ON THE FOURIER-LAPLACE TRANSFORM OF A VARIATION OF HODGE STRUCTURE

BUDAPEST, MAY 2008

Claude Sabbah

Abstract. Generalizing the notion of (variations of) Hodge structure is needed by various recent mathematical developments (e.g. Mirror symmetry and tt* geometry). Harmonic Higgs bundles with supplementary data are good candidates. In the talk, I will explain how this new structure is stable by the Fourier-Laplace transform, a result related to previous work of S. Szabo on the Nahm transform.

1. Variation of polarized Hodge structure

Let $P = \{p_1, \ldots, p_r, p_{r+1} = \infty\}$ be a non empty finite set of points on the Riemann sphere \mathbb{P}^1 . We will denote by t the coordinate on the affine line $\mathbb{A}^1 = \mathbb{P}^1 \setminus \{\infty\}$. The main object of interest in this talk will be a *(complex) variation of polarized Hodge structure* on $\mathbb{P}^1 \setminus P$.

Examples.

(1) Let \mathscr{V} be a *unitary* local system on $\mathbb{P}^1 \setminus P$. This defines a complex variation of Hodge structure of type (0, 0). Giving a local system is equivalent to giving a set of matrices (monodromy matrices) $T_1, \ldots, T_r \in \operatorname{GL}(\mathbb{C}^{\operatorname{rk} V})$, up to conjugation by the same invertible matrix. The local system is unitary if one can find T_1, \ldots, T_r in the unitary group.

(2) Let $f : X \to \mathbb{P}^1$ be a projective morphism from a smooth complex projective variety X to the projective line. Away from the critical values P of f, each cohomology sheaf $H^k(f^{-1}(t), \mathbb{C})_{t \in \mathbb{P}^1 \setminus P}$ forms a local system and underlies a variation of polarized Hodge structure.

(3) Let U be a smooth complex quasiprojective variety of dimension n (e.g. \mathbb{C}^n or $(\mathbb{C}^*)^n$). Let $f: U \to \mathbb{C}$ be a regular function on U (e.g. a polynomial or a Laurent polynomial). Let us assume that f is *tame*, that is, f has only isolated critical points on U (and we denote by P the set of critical values including ∞) and has no "critical point at infinity with finite critical value". The local system $H^n(U, f^{-1}(t), \mathbb{C})$ underlies a variation of *mixed* Hodge structure, which contains, as a subquotient, a variation of polarized pure Hodge structure, all other subquotients having no singular points at p_1, \ldots, p_r . For the purpose of this talk, this will be as good as the pure case.

Definition. A polarized variation of Hodge structure of weight w on $\mathbb{P}^1 \setminus P$ consists of a C^{∞} vector bundle H on $\mathbb{P}^1 \setminus P$ equipped with a flat connection D, a decomposition $H = \bigoplus_{p \in \mathbb{Z}} H^p$ (H^p is usually written as $H^{p,w-p}$) and a Hermitian metric h on H, satisfying the following properties:

• the decomposition is orthogonal with respect to h and the nondegenerate $(-1)^w$ -Hermitian form $k = \bigoplus_p i^w (-1)^p h_{|H^p}$ is D-flat,

• (Griffiths' transversality)

(1)
$$D'(H^{p}) \subset (H^{p} \oplus H^{p-1}) \otimes_{\mathscr{O}_{\mathbb{P}^{1} \smallsetminus P}} \Omega^{1}_{\mathbb{P}^{1} \smallsetminus P}$$
$$D''(H^{p}) \subset (H^{p} \oplus H^{p+1}) \otimes_{\mathscr{O}_{\overline{\mathbb{P}^{1} \smallsetminus P}}} \Omega^{1}_{\overline{\mathbb{P}^{1} \smallsetminus P}}$$

The Hodge filtration $F^{\bullet}H$ is

$$F^p H = \bigoplus_{q \ge p} H^q,$$

so that $D'F^pH \subset F^{p-1}H \otimes_{\mathscr{O}_{\mathbb{P}^1 \smallsetminus P}} \Omega^1_{\mathbb{P}^1 \smallsetminus P}$.

Griffiths' transversality (1) gives a decomposition $D = D^+ + \theta$, where D^+ is unitary with respect to h and θ is self-adjoint (Higgs field). Considering types and grading, the Higgs condition $(D^+)''(\theta') = 0$ is satisfied. Then $(H, (D^+)'', \theta')$ is a holomorphic Higgs bundle.

Let (V, ∇) be the holomorphic bundle with connection (Ker D'', D') and $F^p V = F^p H \cap V$. We have $\nabla F^p V \subset F^{p-1} V \otimes_{\mathscr{O}_{\mathbb{P}^1 \smallsetminus P}} \Omega^1_{\mathbb{P}^1 \smallsetminus P}$. We can identify $(H, (D^+)'', \theta')$ with $(\operatorname{gr}_F V, \operatorname{gr}_F^{-1} \nabla)$.

2. The Fourier-Laplace transform

2.1. The twisted L^2 -complex. On H we consider the twisted connection D - 2dt. Using a metric on $\mathbb{P}^1 \setminus P$ which is equivalent to the Poincaré metric on the punctured disc near each puncture $p_i \in P$ (hence a complete metric), and the Hermitian metric h on H, we make the L^2 de Rham complex $\mathscr{L}_{(2)}(\mathbb{P}^1 \setminus P, H, D - 2dt, h)$.

Theorem 1 (S. Szabo, CS). This complex has cohomology in degree 1 at most, and this cohomology is a finite dimensional vector space, equipped in a natural way with a Hermitian metric. Moreover, it is canonically identified with the cohomology of the L^2 complex $\mathscr{L}_{(2)}(\mathbb{P}^1 \smallsetminus P, H, (D^+)'' + \theta' - dt, h)$.

In particular, as the metric on $\mathbb{P}^1 \smallsetminus P$ is complete, we can apply Hodge theory and compute this cohomology with L^2 harmonic forms. 2.2. Algebraic interpretation of the L^2 complex. The holomorphic bundle with flat connection (V, ∇) extends in a unique way as an algebraic bundle with flat algebraic connection and, according to results of Schmid, this extensions is obtained by considering holomorphic sections whose *h*-norm has moderate growth at *P*. Note that the twist of the de Rham complex is of no consequence at finite distance. The work of Zucker tells us that, near a puncture at finite distance, in order to compare the de Rham complex with the previous L^2 complex, we should replace the algebraic bundle with a *D*-module called the "intermediate" (or minimal) extension. Taking global sections on \mathbb{A}^1 of this *D*-module gives a $\mathbb{C}[t]\langle \partial_t \rangle$ -module *M* which is holonomic and has regular singularities everywhere.

Theorem 2. The twisted algebraic de Rham complex $M \xrightarrow{e^t \nabla e^{-t}} M \otimes dt$ has cohomology in degree 1 at most. This cohomology can be identified with that of the previous L^2 complex.

One can give the following interpretation of the dimension μ of this cohomology: let $\mathscr{V} = \text{Ker } \nabla$ be the local system of horizontal section of (V, ∇) (or equivalently, (H, D)); near each puncture $p_i \neq \infty$, define $\mu_i(\mathscr{V}) = \text{rk } \mathscr{V} - \dim \Gamma(\text{nb}(p_i)^*, \mathscr{V})$; then $\mu = \sum_i \mu_i(\mathscr{V})$.

Examples.

(1) Given unitary matrices T_1, \ldots, T_r of size $\operatorname{rk} V, \mu_i = \operatorname{rk} V - \dim(\operatorname{Ker} T_i - \operatorname{Id}).$ (2) Let $f : X \to \mathbb{P}^1$ projective, X smooth, p_i the critical values at finite distance. Then $\mu_i^{(k)} = \dim \mathbb{H}^k(f^{-1}(p_i), \phi_{f, p_i}(\mathbb{C})).$

(3) Let $f: U \to \mathbb{C}$ be a tame regular function. For any critical value p_i of f, corresponding to critical points $x_i^{(1)}, \ldots, x_i^{(k_i)}$, the corresponding number μ_i it the sum of the Milnor numbers of f at $x_i^{(j)}, j = 1, \ldots, k_i$, and μ is the total sum of Milnor numbers of f at its critical points.

2.3. Rescaling parameter. We now rescale the variable t with a nonzero complex parameter τ . From the algebraic point of view, this consists in considering the twisted de Rham complex $\mathbb{C}[\tau, \tau^{-1}] \otimes_{\mathbb{C}} M \xrightarrow{\nabla_{\partial_t} - \tau} \mathbb{C}[\tau, \tau^{-1}] \otimes_{\mathbb{C}} M$. It has cohomology in degree 1 at most, and this cohomology \widehat{V} is a free $\mathbb{C}[\tau, \tau^{-1}]$ -module of rank μ . It comes equipped with a algebraic connection $\widehat{\nabla}$.

The twisted L^2 de Rham complex also defines a flat C^{∞} bundle $(\widehat{H}, \widehat{D})$ on \mathbb{C}^* , equipped with a Hermitian metric \widehat{h} .

Theorem 3 (S. Szabo, CS). The metric flat bundle $(\widehat{H}, \widehat{D}, \widehat{h})$ is harmonic.

Remark. Up to now, the theory uses less than the variation of Hodge structure: it only uses the harmonicity property of the original Hermitian metric h.

Remark. On the other hand, one cannot expect, in general, that the new metric has a tame behaviour at $\tau = \infty$. In particular, this implies that it does not correspond to a usual variation of polarized Hodge structure.

Question. What kind of a supplementary structure does the flat harmonic bundle $(\hat{H}, \hat{D}, \hat{h})$ underlie?

3. The supersymmetric index

The answer to this question (or a variant of it) has been given in 1991 by two physicists, Cecotti and Vafa. They give us two operators $\widehat{\mathscr{U}}$ and $\widehat{\mathscr{Q}}$ on \widehat{H} , where $\widehat{\mathscr{Q}}$ is selfadjoint with respect to \widehat{h} , $\widehat{\mathscr{U}}$ is $(\widehat{D}^+)''$ -holomorphic, and which satisfy a series of differential equations:

$$\widehat{\mathscr{Q}}^{\dagger} = \widehat{\mathscr{Q}},$$
$$[\widehat{\theta}', \widehat{\mathscr{U}}] = 0,$$
$$(\widehat{D}^{+})'(\widehat{\mathscr{U}}) - [\widehat{\theta}', \widehat{\mathscr{Q}}] + \widehat{\theta}' = 0,$$
$$(\widehat{D}^{+})'(\widehat{\mathscr{Q}}) + [\widehat{\theta}', \widehat{\mathscr{U}}^{\dagger}] = 0.$$

These differential equations are better interpreted as an integrability condition, by adding a new variable z.

For instance, the operators associated to the variation of Hodge structure are $\mathscr{U} = 0$ and $\mathscr{Q} = -\bigoplus_p p \operatorname{Id}_{H^p, w-p}$. On the other hand, the eigenvalues of $\widehat{\mathscr{Q}}$ need not be constant.

3.1. The spectrum. At each $p_i \in \mathbb{P}^1$ is associated the spectrum of the variation of Hodge structure. For $p_{r+1} = \infty$, we call it the spectrum at infinity. In Example (3), this spectrum coincides with the Varchenko-Steenbrink spectrum of the critical points of f. In any case, at $p_i \neq \infty$, the corresponding polynomial has degree μ_i .

Let me explain the definition of the spectrum at finite distance. I will set $SP_{p_i}(T) = \prod_{\gamma} (T-\gamma)^{\nu_{\gamma}^{(i)}}$. For any $\alpha \in (-1,0]$, let V^{α} be the holomorphic bundle on \mathbb{A}^1 with connection having a logarithmic pole at each p_i , extending (V, ∇) , and such that the residue of the connection on V^{α} has eigenvalues in $[\alpha, \alpha + 1[$. If $\alpha \neq 0$ and $p \in \mathbb{Z}$, I set $\nu_{\alpha+p}^{(i)} = \dim(F^p \cap V^{\alpha})/(F^{p+1} \cap V^{\alpha} + F^p \cap V^{>\alpha})$. When $\alpha = 0$, the definition has to be modified a little bit. At infinity, we have a similar definition, and there is also a small change to be done at $\alpha = 0$, but different from that done at finite distance.

Theorem 4. $\lim_{\tau\to\infty} \chi(\widehat{\mathscr{Q}}(\tau))(T) = \prod_{i=1}^r \operatorname{SP}_{p_i}(T) \text{ and } \lim_{\tau\to 0} \chi(\widehat{\mathscr{Q}}(\tau))(T) = \operatorname{SP}_{\infty}(T).$

C. SABBAH, UMR 7640 du CNRS, Centre de Mathématiques Laurent Schwartz, École polytechnique, F-91128 Palaiseau cedex, France • E-mail : sabbah@math.polytechnique.fr
Url : http://www.math.polytechnique.fr/~sabbah