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Abstract. Generalizing the notion of (variations of) Hodge structure is needed by various recent
mathematical developments (e.g. Mirror symmetry and tt* geometry). Harmonic Higgs bundles
with supplementary data are good candidates. In the talk, I will explain how this new structure is
stable by the Fourier-Laplace transform, a result related to previous work of S. Szabo on the Nahm
transform.

1. Variation of polarized Hodge structure

Let P = {p1,...,pr,Drs1 = 00} be a non empty finite set of points on the
Riemann sphere P!. We will denote by ¢ the coordinate on the affine line Al =
P! \ {oo}. The main object of interest in this talk will be a (complex) variation
of polarized Hodge structure on P* . P.

Examples.

(1) Let ¥ be a unitary local system on P*\. P. This defines a complex variation
of Hodge structure of type (0,0). Giving a local system is equivalent to giving a set
of matrices (monodromy matrices) 71, ..., 7T, € GL(C™"), up to conjugation by
the same invertible matrix. The local system is unitary if one can find 77, ...,T,}
in the unitary group.

(2) Let f : X — P! be a projective morphism from a smooth complex pro-
jective variety X to the projective line. Away from the critical values P of f,
each cohomology sheaf H*(f~1(t), C);eprp forms a local system and underlies a
variation of polarized Hodge structure.

(3) Let U be a smooth complex quasiprojective variety of dimension n (e.g. C"
or (C*)"). Let f : U — C be a regular function on U (e.g. a polynomial or a
Laurent polynomial). Let us assume that f is tame, that is, f has only isolated
critical points on U (and we denote by P the set of critical values including
o) and has no “critical point at infinity with finite critical value”. The local
system H™(U, f~1(t),C) underlies a variation of mired Hodge structure, which
contains, as a subquotient, a variation of polarized pure Hodge structure, all other
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subquotients having no singular points at py,...,p,. For the purpose of this talk,
this will be as good as the pure case.

Definition. A polarized variation of Hodge structure of weight w on P! . P con-
sists of a C™ vector bundle H on P! \ P equipped with a flat connection D, a
decomposition H = @pezH? (H? is usually written as H»*7P) and a Hermitian
metric h on H, satisfying the following properties:

o the decomposition is orthogonal with respect to h and the nondegenerate
(—1)“-Hermitian form k = @©,i"(—1) hg» is D-flat,
o (Griffiths’ transversality)

) D'(H?) C (H" @ H" ") ®q,,_, Opp
( D"(H?) C (H” ® H"") @4 Q.
The Hodge filtration F*H is

FPH = @5, HY,
so that D'FPH C FP'H @4, , Qpi_p.

Griffiths’ transversality (1) gives a decomposition D = Dt 4 0, where D7 is
unitary with respect to h and 6 is self-adjoint (Higgs field). Considering types
and grading, the Higgs condition (D1)”(#') = 0 is satisfied. Then (H, (DT)",¢)
is a holomorphic Higgs bundle.

Let (V, V) be the holomorphic bundle with connection (Ker D", D’) and FPV =
FPHNV. We have VFPV C FP"'V ®g,, Qi _p. We can identify (H, (D*)",¢')
with (grzV, erz' V).

2. The Fourier-Laplace transform

2.1. The twisted L’-complex. On H we consider the twisted connection
D — 2dt. Using a metric on P! \. P which is equivalent to the Poincaré met-
ric on the punctured disc near each puncture p; € P (hence a complete met-

ric), and the Hermitian metric h on H, we make the L? de Rham complex
,Z(Q)(IP’I NP H,D—2dt,h).

Theorem 1 (S.Szabo, CS). This complex has cohomology in degree 1 at most, and
this cohomology is a finite dimensional vector space, equipped in a natural way
with a Hermatian metric. Moreover, it is canonically identified with the cohomol-

ogy of the L* complex Loy(P' \ P, H,(D*")" + 0 — dt, h).

In particular, as the metric on P! \. P is complete, we can apply Hodge theory
and compute this cohomology with L? harmonic forms.
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2.2. Algebraic interpretation of the L? complex. The holomorphic bundle
with flat connection (V, V) extends in a unique way as an algebraic bundle with
flat algebraic connection and, according to results of Schmid, this extensions is
obtained by considering holomorphic sections whose ~A-norm has moderate growth
at P. Note that the twist of the de Rham complex is of no consequence at finite
distance. The work of Zucker tells us that, near a puncture at finite distance,
in order to compare the de Rham complex with the previous L? complex, we
should replace the algebraic bundle with a D-module called the "intermediate"
(or minimal) extension. Taking global sections on Al of this D-module gives a
C[t]{(0¢)-module M which is holonomic and has regular singularities everywhere.

Theorem 2. The twisted algebraic de Rham complex M Vel M ® dt has coho-
mology in degree 1 at most. This cohomology can be identified with that of the
previous L? complex.

One can give the following interpretation of the dimension p of this cohomology:
let ¥ = Ker V be the local system of horizontal section of (V, V) (or equivalently,
(H, D)); near each puncture p; # oo, define p;(#) = rk ¥ — dim I'(nb(p;)*, ¥);
then 1 = 37, ui(¥).

Examples.

(1) Given unitary matrices 11, ..., T, of size tk V', p; = rk V —dim(Ker 7; —1d).

(2) Let f : X — P! projective, X smooth, p; the critical values at finite
distance. Then ,ugk) = dimH*(f~Y(p;), b, (C)).

(3) Let f : U — C be a tame (re)gular fl(m)ction. For any critical value p; of f,
1 ki

corresponding to critical points x; 7, ..., x; ", the corresponding number p; it the
sum of the Milnor numbers of f at xgj), jg=1,...,k;, and p is the total sum of

Milnor numbers of f at its critical points.

2.3. Rescaling parameter. We now rescale the variable ¢ with a nonzero com-
plex parameter 7. From the algebraic point of view, this consists in considering
the twisted de Rham complex C[r, 77! ®¢c M g C[r, 771 ®c M. Tt has coho-
mology in degree 1 at most, and this cohomology V is a free C[r, 771]-module of

rank p. It comes equipped with a algebraic connection V.
The twisted L? de Rham complex also defines a flat C°° bundle (H, D) on C*,
equipped with a Hermitian metric h.

Theorem 3 (S.Szabo, CS). The metric flat bundle (ﬁ], ZA),/];) is harmonic.

Remark. Up to now, the theory uses less than the variation of Hodge structure:
it only uses the harmonicity property of the original Hermitian metric h.
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Remark. On the other hand, one cannot expect, in general, that the new metric
has a tame behaviour at 7 = oo. In particular, this implies that it does not
correspond to a usual variation of polarized Hodge structure.

Question. What kind of a supplementary structure does the flat harmonic bundle

AN AN AN

(H, D, h) underlie?

3. The supersymmetric index

The answer to this question (or a variant of it) has been 1 given in 1991 by two
physmlsts Cecotti and Vafa. They give us two operators U and 2 on H where
9 is selfadjoint with respect to h, U is (D*)” holomorphic, and which satisfy a
series of differential equations:

These differential equations are better interpreted as an integrability condition,
by adding a new variable z.
For instance, the operators associated to the variation of Hodge structure are

% =0and 2 = — @ppIdeM_p. On the other hand, the eigenvalues of 9D need
not be constant.

3.1. The spectrum. At each p; € P! is associated the spectrum of the varia-
tion of Hodge structure. For p,.1 = oo, we call it the spectrum at infinity. In
Example (3), this spectrum coincides with the Varchenko-Steenbrink spectrum of
the critical points of f. In any case, at p; # 0o, the corresponding polynomial
has degree ;.

Let me explain the deﬁnition of the spectrum at finite distance. I will set
SP,(T) =11(T- 7)”7 For any o € (—1,0], let V' be the holomorphic bundle
on Al with connection having a logarithmic pole at each p;, extending (V, V), and
such that the residue of the connection on V¢ has eigenvalues in [, v + 1[. If
a#0and p € Z, Tset v}, = dim(F? N V) /(FF* AV + FP 1 V>*). When
a = 0, the definition has to be modified a little bit. At infinity, we have a similar
definition, and there is also a small change to be done at a = 0, but different

from that done at finite distance.
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Theorem 4. lim, ... x(2(7))(T) = [l—;SP,,(T) and lim,_ox(2(7))(T) =
SP(T).
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