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Abstract. Isomonodromic (that is, integrable) deformations of connections with ir-

regular singularities in dimension one are well understood away from turning points
of the parameter space. In general, at the turning points, the theorem of Kedlaya-

Mochizuki is needed to understand the local behaviour of the Stokes structure, but it

breaks the notion of deformation. Motivated by understanding boundaries of Frobe-
nius manifolds, Cotti, Dubrovin and Guzzetti have analyzed some simple turning

points and shown vanishing of certain entries of the Stokes matrices at the neigh-

bourhood of these turning points. The talk will give a different point of view on
these results.

1. Introduction

The papers [CDG19] (as well as the companion papers [CG18, CG17, CDG20])

and the recent preprint [Guz21] have emphasized some properties of connections with

irregular singularities which appear when studying Frobenius manifolds. These ques-

tions can be considered from a slightly more general perspective, and shade new light

on the isomonodromic deformation theory of connections with irregular singularities.

These works are a source of inspiration for what follows, and I would encourage you to

read them. I will not take exactly the same point of view, but the questions I address

are similar. I will consider isomonodromic (that is, integrable) deformations of some

irregular singularities and their degenerations. Details are developed in [Sab21b]

(and also [Sab21a]). I also refer to [Tey18] for further developments.

2. A theorem of Cotti-Dubrovin-Guzzetti

This theorem concerns the behaviour of an isomonodromic family of irregular sin-

gularities near a point in the space of parameters where eigenvalues of the most polar

part of the connection matrix coalesce.
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Let me make precise the setting. We consider Cn with coordinates t1, . . . , tn and,

for a given t ∈ Cn, we consider the connection ∇t on the trivial bundle on the affine

line (with coordinate z) having matrix(1

z
Λ(t) +A◦

)dz

z
, Λ(t) := diag(ti)i=1,...,n, A◦ ∈ Mn(C).

If t = t◦ is such that t◦i 6= t◦j for any pair i 6= j, then a famous theorem of

Jimbo-Miwa-Ueno and Malgrange show the existence, in the neighbourhood of t◦, of

a universal integrable deformation of ∇◦. Since the eigenvalues of Λ(t◦) are pairwise

distinct, we can write

A◦ = D◦ + [Λ(t◦), R◦]

for some matrix R◦, whose diagonal can be chosen to be zero, and D◦ is the diagonal

part of A◦. In this specific case where we deal with a Birkhoff normal form, the

deformation has an explicit form, which is much useful in the theory of Frobenius

manifolds.

Theorem (Jimbo-Miwa-Ueno and Malgrange). There exists a neighbourhood U(t◦) and

a holomorphic matrix R(t) (t ∈ U(t◦)) such that R(t◦) = R◦ and the connection ∇
on the trivial bundle OC×U [z−1]n with matrix

(A) − d(Λ(t)/z) +
(
[Λ(t), R(t)] +D◦

) dz

z
− [dΛ(t), R(t)]

is a universal integrable deformation of ∇◦. Furthermore, there exists a base change,

formal with respect to z and holomorphic with respect to t ∈ U(t◦), such that, after

such a base change, the matrix of the connection reduces to

−d(Λ(t)/z) +D◦
dz

z
.

Let us now consider a partition {1, . . . , n} =
⊔r
a=1 Ia and let tc be a “coalescing

point” in Cn on the stratum defined by this partition, that is,

tci = tcj ⇐⇒ i and j ∈ Ia for some a.

Let us choose a simply connected neighbourhood V (tc) of the form
∏
a V (tca), and

let t◦ ∈ V (tc) be a generic point. We consider the possible extension of the JMU-M

deformation defined on
∏
a U(t◦a) to

∏
a V (tca). The result I would like to discuss is

due to Cotti-Dubrovin-Guzzetti.

Theorem (Cotti-Dubrovin-Guzzetti). Assume that the matrix R(t), which is holomor-

phic on U(t◦), extends holomorphically to V (tc). Then the connection with ma-

trix (A), which is defined on V (tc), is integrable on V (tc), and

(1) there exists a base change, formal with respect to z and holomorphic with respect

to t∈V (tc), such that, after such a base change, the matrix of the connection reduces to

−d(Λ(t)/z) +D◦
dz

z
;
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(2) there exists a pair of Stokes matrices (S◦+, S
◦
−) attached to ∇◦ such that each

entry (i, j) is zero if i 6= j and i, j in the same subset Ia.

What is a turning point? Let ∇ be an integrable connection on M = O∆×T (∗(0×T ))d

with dimT = 1 for example. There exists a Zariski open set T0 ⊂ T such that the

Hukuhara-Levelt-Turrittin theorem (in dimension one with parameters) applies to ∇
in the neighbourhood of each point of T0. The case of coalescing eigenvalues as above

is typically a case where one expects a turning point. The general situation at a

turning point may be very complicated. It is however controlled by the theorem of

Kedlaya-Mochizuki: After enough complex blowing-ups of ∆ × V , there remains no

turning point. Comparing the connection ∇c for the special value tc of the parameter

and ∇t for the value t is obtained by considering the strict transforms of the slices

∆ × {tc} and ∆ × {t} in the blow-up space. They cut the exceptional divisor in

distinct points and one can connect these points by a path that goes through various

intersection loci of this exceptional divisor. Understanding what happens at these

points is instrumental for understanding the structure of the original connection at

the turning point. The first part of the theorem asserts that the turning point that

is created at a coalescing value tc is very simple.

Remark.

(1) The first part of the theorem can be seen as a degeneration statement, namely,

the formal decomposition which exists for t ∈ U(t◦) extends to a neighbourhood of tc.

On the other hand, the second part is a deformation statement, that is, the property

of Stokes matrices which holds when restricting to the slice t = tc also holds for

generic slices in the neighbourhood of tc.

(2) The proof of the first part of the theorem is not too difficult: it is done by

solving iteratively the equations to find the formal gauge transformation. This is why

I will focus on the second part. Once the first part is proved, the remarkable fact is that

the vanishing of Stokes entries is due to the constancy of the matrix D◦ with respect

to t, which also follows from the 1-connectedness of V (tc). More precisely, the point is

to relate constancy of D◦ on the open subset V (tc)◦ where the coordinates are pairwise

distinct to a theorem of Malgrange computing Stokes matrices by means of Fourier

transformation. This theorem is a precursor of the much more general theorem proved

by Mochizuki recently [Moc18], and does not need such a sophisticated technology.

(3) Once the first part is proved, one notices that the vanishing asserted in the

second part holds if we replace t◦ with tc. In general, the behaviour of the Stokes

matrices near a turning point is far from trivial. We aim at showing that, under the

assumption of the existence of a formal base change as in the theorem, part of this

behaviour can be controlled (the vanishing property).
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3. A theorem of Malgrange for computing Stokes matrices

Let L◦ be a locally constant sheaf of rank d on Cλ r {λ = t◦i | i = 1, . . . , n}
(punctured affine line), with t◦i 6= t◦i if i 6= j and let j denote the inclusion in Cλ.

There exists a meromorphic bundle with connection (V ◦,∇◦) on Cλ with poles at t◦i
(i = 1, . . . , n) such that L◦ = V o∇

◦
and such that∇◦ has regular singularities included

at infinity. We regard it as a left module on the Weyl algebra C[λ]〈∂λ〉, in which case

we have DRan(V ◦,∇◦) ' Rj∗L
◦, which is a perverse sheaf (up to a shift) on Cλ.

More generally, letM◦ be a regular holonomic C[λ]〈∂λ〉-module whose restriction to

Cλr{λ = t◦i | i = 1, . . . , n} is (V ◦,∇). Its Fourier transform FM◦ is the same C-vector

space with an action of C[ζ]〈∂ζ〉 such that ζ acts as ∂λ and ∂ζ acts as −λ. Setting

z = ζ−1, the localization G◦ := C[ζ, ζ−1] ⊗C[ζ]
FM◦ is a free C[z, z−1]-module with

connection having an irregular singularity of Poincaré rank one (exponential type) at

z = 0. The theorem of Malgrange [Mal91, Chap. XII] (proved in a topological way

in [DHMS20]) gives a formula for the Stokes matrices of G◦ at z = 0 in terms of

monodromy data of M◦.

One can represent the perverse sheaf DRM◦ by a linear representation of a quiver:

• Vector spaces Ψ◦ (of rank d) and Φ◦i (i = 1, . . . , n),

• linear morphisms ci : Ψ◦ → Φ◦i and vi : Φ◦i → Ψ◦,

subject to the relations that Id +ci ◦ vi and Ti := Id +vi ◦ ci are invertible for each i.

Theorem (Malgrange, DHMS). There exists a pair of Stokes matrices (S◦+, S
◦
−) for G◦

at z = 0 which are decomposed into blocks (i, j) (i, j = 1, . . . , n) such that the non-

diagonal blocks (i, j) and (j, i) respectively read

• cj ◦ vi and 0 for S◦+,

• 0 and −ci ◦ vj for S◦−.

Example (Intermediate extension). If DRM◦ ' j∗L
◦, then the monodromy data at-

tached to the perverse sheaf j∗L
◦ are (Ψ◦,Φ◦i=1,...,n, ci, vi) with

Φ◦i = im(Id−Ti), vi = inclusion : Φ◦i ↪−→ Ψ◦, ci = (Id−Ti) : Ψ◦ −→ Φ◦i .

In this example, for i 6= j ∈ {1, . . . , n}, the representative (S◦+, S
◦
−) of Stokes matrices

for G◦ has vanishing blocks (i, j) and (j, i) if and only if

(B) (Id−Tj)| im(Id−Ti) = 0 and (Id−Ti)| im(Id−Tj) = 0,

that is,

TjTi = TjTi = Ti + Tj − Id .

4. Dynamical version of the theorem of Malgrange

Let us go back to the case of a coalescing point tc ∈ Cn and a neighbourhood

V (tc) =
∏
a V (tca), and let V (tc)◦ be the open subset consisting of points t with
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pairwise distinct entries. On the product space Cλ × V (tc)◦ we consider the hyper-

surface H defined by
∏
i(λ − ti) = 0. By assumption, it is the disjoint union of the

hyperplanes Hi defined by the functions λ− ti.
Let L be a locally constant sheaf of rank d on (Cλ × V (tc)◦) rH and let

j : (Cλ × V (tc)◦) rH ↪−→ Cλ × V (tc)◦

denote the inclusion. For each i = 1, . . . , n consider the vanishing cycle sheaf

φλ−ti(j∗L) which is easily seen to be locally constant on Hi. It comes equipped with

an automorphism Ti.

Let j∗L
◦ be the restriction of j∗L to Cλ × {t◦}.

Proposition. For a given a = 1, . . . , r, Condition (B) holds for any pair i 6= j ∈ Ia if

and only if the vanishing cycle sheaf φλ−ti(j∗L) is constant for every i ∈ Ia.

Sketch of proof. We represent the locally constant sheaf (φλ−ti(j∗L),Ti) by the vector

space (im(Id−Ti),Ti) with automorphisms Tj for j 6= i ∈ Ia. Its constancy is

equivalent to Tj| im(Id−Ti) = Id for any j ∈ Ia.

Let M be the regular holonomic D-module on Cλ × V (tc)◦ whose de Rham com-

plex is j∗L, let FM be its partial Fourier transform relative to λ and let Ĝ be the

formalization of FM along {ζ = ∞} × V (tc)◦. The formal stationary phase formula

with parameter t proved in [DS03] shows that Ĝ has a decomposition

Ĝ '
⊕
i

(Ri[z
−1],∇i + d(ti/z))

where (Ri,∇i) is a logarithmic connection with pole along z = 0, corresponding to a

locally constant sheaf Li on C∗z×V (tc)◦. Furthermore, the sheaf Li of horizontal sec-

tions of the residual connection (Ri/zRi,∇res) on V (tc)◦ is isomorphic to φλ−ti(j∗L).

Corollary. With this notation, if the sheaves Li are constant on V (tc)◦, then for any

t◦ ∈ V (tc)◦, any a = 1, . . . , r, and any pair i 6= j ∈ Ia, the (i, j) entries of the Stokes

matrices obtained by Malgrange’s construction are zero.

5. Conclusion: Proof of the theorem of C-D-G

It remains to interpret the meromorphic connection of the theorem in the frame-

work of the above corollary, since the constancy assumption on Li has already been

checked. We only need to show that the OV (tc)◦ [z, z−1]-free module with connection

given by (A) is the localization of the Fourier transform of a regular holonomic D-

module on Cλ × V (tc)◦ whose de Rham complex takes the form j∗L. It is enough to

check this when restricting to a special value t◦ ∈ V (tc)◦.

We consider the free C[z]-module F ◦ of rank n endowed with the connection F∇◦
having matrix (Λ◦

z
+A◦

) dz

z
, Λ◦ := diag(t◦1, . . . , t

◦
n).
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For our purpose, we can tensor F ◦ with a rank one bundle with logarithmic connection

having a regular singularity at the origin, that is, by adding c Idn dz/z to A◦ for some

complex number c. We thus assume that the only possible integral eigenvalues of A◦

are > 1 and that no diagonal entry of A◦ is an integer. The inverse Fourier lattice

(E◦,∇◦) is F ◦ regarded as a C[λ]-module, where λ acts as z2∂z. It is free of rank n,

with the same canonical basis as F ◦ (see e.g. [Sab02, Prop. V.2.10]), and the matrix

of ∇◦ is

B◦ = (A◦ − Idn)(λ Idn−Λ◦)−1dλ =

n∑
i=1

B◦i
λ− ti

.

Furthermore, each matrix B◦i has rank one and a unique nonzero eigenvalue, which

is the ith diagonal entry of A◦ − Idn, that is non integral by the choice of c. Set

(V ◦,∇◦) = (C[λ, (
∏
i(λ− t◦i ))−1 ⊗ E◦,∇◦).

Lemma. The C[λ]〈∂λ〉-submodule of (V ◦,∇◦) generated by E◦ is the middle exten-

sion (M◦,∇◦) of (V ◦,∇◦), whose localized Laplace transform (G◦,∇◦) is equal to

C[z, z−1]⊗C[z] F
◦ with connection having matrix A◦.

Proof. Let G◦ be the localized Laplace transform of M◦. By definition, FM◦ contains

F ◦. Let us check that the localization map F ◦ → G◦ is injective: the kernel of
FM◦ → G◦ is the ζ-torsion submodule of FM◦; if f ∈ F ◦ satisfies ζkf = 0 in FM◦,

then, since F ◦ is a C[z]-module, zkf also satisfies ζk(zkf) = 0, that is, f = 0.

Then G◦ contains F ◦, hence C[z, z−1]⊗C[z] F
◦. It is enough to show that the rank

of G◦ is equal to that of F ◦, that is, n. Since the rank of G◦ is equal to the sum of

the dimensions of the vanishing cycles φ◦i of M◦ at t◦1, . . . , t
◦
n, it is enough to show

that, for each local monodromy Ti of the local system L◦ = (V ◦)∇
◦

around t◦i , the

rank of Idn−Ti is equal to one.

By our assumption on B◦, the local monodromy Ti is conjugate to exp−2πiB◦i ,

hence Ti − Id has rank one, as desired.
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