## Quadratic relations for periods of connections

Claude Sabbah

Joint work with Javier Fresán (CMLS, Palaiseau) and Jeng-Daw Yu (NTU, Taipei)

## Centre de mathématiques Laurent Schwartz

 CNRS, École polytechnique, Institut polytechnique de Paris Palaiseau, France
## Quadratic relations for periods: the classical case

- $X$ connected smooth complex projective mfld of dim. $n$.
- $\left(\gamma_{i}\right)_{i}$ : basis of $H_{m}\left(X^{\mathrm{an}}, \mathbb{Q}\right), \quad\left(\omega_{j}\right)_{j}$ : basis of $H_{\mathrm{dR}}^{m}(X)$.
- Period matrix $\mathrm{P}_{m}=\left(\mathrm{P}_{m ; i j}\right)$, with

$$
\mathrm{P}_{m ; i j}:=\int_{\gamma_{i}} \omega_{j}
$$

- De Rham duality pairing

$$
\mathrm{Q}_{m}: H_{\mathrm{dR}}^{m}(X) \otimes H_{\mathrm{dR}}^{2 n-m}(X) \longrightarrow H_{\mathrm{dR}}^{2 n}(X) \xrightarrow[\sim]{\int_{X}} \mathbb{C}
$$

- Betti intersection pairing

$$
\mathrm{B}_{m}: H_{m}\left(X^{\mathrm{an}}, \mathbb{Q}\right) \otimes H_{2 n-m}\left(X^{\mathrm{an}}, \mathbb{Q}\right) \longrightarrow H_{0}\left(X^{\mathrm{an}}, \mathbb{Q}\right) \simeq \mathbb{Q} .
$$

- Quadratic relations for the associated matrices, e.g. $m=n$ :

$$
(-1)^{n} \mathrm{~B}_{n}=\mathrm{P}_{n} \cdot\left(\mathrm{Q}_{n}\right)^{-1} \cdot{ }^{t} \mathrm{P}_{n}
$$

- Set $\mathrm{S}_{m}:=(2 \pi \mathrm{i})^{-n} \mathrm{Q}_{m}, \forall m$.

$$
(-2 \pi \mathrm{i})^{n} \mathrm{~B}_{n}=\mathrm{P}_{n} \cdot\left(\mathrm{~S}_{n}\right)^{-1} \cdot{ }^{t} \mathrm{P}_{n}
$$

## Example: the case of a curve.

- $X$ : curve of genus $g \geqslant 1$.
- Pairing S:
- $\omega_{1}, \ldots \omega_{g}$ basis of $H^{0}\left(X, \Omega_{X}^{1}\right)$,
- $f_{1}, \ldots, f_{g} \in H^{1}\left(X, \mathcal{O}_{X}\right)$,
- $\check{H}^{1}\left(X, \mathcal{O}_{X}\right) \otimes \check{H}^{0}\left(X, \Omega_{X}^{1}\right) \rightarrow \check{H}^{1}\left(X, \Omega_{X}^{1}\right) \stackrel{\text { Res }}{\simeq} \mathbb{C}$.
- $\mathrm{S}\left(f_{i}, \omega_{j}\right)=-\mathrm{S}\left(\omega_{j}, f_{i}\right)=\left[f_{i} \omega_{j}\right] \in H^{1}\left(X, \Omega_{X}^{1}\right)=\mathbb{C}$.
- Can also represent $H^{1}\left(X, \mathcal{O}_{X}\right)$ by $(0,1)$ forms $\eta_{i}$ and

$$
\mathrm{S}\left(\eta_{i}, \omega_{j}\right)=-\mathrm{S}\left(\omega_{j}, \eta_{i}\right)=\frac{1}{2 \pi \mathrm{i}} \int_{X} \eta_{i} \wedge \omega_{j} .
$$

- Pairing B:
- $\left(\alpha_{i}, \alpha_{g+i}\right)_{i=1, \ldots, g}$ symplectic basis of $H_{1}(X, \mathbb{Z})$.
- $u \rightarrow \mathrm{~B}_{i, g+i}=-\mathrm{B}_{g+i, i}=1$ and $\mathrm{B}_{k, \ell}=0$ otherwise.
- $\quad$ n Bilinear relations.


## Sketch of proof.



- $\mathcal{P}_{n}:=$ Poincaré isomorphism.
- Compatibility proved by de Rham by realizing $H_{n}\left(X^{\text {an }}\right)$ as currents.
- In term of matrices (e.g. $\left.\mathrm{Q}_{n}\left(\omega, \omega^{\prime}\right)={ }^{t} \omega \cdot \mathrm{Q}_{n} \cdot \omega^{\prime}\right)$ :

$$
{ }^{t \mathcal{P}_{n}} \cdot \mathrm{P}_{n}=\mathrm{Q}_{n}, \quad \mathrm{~B}_{n} \cdot \mathcal{P}_{n}=\mathrm{P}_{n} .
$$

$\Longrightarrow$

$$
\mathrm{B}_{n}=\mathrm{P}_{n} \cdot\left(\mathcal{P}_{n}\right)^{-1}=\mathrm{P}_{n} \cdot\left({ }^{t} \mathrm{Q}_{n}\right)^{-1} \cdot{ }^{t} \mathrm{P}_{n}
$$

- Use $\quad{ }^{t} \mathrm{Q}_{n}=(-1)^{n} \mathrm{Q}_{n}$.


## Quadratic relations for periods of vector bundles

 with log connection
## Vector bundles with log connection.

- $X$ connected smooth quasi-projective, $(V, \nabla)$ : alg. vect. bdle on $X$ with flat connection having reg. sing. at $\infty$ on $X$.
- $H_{\mathrm{dR}}^{k}(X,(V, \nabla)), H_{\mathrm{dR}, \mathrm{c}}^{k}(X,(V, \nabla))$ :
- Choose $(\bar{X}, D)$ smooth proj. $D=\operatorname{ncd}, X=\bar{X}, D$.
- Deligne's canonical extension $\left(V_{0}, \nabla\right)$ :
$* V_{0}$ : vect. bdle on $\bar{X}$ extending $V$ :
$* \nabla: V_{0} \rightarrow \Omega_{\bar{X}}^{1}(\log D) \otimes V_{0}$ extending $\nabla$
$*$ eigenvalues of $\operatorname{res}_{D_{i}} \nabla$ have real part in $[0,1)$.
- $H_{\mathrm{dR}}^{k}(X,(V, \nabla)) \simeq \boldsymbol{H}^{k}\left(\bar{X},\left(\Omega_{\bar{X}}^{\bullet}(\log D) \otimes V_{0}, \nabla\right)\right)$,
- $H_{\mathrm{dR}, \mathrm{c}}^{k}(X,(V, \nabla)) \simeq \boldsymbol{H}^{k}\left(\bar{X},\left(\Omega_{\bar{X}}^{\bullet}(\log D) \otimes V_{0}(-D), \nabla\right)\right)$.
$\cdot$ Assume given pairing $\langle\bullet, \bullet\rangle: V \otimes V \rightarrow \mathcal{O}_{X}$ s.t.
$\bullet$ nondegener. i.e., induces $V \xrightarrow{\sim} V^{\vee}$,
- $\pm$-symmetric, i.e., $\langle w, v\rangle= \pm\langle v, w\rangle$,
- compatible with $\nabla$, i.e., $\mathrm{d}\langle v, w\rangle=\langle\nabla v, w\rangle+\langle v, \nabla w\rangle$.
$\mathrm{S}_{m}: H_{\mathrm{dR}, \mathrm{c}}^{m}(X,(V, \nabla)) \otimes H_{\mathrm{dR}}^{2 n-m}(X,(V, \nabla)) \longrightarrow H_{\mathrm{dR}, \mathrm{c}}^{2 n}\left(X,\left(\mathcal{O}_{X}, \mathrm{~d}\right)\right) \stackrel{\operatorname{Tr}}{\simeq} \mathbb{C}$


## Intersection pairings between flat sections.

- $\mathscr{V}=V^{\text {an, } \nabla}$ loc. cst. sheaf of horiz. sections.
$\cdot m u \rightarrow$-sym. nondeg. pairing $\langle\bullet, \bullet\rangle: \mathscr{V} \otimes \mathscr{V} \rightarrow \mathbb{C}_{X}$.
- Assume defined over $\mathbb{Q}$ :
- $\mathscr{V}=\mathbb{C} \otimes_{\mathbb{Q}} \mathscr{V}_{\mathbb{Q}}$,
$\cdot\langle\bullet, \bullet\rangle: \mathscr{V}_{\mathbb{Q}} \otimes \mathscr{V}_{\mathbb{Q}} \rightarrow \mathbb{Q}_{X}$.
- mu $H_{m}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right), H_{m}^{\mathrm{BM}}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right)$,
- $n \rightarrow \mathrm{~B}_{m}: H_{m}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) \otimes H_{2 n-m}^{\mathrm{BM}}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) \rightarrow \mathbb{Q}$.


## Period pairings.

- Two period pairings (by using $\langle\bullet, \bullet\rangle$ ):

$$
\begin{aligned}
\mathrm{P}_{m}: H_{m}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) \otimes H_{\mathrm{dR}}^{2 n-m}(X,(V, \nabla)) & \longrightarrow \mathbb{C} \\
\mathrm{P}_{m}^{\mathrm{BM}}: H_{m}^{\mathrm{BM}}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) \otimes H_{\mathrm{dR}, \mathrm{c}}^{2 n-m}(X,(V, \nabla)) & \longrightarrow \mathbb{C}
\end{aligned}
$$

Theorem (Matsumoto \& al., 1994).

- $\mathrm{P}_{m}$ and $\mathrm{P}_{m}^{\mathrm{BM}}$ are nondeg.
- "Quadratic relations" e.g. for $m=n$ :

$$
\pm(-2 \pi \mathrm{i})^{n} \mathrm{~B}_{n}=\mathrm{P}_{n} \cdot\left(\mathrm{~S}_{n}\right)^{-1} \cdot{ }^{t} \mathrm{P}_{n}^{\mathrm{BM}}
$$

## Middle quadratic relations.

- $H_{\mathrm{dR}, \text { mid }}^{m}(X,(V, \nabla)):=\operatorname{im}\left[H_{\mathrm{dR}, \mathrm{c}}^{m}(X,(V, \nabla)) \rightarrow H_{\mathrm{dR}}^{m}(X,(V, \nabla))\right]$,
- $H_{m}^{\mathrm{mid}}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right):=\operatorname{im}\left[H_{m}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) \rightarrow H_{m}^{\mathrm{BM}}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right)\right]$
- $u \rightarrow$ Nondeg. $\pm$-sym. pairings, e.g. for $m=n$ :

$$
\begin{aligned}
\mathrm{S}^{\mathrm{mid}}: H_{\mathrm{dR}, \text { mid }}^{n}(X,(V, \nabla)) \otimes H_{\mathrm{dR}, \text { mid }}^{n}(X,(V, \nabla)) & \longrightarrow \mathbb{C}, \\
\mathrm{B}^{\mathrm{mid}}: H_{n}^{\mathrm{mid}}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) \otimes H_{n}^{\mathrm{mid}}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) & \longrightarrow \mathbb{Q}, \\
\mathrm{P}^{\mathrm{mid}}: H_{n}^{\mathrm{mid}}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) \otimes H_{\mathrm{dR}, \text { mid }}^{n}(X,(V, \nabla)) & \longrightarrow \mathbb{C} .
\end{aligned}
$$

Corollary (Quadratic relations).

$$
\pm(-2 \pi \mathrm{i})^{n} \mathrm{~B}^{\mathrm{mid}}=\mathrm{P}^{\mathrm{mid}} \cdot\left(\mathrm{~S}^{\mathrm{mid}}\right)^{-1} \cdot{ }^{t} \mathrm{P}^{\mathrm{mid}}
$$

Example (Matsumoto, 1994).

- Quadratic relations for generalized hypergeometric functions (Appell, Lauricella...).


## A conjecture of Broadhurst and Roberts

## Bessel moments and Bernoulli matrices.

- Bessel moments:
- Special values of some Feynman integrals expressed as period of Laurent polynomials. E.g.

$$
f(x, y, z)=(1+x+y+z)\left(1+x^{-1}+y^{-1}+z^{-1}\right) .
$$

- These periods are also expressed as $k$-moments of the "modified Bessel functions" $I_{0}(t), K_{0}(t)$ (e.g. $k=$ odd integer):

$$
\mathrm{BM}_{k}(i, j)=\star \int_{0}^{\infty} I_{0}^{i}(t) K_{0}^{k-i}(t) \cdot t^{2 j} \frac{\mathrm{~d} t}{t} .
$$

- Bernoulli matrix ( $B_{n}:=n$th Bernoulli nbr):

$$
\mathcal{B}_{k}(i, j)=(-1)^{k-i} \frac{(k-i)!(k-j)!)}{k!} \cdot \frac{B_{k-i-j-1}}{(k-i-j-1)!} .
$$

Conjecture (B-R, by computation, e.g. $k$ odd). Set $k^{\prime}=(k-1) / 2$. Consider the $k^{\prime} \times k^{\prime}$ matrices

$$
\mathrm{BM}_{k}=\left(\operatorname{BM}_{k}(i, j)\right)_{1 \leqslant i, j \leqslant k^{\prime}} \quad \text { and } \quad \mathcal{B}_{k}=\left(\mathcal{B}_{k}(i, j)\right)_{1 \leqslant i, j \leqslant k^{\prime}}
$$

There exists $\mathcal{D}_{k} \in \mathrm{GL}_{k^{\prime}}(\mathbb{Q})$ defined by an explicit algorithm s.t.

$$
(-2 \pi \mathrm{i})^{k+1} \mathcal{B}_{k}=\mathrm{BM}_{k} \cdot \mathcal{D}_{k} \cdot{ }^{t} \mathrm{BM}_{k} .
$$

¿ Interpret the conj. in terms of quadratic relations for periods?

## Generalization of the quadratic relations (F-S-Y).

- Since $I_{0}, K_{0}$ are sols of a diff. eq. with irreg. sing. need to extend quadratic relations to this case.
- mu Consider $\left(\mathrm{Kl}_{2}, \nabla\right)$ rk 2 vect. bdle on $\mathbb{G}_{\mathrm{m}} \longleftrightarrow$ "modified Bessel diff. eq." and ( $\mathrm{Sym}^{k} \mathrm{Kl}_{2}, \nabla$ ).
- $m \rightarrow$ Nondegen. de Rham pairing

$$
\mathrm{S}_{k}: H_{\mathrm{dR}, \mathrm{c}}^{1}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right) \otimes H_{\mathrm{dR}}^{1}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right) \longrightarrow \mathbb{C}
$$

- m R Rapid decay and moderate twisted homology and

$$
H_{1}^{\mathrm{mid}}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right):=\operatorname{im}\left[H_{1}^{\mathrm{rd}}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right) \rightarrow H_{1}^{\mathrm{mod}}(\ldots)\right]
$$

- mu Nondegen. Betti intersection pairing:

$$
\mathrm{B}_{k}: H_{1}^{\mathrm{rd}}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right) \otimes H_{1}^{\mathrm{mod}}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right) \longrightarrow \mathbb{Q}
$$

- $m \rightarrow$ Nondegen. Period pairings

$$
\begin{array}{r}
P_{k}^{\mathrm{rd}, \mathrm{mod}}: H_{1}^{\mathrm{rd}}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right) \otimes H_{\mathrm{dR}}^{1}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right) \longrightarrow \mathbb{C} \\
\mathrm{P}_{k}^{\mathrm{mod}, \mathrm{rd}}: H_{1}^{\mathrm{mod}}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right) \otimes H_{\mathrm{dR}, \mathrm{c}}^{1}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right) \longrightarrow \mathbb{C} .
\end{array}
$$

- $u \rightarrow$ Middle quadratic relations:

$$
(-2 \pi \mathrm{i})^{k+1} \mathrm{~B}_{k}^{\mathrm{mid}}=\mathrm{P}_{k}^{\mathrm{mid}} \cdot\left(\mathrm{~S}_{k}^{\mathrm{mid}}\right)^{-1} \cdot{ }^{t} \mathrm{P}_{k}^{\mathrm{mid}}
$$

## Theorem (Fresán-S-Yu, 2020).

- There exists an explicit basis of $H_{1}^{\mathrm{mid}}\left(\mathbb{G}_{\mathrm{m}}, \mathrm{Sym}^{k} \mathrm{Kl}_{2}\right)$ such that

$$
\mathrm{B}_{k}^{\mathrm{mid}}=\mathcal{B}_{k} .
$$

- There exists an explicit basis of $H_{\mathrm{dR}, \mathrm{mid}}^{1}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right)$ s.t.

$$
\mathrm{P}_{k}^{\mathrm{mid}}=\mathrm{BM}_{k}
$$

- The de Rham matrix $\mathrm{S}_{k}^{\mathrm{mid}} \in \mathrm{GL}_{k^{\prime}}(\mathbb{Q})$ has an algorithmic computation (the matrix $\left(\mathrm{S}_{k}^{\text {mid }}\right)^{-1}$ checked to agree with the matrix $\mathcal{D}_{k}$ suggested by Broadhurst-Roberts for $k \leqslant 22$ ).
- $\left(\mathrm{S}_{k}^{\text {mid }}, \mathrm{B}_{k}^{\text {mid }}, \mathrm{P}_{k}^{\text {mid }}\right)$ also enter in a quadratic relation for a motive (hence the Bessel moments are periods).

In other words, the period structure

$$
\left(H_{\mathrm{dR}, \mathrm{mid}}^{1}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right), H_{1}^{\mathrm{mid}}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right), \mathrm{P}_{k}^{\mathrm{mid}}\right)
$$

coincides with the period structure of a Nori motive.

## Motivic interpretation.

- $\left(\mathrm{Kl}_{2}, \nabla\right)$ is the Gauss-Manin conn. of $\left(\mathcal{O}_{\mathbb{G}_{\mathrm{m}}^{2}}, \mathrm{~d}+\mathrm{d}(x+z / x)\right)$ by the proj. $\mathbb{G}_{\mathrm{m}} \times \mathbb{G}_{\mathrm{m}} \rightarrow \mathbb{G}_{\mathrm{m}} \quad(x, z) \mapsto z$.
- $\left(\bigotimes^{k} \mathrm{Kl}_{2}, \nabla\right)$ : G-M conn. of $\left(\mathcal{O}_{\mathbb{G}_{\mathrm{m}} \times \mathbb{G}_{\mathrm{m}}^{k}}, \mathrm{~d}+\mathrm{d}\left(f_{k}\right)\right)$

$$
f_{k}\left(x_{1}, \ldots, x_{k}, z\right)=\sum_{i}\left(x_{i}+z / x_{i}\right)
$$

- Set $\widetilde{\mathrm{K}}_{2}=[2]^{*} \mathrm{~K} 1_{2}, \quad[2]: t \mapsto t^{2}$. Set $y_{i}=x_{i} / t$.
- Then $\left(\bigotimes^{k} \widetilde{\mathrm{~K}}_{2}, \nabla\right)$ : G-M conn. of $E^{t \cdot g_{k}}:=\left(\mathcal{O}_{\mathbb{G}_{\mathrm{m}} \times \mathbb{G}_{\mathrm{m}}^{k}}, \mathrm{~d}+\mathrm{d}\left(t \cdot g_{k}\right)\right)$

$$
g_{k}\left(y_{1}, \ldots, y_{k}\right)=\sum_{i}\left(y_{i}+1 / y_{i}\right): \mathbb{G}_{\mathrm{m}}^{k} \rightarrow \mathbb{A}^{1}
$$

- $\quad H_{\mathrm{dR}}^{1}\left(\mathbb{G}_{\mathrm{m}}, \operatorname{Sym}^{k} \mathrm{Kl}_{2}\right) \simeq H_{\mathrm{dR}}^{1}\left(\mathbb{G}_{\mathrm{m}}, \otimes^{k} \widetilde{\mathrm{~K} 1_{2}}\right)^{⿷_{k} \times \mu_{2}}$

$$
\simeq H_{\mathrm{dR}}^{k+1}\left(\mathbb{G}_{\mathrm{m}} \times \mathbb{G}_{\mathrm{m}}^{k}, t \cdot g_{k}\right)^{\mathbb{S}_{k} \times \mu_{2}}
$$

- General fact (Fresán-Jossen, Yu, F-S-Y): $U$ smooth quasiproj., $g: U \rightarrow \mathbb{A}^{1}$ regular, $H_{\mathrm{dR}}^{n}\left(\mathbb{G}_{\mathrm{m}} \times U, t \cdot g\right)$ underlies a Nori motive, hence endowed with a canonical MHS.
- Analogue of Fourier inversion formula for $h: \mathbb{R} \rightarrow \mathbb{R}$ :

$$
h(0)=\star \int_{\mathbb{R}} \hat{h}(t) \mathrm{d} t=\star \int_{\mathbb{R}^{2}} e^{2 \pi i t \cdot h(x)} \mathrm{d} t \mathrm{~d} x
$$

- Set $\mathscr{K}=g_{k}^{-1}(0) \subset \mathbb{G}_{\mathrm{m}}^{k}$. Variant of what we want:

$$
H^{k+1}\left(\mathbb{A}^{1} \times \mathbb{G}_{\mathrm{m}}^{k}, t \cdot g_{k}\right) \simeq H_{\mathrm{c}}^{k-1}(\mathscr{K})^{\vee}(-k)
$$

## Quadratic relations for irregular periods

## Irreg. singularities.

- $X$ smooth quasi-proj., $(V, \nabla)$ on $X$ with possibly irreg. sing. at $\infty$ on $X$
- $\Longrightarrow \nexists\left(V_{0}, \nabla\right)$ log. connection on $(\bar{X}, D)$ extending $(V, \nabla)$.
- But (Kedlaya-Mochizuki, 2011): $\exists(\bar{X}, D), D=$ strict ncd and $\exists\left(V_{0}, \nabla\right)$ good Deligne-Malgrange lattice:
$* \forall x \in D, \exists \Phi \subset \sigma_{\bar{X}, x}(* D)$ finite,
$* \forall \varphi \in \Phi, \exists\left(R_{\varphi}, \nabla\right)$ with reg. sing. on $(\operatorname{nb}(x), D)$,
$*\left(\mathcal{O}_{\hat{x}} \otimes V_{0}, \nabla\right) \simeq \bigoplus_{\varphi \in \Phi}\left[\left(\mathcal{O}_{\hat{x}}, \mathrm{~d}+\mathrm{d} \varphi\right) \otimes\left(R_{\varphi, 0}, \nabla\right)\right]$.
$\cdot j: X \hookrightarrow \bar{X}$,
- $\forall i \geqslant 1, \quad V_{i}:=V_{i-1}+\Theta_{\bar{X}}(-\log D) \cdot V_{i-1} \subset j_{*} V$.
- $m \leadsto \nabla: V_{i-1} \rightarrow \Omega_{\bar{X}}^{1}(\log D) \otimes V_{i}$


## De Rham cohomologies (T. Mochizuki, Esnault-S).

$$
\begin{aligned}
H_{\mathrm{dR}}^{k}(X,(V, \nabla)) & \simeq \boldsymbol{H}^{k}\left(\bar{X},\left(\Omega_{\bar{X}}^{\bullet}(\log D) \otimes V_{0}, \nabla\right)\right) \\
H_{\mathrm{dR}, \mathrm{c}}^{k}(X,(V, \nabla)) & \simeq \boldsymbol{H}^{k}\left(\bar{X},\left(\Omega_{\bar{X}}^{\bullet}(\log D) \otimes V_{\bullet}(-D), \nabla\right)\right)
\end{aligned}
$$

## Rapid decay and moderate homologies.

- $\varpi: \widetilde{X} \longrightarrow \bar{X}$ real oriented blow up of the components of $D$.
$\cdot \tilde{J}: X^{\text {an }} \longleftrightarrow \tilde{X}$
- $\mathscr{V}=\operatorname{ker} \nabla$ loc. cst. sheaf on $X^{\text {an }}$, e.g. defined over $\mathbb{Q}$.
- $\mathscr{V}^{\text {rd }} \subset \mathscr{V}^{\text {mod }} \subset \widetilde{J}_{*} \mathscr{V}: \quad \mathbb{R}$-constructible sheaves on $\widetilde{X}$.
- $H_{m}^{\mathrm{rd}}\left(X^{\mathrm{an}}, \mathscr{V}\right):=H_{m}\left(\widetilde{X}, \mathscr{V}^{\mathrm{rd}}\right), \quad H_{m}^{\mathrm{mod}}\left(X^{\mathrm{an}}, \mathscr{V}\right):=H_{m}\left(\tilde{X}, \mathscr{V}^{\mathrm{mod}}\right)$

Pairings. $\langle\bullet, \bullet\rangle$ : nondeg. $\pm$-sym. pairing on $(V, \nabla)$.

- $u \rightarrow$ Nondeg. pairings, e.g. for $m=n$ :

$$
\begin{aligned}
\mathrm{S}: H_{\mathrm{dR}, \mathrm{c}}^{n}(X,(V, \nabla)) \otimes H_{\mathrm{dR}}^{n}(X,(V, \nabla)) & \longrightarrow \mathbb{C}, \\
\mathrm{B}: H_{n}^{\mathrm{rd}}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) \otimes H_{n}^{\bmod }\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) & \longrightarrow \mathbb{Q}, \\
\mathrm{P}^{\mathrm{rd}, \bmod }: H_{n}^{\mathrm{rd}}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) \otimes H_{\mathrm{dR}}^{n}(X,(V, \nabla)) & \longrightarrow \mathbb{C}, \\
\mathrm{P}^{\mathrm{mod}, \mathrm{rd}}: H_{n}^{\bmod }\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) \otimes H_{\mathrm{dR}, \mathrm{c}}^{n}(X,(V, \nabla)) & \longrightarrow \mathbb{C} .
\end{aligned}
$$

- man Nondeg. $\pm$-sym. pairings

$$
\begin{aligned}
\mathrm{S}^{\mathrm{mid}}: H_{\mathrm{dR}, \mathrm{mid}}^{n}(X,(V, \nabla)) \otimes H_{\mathrm{dR}, \text { mid }}^{n}(X,(V, \nabla)) & \longrightarrow \mathbb{C}, \\
\mathrm{B}^{\mathrm{mid}}: H_{n}^{\mathrm{mid}}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) \otimes H_{n}^{\mathrm{mid}}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) & \longrightarrow \mathbb{Q}, \\
\mathrm{P}^{\mathrm{mid}}: H_{n}^{\mathrm{mid}}\left(X^{\mathrm{an}}, \mathscr{V}_{\mathbb{Q}}\right) \otimes H_{\mathrm{dR}, \text { mid }}^{n}(X,(V, \nabla)) & \longrightarrow \mathbb{C} .
\end{aligned}
$$

Corollary (Middle quadratic relations).

$$
\pm(-2 \pi \mathrm{i})^{n} \mathrm{~B}^{\mathrm{mid}}=\mathrm{P}^{\mathrm{mid}} \cdot\left(\mathrm{~S}^{\mathrm{mid}}\right)^{-1} \cdot{ }^{t} \mathrm{P}^{\mathrm{mid}}
$$

