Isomonodromic deformations and degenerations of irregular singularities

Claude Sabbah
 CNRS, École polytechnique, Institut Polytechnique de Paris Palaiseau, France

Introduction

Isomonodromic deformations and degenerations of irregular singularities

Claude Sabbah

Setting. Consider \mathbb{C}^{n} with coordinates t_{1}, \ldots, t_{n} and, for a given $t^{\circ} \in \mathbb{C}^{n}$ with $t_{i}^{\circ} \neq t_{j}^{\circ}$ if $i \neq j$, consider the connection ∇° on the trivial bundle on the affine line (with coordinate z) having matrix

$$
\left(\frac{1}{z} \Lambda\left(t^{\circ}\right)+A^{\circ}\right) \frac{\mathrm{d} z}{z}, \quad \Lambda\left(t^{\circ}\right):=\operatorname{diag}\left(t_{i}^{\circ}\right)_{i=1, \ldots, n}, \quad A^{\circ} \in \mathrm{M}_{n}(\mathbb{C})
$$

This talk deals with a theorem that concerns the behaviour of an isomonodromic deformation of ∇° with parameters t when t tends to a value where $t_{i}=t_{j}$ for some $i \neq j$.

Introduction

Isomonodromic deformations and degenerations of irregular singularities

Claude Sabbah

Setting. Consider \mathbb{C}^{n} with coordinates t_{1}, \ldots, t_{n} and, for a given $t^{\circ} \in \mathbb{C}^{n}$ with $t_{i}^{\circ} \neq t_{j}^{\circ}$ if $i \neq j$, consider the connection ∇° on the trivial bundle on the affine line (with coordinate z) having matrix

$$
\left(\frac{1}{z} \Lambda\left(t^{\circ}\right)+A^{\circ}\right) \frac{\mathrm{d} z}{z}, \quad \Lambda\left(t^{\circ}\right):=\operatorname{diag}\left(t_{i}^{\circ}\right)_{i=1, \ldots, n}, \quad A^{\circ} \in \mathrm{M}_{n}(\mathbb{C})
$$

This talk deals with a theorem that concerns the behaviour of an isomonodromic deformation of ∇° with parameters t when t tends to a value where $t_{i}=t_{j}$ for some $i \neq j$.
This theorem was developed by Giordano Cotti, Boris Dubrovin and Davide Guzzetti in various papers, where they have emphasized some properties of connections with irregular singularities which appear when studying Frobenius manifolds. These questions can be considered from a slightly more general perspective, and shade new light on the isomonodromic deformation theory of connections with irregular singularities. These works are a source of inspiration for what follows, and I would encourage you to read them. I will not take exactly the same point of view, but the questions I address are similar.

Introduction

Setting. Consider \mathbb{C}^{n} with coordinates t_{1}, \ldots, t_{n} and, for a given $t^{\circ} \in \mathbb{C}^{n}$ with $t_{i}^{\circ} \neq t_{j}^{\circ}$ if $i \neq j$, consider the connection ∇° on the trivial bundle on the affine line (with coordinate z) having matrix

$$
\left(\frac{1}{z} \Lambda\left(t^{\circ}\right)+A^{\circ}\right) \frac{\mathrm{d} z}{z}, \quad \Lambda\left(t^{\circ}\right):=\operatorname{diag}\left(t_{i}^{\circ}\right)_{i=1, \ldots, n}, \quad A^{\circ} \in \mathrm{M}_{n}(\mathbb{C})
$$

This talk deals with a theorem that concerns the behaviour of an isomonodromic deformation of ∇° with parameters t when t tends to a value where $t_{i}=t_{j}$ for some $i \neq j$.
This theorem was developed by Giordano Cotti, Boris Dubrovin and Davide Guzzetti in various papers, where they have emphasized some properties of connections with irregular singularities which appear when studying Frobenius manifolds. These questions can be considered from a slightly more general perspective, and shade new light on the isomonodromic deformation theory of connections with irregular singularities. These works are a source of inspiration for what follows, and I would encourage you to read them. I will not take exactly the same point of view, but the questions I address are similar.

A theorem of Jimbo-Miwa-Ueno and Malgrange

If $t=t^{\circ}$ is such that $t_{i}^{\circ} \neq t_{j}^{\circ}$ for any pair $i \neq j$, then a famous theorem of Jimbo-Miwa-Ueno and Malgrange show the existence, in the neighbourhood of t°, of a universal integrable deformation of ∇°. We can write

$$
A^{\circ}=D^{\circ}+\left[\Lambda\left(t^{\circ}\right), R^{\circ}\right]
$$

for some matrix R°, whose diag. can be chosen to be zero, and $D^{\circ}=\operatorname{diag} A^{\circ}$.

Introduction

Setting. Consider \mathbb{C}^{n} with coordinates t_{1}, \ldots, t_{n} and, for a given $t^{\circ} \in \mathbb{C}^{n}$ with $t_{i}^{\circ} \neq t_{j}^{\circ}$ if $i \neq j$, consider the connection ∇° on the trivial bundle on the affine line (with coordinate z) having matrix

$$
\left(\frac{1}{z} \Lambda\left(t^{\circ}\right)+A^{\circ}\right) \frac{\mathrm{d} z}{z}, \quad \Lambda\left(t^{\circ}\right):=\operatorname{diag}\left(t_{i}^{\circ}\right)_{i=1, \ldots, n}, \quad A^{\circ} \in \mathrm{M}_{n}(\mathbb{C})
$$

This talk deals with a theorem that concerns the behaviour of an isomonodromic deformation of ∇° with parameters t when t tends to a value where $t_{i}=t_{j}$ for some $i \neq j$.
This theorem was developed by Giordano Cotti, Boris Dubrovin and Davide Guzzetti in various papers, where they have emphasized some properties of connections with irregular singularities which appear when studying Frobenius manifolds. These questions can be considered from a slightly more general perspective, and shade new light on the isomonodromic deformation theory of connections with irregular singularities. These works are a source of inspiration for what follows, and I would encourage you to read them. I will not take exactly the same point of view, but the questions I address are similar.

A theorem of Jimbo-Miwa-Ueno and Malgrange

If $t=t^{\circ}$ is such that $t_{i}^{\circ} \neq t_{j}^{\circ}$ for any pair $i \neq j$, then a famous theorem of Jimbo-Miwa-Ueno and Malgrange show the existence, in the neighbourhood of t°, of a universal integrable deformation of ∇°. We can write

$$
A^{\circ}=D^{\circ}+\left[\Lambda\left(t^{\circ}\right), R^{\circ}\right]
$$

for some matrix R°, whose diag. can be chosen to be zero, and $D^{\circ}=\operatorname{diag} A^{\circ}$.

Theorem (Jimbo-Miwa-Ueno and Malgrange).

\exists neighbd $U\left(t^{\circ}\right)$ and a holom. matrix $R(t)\left(t \in U\left(t^{\circ}\right)\right)$ s.t. $R\left(t^{\circ}\right)=R^{\circ}$ and ∇ on the trivial bdle $\mathcal{O}_{U}[z]^{n}$ with matrix
(JMUM) $-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+\left([\Lambda(t), R(t)]+D^{\circ}\right) \frac{\mathrm{d} z}{z}-[\mathrm{d} \Lambda(t), R(t)]$
is a universal integrable deformation of ∇°. Furthermore, \exists a base change, formal with respect to z and holomorphic with respect to $t \in U\left(t^{\circ}\right)$, such that, after such a base change, the matrix of the connection reduces to

$$
-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+D^{\circ} \frac{\mathrm{d} z}{z} .
$$

A theorem of Jimbo-Miwa-Ueno and Malgrange

If $t=t^{\circ}$ is such that $t_{i}^{\circ} \neq t_{j}^{\circ}$ for any pair $i \neq j$, then a famous theorem of Jimbo-Miwa-Ueno and Malgrange show the existence, in the neighbourhood of t°, of a universal integrable deformation of ∇°. We can write

$$
A^{\circ}=D^{\circ}+\left[\Lambda\left(t^{\circ}\right), R^{\circ}\right]
$$

for some matrix R°, whose diag. can be chosen to be zero, and $D^{\circ}=\operatorname{diag} A^{\circ}$.
Theorem (Jimbo-Miwa-Ueno and Malgrange).
\exists neighbd $U\left(t^{\circ}\right)$ and a holom. matrix $R(t)\left(t \in U\left(t^{\circ}\right)\right)$ s.t. $R\left(t^{\circ}\right)=R^{\circ}$ and ∇ on the trivial bdle $\mathcal{O}_{U}[z]^{n}$ with matrix
(JMUM) $-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+\left([\Lambda(t), R(t)]+D^{\circ}\right) \frac{\mathrm{d} z}{z}-[\mathrm{d} \Lambda(t), R(t)]$
is a universal integrable deformation of ∇°. Furthermore, \exists a base change, formal with respect to z and holomorphic with respect to $t \in U\left(t^{\circ}\right)$, such that, after such a base change, the matrix of the connection reduces to

$$
-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+D^{\circ} \frac{\mathrm{d} z}{z} .
$$

A theorem of Cotti-Dubrovin-Guzzetti

Consider a partition $\{1, \ldots, n\}=\bigsqcup_{a=1}^{r} I_{a}$ and let t^{c} be a "coalescing point" in \mathbb{C}^{n} on the stratum defined by this partition, that is,

$$
t_{i}^{\mathrm{c}}=t_{j}^{\mathrm{c}} \Longleftrightarrow i \text { and } j \in I_{a} \text { for some } a .
$$

$V\left(t^{c}\right)$: a 1-connected nbd of the form $\prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$
$t^{\circ} \in V\left(t^{\mathrm{c}}\right)$: a generic point.
$m \rightarrow \mathrm{JMU}-\mathrm{M}$ deformation defined on $\prod_{a} U\left(t_{a}^{\circ}\right) \subset \prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$.
If $R(t)$ extends holomorphically to $V\left(t^{\mathrm{c}}\right)$, then the connection with matrix (JMUM), which is defined on $V\left(t^{c}\right)$, is integrable on $V\left(t^{\mathrm{c}}\right)$.

A theorem of Jimbo-Miwa-Ueno and Malgrange

If $t=t^{\circ}$ is such that $t_{i}^{\circ} \neq t_{j}^{\circ}$ for any pair $i \neq j$, then a famous theorem of Jimbo-Miwa-Ueno and Malgrange show the existence, in the neighbourhood of t°, of a universal integrable deformation of ∇°. We can write

$$
A^{\circ}=D^{\circ}+\left[\Lambda\left(t^{\circ}\right), R^{\circ}\right]
$$

for some matrix R°, whose diag. can be chosen to be zero, and $D^{\circ}=\operatorname{diag} A^{\circ}$.
Theorem (Jimbo-Miwa-Ueno and Malgrange).
\exists neighbd $U\left(t^{\circ}\right)$ and a holom. matrix $R(t)\left(t \in U\left(t^{\circ}\right)\right)$ s.t. $R\left(t^{\circ}\right)=R^{\circ}$ and ∇ on the trivial bdle $\mathcal{O}_{U}[z]^{n}$ with matrix
(JMUM) $-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+\left([\Lambda(t), R(t)]+D^{\circ}\right) \frac{\mathrm{d} z}{z}-[\mathrm{d} \Lambda(t), R(t)]$ is a universal integrable deformation of ∇°. Furthermore, \exists a base change, formal with respect to z and holomorphic with respect to $t \in U\left(t^{\circ}\right)$, such that, after such a base change, the matrix of the connection reduces to

$$
-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+D^{\circ} \frac{\mathrm{d} z}{z} .
$$

A theorem of Cotti-Dubrovin-Guzzetti

Consider a partition $\{1, \ldots, n\}=\bigsqcup_{a=1}^{r} I_{a}$ and let t^{c} be a "coalescing point" in \mathbb{C}^{n} on the stratum defined by this partition, that is,

$$
t_{i}^{\mathrm{c}}=t_{j}^{\mathrm{c}} \Longleftrightarrow i \text { and } j \in I_{a} \text { for some } a .
$$

$V\left(t^{\mathrm{c}}\right):$ a 1-connected nbd of the form $\prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$
$t^{\circ} \in V\left(t^{\circ}\right)$: a generic point.
$m \rightarrow \mathrm{JMU}-\mathrm{M}$ deformation defined on $\prod_{a} U\left(t_{a}^{\circ}\right) \subset \prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$.
If $R(t)$ extends holomorphically to $V\left(t^{\mathrm{c}}\right)$, then the connection with matrix (JMUM), which is defined on $V\left(t^{c}\right)$, is integrable on $V\left(t^{c}\right)$.

Theorem (Cotti-Dubrovin-Guzzetti). Furthermore,
(1) \exists a base change, formal with respect to z and holom. w.r.t. $t \in V\left(t^{c}\right)$, s.t., after this base change, the matrix of $\widehat{\nabla}$ is

$$
-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+D^{\circ} \frac{\mathrm{d} z}{z} ;
$$

(2) \exists a pair of Stokes matrices $\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ attached to ∇° s.t. each entry (i, j) is zero if $i \neq j$ and i, j in the same subset I_{a}.

A theorem of Jimbo-Miwa-Ueno and Malgrange

If $t=t^{\circ}$ is such that $t_{i}^{\circ} \neq t_{j}^{\circ}$ for any pair $i \neq j$, then a famous theorem of Jimbo-Miwa-Ueno and Malgrange show the existence, in the neighbourhood of t°, of a universal integrable deformation of ∇°. We can write

$$
A^{\circ}=D^{\circ}+\left[\Lambda\left(t^{\circ}\right), R^{\circ}\right]
$$

for some matrix R°, whose diag. can be chosen to be zero, and $D^{\circ}=\operatorname{diag} A^{\circ}$.
Theorem (Jimbo-Miwa-Ueno and Malgrange).
\exists neighbd $U\left(t^{\circ}\right)$ and a holom. matrix $R(t)\left(t \in U\left(t^{\circ}\right)\right)$ s.t. $R\left(t^{\circ}\right)=R^{\circ}$ and ∇ on the trivial bdle $\mathcal{O}_{U}[z]^{n}$ with matrix
(JMUM) $-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+\left([\Lambda(t), R(t)]+D^{\circ}\right) \frac{\mathrm{d} z}{z}-[\mathrm{d} \Lambda(t), R(t)]$ is a universal integrable deformation of ∇°. Furthermore, \exists a base change, formal with respect to z and holomorphic with respect to $t \in U\left(t^{\circ}\right)$, such that, after such a base change, the matrix of the connection reduces to

$$
-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+D^{\circ} \frac{\mathrm{d} z}{z} .
$$

A theorem of Cotti-Dubrovin-Guzzetti

Consider a partition $\{1, \ldots, n\}=\bigsqcup_{a=1}^{r} I_{a}$ and let t^{c} be a "coalescing point" in \mathbb{C}^{n} on the stratum defined by this partition, that is,

$$
t_{i}^{\mathrm{c}}=t_{j}^{\mathrm{c}} \Longleftrightarrow i \text { and } j \in I_{a} \text { for some } a .
$$

$V\left(t^{\mathrm{c}}\right):$ a 1-connected nbd of the form $\prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$
$t^{\circ} \in V\left(t^{\circ}\right)$: a generic point.
$m \rightarrow \mathrm{JMU}-\mathrm{M}$ deformation defined on $\prod_{a} U\left(t_{a}^{\circ}\right) \subset \prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$.
If $R(t)$ extends holomorphically to $V\left(t^{\mathrm{c}}\right)$, then the connection with matrix (JMUM), which is defined on $V\left(t^{c}\right)$, is integrable on $V\left(t^{c}\right)$.

Theorem (Cotti-Dubrovin-Guzzetti). Furthermore,
(1) \exists a base change, formal with respect to z and holom. w.r.t. $t \in V\left(t^{c}\right)$, s.t., after this base change, the matrix of $\widehat{\nabla}$ is

$$
-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+D^{\circ} \frac{\mathrm{d} z}{z} ;
$$

(2) \exists a pair of Stokes matrices $\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ attached to ∇° s.t. each entry (i, j) is zero if $i \neq j$ and i, j in the same subset I_{a}.

Goal of this talk: Explain how a theorem of Malgrange explains the result on Stokes matrices, and how the concept of intermediate extension also called middle extension plays a role.

A theorem of Cotti-Dubrovin-Guzzetti

Consider a partition $\{1, \ldots, n\}=\bigsqcup_{a=1}^{r} I_{a}$ and let t^{c} be a "coalescing point" in \mathbb{C}^{n} on the stratum defined by this partition, that is,

$$
t_{i}^{\mathrm{c}}=t_{j}^{\mathrm{c}} \Longleftrightarrow i \text { and } j \in I_{a} \text { for some } a .
$$

$V\left(t^{\mathrm{c}}\right):$ a 1-connected nbd of the form $\prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$
$t^{\circ} \in V\left(t^{\mathrm{c}}\right):$ a generic point.
$m \leadsto \mathrm{JMU}-\mathrm{M}$ deformation defined on $\prod_{a} U\left(t_{a}^{\circ}\right) \subset \prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$.
If $R(t)$ extends holomorphically to $V\left(t^{\mathrm{c}}\right)$, then the connection with matrix (JMUM), which is defined on $V\left(t^{c}\right)$, is integrable on $V\left(t^{c}\right)$.

Theorem (Cotti-Dubrovin-Guzzetti). Furthermore,
(1) \exists a base change, formal with respect to z and holom. w.r.t. $t \in V\left(t^{c}\right)$, s.t., after this base change, the matrix of $\widehat{\nabla}$ is

$$
-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+D^{\circ} \frac{\mathrm{d} z}{z}
$$

(2) \exists a pair of Stokes matrices $\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ attached to ∇° s.t. each entry (i, j) is zero if $i \neq j$ and i, j in the same subset I_{a}.

Goal of this talk: Explain how a theorem of Malgrange explains the result on Stokes matrices, and how the concept of intermediate extension also called middle extension plays a role.

What is a turning point?

∇ : an integrable conn. on $G=\mathcal{O}_{\Delta \times T}(*(0 \times T))^{d}$, e.g. $\operatorname{dim} T=1$. \exists a Zariski open set $T_{0} \subset T$ s.t. the Hukuhara-Levelt-Turrittin theorem (dim. one with parameters) applies to ∇ in the nbd of each point of T_{0}.
Coalescing eigenvalues \Longrightarrow a turning point.
The general situation at a turning point may be very complicated, however controlled by the theorem of Kedlaya-Mochizuki:

After enough complex blowing-ups of $\Delta \times V$, \nexists turning point for the pullback connection.
The first part of the theorem of C-D-G asserts that the turning point that is created at a coalescing value t^{c} is very simple.

What is a turning point?

∇ : an integrable conn. on $G=\mathcal{O}_{\Delta \times T}(*(0 \times T))^{d}$, e.g. $\operatorname{dim} T=1$. \exists a Zariski open set $T_{0} \subset T$ s.t. the Hukuhara-Levelt-Turrittin theorem (dim. one with parameters) applies to ∇ in the nbd of each point of T_{0}.
Coalescing eigenvalues \Longrightarrow a turning point.
The general situation at a turning point may be very complicated, however controlled by the theorem of Kedlaya-Mochizuki:

After enough complex blowing-ups of $\Delta \times V, \nexists$ turning point for the pullback connection.
The first part of the theorem of C-D-G asserts that the turning point that is created at a coalescing value t^{c} is very simple.

A formula of Malgrange for Stokes matrices

$j: \mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right):=\mathbb{C}_{\lambda} \backslash\left\{\lambda=t_{i}^{\circ} \mid i=1, \ldots, n\right\} \hookrightarrow \mathbb{C}_{\lambda}$ (punctured affine line), with $t_{i}^{\circ} \neq t_{i^{\prime}}^{\circ}$ if $i \neq i^{\prime}$.
L° : a loc. const. sheaf of rank d on $\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)$.
$\left(V^{\circ}, \nabla^{\circ}\right)$ free $\mathcal{O}\left(\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)\right)$-mod. with connection s.t. $L^{\circ}=\left(V^{\text {oan }}\right)^{\nabla^{\circ}}$ and ∇° has reg. sing. included at infinity.
mu $j_{*}\left(V^{\circ}, \nabla^{\circ}\right)$ is left module on the Weyl algebra $\mathbb{C}[\lambda]\left\langle\partial_{\lambda}\right\rangle$, and $\mathrm{DR}^{\text {an }} j_{*}\left(V^{\circ}, \nabla^{\circ}\right) \simeq \boldsymbol{R} j_{*} L^{\circ}$: a perverse sheaf (up to a shift) on \mathbb{C}_{λ}.
More generally, can consider M° : a reg. holon. $\mathbb{C}[\lambda]\left\langle\partial_{\lambda}\right\rangle$-mod. s.t. $\mathcal{O}\left(\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)\right) \otimes M^{\circ}=\left(V^{\circ}, \nabla\right)$.

What is a turning point?

∇ : an integrable conn. on $G=\mathcal{O}_{\Delta \times T}(*(0 \times T))^{d}$, e.g. $\operatorname{dim} T=1$. \exists a Zariski open set $T_{0} \subset T$ s.t. the Hukuhara-Levelt-Turrittin theorem (dim. one with parameters) applies to ∇ in the nbd of each point of T_{0}.
Coalescing eigenvalues \Longrightarrow a turning point.
The general situation at a turning point may be very complicated, however controlled by the theorem of Kedlaya-Mochizuki:

After enough complex blowing-ups of $\Delta \times V, \nexists$ turning point for the pullback connection.
The first part of the theorem of C-D-G asserts that the turning point that is created at a coalescing value t^{c} is very simple.

A formula of Malgrange for Stokes matrices

$j: \mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right):=\mathbb{C}_{\lambda} \backslash\left\{\lambda=t_{i}^{0} \mid i=1, \ldots, n\right\} \hookrightarrow \mathbb{C}_{\lambda}$ (punctured affine line), with $t_{i}^{\circ} \neq t_{i^{\prime}}^{\circ}$ if $i \neq i^{\prime}$.
$L^{\circ}:$ a loc. const. sheaf of rank d on $\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)$.
$\left(V^{\circ}, \nabla^{\circ}\right)$ free $\mathcal{O}\left(\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)\right)$-mod. with connection s.t. $L^{\circ}=\left(V^{\text {oan }}\right)^{\nabla^{\circ}}$ and ∇° has reg. sing. included at infinity.
mu $j_{*}\left(V^{\circ}, \nabla^{\circ}\right)$ is left module on the Weyl algebra $\mathbb{C}[\lambda]\left\langle\partial_{\lambda}\right\rangle$, and $\mathrm{DR}^{\text {an }} j_{*}\left(V^{\circ}, \nabla^{\circ}\right) \simeq \boldsymbol{R} j_{*} L^{\circ}$: a perverse sheaf (up to a shift) on \mathbb{C}_{λ}.
More generally, can consider M° : a reg. holon. $\mathbb{C}[\lambda]\left\langle\partial_{\lambda}\right\rangle$-mod. s.t. $\mathcal{O}\left(\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)\right) \otimes M^{\circ}=\left(V^{\circ}, \nabla\right)$.
Fourier transform ${ }^{\mathrm{F}} M^{\circ}$: the same \mathbb{C}-vector space with an action of $\mathbb{C}[\zeta]\left\langle\partial_{\zeta}\right\rangle$ such that ζ acts as ∂_{λ} and ∂_{ζ} acts as $-\lambda$.
Setting $z=\zeta^{-1}$, the localization $G^{\circ}:=\mathbb{C}\left[\zeta, \zeta^{-1}\right] \otimes_{\mathbb{C}[\zeta]}{ }^{\mathrm{F}} M^{\circ}$ is a free $\mathbb{C}\left[z, z^{-1}\right]$-module with conn. having an irregular singularity of Poincaré rank one (exponential type) at $z=0$.

What is a turning point?

∇ : an integrable conn. on $G=\mathcal{O}_{\Delta \times T}(*(0 \times T))^{d}$, e.g. $\operatorname{dim} T=1$. \exists a Zariski open set $T_{0} \subset T$ s.t. the Hukuhara-Levelt-Turrittin theorem (dim. one with parameters) applies to ∇ in the nbd of each point of T_{0}.
Coalescing eigenvalues \Longrightarrow a turning point.
The general situation at a turning point may be very complicated, however controlled by the theorem of Kedlaya-Mochizuki:

After enough complex blowing-ups of $\Delta \times V, \nexists$ turning point for the pullback connection.
The first part of the theorem of C-D-G asserts that the turning point that is created at a coalescing value t^{c} is very simple.

A formula of Malgrange for Stokes matrices

$j: \mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right):=\mathbb{C}_{\lambda} \backslash\left\{\lambda=t_{i}^{\circ} \mid i=1, \ldots, n\right\} \hookrightarrow \mathbb{C}_{\lambda}$ (punctured affine line), with $t_{i}^{\circ} \neq t_{i^{\prime}}^{\circ}$ if $i \neq i^{\prime}$.
L° : a loc. const. sheaf of rank d on $\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)$.
$\left(V^{\circ}, \nabla^{\circ}\right)$ free $\mathcal{O}\left(\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)\right)$-mod. with connection s.t. $L^{\circ}=\left(V^{\circ a n}\right)^{\nabla^{\circ}}$ and ∇° has reg. sing. included at infinity.
mu $j_{*}\left(V^{\circ}, \nabla^{\circ}\right)$ is left module on the Weyl algebra $\mathbb{C}[\lambda]\left\langle\partial_{\lambda}\right\rangle$, and $\mathrm{DR}^{\text {an }} j_{*}\left(V^{\circ}, \nabla^{\circ}\right) \simeq \boldsymbol{R} j_{*} L^{\circ}$: a perverse sheaf (up to a shift) on \mathbb{C}_{λ}.
More generally, can consider M° : a reg. holon. $\mathbb{C}[\lambda]\left\langle\partial_{\lambda}\right\rangle$-mod. s.t. $\mathcal{O}\left(\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)\right) \otimes M^{\circ}=\left(V^{\circ}, \nabla\right)$.
Fourier transform ${ }^{\mathrm{F}} M^{\circ}$: the same \mathbb{C}-vector space with an action of $\mathbb{C}[\zeta]\left\langle\partial_{\zeta}\right\rangle$ such that ζ acts as ∂_{λ} and ∂_{ζ} acts as $-\lambda$.
Setting $z=\zeta^{-1}$, the localization $G^{\circ}:=\mathbb{C}\left[\zeta, \zeta^{-1}\right] \otimes_{\mathbb{C}[\zeta]}{ }^{\mathrm{F}} M^{\circ}$ is a free $\mathbb{C}\left[z, z^{-1}\right]$-module with conn. having an irregular singularity of Poincaré rank one (exponential type) at $z=0$.

Theorem of Malgrange (Chap. XII in his 1991 book) (recently proved in a topological way by d'Agnolo-Hien-Morando-CS)
\Longrightarrow formula for the Stokes matrices of G° at $z=0$ in terms of monodromy data of M°.

A formula of Malgrange for Stokes matrices

$j: \mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right):=\mathbb{C}_{\lambda} \backslash\left\{\lambda=t_{i}^{\circ} \mid i=1, \ldots, n\right\} \hookrightarrow \mathbb{C}_{\lambda}$ (punctured affine line), with $t_{i}^{\circ} \neq t_{i^{\prime}}^{\circ}$ if $i \neq i^{\prime}$.
L° : a loc. const. sheaf of rank d on $\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)$.
$\left(V^{\circ}, \nabla^{\circ}\right)$ free $\mathcal{O}\left(\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)\right)$-mod. with connection s.t. $L^{\circ}=\left(V^{\text {oan }}\right)^{\nabla^{\circ}}$ and ∇° has reg. sing. included at infinity.
$m \rightarrow j_{*}\left(V^{\circ}, \nabla^{\circ}\right)$ is left module on the Weyl algebra $\mathbb{C}[\lambda]\left\langle\partial_{\lambda}\right\rangle$, and $\mathrm{DR}^{\text {an }} j_{*}\left(V^{\circ}, \nabla^{\circ}\right) \simeq \boldsymbol{R} j_{*} L^{\circ}$: a perverse sheaf (up to a shift) on \mathbb{C}_{λ}. More generally, can consider M° : a reg. holon. $\mathbb{C}[\lambda]\left\langle\partial_{\lambda}\right\rangle$-mod. s.t. $\mathcal{O}\left(\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)\right) \otimes M^{\circ}=\left(V^{\circ}, \nabla\right)$.
Fourier transform ${ }^{\mathrm{F}} M^{\circ}$: the same \mathbb{C}-vector space with an action of $\mathbb{C}[\zeta]\left\langle\partial_{\zeta}\right\rangle$ such that ζ acts as ∂_{λ} and ∂_{ζ} acts as $-\lambda$.
Setting $z=\zeta^{-1}$, the localization $G^{\circ}:=\mathbb{C}\left[\zeta, \zeta^{-1}\right] \otimes_{\mathbb{C}[\zeta]}{ }^{\mathrm{F}} M^{\circ}$ is a free $\mathbb{C}\left[z, z^{-1}\right]$-module with conn. having an irregular singularity of Poincaré rank one (exponential type) at $z=0$.
Theorem of Malgrange (Chap. XII in his 1991 book) (recently proved in a topological way by d'Agnolo-Hien-Morando-CS)
\Longrightarrow formula for the Stokes matrices of G° at $z=0$ in terms of monodromy data of M°.

Perverse sheaf $\mathrm{DR}^{\text {an }} M^{\circ} \Longleftrightarrow$ linear repres. of a quiver (monodr. data):

- Vector spaces $\Psi^{\circ}($ of rank $d)$ and $\Phi_{i}^{\circ}(i=1, \ldots, n)$,
- linear morphisms $\mathrm{c}_{i}: \Psi^{\circ} \rightarrow \Phi_{i}^{\circ}$ and $\mathrm{v}_{i}: \Phi_{i}^{\circ} \rightarrow \Psi^{\circ}$, subject to the relations that $\mathrm{Id}+\mathrm{c}_{i} \circ \mathrm{v}_{i}$ and $\mathrm{T}_{i}:=\mathrm{Id}+\mathrm{v}_{i} \circ \mathrm{c}_{i}$ are invertible for each i.

Theorem (Malgrange, DHMS). ヨ a pair of Stokes matrices ($S_{+}^{\circ}, S_{-}^{\circ}$) for G° at $z=0$, decomposed into blocks $(i, j)(i, j=1, \ldots, n)$ s.t. the non-diagonal blocks (i, j) and (j, i) respectively read

$\bullet 0$ and $-\mathrm{c}_{i} \circ \mathrm{v}_{j}$ for S_{-}°.

A formula of Malgrange for Stokes matrices

$j: \mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right):=\mathbb{C}_{\lambda} \backslash\left\{\lambda=t_{i}^{\circ} \mid i=1, \ldots, n\right\} \hookrightarrow \mathbb{C}_{\lambda}$ (punctured affine line), with $t_{i}^{\circ} \neq t_{i^{\prime}}^{\circ}$ if $i \neq i^{\prime}$.
$L^{\circ}:$ a loc. const. sheaf of rank d on $\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)$.
$\left(V^{\circ}, \nabla^{\circ}\right)$ free $\mathcal{O}\left(\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)\right)$-mod. with connection s.t. $L^{\circ}=\left(V^{\text {oan }}\right)^{\nabla^{\circ}}$ and ∇° has reg. sing. included at infinity.
$m \rightarrow j_{*}\left(V^{\circ}, \nabla^{\circ}\right)$ is left module on the Weyl algebra $\mathbb{C}[\lambda]\left\langle\partial_{\lambda}\right\rangle$, and $\mathrm{DR}^{\text {an }} j_{*}\left(V^{\circ}, \nabla^{\circ}\right) \simeq \boldsymbol{R} j_{*} L^{\circ}$: a perverse sheaf (up to a shift) on \mathbb{C}_{λ}. More generally, can consider M° : a reg. holon. $\mathbb{C}[\lambda]\left\langle\partial_{\lambda}\right\rangle$-mod. s.t. $\mathcal{O}\left(\mathbb{C}_{\lambda}^{*}\left(t^{\circ}\right)\right) \otimes M^{\circ}=\left(V^{\circ}, \nabla\right)$.
Fourier transform ${ }^{\mathrm{F}} M^{\circ}$: the same \mathbb{C}-vector space with an action of $\mathbb{C}[\zeta]\left\langle\partial_{\zeta}\right\rangle$ such that ζ acts as ∂_{λ} and ∂_{ζ} acts as $-\lambda$.
Setting $z=\zeta^{-1}$, the localization $G^{\circ}:=\mathbb{C}\left[\zeta, \zeta^{-1}\right] \otimes_{\mathbb{C}[\zeta]}{ }^{\mathrm{F}} M^{\circ}$ is a free $\mathbb{C}\left[z, z^{-1}\right]$-module with conn. having an irregular singularity of Poincaré rank one (exponential type) at $z=0$.
Theorem of Malgrange (Chap. XII in his 1991 book) (recently proved in a topological way by d'Agnolo-Hien-Morando-CS)
\Longrightarrow formula for the Stokes matrices of G° at $z=0$ in terms of monodromy data of M°.

Perverse sheaf $\mathrm{DR}^{\mathrm{an}} M^{\circ} \stackrel{\mathrm{RH}}{\Longleftrightarrow}$ linear repres. of a quiver (monodr. data):

- Vector spaces $\Psi^{\circ}($ of rank $d)$ and $\Phi_{i}^{\circ}(i=1, \ldots, n)$,
- linear morphisms $\mathrm{c}_{i}: \Psi^{\circ} \rightarrow \Phi_{i}^{\circ}$ and $\mathrm{v}_{i}: \Phi_{i}^{\circ} \rightarrow \Psi^{\circ}$,
subject to the relations that $\mathrm{Id}+\mathrm{c}_{i} \circ \mathrm{v}_{i}$ and $\mathrm{T}_{i}:=\mathrm{Id}+\mathrm{v}_{i} \circ \mathrm{cc}_{i}$ are invertible for each i.

Theorem (Malgrange, DHMS). \exists a pair of Stokes matrices $\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ for G° at $z=0$, decomposed into blocks $(i, j)(i, j=1, \ldots, n)$ s.t. the non-diagonal blocks (i, j) and (j, i) respectively read

- $\mathrm{c}_{j} \mathrm{ov}_{i}$ and 0 for S_{+}°,
- 0 and $-\mathrm{c}_{i} \circ \mathrm{v}_{j}$ for S_{-}°.

Example (Middle extension). Case $\mathrm{DR}^{\mathrm{an}} M^{\circ} \simeq j_{*} L^{\circ}$:
m \rightarrow monodromy data are $\left(\Psi^{\circ}, \Phi_{i=1, \ldots, n}^{\circ}, \mathrm{c}_{i}, \mathrm{v}_{i}\right)$ with $\Phi_{i}^{\circ}=\operatorname{im}\left(\mathrm{Id}-\mathrm{T}_{i}\right)$
and $\mathrm{v}_{i}=$ inclusion : $\Phi_{i}^{\circ} \longleftrightarrow \Psi^{\circ}, \quad \mathrm{c}_{i}=\left(\mathrm{Id}-\mathrm{T}_{i}\right): \Psi^{\circ} \longrightarrow \Phi_{i}^{\circ}$.
Th. \Longrightarrow for $i \neq j \in\{1, \ldots, n\},\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ has vanishing blocks
(i, j) and (j, i) iff
(Van)

$$
\left(\Leftrightarrow \quad \mathrm{T}_{j} \mathrm{~T}_{i}=\mathrm{T}_{j} \mathrm{~T}_{i}=\mathrm{T}_{i}+\mathrm{T}_{j}-\mathrm{Id} .\right)
$$

Perverse sheaf $\mathrm{DR}^{\mathrm{an}} M^{\circ} \stackrel{\mathrm{RH}}{\Longleftrightarrow}$ linear repres. of a quiver (monodr. data):

- Vector spaces $\Psi^{\circ}($ of rank $d)$ and $\Phi_{i}^{\circ}(i=1, \ldots, n)$,
\cdot linear morphisms $c_{i}: \Psi^{\circ} \rightarrow \Phi_{i}^{\circ}$ and $\mathrm{v}_{i}: \Phi_{i}^{\circ} \rightarrow \Psi^{\circ}$, subject to the relations that $\mathrm{Id}+\mathrm{c}_{i} \circ \mathrm{v}_{i}$ and $\mathrm{T}_{i}:=\mathrm{Id}+\mathrm{v}_{i} \circ \mathrm{c}_{i}$ are invertible for each i.

Theorem (Malgrange, DHMS). \exists a pair of Stokes matrices $\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ for G° at $z=0$, decomposed into blocks $(i, j)(i, j=1, \ldots, n)$ s.t. the non-diagonal blocks (i, j) and (j, i) respectively read

- $\mathrm{c}_{j} \mathrm{ov}_{i}$ and 0 for S_{+}°,
- 0 and $-\mathrm{c}_{i} \circ \mathrm{v}_{j}$ for S_{-}°.

Example (Middle extension). Case $\mathrm{DR}^{\mathrm{an}} M^{\circ} \simeq j_{*} L^{\circ}$:
$u \leadsto \rightarrow$ monodromy data are $\left(\Psi^{\circ}, \Phi_{i=1, \ldots, n}^{\circ}, \mathrm{c}_{i}, \mathrm{v}_{i}\right)$ with $\Phi_{i}^{\circ}=\operatorname{im}\left(\mathrm{Id}-\mathrm{T}_{i}\right)$ and $\mathrm{v}_{i}=$ inclusion $: \Phi_{i}^{\circ} \longleftrightarrow \Psi^{\circ}, \quad \mathrm{c}_{i}=\left(\mathrm{Id}-\mathrm{T}_{i}\right): \Psi^{\circ} \longrightarrow \Phi_{i}^{\circ}$.

Th. \Longrightarrow for $i \neq j \in\{1, \ldots, n\},\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ has vanishing blocks (i, j) and (j, i) iff
(Van)

$$
\left(\mathrm{Id}-\mathrm{T}_{j}\right)_{\mid \mathrm{im}\left(\mathrm{Id}-\mathrm{T}_{i}\right)}=0 \quad \text { and } \quad\left(\mathrm{Id}-\mathrm{T}_{i}\right)_{\mid \mathrm{im}\left(\mathrm{Id}-\mathrm{T}_{j}\right)}=0
$$

$$
\left(\Longleftrightarrow \quad \mathrm{T}_{j} \mathrm{~T}_{i}=\mathrm{T}_{j} \mathrm{~T}_{i}=\mathrm{T}_{i}+\mathrm{T}_{j}-\mathrm{Id} .\right)
$$

Dynamical version of Malgrange's theorem

Case of a coalescing point $t^{\mathrm{c}} \in \mathbb{C}^{n}$ with $\operatorname{nbd} V\left(t^{\mathrm{c}}\right)=\prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$.

- $V\left(t^{\mathrm{c}}\right)^{\circ}=\left\{t \in V\left(t^{\mathrm{c}}\right) \mid t_{i} \neq t_{j} \forall i \neq j\right\}$
- In $\mathbb{C}_{\lambda} \times V\left(t^{\mathrm{c}}\right)^{\circ}$, hypersurface $H=\left\{\prod_{i}\left(\lambda-t_{i}\right)=0\right\}$.
$\leadsto \rightarrow$ disjoint union of the hyperplanes $H_{i}=\left\{\lambda-t_{i}=0\right\}$.
- L: a locally const. sheaf of rk d on $\left(\mathbb{C}_{\lambda} \times V\left(t^{c}\right)^{\circ}\right) \backslash H$.
- $j:\left(\mathbb{C}_{\lambda} \times V\left(t^{\mathrm{c}}\right)^{\circ}\right) \backslash H \hookrightarrow \mathbb{C}_{\lambda} \times V\left(t^{\mathrm{c}}\right)^{\mathrm{o}}:$ the inclusion.
- $\phi_{\lambda-t_{i}}\left(j_{*} L\right)$: vanishing cycle sheaf with autom. $\mathrm{T}_{i}(i=1, \ldots, n)$
$\rightarrow \rightarrow$ locally constant on H_{i}.
- $j_{*} L^{\circ}:$ restriction of $j_{*} L$ to $\mathbb{C}_{\lambda} \times\left\{t^{\circ}\right\}$.

Perverse sheaf $\mathrm{DR}^{\mathrm{an}} M^{\circ} \stackrel{\mathrm{RH}}{\Longleftrightarrow}$ linear repres. of a quiver (monodr. data):

- Vector spaces $\Psi^{\circ}($ of $\operatorname{rank} d)$ and $\Phi_{i}^{\circ}(i=1, \ldots, n)$,
\bullet linear morphisms $c_{i}: \Psi^{\circ} \rightarrow \Phi_{i}^{\circ}$ and $\mathrm{v}_{i}: \Phi_{i}^{\circ} \rightarrow \Psi^{\circ}$, subject to the relations that $\mathrm{Id}+\mathrm{c}_{i} \circ \mathrm{v}_{i}$ and $\mathrm{T}_{i}:=\mathrm{Id}+\mathrm{v}_{i} \circ \mathrm{c}_{i}$ are invertible for each i.

Theorem (Malgrange, DHMS). \exists a pair of Stokes matrices $\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ for G° at $z=0$, decomposed into blocks $(i, j)(i, j=1, \ldots, n)$ s.t. the non-diagonal blocks (i, j) and (j, i) respectively read

- $\mathrm{c}_{j} \mathrm{ov}_{i}$ and 0 for S_{+}°,
- 0 and $-\mathrm{c}_{i} \circ \mathrm{v}_{j}$ for S_{-}°.

Example (Middle extension). Case $\mathrm{DR}^{\mathrm{an}} M^{\circ} \simeq j_{*} L^{\circ}$:
$\leadsto \leadsto$ monodromy data are $\left(\Psi^{\circ}, \Phi_{i=1, \ldots, n}^{\circ}, \mathrm{c}_{i}, \mathrm{v}_{i}\right)$ with $\Phi_{i}^{\circ}=\mathrm{im}\left(\mathrm{Id}-\mathrm{T}_{i}\right)$ and $\mathrm{v}_{i}=$ inclusion $: \Phi_{i}^{\circ} \longleftrightarrow \Psi^{\circ}, \quad \mathrm{c}_{i}=\left(\mathrm{Id}-\mathrm{T}_{i}\right): \Psi^{\circ} \longrightarrow \Phi_{i}^{\circ}$.

Th. \Longrightarrow for $i \neq j \in\{1, \ldots, n\},\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ has vanishing blocks (i, j) and (j, i) iff
(Van)

$$
\left(\mathrm{Id}-\mathrm{T}_{j}\right)_{\mid \mathrm{im}\left(\mathrm{Id}-\mathrm{T}_{i}\right)}=0 \quad \text { and } \quad\left(\mathrm{Id}-\mathrm{T}_{i}\right)_{\mid \mathrm{im}\left(\mathrm{Id}-\mathrm{T}_{j}\right)}=0
$$

$$
\left(\Longleftrightarrow \quad \mathrm{T}_{j} \mathrm{~T}_{i}=\mathrm{T}_{j} \mathrm{~T}_{i}=\mathrm{T}_{i}+\mathrm{T}_{j}-\mathrm{Id} .\right)
$$

Dynamical version of Malgrange's theorem

Case of a coalescing point $t^{\mathrm{c}} \in \mathbb{C}^{n}$ with nbd $V\left(t^{\mathrm{c}}\right)=\prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$.

- $V\left(t^{\mathrm{c}}\right)^{\circ}=\left\{t \in V\left(t^{\mathrm{c}}\right) \mid t_{i} \neq t_{j} \forall i \neq j\right\}$
- In $\mathbb{C}_{\lambda} \times V\left(t^{\mathrm{c}}\right)^{\circ}$, hypersurface $H=\left\{\prod_{i}\left(\lambda-t_{i}\right)=0\right\}$.
$\leadsto \rightarrow$ disjoint union of the hyperplanes $H_{i}=\left\{\lambda-t_{i}=0\right\}$.
- L: a locally const. sheaf of rk d on $\left(\mathbb{C}_{\lambda} \times V\left(t^{\mathrm{c}}\right)^{\circ}\right) \backslash H$.
- $j:\left(\mathbb{C}_{\lambda} \times V\left(t^{\mathrm{c}}\right)^{\circ}\right) \backslash H \hookrightarrow \mathbb{C}_{\lambda} \times V\left(t^{\mathrm{c}}\right)^{\mathrm{o}}:$ the inclusion.
- $\phi_{\lambda-t_{i}}\left(j_{*} L\right)$: vanishing cycle sheaf with autom. $\mathrm{T}_{i}(i=1, \ldots, n)$
$\rightarrow \rightarrow$ locally constant on H_{i}.
- $j_{*} L^{\circ}$: restriction of $j_{*} L$ to $\mathbb{C}_{\lambda} \times\left\{t^{\circ}\right\}$.

Proposition. For a given $a=1, \ldots, r$, Condition (Van) holds for any pair $i \neq j \in I_{a}$ iff $\phi_{\lambda-t_{i}}\left(j_{*} L\right)$ is constant for every $i \in I_{a}$.

Sketch of proof. Represent the loc. constant sheaf $\phi_{\lambda-t_{i}}\left(j_{*} L\right)$ by the vector space $\mathrm{im}\left(\mathrm{Id}-\mathrm{T}_{i}\right)$ with autom. T_{j} for $j \neq i \in I_{a}$. Constancy $\Longleftrightarrow \mathrm{T}_{j \mid \mathrm{im}\left(\mathrm{Id}-\mathrm{T}_{i}\right)}=\mathrm{Id}$ for any $j \in I_{a}$.

Dynamical version of Malgrange's theorem

Case of a coalescing point $t^{\mathrm{c}} \in \mathbb{C}^{n}$ with nbd $V\left(t^{\mathrm{c}}\right)=\prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$.

- $V\left(t^{\mathrm{c}}\right)^{\circ}=\left\{t \in V\left(t^{\mathrm{c}}\right) \mid t_{i} \neq t_{j} \forall i \neq j\right\}$
- In $\mathbb{C}_{\lambda} \times V\left(t^{\mathrm{c}}\right)^{\circ}$, hypersurface $H=\left\{\prod_{i}\left(\lambda-t_{i}\right)=0\right\}$.
un disjoint union of the hyperplanes $H_{i}=\left\{\lambda-t_{i}=0\right\}$.
- L : a locally const. sheaf of $\mathrm{rk} d$ on $\left(\mathbb{C}_{\lambda} \times V\left(t^{\mathrm{c}}\right)^{\circ}\right) \backslash H$.
- $j:\left(\mathbb{C}_{\lambda} \times V\left(t^{c}\right)^{0}\right), H \hookrightarrow \mathbb{C}_{\lambda} \times V\left(t^{c}\right)^{0}$: the inclusion.
- $\phi_{\lambda-t_{i}}\left(j_{*} L\right)$: vanishing cycle sheaf with autom. $\mathrm{T}_{i}(i=1, \ldots, n)$
mu locally constant on H_{i}.
- $j_{*} L^{\circ}$: restriction of $j_{*} L$ to $\mathbb{C}_{\lambda} \times\left\{t^{\circ}\right\}$.

Proposition. For a given $a=1, \ldots, r$, Condition (Van) holds for any pair $i \neq j \in I_{a}$ iff $\phi_{\lambda-t_{i}}\left(j_{*} L\right)$ is constant for every $i \in I_{a}$.

Sketch of proof. Represent the loc. constant sheaf $\phi_{\lambda-t_{i}}\left(j_{*} L\right)$ by the vector space im(Id $\left.-\mathrm{T}_{i}\right)$ with autom. T_{j} for $j \neq i \in I_{a}$. Constancy $\Longleftrightarrow \mathrm{T}_{j \mid \mathrm{im}\left(\mathrm{Id}-\mathrm{T}_{i}\right)}=\mathrm{Id}$ for any $j \in I_{a}$.

Consider:

- M : the reg. holonomic \mathscr{D}-module on $\mathbb{C}_{\lambda} \times V\left(t^{c}\right)^{\circ}$ whose de Rham complex is $j_{*} L$.
- ${ }^{\mathrm{F}} M$: its partial Fourier transform relative to λ.
- \widehat{G} be the formalization of ${ }^{\mathrm{F}} M$ along $\{\zeta=\infty\} \times V\left(t^{\mathrm{c}}\right)^{\circ}$.

The formal stationary phase formula with parameter t (Douai-
CS 2003) \Longrightarrow

- \widehat{G} has a decomposition

$$
\widehat{G} \simeq \bigoplus_{i}\left(R_{i}\left[z^{-1}\right], \nabla_{i}+\mathrm{d}\left(t_{i} / z\right)\right)
$$

with $\left(R_{i}, \nabla_{i}\right)$: log. connection with pole along $z=0$.

- and L_{i} : sheaf of horiz. sections of the residual conn. $\left(R_{i} / z R_{i}, \nabla_{\text {res }}\right)$ on $V\left(t^{\mathrm{c}}\right)^{\circ}$ isomorphic to $\phi_{\lambda-t_{i}}\left(j_{*} L\right)$.

Corollary. If the sheaves L_{i} are constant on $V\left(t^{\mathrm{c}}\right)^{\circ}$, then: $\forall t^{\circ} \in V\left(t^{c}\right)^{\circ}, \forall a=1, \ldots, r$ and $\forall i \neq j \in I_{a}$, the (i, j) entries of the Stokes matrices $\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ are zero.

Consider:

- M : the reg. holonomic \mathscr{D}-module on $\mathbb{C}_{\lambda} \times V\left(t^{\mathrm{c}}\right)^{\circ}$ whose de Rham complex is $j_{*} L$.
- ${ }^{\mathrm{F}} M$: its partial Fourier transform relative to λ.
- \widehat{G} be the formalization of ${ }^{\mathrm{F}} M$ along $\{\zeta=\infty\} \times V\left(t^{\mathrm{c}}\right)^{\circ}$.

The formal stationary phase formula with parameter t (DouaiCS 2003) \Longrightarrow

- \widehat{G} has a decomposition

$$
\widehat{G} \simeq \bigoplus_{i}\left(R_{i}\left[z^{-1}\right], \nabla_{i}+\mathrm{d}\left(t_{i} / z\right)\right)
$$

with $\left(R_{i}, \nabla_{i}\right)$: log. connection with pole along $z=0$.

- and L_{i} : sheaf of horiz. sections of the residual conn. $\left(R_{i} / z R_{i}, \nabla_{\text {res }}\right)$ on $V\left(t^{\mathrm{c}}\right)^{\circ}$ isomorphic to $\phi_{\lambda-t_{i}}\left(j_{*} L\right)$.

Corollary. If the sheaves L_{i} are constant on $V\left(t^{\mathrm{c}}\right)^{\circ}$, then: $\forall t^{\circ} \in V\left(t^{c}\right)^{\circ}, \forall a=1, \ldots, r$ and $\forall i \neq j \in I_{a}$, the (i, j) entries of the Stokes matrices $\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ are zero.

Conclusion: Proof of the theorem of C-D-G

Consider a partition $\{1, \ldots, n\}=\bigsqcup_{a=1}^{r} I_{a}$ and let t^{c} be a "coalescing point" in \mathbb{C}^{n} on the stratum defined by this partition, that is,

$$
t_{i}^{\mathrm{c}}=t_{j}^{\mathrm{c}} \Longleftrightarrow i \text { and } j \in I_{a} \text { for some } a .
$$

$V\left(t^{\mathrm{c}}\right)$: a 1-connected nbd of the form $\prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$
$t^{\circ} \in V\left(t^{\mathrm{c}}\right):$ a generic point.
Assumption: $\exists R(t)$ holom. on $V\left(t^{\mathrm{c}}\right)=\prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$ and integr. conn.
(JMUM) $-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+\left([\Lambda(t), R(t)]+D^{\circ}\right) \frac{\mathrm{d} z}{z}-[\mathrm{d} \Lambda(t), R(t)]$

Consider:

- M : the reg. holonomic \mathscr{D}-module on $\mathbb{C}_{\lambda} \times V\left(t^{\mathrm{c}}\right)^{\circ}$ whose de Rham complex is $j_{*} L$.
- ${ }^{\mathrm{F}} M$: its partial Fourier transform relative to λ.
- \widehat{G} be the formalization of ${ }^{\mathrm{F}} M$ along $\{\zeta=\infty\} \times V\left(t^{\mathrm{c}}\right)^{\circ}$.

The formal stationary phase formula with parameter t (Douai-
CS 2003) \Longrightarrow

- \widehat{G} has a decomposition

$$
\widehat{G} \simeq \bigoplus_{i}\left(R_{i}\left[z^{-1}\right], \nabla_{i}+\mathrm{d}\left(t_{i} / z\right)\right)
$$

with $\left(R_{i}, \nabla_{i}\right)$: log. connection with pole along $z=0$.

- and L_{i} : sheaf of horiz. sections of the residual conn. $\left(R_{i} / z R_{i}, \nabla_{\text {res }}\right)$ on $V\left(t^{\mathrm{c}}\right)^{\circ}$ isomorphic to $\phi_{\lambda-t_{i}}\left(j_{*} L\right)$.

Corollary. If the sheaves L_{i} are constant on $V\left(t^{\mathrm{c}}\right)^{\circ}$, then: $\forall t^{\circ} \in V\left(t^{\mathrm{c}}\right)^{\circ}, \forall a=1, \ldots, r$ and $\forall i \neq j \in I_{a}$, the (i, j) entries of the Stokes matrices $\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ are zero.

Conclusion: Proof of the theorem of C-D-G

Consider a partition $\{1, \ldots, n\}=\bigsqcup_{a=1}^{r} I_{a}$ and let t^{c} be a "coalescing point" in \mathbb{C}^{n} on the stratum defined by this partition, that is,

$$
t_{i}^{\mathrm{c}}=t_{j}^{\mathrm{c}} \Longleftrightarrow i \text { and } j \in I_{a} \text { for some } a .
$$

$V\left(t^{\mathrm{c}}\right)$: a 1-connected nbd of the form $\prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$
$t^{\circ} \in V\left(t^{\mathrm{c}}\right):$ a generic point.
Assumption: $\exists R(t)$ holom. on $V\left(t^{c}\right)=\prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$ and integr. conn.
$($ JMUM $) \quad-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+\left([\Lambda(t), R(t)]+D^{\circ}\right) \frac{\mathrm{d} z}{z}-[\mathrm{d} \Lambda(t), R(t)]$
Theorem (Cotti-Dubrovin-Guzzetti). Furthermore,
(1) \exists a base change, formal with respect to z and holom. w.r.t. $t \in V\left(t^{c}\right)$, s.t., after this base change, the matrix of $\widehat{\nabla}$ is

$$
-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+D^{\circ} \frac{\mathrm{d} z}{z}
$$

(2) \exists a pair of Stokes matrices $\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ attached to ∇° s.t. each entry (i, j) is zero if $i \neq j$ and i, j in the same subset I_{a}.

- Proof of (1) omitted (not much difficult).
- $(1) \Longrightarrow L_{i}$ constant of rk one on $V\left(t^{c}\right)^{\circ}$.
- Proof of (2): relate (JMUM) with the above corollary.

Conclusion: Proof of the theorem of C-D-G

Consider a partition $\{1, \ldots, n\}=\bigsqcup_{a=1}^{r} I_{a}$ and let t^{c} be a "coalescing point" in \mathbb{C}^{n} on the stratum defined by this partition, that is,

$$
t_{i}^{\mathrm{c}}=t_{j}^{\mathrm{c}} \Longleftrightarrow i \text { and } j \in I_{a} \text { for some } a .
$$

$V\left(t^{\mathrm{c}}\right):$ a 1-connected nbd of the form $\prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$ $t^{\circ} \in V\left(t^{\mathrm{c}}\right):$ a generic point.
Assumption: $\exists R(t)$ holom. on $V\left(t^{c}\right)=\prod_{a} V\left(t_{a}^{\mathrm{c}}\right)$ and integr. conn.
(JMUM) $\quad-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+\left([\Lambda(t), R(t)]+D^{\circ}\right) \frac{\mathrm{d} z}{z}-[\mathrm{d} \Lambda(t), R(t)]$

Theorem (Cotti-Dubrovin-Guzzetti). Furthermore,

(1) \exists a base change, formal with respect to z and holom. w.r.t. $t \in V\left(t^{c}\right)$, s.t., after this base change, the matrix of $\widehat{\nabla}$ is

$$
-\mathrm{d}\left(\frac{\Lambda(t)}{z}\right)+D^{\circ} \frac{\mathrm{d} z}{z}
$$

(2) \exists a pair of Stokes matrices $\left(S_{+}^{\circ}, S_{-}^{\circ}\right)$ attached to ∇° s.t. each entry (i, j) is zero if $i \neq j$ and i, j in the same subset I_{a}.

- Proof of (1) omitted (not much difficult).
$\cdot(1) \Longrightarrow L_{i}$ constant of rk one on $V\left(t^{c}\right)^{\circ}$.
- Proof of (2): relate (JMUM) with the above corollary.

Setting.

- $F^{\circ}:=\left(\mathbb{C}[z]^{n},{ }^{F} \nabla^{\circ}\right)$ with matrix

$$
\left(\frac{\Lambda^{\circ}}{z}+A^{\circ}\right) \frac{\mathrm{d} z}{z}, \quad \Lambda^{\circ}:=\operatorname{diag}\left(t_{1}^{\circ}, \ldots, t_{n}^{\circ}\right) .
$$

- $\widetilde{G}^{\circ}:=\mathbb{C}\left[z, z^{-1}\right] \otimes_{\mathbb{C}[z]} F^{\circ}$ with merom. conn. ${ }^{F} \nabla^{\circ}$.
- Can assume (add $c \mathrm{Id}_{n} \mathrm{~d} z / z$ with suitable $c \in \mathbb{C}$):
- integral eigenvalues of A° are $\geqslant 1$,
- no diagonal entry of A° is an integer.
- Set $\lambda=z^{2} \partial_{z}$ and $E^{\circ}:=F^{\circ}$ regarded as a $\mathbb{C}[\lambda]-\bmod$.
- Action of $z^{-1} \rightsquigarrow$ merom. connect. ∇° on E°.

Lemma. E° is $\mathbb{C}[\lambda]$-free of $r k n$ and ∇° is log. with matrix

$$
B^{\circ}=\left(A^{\circ}-\operatorname{Id}_{n}\right)\left(\lambda \operatorname{Id}_{n}-\Lambda^{\circ}\right)^{-1} \mathrm{~d} \lambda=\sum_{i=1}^{n} \frac{B_{i}^{\circ}}{\lambda-t_{i}^{\circ}} .
$$

- Each matrix B_{i}° has rank one and a unique nonzero eigenvalue: the i th diagonal entry of $A^{\circ}-\mathrm{Id}_{n}$, that is non integral.
- $\operatorname{Set}\left(V^{\circ}, \nabla^{\circ}\right)=\left(\mathbb{C}\left[\lambda,\left(\prod_{i}\left(\lambda-t_{i}^{\circ}\right)\right)^{-1}\right] \otimes E^{\circ}, \nabla^{\circ}\right)$.

Setting.

- $F^{\circ}:=\left(\mathbb{C}[z]^{n},{ }^{F} \nabla^{\circ}\right)$ with matrix

$$
\left(\frac{\Lambda^{\circ}}{z}+A^{\circ}\right) \frac{\mathrm{d} z}{z}, \quad \Lambda^{\circ}:=\operatorname{diag}\left(t_{1}^{\circ}, \ldots, t_{n}^{\circ}\right) .
$$

- $\widetilde{G}^{\circ}:=\mathbb{C}\left[z, z^{-1}\right] \otimes_{\mathbb{C}[z]} F^{\circ}$ with merom. conn. ${ }^{F} \nabla^{\circ}$.
- Can assume (add $c \mathrm{Id}_{n} \mathrm{~d} z / z$ with suitable $c \in \mathbb{C}$):
- integral eigenvalues of A° are $\geqslant 1$,
- no diagonal entry of A° is an integer.
- Set $\lambda=z^{2} \partial_{z}$ and $E^{\circ}:=F^{\circ}$ regarded as a $\mathbb{C}[\lambda]-\bmod$.
- Action of $z^{-1} \rightsquigarrow$ merom. connect. ∇° on E°.

Lemma. E° is $\mathbb{C}[\lambda]$-free of $r k n$ and ∇° is log. with matrix

$$
B^{\circ}=\left(A^{\circ}-\mathrm{Id}_{n}\right)\left(\lambda \operatorname{Id}_{n}-\Lambda^{\circ}\right)^{-1} \mathrm{~d} \lambda=\sum_{i=1}^{n} \frac{B_{i}^{\circ}}{\lambda-t_{i}^{\circ}} .
$$

- Each matrix B_{i}° has rank one and a unique nonzero eigenvalue: the i th diagonal entry of $A^{\circ}-\mathrm{Id}_{n}$, that is non integral.
- $\operatorname{Set}\left(V^{\circ}, \nabla^{\circ}\right)=\left(\mathbb{C}\left[\lambda,\left(\prod_{i}\left(\lambda-t_{i}^{\circ}\right)\right)^{-1}\right] \otimes E^{\circ}, \nabla^{\circ}\right)$.

Lemma. The $\mathbb{C}[\lambda]\left\langle\partial_{\lambda}\right\rangle$-submodule of $\left(V^{\circ}, \nabla^{\circ}\right)$ generated by E° is the middle extension $\left(M^{\circ}, \nabla^{\circ}\right)$ of $\left(V^{\circ}, \nabla^{\circ}\right)$, whose localized Laplace transform $\left(G^{\circ},{ }^{F} \nabla^{\circ}\right)$ is equal to $\left(\widetilde{G}^{\circ},{ }^{F} \nabla^{\circ}\right)$.

Proof.

- Properties of eigenvalues of $B_{i}^{\circ} \Longrightarrow$ first assertion.
- Set G° : localized Laplace transform of M°.
- $E^{\circ} \hookrightarrow M^{\circ} \Longrightarrow F^{\circ} \hookrightarrow G^{\circ}$, hence $\widetilde{G}^{\circ} \subset G^{\circ}$.
- For equality, enough to show $\mathrm{rk} G^{\circ}=n$.
- Known: rk $G^{\circ}=\sum_{i=1}^{n} \phi_{t_{i}} M^{\circ}$.
- \Longrightarrow enough to show that, for each local monodromy T_{i} of $L^{\circ}=\left(V^{\circ}\right)^{\circ}$ around t_{i}°, we have $\operatorname{rk}\left(\mathrm{Id}_{n}-\mathrm{T}_{i}\right)=1$.
By our assumption on B°, the local monodromy T_{i} is conjugate to $\exp -2 \pi \mathrm{i} B_{i}^{\circ}$, hence $\mathrm{T}_{i}-\mathrm{Id}$ has rank one, as desired.

Setting.

- $F^{\circ}:=\left(\mathbb{C}[z]^{n},{ }^{F} \nabla^{\circ}\right)$ with matrix

$$
\left(\frac{\Lambda^{\circ}}{z}+A^{\circ}\right) \frac{\mathrm{d} z}{z}, \quad \Lambda^{\circ}:=\operatorname{diag}\left(t_{1}^{\circ}, \ldots, t_{n}^{\circ}\right) .
$$

- $\widetilde{G}^{\circ}:=\mathbb{C}\left[z, z^{-1}\right] \otimes_{\mathbb{C}[z]} F^{\circ}$ with merom. conn. ${ }^{F} \nabla^{\circ}$.
- Can assume ($\operatorname{add} c \mathrm{Id}_{n} \mathrm{~d} z / z$ with suitable $c \in \mathbb{C}$):
- integral eigenvalues of A° are $\geqslant 1$,
- no diagonal entry of A° is an integer.
- Set $\lambda=z^{2} \partial_{z}$ and $E^{\circ}:=F^{\circ}$ regarded as a $\mathbb{C}[\lambda]-\bmod$.
- Action of $z^{-1} \rightsquigarrow$ merom. connect. ∇° on E°.

Lemma. E° is $\mathbb{C}[\lambda]$-free of $r k n$ and ∇° is log. with matrix

$$
B^{\circ}=\left(A^{\circ}-\operatorname{Id}_{n}\right)\left(\lambda \operatorname{Id}_{n}-\Lambda^{\circ}\right)^{-1} \mathrm{~d} \lambda=\sum_{i=1}^{n} \frac{B_{i}^{\circ}}{\lambda-t_{i}^{\circ}} .
$$

- Each matrix B_{i}° has rank one and a unique nonzero eigenvalue: the i th diagonal entry of $A^{\circ}-\mathrm{Id}_{n}$, that is non integral.
- $\operatorname{Set}\left(V^{\circ}, \nabla^{\circ}\right)=\left(\mathbb{C}\left[\lambda,\left(\prod_{i}\left(\lambda-t_{i}^{\circ}\right)\right)^{-1}\right] \otimes E^{\circ}, \nabla^{\circ}\right)$.

Lemma. The $\mathbb{C}[\lambda]\left\langle\partial_{\lambda}\right\rangle$-submodule of $\left(V^{\circ}, \nabla^{\circ}\right)$ generated by E° is the middle extension $\left(M^{\circ}, \nabla^{\circ}\right)$ of $\left(V^{\circ}, \nabla^{\circ}\right)$, whose localized Laplace transform $\left(G^{\circ},{ }^{F} \nabla^{\circ}\right)$ is equal to $\left(\widetilde{G}^{\circ},{ }^{F} \nabla^{\circ}\right)$.

Proof.

- Properties of eigenvalues of $B_{i}^{\circ} \Longrightarrow$ first assertion.
- Set G° : localized Laplace transform of M°.
- $E^{\circ} \hookrightarrow M^{\circ} \Longrightarrow F^{\circ} \hookrightarrow G^{\circ}$, hence $\widetilde{G}^{\circ} \subset G^{\circ}$.
- For equality, enough to show $\mathrm{rk} G^{\circ}=n$.
- Known: rk $G^{\circ}=\sum_{i=1}^{n} \phi_{t_{i}^{\circ}} M^{\circ}$.
- \Longrightarrow enough to show that, for each local monodromy T_{i} of $L^{\circ}=\left(V^{\circ}\right)^{\circ}$ around t_{i}°, we have $\operatorname{rk}\left(\mathrm{Id}_{n}-\mathrm{T}_{i}\right)=1$.
By our assumption on B°, the local monodromy T_{i} is conjugate to $\exp -2 \pi \mathrm{i} B_{i}^{\circ}$, hence $\mathrm{T}_{i}-\mathrm{Id}$ has rank one, as desired.

Conclusion. Up to adding $c \mathrm{Id}_{n} \mathrm{~d} z / z$ to the matrix, the connection (JMUM) on $V\left(T^{c}\right)^{\circ}$ is the localized Fourier transform G of a middle extension M. Furthermore, the constancy condition of $\phi_{\lambda-t_{i}} M$ is satisfied because L_{i} is constant (of rank one).
Dynamical Malgrange theorem \Longrightarrow vanishing of Stokes entries.

