
HODGE PROPERTIES OF SOME DIFFERENTIAL
EQUATIONS WITH IRREGULAR SINGULARITIES

BURES-SUR-YVETTE, FEBRUARY 14, 2022

by

Claude Sabbah

Abstract. Some standard differential equations with irregular singularities, like Airy
or Kloosterman and their symmetric products, behave in a way similar to Gauss-
Manin differential equations, and their de Rham cohomology underlie a mixed Hodge
structure, possibly with finite monodromy, enabling the use of tame arithmetic meth-
ods to handle the associated exponential sums. The talk will mainly focus on the
Airy case, after a joint work with Jeng-Daw Yu.

1. The Kloosterman and Airy differential equations, and their symmetric
powers

1.a. The Kloosterman connection and its symmetric powers. Let n > 1 be
an integer. Consider the function

f : Gm ×Gnm −→ A1, f(z, x1, . . . , xn) = x1 + · · ·+ xn +
z

x1 · · ·xn

and the diagram (with π(z, x) = z)

Gm ×Gnm
f

$$

π

zz

Gm A1.

The Kloosterman connection has a definition in terms of D-modules:

Kln+1 = π+E
f = π+(OGn+1

m
,d + df) = H0π+(OGn+1

m
,d + df).
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It is isomorphic to the free OGm
-module of rank n + 1 with connection ∇ such that

∇z∂z has the matrix

An+1(z) =


0 0 · · · 0 z

1 0 · · · 0 0

0 1 · · · 0 0

0 0 · · · 1 0

 .

One checks that∇ has a regular singularity at z = 0 with monodromy being unipotent
with only one Jordan block. The singularity at z = ∞ is irregular with pure slope
1/(n+ 1). We are interested in Symk Kln+1 which has rank

(
n+k
k

)
. It is known to be

irreducible as a bundle with connection on Gm (a differential Galois group argument).

1.b. The Airy connection and its symmetric powers. For n > 2, we consider
the function

f : A1 × A1 −→ A1, f(z, x) = 1
n+1 x

n+1 − zx,
and the diagram (with π(z, x) = z)

A1
z × A1

x

f

##

π

{{

A1
z A1

The Airy differential equation is defined in terms of D-modules:

Ain = H0π+E
f ' Coker

[
C[x, z]

∂x + (xn − z)
−−−−−−−−−−−−→ C[x, z]

]
Then Ain is a free OA1-module of rank n with connection ∇ such that ∇∂z has matrix
An(z).

One checks that ∇ has an irregular singularity at infinity and no other singularity.
It has pure slope n/(n+ 1) at infinity. We are interested in Symk Ain which has rank(
n−1+k

k

)
and is irreducible as a bundle with connection on A1.

1.c. De Rham cohomology. We are mostly interested by the middle de Rham
cohomologies

H1
dR,mid := image

[
H1

dR,c → H1
dR

]
.

Although Symk Kln+1 and Symk Ain have an irregular singularity at infinity,
we have the following Hodge result.

Theorem A (FSY, resp. SY).
• The middle de Rham cohomology H1

dR,mid(Gm,Symk Kln+1) underlies a
natural pure Hodge structure of weight kn+ 1.
• The middle de Rham cohomology H1

dR,mid(A1,Symk Ain) underlies a nat-
ural pure µ̂-Hodge structure of weight k + 1.
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More precisely, we identify these middle de Rham cohomologies with the pure part
of a suitable isotypic component of the de Rham cohomology of a variety with a group
action, resp. and a finite automorphism.

1.d. MHSµ̂. Objects of MHS consist of triples ((VdR, F
•VdR), (VB,W•VB), comp):

• VdR is a C-vector space with a decreasing filtration F •VdR indexed by Z
(both possibly defined over a subfield K of C),
• VB is a finite dimensional Q-vector space and W•VB is a finite increasing
filtration of it indexed by Z,
• a comparison isomorphism comp : C⊗Q VB

∼−→ VdR,
all subject to various conditions.

We now consider the category MHSµ̂ of mixed Hodge structures with an automor-
phism of finite order. It is known (Scherk-Steenbrink, 1985) that MHSµ̂ is endowed
with a tensor structure, which is however not the natural one with respect to filtra-
tions. If T is an automorphism of finite order m of V H, we decompose its components
with respect to eigenvalues:

• (VB,W•) as (VB,1,W•)⊕ (VB,6=1,W•),
• (VdR, F

•) as
⊕

ζm=1(VdR,ζ , F
•) (over K(ζ)).

Define

W µ̂
` VB = W`VB,1 ⊕W`−1VB,6=1,

F p−aµ̂ VdR,ζ = F pVdR,ζ (ζ = exp(−2πia), a ∈ (−1, 0]).

Scherk-Steenbrink show that there exists a tensor structure ? on MHSµ̂ such that
W µ̂

• , F
•
µ̂ behave in the expected way.

Theorem B (FSY, resp. SY).
• The nonzero Hodge numbers dim grpF H1

dR,mid(Gm,Symk Kl2) are all equal
to 1, and this occurs for

p = 2, 4, . . . , k − 1, if k is odd,

and modified formulas for k even (one drops one or two values in the mid-
dle).
• The nonzero µ̂-Hodge numbers dim grpF H1

dR,mid(A1,Symk Ai) are all equal
to 1, and this occurs for

p = 1
3 (k + 2i), 1 6 i 6 (k + 1)/2 if k is odd,

and similarly modified formulas for k even.

1.e. Motivations. For the Kloosterman connection (with n = 1): Conjectures of
Broadhurst and Roberts on the L-function attached to the k-moments of Kloosterman
sums. Their resolution (complete for k odd, with some indeterminacy if k is even,
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F-S-Y) make use of a theorem of Patrikis and Taylor, that needs the nonzero Hodge
numbers are equal to 1 (Hodge-Tate weights equal to 1).

For Airy, we hope that an analogue of the technique used by F-S-Y can be extended
to the case with an automorphism of finite order.

Remark. The theorem does not extend to Symk Kln+1 or Symk Ain in general. For
example, Yichen Qin (Polytechnique) has shown that it holds for Symk Kl3 (with
some other values for p) for k 6 9, but breaks down if k > 10. There are also some
examples for Symk Kl4. For these values, the arithmetic consequences mentioned in
the introduction also extend.

1.f. Remark on Hodge filtration with rational exponents. Such filtration oc-
cur in various settings:

• MHSµ̂, as we have seen,
• the notion of arithmetic Hodge filtration, as introduced by Anderson (1986)
as the Hodge realization of his theory of ulterior motives,
• the notion of irregular Hodge filtration, as introduced by Deligne in 1984 in
this same room.

We will see that, in the present context, the first two filtrations are the same, and are
a particular case of the third one.

More precisely, although the meromorphic bundles with connection Symk Kln+1

and Symk Ain underlie a “variation of pure irregular Hodge structure”, their cohomol-
ogy on Gm or A1 underlie a usual mixed Hodge structure (or mixed Hodge structure
with finite automorphism). This point of view appears to be effective for the compu-
tation of Hodge numbers.

2. (µ̂-)Exponential mixed Hodge structures

2.a. Short preliminaries on mixed Hodge modules (M. Saito)

X: smooth quasi-proj. var. of dimension n over C.
Category MHM(X): Objects are MH := ((M,F •M), (FQ,W•FQ), comp), where

• M is a hol. DX -module (i.e., an OX -module with flat connection ∇, subject
to suitable coherence and dimension properties, e.g. OX -locally free),
• F •M is a (possibly infinite) filtration by coherent OX -modules such that
∇F pM ⊂ Ω1

X ⊗ F p−1M ,
• FQ is a Q-perverse sheaf on Xan,
• W•FQ is a finite filtration by perverse subsheaves,
• comp : C⊗Q FQ

∼−→ p
DR

an
M (comparison isomorphism),

subject to various compatibility conditions.
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Example.
•

pQH

X =((OX ,d), triv.F -filtr.,QX [n], can) is a pure Hodge module of weight n.
• Admissible variations of MHS on X ⇐⇒ smooth objects of MHM(X).

Six operations and duality on Db(MHM(X)), lifting the six operations and duality
in Db

c (QX).

2.b. Exponential mixed Hodge modules (Kontsevich-Soibelman)

In this section, we set X = A1 with coordinate θ. We define EMHS as the full
subcategory of MHM(A1) whose objects NH satisfy Hk(A1,FQ) = 0 for all k (i.e.,
k = 0, 1, 2). The convolution ? induces a tensor structure on EMHS, and there is a
projector Π : MHM(A1)→ EMHS defined by NH → NH ? (Hj!

pQH

Gm
).

Then there is an embedding MHS ↪→ EMHS, V H 7→ Π(Hi∗V
H). The essential image

of MHS is EMHScst, consisting of objects of EMHS whose underlying perverse sheaf
is constant on Gm. This is compatible with the tensor structure, if MHS is endowed
with its natural tensor structure.

Similarly, there is an embedding MHSµ̂ ↪→ EMHS whose essential image EMHSµ̂

consists of objects whose underlying perverse sheaf is locally constant with finite
monodromy on Gm.

Given an object of EMHSµ̂, one recovers an object of MHSµ̂ by taking its vanishing
cycles at the origin.

Example. Let f : A1 → A1 defined by x 7→ xm. The pushforward mixed Hodge
module f∗

pQH

A1 (pure of weight 1) gives rise to H1(A1, xm) ∈ EMHSµ̂ by applying Π.
The associated µ̂-mixed Hodge structure is φxm

pQH

A1 (of dimension m − 1) endowed
with it finite monodromy.

Definition (De Rham fibre). For NH ∈ EMHS, the de Rham fibre is the C-vector space

H1
dR(A1, N ⊗ Eθ) := Coker[(∇+ (dθ ⊗ Id)) : N → Ω1

A1 ⊗N ].

(Convolution induces ⊗ on H1
dR(A1, N⊗Eθ), andW•N inducesW•H1

dR(A1, N ⊗ Eθ).)

Theorem C (S-Y & F-S-Y). To any object of EMHS, one can associate canonically
a filtration F •

irrH
1
dR(A1, N⊗Eθ) indexed by Q which is compatible with convolution

and tensor product. Furthermore, for each V H ∈ MHSµ̂ with image NH ∈ EMHSµ̂,
there exists an isomorphism of bi-filtered vector spaces, compatible with the tensor
structures:

(VdR, F
•
µ̂VdR,W

µ̂
• VdR) ' (H1

dR(A1, N ⊗ Eθ), F •
irr,W•).
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2.c. Gauss-Manin exponential mixed Hodge modules. Let f : X → A1 be a
regular function X (smooth, quasi-proj., dimX = n). The push-forwards H r

Hf!
pQH

X

and H r
Hf∗

pQH

X are objects of MHM(A1).

Definition (Gauss-Manin exponential mixed Hodge modules)
We associate with (X, f) the following exponential mixed Hodge structures:

Hj
c(X, f) = Π(H j−n

Hf!
pQH

X), Hj(X, f) = Π(H j−n
Hf∗

pQH

X).

The de Rham fibres are (? = c,∅):

Hj
dR,?(X, f) = Hj

?(X, (Ω
•
X ,d + df)).

Computation of the irregular Hodge filtration. Let X be smooth projective compactifi-
cation of X such that XrX = D is a simple normal crossing divisor. We regard f as
a rational function f : X P1. It has a pole divisor P with support |P | and a zero
divisor Z. The compactification X is called non-degenerate w.r.t. f (T.Mochizuki)
if in some analytic neighbourhood U of |P |, Z ∩ U is reduced and non-singular, and
U ∩ (Z ∪D) has normal crossings.

For p ∈ Q, consider the filtration

F p
Yu(Ω

•

X
(∗D),d + df)

=
{

0→ OX([−pP ]+)
d + df−−−−−−→ Ω1

X
(logD)([(−p + 1)P ]+)

d + df−−−−−−→ · · ·

d + df−−−−−−→ Ωn
X

(logD)([(−p + n)P ]+)→ 0
}
.

Theorem D (E-S-Y, K-K-P, Yu, M. Saito, T. Mochizuki). The spectral sequence asso-
ciated to

Hj
?

(
X,F p

Yu(Ω
•

X
(∗D),d + df)

)
degenerates at E1 and the induced filtration F •

YuHj
dR,?(X, f) does not depend on

the choice of the compactification of f as above. It is equal to the irregular Hodge
filtration F •

irrH
j
dR,?(X, f).

2.d. The case of a product f = tmg. We assume that X = A1
t × V , V := affine

space and f = tmg, g : V → A1, m > 1, V ∗m is the cyclic covering of V ∗ = V r g−1(0).

Theorem E (F-S-Y, S-Y). Under this assumption, Hj
?(X, t

mg) ∈ EMHSµ̂ for any j.
Furthermore,

Hj
c(X, t

mg)1 ' Hj
c(A1 × g−1(0)) ' Hj−2

c (g−1(0))(−1),

Hj
c(X, t

mg)6=1 '
[
EH

m ⊗Hj−1
c (V ∗m)

]µm

, EH

m := H1(A1, xm).
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3. Airy

3.a. The µ̂-Hodge structure. We focus on the classical Airy differential equation
(n = 2). We identify

H1
dR(A1,

⊗k
Ai) ' Hk+1

dR (Ak+1, Efk) =: Hk+1
dR (Ak+1, fk), fk :=

∑k
i=1( 1

3 x
3
i − zxi),

and

H1
dR(A1,Symk Ai) ' Hk+1

dR (Ak+1, fk)Sk,χ.

This already gives an exponential mixed Hodge structure to H1
dR(A1,Symk Ai). In

order to refine it, we notice that, when z ∈ Gm, setting z = t2 and yi = xi/t,

fk(z, x1, . . . , xk) = t3gk(y1, . . . , yk).

Then

H1
dR(Gm,Symk Ai) ' Hk+1

dR (Gm × Ak, t3gk)µ2×Sk,χ

and this has the same pure part as H1
dR(A1,Symk Ai), so

H1
mid(A1,Symk Ai)cl =

[
grWk−1 Hk−1

c (g−1k (0))µ2×Sk,χ
]
(−1),

H1
mid(A1,Symk Ai)6=1 =

(
H1(A1, t3)⊗ grWk Hk(U3)µ2×Sk,χ

)µ3

,

where U3 is the cyclic covering of order 3 of U = Ak r g−1k (0).

3.b. Basis of the de Rham cohomology. The advantage of working with
H1

dR(A1,Symk Ai) is that it is easy to guess a candidate Hodge filtration. Starting
from a basis (v0, v1) of Ai for which the connection reads

∇∂z (v0, v1) = (v0, v1) ·
(

0 z

1 0

)
,

we obtain a basis (ua = vk−a0 va1 )a=0,...,k of Symk Ai, and one checks that

ωi = zi−1vk0dz, i = 1, . . . , b(k ± 1)/2c (+ for k odd, − for k even)

is a basis of H1
dR(A1,Symk Ai). Furthermore, if 4 - k, H1

dR,mid(A1,Symk Ai) '
H1

dR(A1,Symk Ai).
It is a pity not to see the occurrence of Airy functions. They come in when 4 | k.

We define the (rational) number γk,i as the coefficient of (1/z)i in the expansion
at infinity of 2π Ai(z)Bi(z). Classical formulas show that γk,k/4 = 1, γk,i > 0 for
i ∈ k/4 + 3N as is zero otherwise. Then (ωi−γk,iωk/4), for i = 1, . . . , b(k − 1)/2c and
i 6= k/4, is a basis of H1

dR,mid(A1,Symk Ai) when 4 | k.
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3.c. Computation of the µ̂-Hodge numbers, case k odd. We assume k odd. In
such a case, g−1k (0) is smooth and a non-degenerate compactification X of A1×Ak for
t3gk is simply obtained by blowing up in P1×Pk the divisor {0}×Pk−1∞ . If P ′ denotes
the strict transform of P1 × Pk−1∞ in X, the pole divisor of the rational function t3gk
on X is P = 3(({∞} × Pk) + P ′).

The image of ωi in Hk+1(Ak+1, t3gk) is also that of wi := zi−1dz ∧ dx1 ∧ · · · ∧ dxk
via the morphism

Γ(X,Ωk+1

X
(logD)(∗P )) −→ Hk+1(Ak+1, t3gk).

In view of Theorem ??, it is enough to compute the order of the pole of wi along the
components of P . One checks that wi ∈ Γ(X,Ωk+1

X
(logD)( 1

3 (k + 2i)P )), hence has

image in F
k+1− 1

3 (k+2i)

irr Hk+1(Ak+1, t3gk).
DefiningGpH1

dR,mid(A1,Symk Ai) as the subspace generated by {ωi | i 6 k + 3
2 (1− p)}.

Then Gp ⊂ F p
irr for all p. An argument Hodge symmetry shows equality, and this

proves the theorem when k is odd.

3.d. Computation of the µ̂-Hodge numbers, case k even. The compactifica-
tion X constructed above is degenerated in this case, due to singularities (ordinary
double points) on g−1k (0), that also need to be resolved. The argument for k odd
can be extended, but, due to these new divisors, one can only show the relation
wi ∈ Γ(X,Ωk+1

X
(logD)( 1

3 (k+ 2i)P )) for half of the basis (ωi). A completely different
argument is used, by considering first the pullback of Ai by t 7→ z = t2.
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