Hodge aspects of exponential motives

Centre de Mathématiques Laurent Schwartz École polytechnique, CNRS, Université Paris-Saclay

Palaiseau, France

Programme Hodgefun ANR-16-CE40-0011

Pairs (X, f)

- X : quasi-proj. variety / field k.
- $f: X \rightarrow \mathbb{A}^{1}$: regular fn on \boldsymbol{X}.

One finds these pairs e.g. in the following settings:

- $k=\mathbb{C}$, exponential periods

$$
\int_{\gamma} e^{f} \omega, \quad \omega: \text { alg. } n \text {-form, } \gamma \text { : semi-alg. } n \text {-chain. }
$$

- Char $k=p$, exponential sums.
- Mirror symmetry for Fano mflds: Landau-Ginzburg models.

Exp. motives (Fresán-Jossen)

- Data $[\boldsymbol{X}, \boldsymbol{Y}, f, n, i]:$
- \boldsymbol{X} quasi-proj. var. over $k \subset \mathbb{C}$,
- $Y \subset X$ closed subvar.,
- $n=$ degree of the cohom.,
- i : Tate twist.

Exp. motives (Fresán-Jossen)

- Data $[\boldsymbol{X}, \boldsymbol{Y}, f, n, i]$:
- X quasi-proj. var. over $k \subset \mathbb{C}$,
- $\boldsymbol{Y} \subset X$ closed subvar.,
- $n=$ degree of the cohom.,
- i : Tate twist.
- Choice of morphisms \rightsquigarrow quiver $\mathbf{Q}^{\exp }(k)$.
- $\rho: \mathbf{Q}^{\exp }(k) \mapsto \operatorname{Vect}_{\mathbb{Q}}$,
$\rho([X, Y, f, n, i]):=H_{\mathrm{rd}}^{n}(X, Y, f)(i)$.
- $\operatorname{Mot}^{\exp }(\boldsymbol{k})$: finite-dim. vect. spaces with an $\operatorname{End}(\rho)$-action.
- $\left(f \boxplus f^{\prime}\right)\left(x, x^{\prime}\right):=f(x)+f^{\prime}\left(x^{\prime}\right) \rightsquigarrow$ tensor structure.

Exp. motives (Fresán-Jossen)

- Th. (Fresán-Jossen): Mot $^{\exp }(\boldsymbol{k})$ neutral Tannakian category.
- $[X, Y, 0, i] \longleftrightarrow$ classical Nori motives.
- $\rightsquigarrow \operatorname{Mot}^{\text {cl }}(k) \rightarrow \operatorname{Mot}^{\exp }(k)$ fully faithful.

Betti real. of exp. motives

- $H_{\mathrm{rd}}^{n}(X, Y, f):=H^{n}(X, Y \cup\{\operatorname{Re}(f) \gg 0\} ; \mathbb{Q})$
- If $\gamma \in H_{n}(X, Y \cup\{\operatorname{Re}(f) \gg 0\} ; \mathbb{Q})$ (dual vect. sp.), convergent period integral

$$
\int_{\gamma} e^{-f} \omega, \quad \omega \in \Gamma\left(X, \Omega_{X}^{n}\right)
$$

- Poincaré duality, e.g. X smooth and $Y=\varnothing$:

$$
H_{\mathrm{rd}, \mathrm{c}}^{n}(X, f) \otimes H_{\mathrm{rd}}^{2 d_{X}-n}(X,-f) \longrightarrow H_{\mathrm{c}}^{2 d_{X}}(X) \simeq \mathbb{Q} .
$$

De Rham real. of exp. motives

- Setting: \boldsymbol{X} smooth, $\boldsymbol{Y}=\varnothing$.
- Twisted de Rham cohomology $H_{\mathrm{dR}}^{n}(X, \mathrm{~d}+\mathrm{d} f)$: Hypercohomology of the alg. de Rham cplx.
$0 \longrightarrow \mathscr{O}_{X} \xrightarrow{\mathrm{~d}+\mathrm{d} f} \Omega_{X}^{1} \longrightarrow \cdots \xrightarrow{\mathrm{~d}+\mathrm{d} f} \Omega_{X}^{d} \longrightarrow 0$
E.g. X affine:
$0 \longrightarrow \mathscr{O}(X) \xrightarrow{\mathrm{d}+\mathrm{d} f} \cdots \xrightarrow{\mathrm{~d}+\mathrm{d} f} \Omega^{d}(X) \longrightarrow 0$

De Rham real. of exp. motives

- Setting: \boldsymbol{X} smooth, $\boldsymbol{Y}=\varnothing$.
- Twisted de Rham cohomology $H_{\mathrm{dR}}^{n}(X, \mathrm{~d}+\mathrm{d} f)$: Hypercohomology of the alg. de Rham cplx.
$0 \longrightarrow \mathscr{O}_{X} \xrightarrow{\mathrm{~d}+\mathrm{d} f} \Omega_{X}^{1} \longrightarrow \cdots \xrightarrow{\mathrm{~d}+\mathrm{d} f} \Omega_{X}^{d} \longrightarrow 0$
E.g. $\boldsymbol{X}=\mathbb{C}^{n}$:
$0 \rightarrow \mathbb{C}[x] \rightarrow \bigoplus_{i} \mathbb{C}[x] \mathrm{d} x_{i} \rightarrow \cdots \rightarrow \bigoplus_{i} \mathbb{C}[x] \mathrm{d} \widehat{x_{i}} \rightarrow \mathbb{C}[x] \mathrm{d} x \rightarrow 0$

De Rham real. of exp. motives

- Setting: \boldsymbol{X} smooth, $\boldsymbol{Y}=\varnothing$.
- Twisted de Rham cohomology $H_{\mathrm{dR}}^{n}(X, \mathrm{~d}+\mathrm{d} f)$: Hypercohomology of the alg. de Rham cplx.

$$
\begin{aligned}
& 0 \longrightarrow \mathscr{O}_{X} \xrightarrow{\mathrm{~d}+\mathrm{d} f} \Omega_{X}^{1} \longrightarrow \cdots \xrightarrow{\mathrm{~d}+\mathrm{d} f} \Omega_{X}^{d} \longrightarrow 0 \\
& \text { E.g. } \boldsymbol{X}=\mathbb{C}^{n}: \\
& 0 \rightarrow \mathbb{C}[x] \rightarrow \oplus_{i} \mathbb{C}[x] \mathrm{d} x_{i} \rightarrow \cdots \rightarrow \bigoplus_{i} \mathbb{C}[x] \mathrm{d} \widehat{x_{i}} \longrightarrow \mathbb{C}[x] \mathrm{d} x \rightarrow 0 \\
& g(x) \longmapsto \sum_{i}\left(g_{x_{i}}^{\prime}+g f_{x_{i}}^{\prime}\right) \mathrm{d} x_{i}
\end{aligned}
$$

Logarithmic computation

- Choose $f: \bar{X} \rightarrow \mathbb{P}^{1}$ s.t.
- \bar{X} smooth projective,
- $D:=\bar{X} \backslash X=\operatorname{ncd}, \quad D=|P| \cup H$,
- $P=f^{*}(\infty)$ pole divisor with supp. $|P| \subset D$.

Logarithmic computation

- Choose $f: \bar{X} \rightarrow \mathbb{P}^{1}$ s.t.
- \bar{X} smooth projective,
- $D:=\bar{X} \backslash X=\operatorname{ncd}, \quad D=|P| \cup H$,
- $P=f^{*}(\infty)$ pole divisor with supp. $|P| \subset D$.
- Kontsevich complex $\left(\Omega_{\bar{X}}^{\bullet}(\log D, f), \mathrm{d}+\mathrm{d} f\right)$:
- $\Omega \frac{k}{X}(\log D, f)$ defined as
$\operatorname{ker}\left[\mathrm{d} f: \Omega_{\bar{X}}^{\frac{k}{x}}(\log D) \longrightarrow \Omega_{\bar{X}}^{k+1}(\log D)(P) / \Omega_{\bar{X}}^{k+1}(\log D)\right]$

Logarithmic computation

- Choose $f: \bar{X} \rightarrow \mathbb{P}^{1}$ st.
- \bar{X} smooth projective,
- $D:=\bar{X} \backslash X=\operatorname{ncd}, \quad D=|P| \cup H$,
- $P=f^{*}(\infty)$ pole divisor with supp. $|P| \subset D$.
- Kontsevich complex $\left(\Omega_{\bar{X}}^{\circ}(\log D, f), \mathrm{d}+\mathrm{d} f\right)$:
- $\Omega \frac{k}{X}(\log D, f)$ defined as
$\operatorname{ker}\left[\mathrm{d} f: \Omega \frac{k}{\bar{X}}(\log D) \longrightarrow \Omega_{\bar{X}}^{k+1}(\log D)(P) / \Omega_{\bar{X}}^{k+1}(\log D)\right]$
- TH.: $\forall n$,

$$
\boldsymbol{H}^{n}\left(\overline{\boldsymbol{X}},\left(\Omega_{\bar{X}}^{\circ}(\log D, f), \mathrm{d}+\mathrm{d} f\right)\right) \xrightarrow{\sim} \boldsymbol{H}_{\mathrm{dR}}^{n}(\boldsymbol{X}, \mathrm{~d}+\mathrm{d} f)
$$

Logarithmic computation

- $\rightsquigarrow \mathrm{dR}$ cohom. with cpct supp. (recall $\boldsymbol{D}=|\boldsymbol{P}| \cup \boldsymbol{H})$:
$H_{\mathrm{dR}, \mathrm{c}}^{n}(X, \mathrm{~d}+\mathrm{d} f):=H^{n}\left(\bar{X},\left(\Omega_{\bar{X}}^{\bullet}(\log D, f)(-H), \mathrm{d}+\mathrm{d} f\right)\right)$
- Th. (Yu): Perfect pairing

$$
H_{\mathrm{dR}, \mathrm{c}}^{n}(\boldsymbol{X}, \mathrm{~d}+\mathrm{d} f) \otimes \boldsymbol{H}_{\mathrm{dR}}^{2 d_{X}-n}(\boldsymbol{X}, \mathrm{~d}-\mathrm{d} f) \longrightarrow \boldsymbol{H}^{d_{X}}\left(\bar{X}, \Omega_{\bar{X}}^{d_{X}}\right) \simeq \mathbb{C}
$$

- Compatible with the Poincaré pairing via the comparison iso

$$
H_{\mathrm{dR}}^{k}(X, \mathrm{~d}+\mathrm{d} f) \simeq \boldsymbol{H}_{\mathrm{rd}}^{k}(\boldsymbol{X}, f ; \mathbb{C})
$$

and compact support analogue.

Rescaling parameter

- Hodge theory enters with the rescaling parameter

$$
f \longmapsto f / u, \quad u \in k^{*} .
$$

- This defines an endofunctor of Mot ${ }^{\text {exp }}$.
- Extension to $u=0$:
- Betti: \rightsquigarrow Stokes structure on the local system $H_{\mathrm{rd}}^{n}(X, f / u ; \mathbb{Q})_{u \in \mathbb{C}^{*}}$.
- De Rham: Brieskorn $\mathbb{C}[u]$-modules
$H_{\mathrm{dR}}^{n}(X, u \mathrm{~d}+\mathrm{d} f):=\boldsymbol{H}^{n}\left(\overline{\boldsymbol{X}},\left(\Omega_{\bar{X}}^{\bullet}[u](\log D, f), u \mathrm{~d}+\mathrm{d} f\right)\right)$
- TH. (Barannikov-Kontsevich):

$$
\boldsymbol{H}_{\mathrm{dR}}^{n}(\boldsymbol{X}, u \mathrm{~d}+\mathrm{d} f) \quad \text { is } \mathbb{C}[u] \text {-free of finite rk. }
$$

Rescaling parameter

- Yu: Perfect pairing of free $\mathbb{C}[u]$-modules

$$
\boldsymbol{H}_{\mathrm{dR}, \mathrm{c}}^{n}(\boldsymbol{X}, u \mathrm{~d}+\mathrm{d} f) \otimes \boldsymbol{H}_{\mathrm{dR}}^{2 d_{x}-n}(X, u \mathrm{~d}-\mathrm{d} f) \longrightarrow \boldsymbol{H}^{d_{X}}\left(\bar{X}, \Omega_{\frac{d_{X}}{X}}^{\bar{X}}\right)[u]
$$ also known as K. Saito's residue pairing.

- At $u=0$: Serre duality for $\left(\Omega_{\bar{X}}^{\bullet}(\log D, f), \mathrm{d} f\right)$.

Irregular Hodge filtration

- TH.: $\operatorname{dim} H^{n}\left(\bar{X},\left(\Omega_{\bar{X}}^{\bullet}(\log D, f), u_{o} \mathrm{~d}+v_{o} \mathrm{~d} f\right)\right)$ is independent of $u_{o}, v_{o} \in \mathbb{C}$.
- Various proofs: Katzarkov-Kontevich-Pantev, Esnault-CS-Yu, M. Saito, T. Mochizuki.
- Cor.: Degeneration at E_{1} of the spectr. seq. for the filtration of $\left(\Omega_{\bar{X}}^{\cdot}(\log D, f), \mathrm{d}+\mathrm{d} f\right)$ by the stupid truncation.
- \rightsquigarrow irregular Hodge filtration $F^{p} \boldsymbol{H}_{\mathrm{dR}}^{n}(X, \mathrm{~d}+\mathrm{d} f)$ s.t.

$$
\operatorname{gr}_{F}^{p} \boldsymbol{H}_{\mathrm{dR}}^{p+q}(\boldsymbol{X}, \mathrm{~d}+\mathrm{d} f) \simeq \boldsymbol{H}^{q}\left(\overline{\boldsymbol{X}}, \Omega_{\bar{X}}^{p}(\log D, f)\right)
$$

Irregular Hodge-Tate property

- $H_{\mathrm{rd}}^{n}(X, f) \simeq H^{n}\left(X, f^{-1}(t) ; \mathbb{Q}\right)$ for $|t| \gg 0$.
- Monodromy T on $H^{n}\left(X, f^{-1}(t) ; \mathbb{Q}\right)$.
(= Monodr. of the u-loc. syst. $\left.H_{\mathrm{rd}}^{n}(X, f / u ; \mathbb{Q})_{u \in \mathbb{C}^{*}}\right)$
- Def.: $\boldsymbol{H}^{n}(\boldsymbol{X}, f)$ is irreg. Hodge-Tate if
- T is unipotent, \rightsquigarrow monodromy weight filtr. $W_{.} H_{\mathrm{rd}}^{n}(X, f)$ centered at n,
- $\forall p, \operatorname{dim} \operatorname{gr}_{F}^{p} H_{\mathrm{dR}}^{n}(X, f)=\operatorname{dim} \operatorname{gr}_{2 p}^{W} H_{\mathrm{rd}}^{n}(X, f)$

Irregular Hodge-Tate property

- Conj. (Katzarkov-Kontsevich-Pantev): If (X, f) arises as a tame Landau-Ginzburg model of a smooth projective Fano variety then $\boldsymbol{H}^{d_{X}}(\boldsymbol{X}, \boldsymbol{f})$ is irregular Hodge-Tate.
- Various partial results in small dim.

Irregular Hodge-Tate property

- Conj. (Katzarkov-Kontsevich-Pantev): If $(\boldsymbol{X}, \boldsymbol{f})$ arises as a tame Landau-Ginzburg model of a smooth projective Fano variety then $\boldsymbol{H}^{d_{x}}(\boldsymbol{X}, \boldsymbol{f})$ is irregular Hodge-Tate.
- Various partial results in small dim.
- TH. (CS): The conj. holds for Landau-Ginzburg models arising from toric Fano manifolds.
- Uses Batyrev's classification of toric Fano mflds M by reflexive polytopes. Then $X \simeq\left(\mathbb{C}^{*}\right)^{d}$ and $f=\sum x^{m}$ where m is a vertex of the polytope. Then $f \longleftrightarrow c_{1}(T M)$ and satisfies Hard Lefschetz on $H^{*}(M)$.

Sym. Kloosterman connections

- Kloosterman connection: \mathbb{C} analogue of Kloosterman sheaf

- Prop. (Fresán-CS-Yu): $\boldsymbol{H}_{\mathrm{dR}}^{1}\left(\mathbb{G}_{\mathrm{m}}, \mathrm{Sym}^{k} \mathrm{Kl}_{2}\right)$ is the $d R$ real. of an exp. motive $H^{k+1}\left(\mathbb{G}_{\mathrm{m}}^{k+1}, f_{k}\right)^{\mathfrak{S}_{k}}$.

$$
f_{k}\left(x_{1}, \ldots, x_{k}, z\right)=\sum_{i=1}^{k} x_{i}+z \sum_{i=1}^{k} 1 / x_{i} .
$$

Sym. Kloosterman connections

- Recall $\operatorname{Mot}^{\mathrm{cl}}(k) \rightarrow \operatorname{Mot}^{\exp }(k)$ fully faithful.
- Prop. (Fresán-CS-Yu):

The exp. motive $H^{k+1}\left(\mathbb{G}_{\mathrm{m}}^{k+1}, f_{k}\right)^{\mathfrak{S}_{k}}$ is classical.

- Defined from $H_{\mathrm{c}}^{k-1}(\mathscr{K})$,

$$
\mathbb{G}_{\mathrm{m}}^{k} \supset \mathscr{K}: \quad \sum_{i=1}^{k} x_{i}+\sum_{i=1}^{k} 1 / x_{i}=0 .
$$

Sym. Kloosterman connections

- $\Longrightarrow \boldsymbol{H}_{\mathrm{dR}}^{1}\left(\mathbb{G}_{\mathrm{m}}, \mathrm{Sym}^{k} \mathrm{Kl}_{2}\right)$ underlies a MHS, with Hodge filtr. $=$ irreg. Hodge filtr.
- Th. (Fresán-CS-Yu): Hodge nbrs of $\boldsymbol{H}_{\mathrm{dR}}^{1}\left(\mathbb{G}_{\mathrm{m}}, \mathrm{Sym}^{k} \mathrm{Kl}_{2}\right)$ are 0 or 1 (explicit formula).
- Proof by easier comput. of irreg. Hodge filtr. (by applying the toric method of Adolphson \& Sperber).
- \rightsquigarrow Arithmetic consequences for symmetric power moments of Kloosterman sums: functional equation for the corresponding L-function.

Rigid irred. connections on \mathbb{P}^{1}

SETTING:

- U : Zar. open in $\mathbb{P}^{1}, \quad(\boldsymbol{V}, \nabla)$ bdle with connect. on U.
- Assumptions on (V, ∇) :
- irreducible,
- rigid, i.e., $\forall\left(V^{\prime}, \nabla^{\prime}\right)$ irred.,

$$
\left(V^{\prime}, \nabla^{\prime}\right)_{\widehat{x}} \simeq(V, \nabla)_{\widehat{x}} \forall x \in \mathbb{P}^{1} \backslash U \quad \Longrightarrow \quad\left(V^{\prime}, \nabla^{\prime}\right) \simeq(V, \nabla)
$$

Rigid irred. connections on \mathbb{P}^{1}

Setting:

- U : Zar. open in $\mathbb{P}^{1}, \quad(\boldsymbol{V}, \nabla)$ bdle with connect. on U.
- Assumptions on (V, ∇) :
- irreducible,
- rigid, i.e., $\forall\left(V^{\prime}, \nabla^{\prime}\right)$ irred.,

$$
\left(V^{\prime}, \nabla^{\prime}\right)_{\widehat{x}} \simeq(V, \nabla)_{\widehat{x}} \forall x \in \mathbb{P}^{1} \backslash U \quad \Longrightarrow \quad\left(V^{\prime}, \nabla^{\prime}\right) \simeq(V, \nabla)
$$

Many interesting examples:

- Hypergeometrics,
- Frenkel-Gross examples,
- Examples with diff. Galois group G_{2} (Dettweiler-Reiter-Katz, K. Jakob)
- But $\mathrm{Sym}^{k} \mathrm{Kl}_{2}$ rigid iff $k=1,2$.

Rigid irred. connections on \mathbb{P}^{1}

Setting:

- U : Zar. open in $\mathbb{P}^{1}, \quad(\boldsymbol{V}, \boldsymbol{\nabla})$ bdle with connect. on \boldsymbol{U}.
- Assumptions on (V, ∇) :
- irreducible,
- rigid, i.e., $\forall\left(V^{\prime}, \nabla^{\prime}\right)$ irred.,

$$
\left(V^{\prime}, \nabla^{\prime}\right)_{\widehat{x}} \simeq(V, \nabla)_{\widehat{x}} \forall x \in \mathbb{P}^{1} \backslash U \quad \Longrightarrow \quad\left(V^{\prime}, \nabla^{\prime}\right) \simeq(V, \nabla)
$$

Results (Katz-Arinkin-Deligne algorithm): Any rigid irred. (V, ∇) on \mathbb{P}^{1} can be obtained from the trivial bdle ($\left.\mathscr{O}_{U}, \mathrm{~d}\right)$ by applying successively elementary operations:

- tensor product by a rk-one (L, ∇),
- Middle convolution by a rk-one (L, ∇),
- Fourier transform.

Tame rigid irred. connections on \mathbb{P}^{1}

Results (Katz algorithm): Any tame rigid irred. ($\boldsymbol{V}, \boldsymbol{\nabla}$) on \mathbb{P}^{1} can be obtained from the trivial bdle $\left(\mathscr{O}_{U}, \mathrm{~d}\right)$ by applying successively elementary operations:

- tensor product by a rk-one (L, ∇),
- Middle convolution by a rk-one (L, ∇),
- Fourier transform.

Tame rigid irred. connections on \mathbb{P}^{1}

Results (Katz algorithm): Any tame rigid irred. (V, ∇) on \mathbb{P}^{1} can be obtained from the trivial bdle $\left(\mathscr{O}_{U}, \mathrm{~d}\right)$ by applying successively elementary operations:

- tensor product by a rk-one (L, ∇),
- Middle convolution by a rk-one (L, ∇),

Tame rigid irred. connections on \mathbb{P}^{1}

Results (Katz algorithm): Any tame rigid irred. (V, ∇) on \mathbb{P}^{1} can be obtained from the trivial bdle $\left(\mathscr{O}_{U}, \mathrm{~d}\right)$ by applying successively elementary operations:

- tensor product by a rk-one (L, ∇),
- Middle convolution by a rk-one (L, ∇),

Consequence (Katz): Assume eigenvalues of local monodromies at each $x \in \mathbb{P}^{1} \backslash U$ are roots of unity.

- \rightsquigarrow Geometric expression of (V, ∇) as a subquotient of a Gauss-Manin connection.
- $\rightsquigarrow \mathrm{pVHS}$ on (\boldsymbol{V}, ∇) (ess. unique, cf. Deligne).
- \rightsquigarrow Comput. of Hodge nbrs through the algorithm (Dettweiler-CS).

Wild rigid irred. connections on \mathbb{P}^{1}

Results (Deligne-Arinkin algorithm): Any wild rigid irred. (V, ∇) on \mathbb{P}^{1} can be obtained from the trivial bdle (\mathscr{O}_{U}, d) by applying successively elementary operations:

- tensor product by a rk-one (L, ∇),
- Middle convolution by a rk-one (L, ∇),
- Fourier transform.

Wild rigid irred. connections on \mathbb{P}^{1}

Results (Deligne-Arinkin algorithm): Any wild rigid irred. (V, ∇) on \mathbb{P}^{1} can be obtained from the trivial bdle ($\left.\mathscr{O}_{U}, \mathrm{~d}\right)$ by applying successively elementary operations:

- tensor product by a rk-one (L, ∇),
- Fourier transform.

Wild rigid irred. connections on \mathbb{P}^{1}

Results (Deligne-Arinkin algorithm): Any wild rigid irred. (V, ∇) on \mathbb{P}^{1} can be obtained from the trivial bdle ($\left.\mathscr{O}_{U}, \mathrm{~d}\right)$ by applying successively elementary operations:

- tensor product by a rk-one (L, ∇),
- Fourier transform.

Consequence: Assume eigenvalues of local formal monodromies at each $x \in \mathbb{P}^{1} \backslash U$ are roots of unity.

- \rightsquigarrow Geometric expression of (V, ∇) as a subquotient of a Gauss-Manin connection twisted by some e^{f}.
- \rightsquigarrow var. of irreg. HS on (V, ∇) (ess. unique).
- \rightsquigarrow Examples of comput. of irreg. Hodge nbrs (Castaño Domínguez-Sevenheck, Yu-CS).

