Some cohomological properties of semisimple representations of π_1

The Hard Lefschetz Theorem

- X: a *compact Kähler manifold* of dimension n, with Kähler form ω .
- \mathcal{L} : a *local system of coefficients* of rank d on X
 - \Leftrightarrow a *linear representation* $\pi_1(X) \longrightarrow \operatorname{GL}_d(\mathbb{C})$
 - \Leftrightarrow a *locally constant sheaf* of rank **d** \mathbb{C} -vector spaces
 - \Leftrightarrow a *holomorphic vector bundle* V of rank d on X

with a *flat holomorphic connection* ∇ .

$$\mathcal{L} = \operatorname{Ker} \nabla : V \longrightarrow V.$$

Hard Lefschetz Theorem

 $\omega^k\wedge: H^{n-k}(X,\mathcal{L}) \stackrel{\sim}{\longrightarrow} H^{n+k}(X,\mathcal{L}) \quad orall \, k=1,\dots,n.$

The Hard Lefschetz Theorem is known to be true if

- \mathcal{L} is the constant system of coefficients (Harmonic theory, Hodge).
- \mathcal{L} is a *unitary* representation of $\pi_1(X)$ (same proof).
- *L* underlies a *variation of polarized Hodge structures* (Deligne).
- \mathcal{L} is a *semisimple* local system on X (Simpson)

Variations of polarized Hodge structures

 (V, ∇) a flat holomorphic vector bundle.

 $H=\mathcal{C}^\infty_X \mathop{\otimes}\limits_{\mathcal{O}_X} V$

$$D_V = D'_V + D''_V$$

the flat connection on the C^{∞} bundle *H* obtained from ∇ , so that

 $(V,
abla) = (\operatorname{Ker} D''_V, D'_V).$

One says that this is a *variation of polarized complex Hodge structures of weight w* if

H is a vector bundle equipped with a C^{∞} -decomposition

 $H= \mathop{\oplus}\limits_{p\in \mathbb{Z}} H^{p,w-p} \qquad (w\in \mathbb{Z}),$

and with a nondegenerate Hermitian form \boldsymbol{k} such that

• the decomposition is *k*-orthogonal,

• $h \stackrel{\text{def}}{=} (-1)^p i^{-w} k$ on $H^{p,w-p}$ is *positive definite*,

• and (Griffiths'*transversality relations*)

 $egin{aligned} D_V'(H^{p,q}) \subset ig(H^{p,q} \oplus H^{p-1,q+1}ig) \otimes \mathcal{E}_X^{(1,0)} \ D_V''(H^{p,q}) \subset ig(H^{p,q} \oplus H^{p+1,q-1}ig) \otimes \mathcal{E}_X^{(0,1)} \end{aligned}$

Perverse sheaves and the Decomposition Theorem

- Z: an irreducible projective variety.
- Z^{o} : a smooth Zariski open set in Z.
- \mathcal{L} : an irreducible local system on \mathbb{Z}^{o} .

Irreducible perverse sheaf on *Z*

\iff

Intersection complex $IC_Z(\mathcal{L})$ (Goreski-MacPherson).

Example

If Z = S is a compact Riemann surface, $S^o \stackrel{j}{\longleftrightarrow} S$,

 $\mathrm{IC}_S(\mathcal{L})=j_*\mathcal{L}$

Theorem (Cattani-Kaplan-Schmid, Kashiwara-Kawai, M. Saito)

The Hard Lefschetz Theorem holds for $IH^*(Z, \mathcal{L})$ if \mathcal{L} underlies a variation of polarized Hodge structures.

Decomposition Theorem (Cattani-Kaplan-Schmid, Kashiwara-Kawai, M. Saito)

Let $f : Z \rightarrow Y$ be a morphism between projective varieties, then the direct image complex

$Rf_*\operatorname{IC}_Z(\mathcal{L})$

decomposes as a finite direct sum of irreducible perverse sheaves $\bigoplus_{i} \operatorname{IC}_{Y_{i}}(\mathcal{L}_{i})[n_{i}]$

if *L* underlies a variation of polarized Hodge structures.

(complex analogue of the arithmetic Decomposition Theorem of Beilinson-Bernstein-Deligne-Gabber).

2 steps in the proof:

- To construct a category of *polarizable Hodge D-modules* (pure objects), such that the decomposition theorem holds in this category.
- (2) To show that, for an irreducible perverse sheaf IC_Z(L) on an irreducible projective variety Z, such that L underlies a variation of Hodge structures, the perverse sheaf can be lifted to a polarizable Hodge D-module.

A conjecture by M. Kashiwara

Conjecture

The properties of polarizable Hodge \mathcal{D} -modules which do not explicitly involve the Hodge filtration remain valid when one replaces "polarizable Hodge \mathcal{D} module" with "semisimple holonomic \mathcal{D} -module".

Main Theorem

- X: a smooth projective manifold,
- S: a compact Riemann surface,
- \mathcal{L} : a semisimple locally constant sheaf on X,
- $f: X \rightarrow S$ a holomorphic map.

Then, the direct image complex $Rf_*\mathcal{L}$ decomposes, in the derived category, in a direct sum of irreducible perverse sheaves (with shifts) on S.

Harmonic metrics and Higgs bundles

Theorem (K. Corlette 1988)

Let (V, ∇) be a holomorphic vector bundle equipped with a flat connection on a compact Kähler manifold X. Then, (V, ∇) has a **harmonic metric** h if and only if the locally constant sheaf \mathcal{L} of its horizontal sections is **semisimple**. Let *h* be any metric on *H*. One may then find a unique connection

 $D_E = D'_E + D''_E$ on H

which is a metric connection for h such that, if

 $heta_E'=D_E'-D_V',\qquad heta_E''=D_E''-D_V'',$

the (0, 1)-form θ''_E with values in $\operatorname{End}(H)$ is the *h*-adjoint of the (1, 0)-form θ'_E .

Definition

The metric h is harmonic relatively to the flat holomorphic bundle (V, ∇) if $(D''_E + \theta'_E)^2 = 0$

that is,

$$D_E''^2=0, \qquad D_E''(heta_E')=0, \qquad heta_E'\wedge heta_E'=0.$$

$E=\operatorname{Ker} D''_E: H\to H$

E is a holomorphic bundle equipped with a 1-form θ'_E with values in End(*E*), which satisfies

$$\theta'_E \wedge \theta'_E = 0$$

 θ'_E is a *Higgs field* for *E*.

The flatness of D_V also imposes relations as

 $D_E'^2 = 0, \qquad D_E'(heta_E') = 0, \qquad D_E''(heta_E'') = 0.$

Consequently, for all $z_o \in \mathbb{C}$, the operator

 $D_E''+z_o heta_E''$

is a complex structure on *H*.

The associated holomorphic bundle

$$V_{z_o} = \operatorname{Ker}(D_E'' + z_o heta_E'')$$

is equipped, if $z_o \neq 0$, with a *flat holomorphic connection*

$$oldsymbol{
abla}_{z_o} = D_E' + rac{1}{z_o} heta_E'.$$

For $z_o = 1$ one recovers (V, ∇) .

If *h* is harmonic, the identities of Kähler geometry apply to the mixed operators

$$egin{aligned} &\mathcal{D}_\infty = D'_E + heta''_E, \quad \mathcal{D}_0 = D''_E + heta'_E \ &D_V = \mathcal{D}_\infty + \mathcal{D}_0 \ &\Delta_{D_V} = 2\Delta_{\mathcal{D}_\infty} = 2\Delta_{\mathcal{D}_0}. \end{aligned}$$

Simpson deduces from them the *Hard Lefschetz Theorem*.

Example

The case of variations of Hodge structures.

Family of flat bundles (V_{z_o}, ∇_{z_o}) for $z_o \neq 0$.

One also has operators which satisfy the identities of Kähler geometry:

$$egin{aligned} & \mathcal{D}_{z_o} = (z_o D_E' + heta_E') + (D_E'' + z_o heta_E'') = z_o \mathcal{D}_\infty + \mathcal{D}_0 \ & \Delta_{z_o} = (1 + |z_o|^2) \Delta_{D_V}. \end{aligned}$$

 \implies all locally constant sheaves \mathcal{L}_{z_o} , $z_o \neq 0$, have the same cohomology.

Variations of polarized twistor structures

C. Simpson presents this notion by stating the

Meta theorem (C. Simpson)

If the words "Hodge structure" are replaced with "twistor structure" in the assumptions and conclusions of any theorem in Hodge theory, one still gets a true statement, the proof of which is analogous to that of its model.

The notion of a twistor structure is a

"deshomogeneization"

of that of a Hodge structure, which has a notion of *weight*.

The Hodge graduation on a bundle on X is replaced with the extension of this bundle as a bundle on $X \times \mathbb{P}^1$.

The conjugation $H^{q,p} = \overline{H^{p,q}}$ is replaced with a geometric conjugation.

Polarizable twistor \mathcal{D}_X -modules

One may define the notion of a *polarizable twistor* \mathcal{D}_X *-module*.

The category of *polarizable twistor* \mathcal{D}_X -modules on a smooth projective manifold X is *abelian* and *semisimple*.

Theorem

If $f : X \to Y$ is a morphism between smooth projective manifolds, the direct image of a **polarizable twistor** \mathcal{D}_X -module decomposes in direct sum of its cohomology modules, which are **polarizable twistor** \mathcal{D}_Y -modules (the weight is obtained in the usual way).

Conjecture

If X is smooth projective, the restriction functor to z = 1 is an equivalence between the category of **polarizable twistor** \mathcal{D}_X -modules of weight 0 and that of semisimple perverse sheaves on X.

According to C. Simpson's work, this conjecture is true in the following cases:

- Locally constant sheaves.
- X is a compact Riemann surface.

This implies the *Main Theorem*.

Geometric conjugation

Let f(x) be a holomorphic function on an open set of X. Its conjugate $\overline{f}(x) \stackrel{\text{def}}{=} \overline{f(x)}$

is a holomorphic function on the *complex conjugate manifold* \overline{X} .

Let g(z) be a holomorphic function on an open set U of \mathbb{P}^1 . Its "conjugate" $\overline{g}(z) \stackrel{\text{def}}{=} g(-1/z)$

is a holomorphic function on the "complex conjugate set" \overline{U} .

Mix these two notions to define $\overline{f}(x, z)$.

If \mathcal{F} is a $\mathcal{O}_{X \times U}$ -module, then $\overline{\mathcal{F}}$ is a $\mathcal{O}_{\overline{X} \times \overline{U}}$ -module.

Variations of polarized twistor structures

 $\mathbb{P}^1 = U_0 \cup U_\infty$, z is the coordinate on U_0 , A is an open annulus $\rho < |z| < 1/\rho$, with $0 < \rho < 1$.

• Two locally free $\mathcal{O}_{X \times U_0}$ -modules $\mathcal{H}', \mathcal{H}''$ of rank *d* equipped with a *flat connection*

$$abla : \mathcal{H}' o \mathcal{H}' \mathop{\otimes}\limits_{\mathcal{O}_{X imes U_0}} rac{1}{z} \ \Omega^1_{X imes U_0}$$

• and a nondegenerate $\mathcal{C}^{\infty}_{X}(\mathcal{O}(A))$ -bilinear pairing (*glueing*)

$$C: \pi_{\mathrm{A}*}\mathcal{H}' \mathop{\otimes}_{\mathcal{O}(\mathrm{A})} \overline{\pi_{\mathrm{A}*}\mathcal{H}''} \longrightarrow \mathcal{C}^\infty_X(\mathcal{O}(\mathrm{A}))$$

compatible with the connection.

One gets a bundle $\widetilde{\mathcal{H}}$ on \mathbb{P}^1 by glueing \mathcal{H}'^* and $\overline{\mathcal{H}''}$.

 $\widetilde{\mathcal{H}}$ is C^{∞} with respect to variables of X and holomorphic with respect to the variable of \mathbb{P}^1 .

Twistor condition of weight w: the restriction to any $\{x\} \times \mathbb{P}^1$ is $\simeq \mathcal{O}_{\mathbb{P}^1}(w)^d$.

Polarization:

an isomorphism *compatible with the connections*

 $S:\mathcal{H}'' \stackrel{\sim}{\longrightarrow} \mathcal{H}'$

which satisfies a *positivity condition*: If H is the bundle $\pi_* \widetilde{\mathcal{H}}(-w)$, the polarization defines a *hermitian metric* h on H.

The bundle $\mathcal{H}'_{|z=1}$ is a holomorphic subbundle of H equipped with a *flat holo-morphic connection*.

The bundle $\mathcal{H}'_{|z=0}$ is a holomorphic subbundle of H equipped with a *Higgs field*.

Weil operator: $\widetilde{T} = (\mathcal{H}', \mathcal{H}'', (iz)^{-w}C)$ has weight 0. Tate twist: $T(k) = (\mathcal{H}', \mathcal{H}'', (iz)^{-2k}C)$.

Hermitian duality:

$${\mathcal T}^*=({\mathcal H}'',{\mathcal H}',C^*) \quad ext{with} \quad C^*(x,\overline{y})=\overline{C(y,\overline{x})}.$$

$$egin{aligned} &w(\mathcal{T}^*) = -w(\mathcal{T}), \ &w(\mathcal{T}(k)) = w(\mathcal{T}) - 2k, \ &\mathcal{T}(k)^* = \mathcal{T}^*(-k). \end{aligned}$$

Theorem (C. Simpson)

Such a metric is *harmonic*. Conversely, any harmonic metric on *H* is obtained in this way.

Hodge-Simpson Theorem

If X is compact Kähler, L the Lefschetz operator, and if

 $\mathcal{T} = (\mathcal{H}', \mathcal{H}'', C)$

is a variation of polarized twistor structure of weight w on X, then for any $k \ge 0$, the primitive part of the kth de Rham cohomology is a polarized twistor structure of weight w + k.