃ ⊗ Et))) is strict, i.e., C[z]-flat, and Hk = 0

for k 6= 0.

For that purpose, we introduce the Rees module RFM and its Laplace transform
F(RFM) that we describe by an integral formula as in §1.2(3) starting from a module

that we denote FM and integrating along t. The latter object has a V -filtration along

τ = 0 in a suitable sense, and the main idea is to express RFβDel
(M̃⊗ Et) in terms of

the V -filtration V β+•FM . In particular we find

RFβDel
(M̃⊗ Et) ' V βFM /(τ − z)V βFM .

The Hodge condition on (M,F •M) is used by means of the property that M̃ ⊗ Et

underlies then a mixed twistor D-module, hence FM also, and its V -filtration along

τ = 0 behaves strictly with respect to the projection to the τ -line.



LECTURE 2

RIGID IRREDUCIBLE HOLONOMIC D-MODULES

Summary. In the second lecture, we focus on rigid irreducible vector bundles
with connection on a Zariski open set U of P1. We review results of Katz and
Bloch-Esnault, and give a sketch of proof of the Katz-Arinkin-Deligne algorithm
which reduces their study to rank-one objects by applying a sequence of simple
functors. We then consider their Hodge properties, firstly in the regular case
(Deligne, Simpson, Dettweiler-CS) and then in the possibly irregular case by
means of the irregular Hodge filtration considered in the first lecture.

Notation. Now we consider U as an open subset of P1 and k : U ↪→ P1 denotes

the inclusion. The sheaf DP1 (with respect to the Zariski topology) is defined by

considering differential operators on affine charts and gluing as usual. The notion of

holonomic DP1 -module is defined as in the previous lecture, in each affine chart.

Let M be an holonomic DP1 -module. Then there exists a nonempty finite subset

Σ ⊂ P1 such that V = M|U is a free OU -module with connection. Moreover, k∗V is

also holonomic.

2.1. Local and global numerical data attached to an holonomic DP1-module

Our first local numerical invariant attached to M is rkV. Let now c ∈ Σ and set

tc = t−c. The theorem of Levelt-Turrittin gives the structure of M̂c := C[[tc]]⊗C[tc]M.

There exists a unique decomposition (called the slope decomposition)

M̂c =
⊕

λ∈Q+

M̂(λ)
c

such that there exists nc > 1 such that, setting t′c = t
1/nc
c (the ramified variable)

the C((t′c))-vector space C((t′c)) ⊗C[[tc]] M̂
(λ)
c has a basis in which the matrix of the

connection is block-diagonal, each block takes the form with dϕ Id +C/t′c, where ϕ ∈
C[1/t′c] with pole order equal to ncλ, and C is a constant matrix. If λ 6= 0, we have

M̂
(λ)
c = C((tc))⊗C[[tc]] M̂

(λ)
c .

• The irregularity number of M at c is defined by

irrc(M) :=
∑
λ∈Q∗+

λ dimC((tc)) M̂
(λ)
c .

It only depends on V.
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• The vanishing cycle number of M at c is defined by

µc(M) := irrc(M) + rkM + dim coker[∂t : M̂(0)
c → M̂(0)

c ]− dim ker[∂t : M̂(0)
c → M̂(0)

c ].

If M = k∗V, we have µc(M) = irrc(M) + rkM, while if M = k!∗V, we have

µc(M) = irrc(M) + rkM− dim ker[∂t : M̂(0)
c → M̂(0)

c ].

In the following, we will denote µc(V) := µc(k!∗V).

For a DP1-module M, the (algebraic) de Rham complex
p
DRM is the complex

0 −→M
∇−−−→ Ω1

P1 ⊗M
•

−→ 0.

The rigidity index of V is defined by

rigV := −χ
(
P1,

p
DR(k!∗ End (V))

)
.

It is not changed by tensoring V by a free rank-one OU -module with connection.

Proposition. We have

rigV = 2(rkV)2 −
∑
c∈Σ

µc(End (V)).

Moreover, rigV is even and, if V is irreducible, then

rigV = 2− h0
(
P1,

p
DR(k!∗ End (V))

)
6 2.

Sketch of proof. The first statement is obtained by index theorems, due to the fact

that Hi
(
P1,

p
DR(k!∗ End (V))

)
= Hi

(
P1,

p
DRan(k!∗ End (V))

)
, and Kashiwara’s for-

mula expressing µc(M) as the dimension of the vanishing cycle space at c of the

constructible complex
p
DRan(k!∗ End (V)).

For the second statement, we note that there is a natural nondegenerate symmetric

pairing End (V)⊗End (V)→ OU which is compatible with the connections: it is given

by (ϕ,ψ) 7→ tr(ϕψ). As a consequence, End (V) ' End (V)∨, and thus k!∗ End (V) '
(k!∗ End (V))∨. Then, by Poincaré-Verdier duality, H−1

(
P1,

p
DR(k!∗ End (V))

)
'

H1
(
P1,

p
DR(k!∗ End (V))

)
and H0

(
P1,

p
DR(k!∗ End (V))

)
is equipped with a nonde-

generate skew-symmetric pairing.

Lastly, we have an exact sequence

0 −→ k!∗ End (V) −→ k∗ End (V) −→ C −→ 0

with C supported on Σ. Since H−1
(
P1,

p
DR(C)

)
= 0, we obtain

H−1
(
P1,

p
DR(k!∗ End (V))

)
'H−1

(
P1,

p
DR(k∗ End (V))

)
= H0(U,DR(End (V))) = End∇(V).

If V is irreducible, the later space is one-dimensional.

Definition. We say that an irreducible V is rigid if, for any V′ such that k̂∗V′c ' k̂∗Vc
for all c ∈ Σ, we have V′ ' V.

Theorem (Katz [Kat96], Bloch-Esnault [BE04]). An irreducible V is rigid iff rig(V) = 2,

i.e., iff H0
(
P1,

p
DR(k!∗ End (V))

)
= 0.

The hypergeometric systems as in the first lecture are irreducible and rigid ([BH89,

Kat96]). We will indicate the proof of the following theorem.
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Theorem (Katz [Kat96], Deligne [Del06], Arinkin [Ari10]). Let U be a Zariski open set

in P1 and let V be an irreducible OU -module with connection. Assume that rkV > 2

and rig(V) = 2. Then, after tensoring V by a suitable rank-one OU -module with

connection and choosing charts so that P1 = A1
t ∪ {∞} in a suitable way, one of both

possibilities occurs, and the first one always if V has regular singularities at Σ:

(1) There exists χ ∈ C∗ such that rk MCχ(V) < rkV,

(2) 1 6 rk F(j!∗V) < rkV.

2.2. Convolutions

We fix charts P1 =A1
t∪{∞} and consider Fourier transform with respect to it. Let P

denote the sub-category of holonomic C[t]〈∂t〉-modules N such that FN and FN∨ are

C[τ ]-flat. In an equivalent way, N is in P if and only if FN has neither submodule

nor quotient module which has C[τ ]-torsion, that is, FN = j!∗(
FN|U ′) if U ′ is any

Zariski open subset of A1
τ not containing any singularity of FN . In particular, any

irreducible N not equal to (C[t],d) is in P.

Definition. Given holonomic C[t]〈∂t〉-modules M,N with N in P, their convolutions

?∗, ?!, ?mid are defined by means of the Laplace transformation as follows.

F(M ?∗ N) = FM ⊗C[τ ]
FN,

F(M ?! N) = ((FM)∨ ⊗C[τ ] (FN)∨)∨,

M ?mid N = image
[
M ?! N −→M ?∗ N

]
.

Remark. Let us explain the morphism M?!N →M?∗N . It amounts to understanding

(in general) the morphism (FM⊗LFN)∨ → (FM)∨⊗L(FN)∨. Recall that the (derived)

tensor product is obtained from the external product FM � FN by applying the

functor δ+, where δ : A1 ↪→ A1 ×A1 is the diagonal inclusion. We are thus reduced to

showing, for holonomic modules M,N on A1 (we apply this to FM, FN) and M on

A1 × A1:

• (M �N)∨ 'M∨ �N∨. This is straightforward.
• There is a natural morphism δ+(M∨)→ (δ+M)∨. Let ∆ be the diagonal. Then

δ+(M∨) is the complex

M∨ −→M∨(∗∆)
•

.

On the other hand, (δ+M)∨ is the complex

M∨(!∆)
•

−→M∨,

with M∨(!∆) := (M(∗∆))∨. The natural morphism M∨(!∆) → M∨(∗∆) induces

the desired morphism of complexes.

Some properties.
(1) For N ∈ P, ?∗N and ?!N are exact functors on Modhol(C[t]〈∂t〉). On the other

hand, ?midN preserves injective morphisms as well as surjective morphisms.

(2) Say that an irreducible N is constant if it is equal to (C[t],d + adt) (a ∈ C∗).
Then FN is supported on a point and N /∈ P.



2.4. SKETCH OF PROOF OF THE THEOREM 11

(3) For N1, N2 ∈ P such that N1 ?midN2 is also in P, we have associativity M ?mid

(N1 ?mid N2) = (M ?mid N1) ?mid N2.

The Kummer module with eigenvalue χ∈C∗r{1} isKχ :=(C[t, t−1],d+ 1
2πi logχ·dt/t).

It is irreducible and non-constant, hence belongs to P.

Definition. For χ∈C∗r{1}, the functor MCχ is the middle convolution with Kχ.

Some properties. If χχ′ 6=1, then MCχχ′=MCχ ◦MCχ′ . It satisfies MCχ ◦MC1/χ=Id

on non-constant irreducible holonomic modules. In particular, it sends non-constant

irreducible holonomic modules to non-constant irreducible holonomic modules.

2.3. Consequence of the theorem: the algorithm of Katz-Deligne-Arinkin

The theorem is completed by the following property. Let us fix charts as above

and let V be a free O(U)-module with connection. Set M = j!∗V .

Theorem (Katz [Kat96], Bloch-Esnault [BE04]). If M is irreducible and non-constant,

we have rig FM = rigM .

As a consequence, one also obtains that, for M is irreducible and non-constant and

for χ ∈ C∗ r {1}, we have rig MCχ(M) = rig(M).

Corollary. An irreducible bundle V with connection on U = P1 rΣ is rigid if and only

if it can be reduced to a rank-one bundle with connection on some Zariski open set

of P1 by a sequence of the following operations:

• Tensoring with a rank-one bundle with connection,
• Pull-back by an homography of P1,
• Fourier transformation.

If it has regular singularities only, then after an initial homography, the a sequence of

the following operations (which preserve regularity) is enough:

• Tensoring with a rank-one bundle with regular singular connection,
• middle convolution MCχ (χ ∈ C∗ r {1}).

2.4. Sketch of proof of the theorem

The first step is to find the right rank-one bundle with connection to tensor V. It

is based on the following lemma.

Lemma. Let V̂ be a finite-dimensional C((t))-vector space with connection, and let

(V̂a)a∈A its irreducible components. Let ao ∈ A be such that the function

a 7−→ µ(Hom (V̂a, V̂))

rk V̂a

achieves its minimum for a = ao. Then, setting L̂ := V̂ao , we have

µ(End (V̂)) >
rk V̂

rk L̂
· µ(Hom (L̂, V̂)).
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Moreover, if rk L̂ > 2, we have µ(Hom (L̂, V̂)) > rk L̂ · rk V̂, hence

µ(End (V̂)) > (rk V̂)2.

Proof. In an exact sequence 0→ V̂′ → V̂→ V̂′′ → 0 of finite-dimensional C((t))-vector

spaces with connection, rk and irr behave in an additive way, while the sequence of

ker ∂t can be non-exact on the right. As a consequence, µ(V̂) > µ(V̂′) + µ(V̂′′). Then

µ(End (V̂)) >
∑
a∈A

µ(Hom (V̂a, V̂)) >

∑
a rk V̂a

rk L̂
· µ(Hom (L̂, V̂))

by the choice of ao.

For the second part of the proof it is enough to check, by upper additivity of µ, that

µ(Hom (L̂, V̂a)) > rk L̂ · rk V̂a, and this can be done by an explicit computation.

The component L̂ has rank one if and only if it is non-ramified. This occurs

automatically if we assume that V̂ has a regular singularity, or if it is non-ramified.

The rigidity assumption also helps in controlling the rank of L̂ at each singular point

in Σ.

Lemma. Assume that V is irreducible and rigid. Then there is at most one c ∈ Σ such

that rk L̂c > 1.

Proof. We have rigV = 2(rkV)2 −
∑
c∈Σ µc(End (V)). If there are two c ∈ Σ with

rk L̂c > 1, then rigV 6 0 by the second par of the above lemma.

The proof of the theorem goes as follows.

• If for any singularity c ∈ Σ the space L̂c has rank one, then one chooses ∞ as

point in U , so that Σ ⊂ A1
t. One checks that any rank-one bundle with connection L′

on A1 r Σ such that L̂′c ' L̂c for every c ∈ Σ and regular at infinity has a non-trivial

monodromy χ ∈ C∗ r {1} at infinity. Let us choose one such L′. Then one checks

that rk MCχ(V⊗ L′∨) < rkV.

• If there is c ∈ Σ such that rk L̂c > 2, then one applies an homography to assume

that such a point is at infinity. One can find rank-one bundle with connection L′

on U such that L̂′c ' L̂c for every c ∈ Σ r {∞} and that the slope L̂′∨∞ ⊗ L̂∞ is not

an integer. Then one shows that rk F(j!∗(V⊗ L′∨)) < rkV.

2.5. Hodge filtration

Assume that V has rank one and regular singularities only. If moreover the mon-

odromy λc ∈ C∗ around c ∈ Σ has absolute value equal to one, then the local system

ker∇an is unitary. How much does such a property extend to a rigid irreducible V

with only regular singularities at Σ?

Theorem (Deligne [Del87], Simpson [Sim90]). Assume that V is irreducible and rigid,

and that the eigenvalues of the monodromy operators around any c ∈ Σ have absolute

value equal to one. Then there exists a variation of polarizable Hodge structure on Van.

This variation is unique up to a shift of the filtration.
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In other words, there exist a filtration of V by sub-bundles F pV corresponding to

a Hodge decomposition of the associated C∞ bundle, and it admits a polarization.

A natural question is then to compute the rank of the bundles F pV. The algorithm

of Katz can serve to compute inductively these numbers, if one is able to compute

the behaviour by the two basic operations: twist by a unitary rank-one bundle, and

MCχ for χ ∈ C∗ r {1} and |χ| = 1.

There is a basic set of Hodge invariants (integers), among which the rank of each

Hodge bundle grpFV, whose behaviour can be computed along the Katz algorithm.

This leads to examples of computation of the Hodge ranks for interesting exam-

ples of rigid irreducible vector bundles with connection. E.g., Examples with mon-

odromy group dense in the exceptional Lie group G2 [DS13] (also considered by

group-theoretic considerations applied to Mumford-Tate groups in [KP16]), and hy-

pergeometric systems with regular singularities [Fed15].

Local invariants. Let X be a disc with coordinate x centered at one singular point.

At the end of the first lecture, we have already considered the bundles F pVβ for

β ∈ (−1, 0]. The theory of Schmid enables us to define invariants (nearby cycles)

νp
e−2πiβ := dimF pVβ/(F p+1Vβ + F pV>β),

whose sum over β is the rank of the Hodge bundles hp(V) := rk grpFV. These invariants

can be refined by taking into account the action of monodromy on Vβ/V>β . If β 6= 0,

we also denote them by µp
e−2πiβ (vanishing cycles), and for β = 0 we also define µp1,

as well as the refined variant taking into account the monodromy.

Global invariants. Let us now go back to the global setting. At each singular point,

we can extend the Hodge bundle F pV by gluing with the locally analytically defined

bundle F pV0. The degree of the quotient bundle F pV0/F p+1V0 is denoted by δp(V).

Theorem (Dettweiler-CS [DS13]). The set of local and global invariants can be con-

trolled explicitly along the Katz algorithm.

2.6. Irregular Hodge filtration

How does the previous result extends in the general case of rigid irreducible V

with possibly irregular singularities. The notion of Deligne Hodge filtration, that we

now call irregular Hodge filtration, can be extended to cases more general than that

treated in the first lecture. One finds a generalization of the theorem of Deligne and

Simpson for rigid irreducible V’s on U = P1 r Σ.

Theorem. Assume that V is irreducible and rigid, and that the eigenvalues of the

formal monodromy operators around any c ∈ Σ have absolute value equal to one.

Then there exists a variation of polarizable irregular Hodge structure on Van. This

variation is unique up to a shift of the filtration.
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Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, p. 1–19.
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