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Introduction

A Frobenius structure on a manifold(1) M consists of the data of two objects
on the tangent bundle TM : on the one hand a symmetric nondegenerate bilinear
form g (we will call g a metric for short) which is flat, and a commutative and
associative product ? with unit on the other hand. These two objects are subject
to natural compatibility relations.

As a consequence, there exist two kinds of local coordinate systems on such a
manifold: on the one hand, flat coordinates with respect to the metric and on
the other hand coordinates (xi) (called canonical) in which the products of basic
vector fields ∂xi

? ∂xj
are as simple as possible (e.g., . ∂xi

? ∂xj
= δij∂xi

, where δij

is the Kronecker symbol).
One of the many interesting features of Frobenius manifolds is that they produce

various transcendantal functions by considering local coordinate changes going
from a system of the first kind to a system of the second kind.

Two main families of examples are known:

• In the first one, canonical coordinates are naturally given, the flat structure
is hidden and has to be revealed. The methods developed in this talk apply
essentially to this kind of examples. The manifold is then the parameter space of a
universal unfolding or a moduli space, which hence carries an affine structure. We
owe it to K. Saito to have developed general tools (infinitesimal period mapping
and primitive forms) to show the existence of such a structure in the base space
of the miniversal unfolding of a holomorphic function with an isolated singularity.
M. Saito has given complete arguments, using Hodge theory.

(1)In this talk, the manifolds are complex analytic and the mappings are holomorphic
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• If on the other hand the flat structure is trivialized, the data of the associative
and commutative product ? is locally equivalent to the data of a function, called
a potential, satisfying a system of nonlinear differential equations, also called
WDVV. This approach comes from B. Dubrovin, who analysed in detail such
structures, making the link with the existence of solutions to WDVV equations.
This point of view sheds new light on the examples of the first kind. It is also par-
ticularly well suited to another family of examples, namely quantum cohomology
of some algebraic manifolds, where it is deeply related to enumerative problems
like counting the number of rational curves of certain kind on such manifolds.
More recently, Yu. Manin brought into evidence the analogy between the rela-
tions on the coefficients of the Taylor expansion of a potential satisfying WDVV
and the combinatorics which describes the cohomology of the moduli spaces M0,n

of stable rational curves with n marked points.

1. The Birkhoff problem

Given a holomorphic vector bundle E on a complex analytic manifold X, con-
sider on the inverse image F = p∗E by p : D×X → X, where D is a disc, a flat
meromorphic connection ∇ : F → F ⊗Ω1

D×X [∗(0×X)] with poles along 0×X.
Is it possible to extend ∇ on F̃

def
= p̃∗E, with p̃ : P1 × X → X as a flat

meromorphic connection with at most logarithmic poles along ∞ × X (and no
poles in C∗ ×X)?

The following result is due to B. Malgrange:

Theorem 1.1. Let X be a 1-connected analytic manifold, xo a point of X, and
let (F,∇) be a rank d vector bundle on D×X equipped with a flat meromorphic
connection with poles along {0}×X. Assume that there exists a solution (F̃ o, ∇̃o)

to the Birkhoff problem for the restriction (F o,∇o) of (F,∇) at D × {xo}.
Then there exists an analytic hypersurface Θ of X such that the Birkhoff prob-

lem has a solution for (F,∇) on X −Θ extending the given one at xo.

What do the solutions to the Birkhoff problem look like? I assume in the
following that the type of the pole at 0×X is 1, i.e., . in local coordinates (z, x)

and in any local basis of F , the matrix of ∇∂/∂z as a pole of order 2 along z = 0

and the matrices of ∇∂/∂xi
have a pole of order 1.

The meromorphic connection ∇ on F̃ gives rise to two kinds of objects on E:

(1) A flat holomorphic connection 5 and a horizontal endomorphism R∞: this
comes from the logarithmic singularity at infinity.
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(2) If one chooses a coordinate z on the chart centered at 0 of P1, one constructs
a linear endomorphism Φ on E with values in Ω1

X , which satisfies Φ∧Φ = 0, and
an endomorphism R0 which commutes with Φ, i.e., . for any local vector field ξ,
the endomorphisms R0 and Φ(ξ) of E commute.

In fact on can write

∇= p∗5+

(
R0

z
−R∞

)
dz

z
+

Φ

z

and the integrability of ∇ is equivalent to the following relations:

52 = 0, 5(R∞) = 0, Φ ∧ Φ = 0, [R0, Φ] = 0

5(Φ) = 0, 5(R0) + Φ = [Φ, R∞].

2. Saito structures and Frobenius structures on a complex analytic
manifold

Let M be a complex analytic manifold of dimension d, let TM denote its
tangent bundle, ΘM the sheaf of holomorphic vector fields and Ω1

M the sheaf of
holomorphic 1-forms.

A Saito structure on M (without metric) consists of
(1) a torsionless flat connection 5 on the tangent bundle TM ,
(2) a 1-form Φ with values in End(TM), namely a section of the sheaf

End(ΘM) ⊗OM
Ω1

M , which is symmetric when considered as a bilinear map
ΘM ⊗OM

ΘM → ΘM ;
(3) two global sections (vector fields) e and E of ΘM .

These data are subject to the following conditions:
(1) the meromorphic connection ∇ on the vector bundle p̃∗TM on P1 × M

defined by

∇ = p̃∗5−
(

Φ(E)

z
+5E

)
dz

z
+

π∗Φ

z

is integrable (in other words, the previous relations are satisfied by 5, Φ, R0
def
=

−Φ(E) and R∞
def
= 5E);

(2) the vector field e (identity vector field) is 5-horizontal, i.e., . 5(e) = 0,
and satisfies Φ(e) = − Id.

A “metric” adapted to the Saito structure is a symmetric nondegenerrate bilinear
form g on TM such that 5(g) = 0 (hence 5 is the Levi-Civita connection of g)
and the g-adjoint of Φ is Φ itself.
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Consequences. • One defines an OM -bilinear product ? : ΘM ⊗ ΘM → ΘM by
the formula

ξ ? η =−Φ(ξ)(η).

The symmetry of Φ means that this product is commutative. Moreover, e is the
identity. The property Φ ∧ Φ = 0 is then equivalent to the fact that the product
is associative: in local coordinates (x1, . . . , xd), if one puts Φ(∂xi

) = Φi, the
property means that the Φi are endomorphisms of TM which pairwise commute;
using commutativity one gets,

∂xi
? (∂xj

? ∂xk
) = Φi ◦ Φk(∂xj

)

(∂xi
? ∂xj

) ? ∂xk
= Φk ◦ Φi(∂xj

).

If one has a metric g adapted to the Saito structure, the condition Φ∗ = Φ is
equivalent to g(ξ1 ? ξ2, ξ3) = g(ξ1, ξ2 ? ξ3) for all vector fields ξ1, ξ2, ξ3.
• The structure of sheaf of commutative and associative rings with identity,

given by the product ? on the sheaf ΘM of vector fields on M (with coefficients
in OM) allows one to define a surjective morphism of OM -algebras

SymOM
ΘM −→ΘM

and, as SymOM
ΘM is nothing other than the algebra OM [TM ] of functions on

T ∗M which are polynomial in the fibres of T ∗M → M , one identifies Specan ΘM

with a closed analytic subspace L of T ∗M . As ΘM is a locally free of finite type
OM -module, the morphism L → M is finite and surjective, one has dim L =

dim M and L is Cohen-Macaulay in T ∗M . Moreover, the Euler vector field E

defines a global section of ΘM , hence a function on L.
If the endomorphism R0 is, generically on M , regular semi-simple, the manifold

L is reduced and Lagrangian in T ∗M : as L is Cohen-Macaulay, the fact that it
is reduced is shown on an open dense set, on which one can assume that R0 is
regular semi-simple, and follows then from the previous remark; the fact that L

is then Lagrangian is shown by M. Audin.
Assume M is simply connected and R0 is regular semi-simple at all points. In

this situation the algebra structure on TxM is semi-simple for all x ∈ M . The
eigenvalues of R0 define d functions x1, . . . , xd on M and the manifold L is nothing
other than the disjoint union of the graphs of the dxi.

The Potential. B. Dubrovin remarked that, if t1, . . . , tn denotes a local system of
flat coordinates on M , with corresponding vector fields ∂t1

, . . . , ∂td
, there exists

locally a holomorphic function F (t1, . . . , td) such that for all i, j, k = 1, . . . , n we
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have
∂3F

∂ti∂tj∂tk

= g(∂ti
? ∂tj

, ∂tk
).

Moreover, such a function is homogeneous with respect to the action of the Euler
vector field E.

The fact that the product is associative is then equivalent to the fact that F

satisfies a system of third order (nonlinear) partial differential equations, called
(WDVV).

The system (WDVV) can be written∑
k,n

∂3F

∂ti∂tj∂tk

gk,n ∂3F

∂t`∂tm∂tn

=
∑
k,n

∂3F

∂t`∂tj∂tk

gk,n ∂3F

∂ti∂tm∂tn

for i, j, `, m = 1, . . . , d, where the matrix (gk,n) is the inverse of the matrix(
g

(
∂tα, ∂tβ

))
α,β

.
Conversely, the datum of a solution F of this system, which is homogeneous

with respect to E can define an associative product on ΘM .
A local Frobenius structure on M is the datum of F satisfying (WDVV) and

homogeneous with respect to E.

3. Examples

3.1. Isomonodromic deformations. Let F̃ o be the trivial bundle on P1

equipped with the connexion ∇o with matrix(
Bo

0

z
+ B∞

)
dz

z

where Bo
0 and B∞ are in Md(C). Assume furthermore that

• Bo
0 = diag(xo

1, . . . , x
o
d) with xo

i 6= xo
j for i 6= j,

• B∞ − (m/2) Id is skewsymmetric, for some m ∈ Z,
• there exists an eigenvector ωo of B∞, all entries of which are nonzero.

Let X be the complement of the diagonals in Cd, with base point xo, and let
(X̃, x̃o) be its universal covering.

Theorem 3.1 (B. Dubrovin). There exists an analytic hypersurface Θωo in X̃ not
going through x̃o and a unique structure of a semi-simple Frobenius manifold on
X̃ − Θωo with initial values Bo

0 and −B∞ for R0 and R∞, such that e =
∑

i ∂xi

and E =
∑

i xi∂xi
. Any simply connected semi-simple Frobenius manifold is

isomorphic to a simply connected open set of a Frobenius manifold of this kind.
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3.2. Unfoldings of singularities. Let f(u1, . . . , un) be a germ of analytic func-
tion with isolated singularities, or let f(u1, . . . , un) be a polynomial on Cn with
isolated singularities and “noncharacteristic at infinity” for some compactification
of Cn. Consider the vector space

Qf
def
=

C{u1, . . . , un}(
∂f
∂u1

, . . . , ∂f
∂un

) or
C[u1, . . . , un](

∂f
∂u1

, . . . , ∂f
∂un

)
which has dimension µ. The following is due to K. Saito and M. Saito in the
case of germs, and is proved by C.S. for the so called convenient nondegenerate
polynomials.

Theorem 3.2. There exists a Frobenius structure on a neighbourhood V of 0 in
Qf for which the initial data on T0V = Qf are:
• the identity e(0) is the class of 1, and E(0) is the class of f ,
• the metric g restricted at T0V is given by the Grothendieck residue.

The proof uses two results of M. Saito: the existence of a particularly nice
solution of the Birkhoff problem for the micro-local (or for the Fourier transform
of the) Gauss-Manin system of f , and the existence of a “primitive form”. One
then applies the theorem of Malgrange.

3.3. Quantum cohomology. For some kind of smooth projective varieties V

(e.g., . Fano manifolds) one can define a potential F on a (formal) neighbourhood
of 0 in the even cohomology H2∗(V,C), called the Gromov-Witten potential, the
coefficients of which are related to enumerative properties of parametrized rational
curves on V . It can be shown that it satisfies (WDVV) when the metric is the
Poincaré duality. This gives a (maybe formal) perturbation of the cup product
on H2∗(V,C), called the quantum cup product.

Luminy, 15 avril 1997
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