Wild Hodge Theory

Claude Sabbah

Centre de Mathématiques Laurent Schwartz
UMR 7640 du CNRS
École polytechnique, Palaiseau, France

Introduction

Introduction

Griffiths-Schmid (1973):

Introduction

Griffiths-Schmid (1973):

- $\left(M, H_{\mathbb{C}}, \nabla, F^{p}\right)$ a var. of polarized Hodge structure on a quasi-projective M.

Introduction

Griffiths-Schmid (1973):

- $\left(M, H_{\mathbb{C}}, \nabla, F^{p}\right)$ a var. of polarized Hodge structure on a quasi-projective M.
- The extension of $\boldsymbol{H}_{\mathbb{C}}$ by the moderate growth condition on the norm of sections is algebraic.

Introduction

Griffiths-Schmid (1973):

- $\left(M, H_{\mathbb{C}}, \nabla, F^{p}\right)$ a var. of polarized Hodge structure on a quasi-projective M.
- The extension of $\boldsymbol{H}_{\mathbb{C}}$ by the moderate growth condition on the norm of sections is algebraic.
- In this extension, $\boldsymbol{\nabla}$ is algebraic and has regular singularities at infinity.

Introduction

Griffiths-Schmid (1973):

- $\left(M, H_{\mathbb{C}}, \nabla, F^{p}\right)$ a var. of polarized Hodge structure on a quasi-projective M.
- The extension of $\boldsymbol{H}_{\mathbb{C}}$ by the moderate growth condition on the norm of sections is algebraic.
- In this extension, $\boldsymbol{\nabla}$ is algebraic and has regular singularities at infinity.
Question:

Introduction

Griffiths-Schmid (1973):

- $\left(M, \boldsymbol{H}_{\mathbb{C}}, \nabla, \boldsymbol{F}^{p}\right)$ a var. of polarized Hodge structure on a quasi-projective M.
- The extension of $\boldsymbol{H}_{\mathbb{C}}$ by the moderate growth condition on the norm of sections is algebraic.
- In this extension, $\boldsymbol{\nabla}$ is algebraic and has regular singularities at infinity.
Question: What kind of Hodge theory can one develop in presence of irregular singularities ?

Introduction

First attempt:

Introduction

First attempt:

- Deligne's irregular Hodge theory (1984).

Introduction

First attempt:

- Deligne's irregular Hodge theory (1984).
- Motivation: Analogy with pure ℓ-adic sheaves.

Introduction

First attempt:

- Deligne's irregular Hodge theory (1984).
- Motivation: Analogy with pure ℓ-adic sheaves.
- Deligne explains:

Introduction

First attempt:

- Deligne's irregular Hodge theory (1984).
- Motivation: Analogy with pure ℓ-adic sheaves.
- Deligne explains:
- Expect a Hodge filtration indexed by real numbers.

Introduction

First attempt:

- Deligne's irregular Hodge theory (1984).
- Motivation: Analogy with pure ℓ-adic sheaves.
- Deligne explains:
- Expect a Hodge filtration indexed by real numbers.
- Lamentation: Do not expect a usual Hodge decomposition for this filtration.

Introduction

- \boldsymbol{X} smooth alg. curve $/ \mathbb{C}$,

Introduction

- X smooth alg. curve $/ \mathbb{C}, U=X \backslash S, S$ finite,

Introduction

- X smooth alg. curve $/ \mathbb{C}, U=X \backslash S, S$ finite, $f \in \mathscr{O}(U)$,

Introduction

- X smooth alg. curve $/ \mathbb{C}, U=X \backslash S, S$ finite, $f \in \mathscr{O}(U)$,
- $(\boldsymbol{V}, \boldsymbol{\nabla})$ rk-one algebraic bdle with connection on U which is unitary (PVHS type $(0,0)$).

Introduction

- X smooth alg. curve $/ \mathbb{C}, U=X \backslash S, S$ finite, $f \in \mathscr{O}(U)$,
- $(\boldsymbol{V}, \boldsymbol{\nabla})$ rk-one algebraic bdle with connection on U which is unitary (PVHS type (0,0)).
- $F_{\text {Del }}^{\bullet} \mathrm{DR}(V, \nabla+d f)$, indexed by \mathbb{R},

Introduction

- X smooth alg. curve $/ \mathbb{C}, U=X \backslash S, S$ finite, $f \in \mathscr{O}(U)$,
- $(\boldsymbol{V}, \boldsymbol{\nabla})$ rk-one algebraic bdle with connection on U which is unitary (PVHS type (0,0)).
- $F_{\text {Del }}^{\bullet} \mathrm{DR}(V, \nabla+d f)$, indexed by \mathbb{R},
- Degeneration at E_{1} of

Introduction

- X smooth alg. curve $/ \mathbb{C}, U=X \backslash S, S$ finite, $f \in \mathscr{O}(U)$,
- $(\boldsymbol{V}, \boldsymbol{\nabla})$ rk-one algebraic bdle with connection on U which is unitary (PVHS type $(0,0)$).
- $F_{\text {Del }}^{\bullet} \mathrm{DR}(V, \nabla+d f)$, indexed by \mathbb{R},
- Degeneration at E_{1} of
$H^{1}\left(U, F_{\mathrm{Del}}^{\bullet} \mathrm{DR}(V, \nabla+d f)\right) \Longrightarrow H_{\mathrm{DR}}^{1}(U,(V, \nabla+d f))$.

Conjecture of Kashiwara

Conjecture of Kashiwara

- Corlette (1988) \& Simpson (1992):

Conjecture of Kashiwara

- Corlette (1988) \& Simpson (1992):
- \boldsymbol{X} smooth compact Kähler, $\omega=$ Kähler form,

Conjecture of Kashiwara

- Corlette (1988) \& Simpson (1992):
- \boldsymbol{X} smooth compact Kähler, $\omega=$ Kähler form,
- \mathscr{V} semisimple local system on X,

Conjecture of Kashiwara

- Corlette (1988) \& Simpson (1992):
- \boldsymbol{X} smooth compact Kähler, $\omega=$ Kähler form,
- \mathscr{V} semisimple local system on X,
- then Hard Lefschetz Theorem holds for $\boldsymbol{H}^{*}(\boldsymbol{X}, \mathscr{V})$:

Conjecture of Kashiwara

- Corlette (1988) \& Simpson (1992):
- \boldsymbol{X} smooth compact Kähler, $\omega=$ Kähler form,
- \mathscr{V} semisimple local system on X,
- then Hard Lefschetz Theorem holds for $\boldsymbol{H}^{*}(\boldsymbol{X}, \mathscr{V})$:

$$
\forall k \geqslant 1, \quad L_{\omega}^{k}: H^{n-k}(X, \mathscr{V}) \xrightarrow{\sim} H^{n+k}(X, \mathscr{V}) .
$$

Conjecture of Kashiwara

- Corlette (1988) \& Simpson (1992):
- \boldsymbol{X} smooth compact Kähler, $\omega=$ Kähler form,
- \mathscr{V} semisimple local system on X,
- then Hard Lefschetz Theorem holds for $\boldsymbol{H}^{*}(\boldsymbol{X}, \mathscr{V})$:
$\forall k \geqslant 1, \quad L_{\omega}^{k}: H^{n-k}(X, \mathscr{V}) \xrightarrow{\sim} H^{n+k}(X, \mathscr{V})$.
previously known (Deligne) if \mathscr{V} underlies a PVHS.

Conjecture of Kashiwara

- Corlette (1988) \& Simpson (1992):
- \boldsymbol{X} smooth compact Kähler, $\omega=$ Kähler form,
- \mathscr{V} semisimple local system on X,
- then Hard Lefschetz Theorem holds for $\boldsymbol{H}^{*}(\boldsymbol{X}, \mathscr{V})$:
$\forall k \geqslant 1, \quad L_{\omega}^{k}: H^{n-k}(X, \mathscr{V}) \xrightarrow{\sim} H^{n+k}(X, \mathscr{V})$.
previously known (Deligne) if \mathscr{V} underlies a PVHS.
- The proof uses the existence of a harmonic metric on the associated flat bundle (V, ∇).

Conjecture of Kashiwara

- Corlette (1988) \& Simpson (1992):
- \boldsymbol{X} smooth compact Kähler, $\omega=$ Kähler form,
- \mathscr{V} semisimple local system on X,
- then Hard Lefschetz Theorem holds for $\boldsymbol{H}^{*}(\boldsymbol{X}, \mathscr{V})$:

$$
\forall k \geqslant 1, \quad L_{\omega}^{k}: H^{n-k}(X, \mathscr{V}) \xrightarrow{\sim} H^{n+k}(X, \mathscr{V}) .
$$

previously known (Deligne) if \mathscr{V} underlies a PVHS.

- The proof uses the existence of a harmonic metric on the associated flat bundle (V, ∇).
- Equivalently: (V, ∇) underlies a variation of polarized twistor structure of weight 0 .

Conjecture of Kashiwara

Conjecture of Kashiwara

- Conjecture of Kashiwara (weak form):

Conjecture of Kashiwara

- Conjecture of Kashiwara (weak form):
- X projective, $\omega=$ ample line bundle,

Conjecture of Kashiwara

- Conjecture of Kashiwara (weak form):
- \boldsymbol{X} projective, $\omega=$ ample line bundle,
- \mathscr{V} semisimple local system on $X_{0} \subset X$ smooth quasiprojective,

Conjecture of Kashiwara

- Conjecture of Kashiwara (weak form):
- \boldsymbol{X} projective, $\omega=$ ample line bundle,
- \mathscr{V} semisimple local system on $X_{0} \subset X$ smooth quasiprojective,
- then Hard Lefschetz Theorem holds for $\mathrm{IH}^{*}(\boldsymbol{X}, \mathscr{V})$:

Conjecture of Kashiwara

- Conjecture of Kashiwara (weak form):
- \boldsymbol{X} projective, $\omega=$ ample line bundle,
- \mathscr{V} semisimple local system on $X_{0} \subset X$ smooth quasiprojective,
- then Hard Lefschetz Theorem holds for $\mathbf{I H}^{*}(X, \mathscr{V})$:

$$
\forall k \geqslant 1, \quad L_{\omega}^{k}: \mathrm{IH}^{n-k}(X, \mathscr{V}) \xrightarrow{\sim} \mathrm{IH}^{n+k}(X, \mathscr{V})
$$

Conjecture of Kashiwara

- Conjecture of Kashiwara (weak form):
- \boldsymbol{X} projective, $\omega=$ ample line bundle,
- \mathscr{V} semisimple local system on $X_{0} \subset X$ smooth quasiprojective,
- then Hard Lefschetz Theorem holds for $\mathrm{IH}^{*}(\boldsymbol{X}, \mathscr{V})$:

$$
\forall k \geqslant 1, \quad L_{\omega}^{k}: \mathrm{IH}^{n-k}(X, \mathscr{V}) \xrightarrow{\sim} \mathrm{IH}^{n+k}(X, \mathscr{V})
$$

previously known (M. Saito) if \mathscr{V} underlies a PVHS.

Conjecture of Kashiwara

Conjecture of Kashiwara

$f: X \longrightarrow Y:$ a morphism between smooth complex projective varieties.

Conjecture of Kashiwara

$f: X \longrightarrow Y:$ a morphism between smooth complex projective varieties.

Semi-simple perverse sheaf on \boldsymbol{X}

Conjecture of Kashiwara

$f: X \longrightarrow Y:$ a morphism between smooth complex projective varieties.

Conjecture of Kashiwara

$f: X \longrightarrow Y:$ a morphism between smooth complex projective varieties.
Sketch of the analytic proof :

Semi-simple perverse
sheaf on \boldsymbol{X}

> Semi-simple perverse
> sheaf on Y

Conjecture of Kashiwara

$f: X \longrightarrow \boldsymbol{Y}$: a morphism between smooth complex projective varieties.
Sketch of the analytic proof :

Semi-simple perverse
sheaf on \boldsymbol{X}

Polarized regular twistor \mathscr{D}-module on \boldsymbol{X}

Semi-simple perverse sheaf on Y

Conjecture of Kashiwara

$f: X \longrightarrow \boldsymbol{Y}$: a morphism between smooth complex projective varieties. Sketch of the analytic proof :

Semi-simple perverse
sheaf on X

Conjecture of Kashiwara

$f: X \longrightarrow \boldsymbol{Y}:$ a morphism between smooth complex projective varieties. Sketch of the analytic proof :

Semi-simple perverse
sheaf on \boldsymbol{X}

Polarized regular twistor \mathscr{D}-module on \boldsymbol{Y}

Conjecture of Kashiwara

$f: X \longrightarrow Y:$ a morphism between smooth complex projective varieties.
Sketch of the analytic proof :

Conjecture of Kashiwara

$f: X \longrightarrow \boldsymbol{Y}$: a morphism between smooth complex projective varieties.
Sketch of the analytic proof :

Conjecture of Kashiwara

$f: X \longrightarrow \boldsymbol{Y}$: a morphism between smooth complex projective varieties.
Sketch of the analytic proof :

Conjecture of Kashiwara

Conjecture of Kashiwara

- Conjecture of Kashiwara (strong form):

Conjecture of Kashiwara

- Conjecture of Kashiwara (strong form):
- $\boldsymbol{X} \subset Z$ projective, $\omega=$ ample line bundle, Z smooth,

Conjecture of Kashiwara

- Conjecture of Kashiwara (strong form):
- $\boldsymbol{X} \subset Z$ projective, $\omega=$ ample line bundle, Z smooth,
- (V, ∇) semisimple algebraic flat bundle on $X_{0} \subset X$ smooth quasiprojective, possibly irregular singularities,

Conjecture of Kashiwara

- Conjecture of Kashiwara (strong form):
- $\boldsymbol{X} \subset Z$ projective, $\omega=$ ample line bundle, Z smooth,
- (V, ∇) semisimple algebraic flat bundle on $X_{0} \subset X$ smooth quasiprojective, possibly irregular singularities,
- $\mathscr{M}=$ minimal extension of (V, ∇), (holonomic \mathscr{D}_{Z}-module)

Conjecture of Kashiwara

- Conjecture of Kashiwara (strong form):
- $\boldsymbol{X} \subset Z$ projective, $\omega=$ ample line bundle, Z smooth,
- (V, ∇) semisimple algebraic flat bundle on $X_{0} \subset X$ smooth quasiprojective, possibly irregular singularities,
- $\mathscr{M}=$ minimal extension of $(\boldsymbol{V}, \boldsymbol{\nabla})$, (holonomic \mathscr{D}_{Z}-module)
- then Hard Lefschetz Theorem holds for $\mathbb{H}^{*}(X, \mathrm{DR} \mathscr{M})=: \mathrm{IH}_{\mathrm{DR}}^{*}(\boldsymbol{X},(\boldsymbol{V}, \nabla))$:
$\forall k \geqslant 1, \quad L_{\omega}^{k}: \mathrm{IH}_{\mathrm{DR}}^{n-k}(X,(V, \nabla)) \xrightarrow{\sim} \mathrm{IH}_{\mathrm{DR}}^{n+k}(X,(V, \nabla))$.

Conjecture of Kashiwara

$f: X \longrightarrow Y:$ a morphism between smooth complex projective varieties.

Conjecture of Kashiwara

$f: X \longrightarrow \boldsymbol{Y}$: a morphism between smooth complex projective varieties.

Semi-simple holonomic \mathscr{D}-module on \boldsymbol{X}

Semi-simple holonomic
\mathscr{D}-module on \boldsymbol{Y}

Conjecture of Kashiwara

$f: X \longrightarrow \boldsymbol{Y}$: a morphism between smooth complex projective varieties.
C.S. (using ideas of Deligne, letter to Malgrange dec. 1983)

Semi-simple holonomic \mathscr{D}-module on \boldsymbol{X}

Polarized wild twistor
\mathscr{D}-module on \boldsymbol{X}

Semi-simple holonomic
 \mathscr{D}-module on \boldsymbol{Y}

Polarized wild twistor
 \mathscr{D}-module on \boldsymbol{Y}

Conjecture of Kashiwara

$f: X \longrightarrow Y:$ a morphism between smooth complex projective varieties.
Sketch of T. Mochizuki's proof :

Twistor structures

(C. Simpson)

Twistor structures

(C. Simpson)

Hodge structures
Twistor structures

Twistor structures

(C. Simpson)

Hodge structures
Twistor structures
Filtered vect. sp. $\left(\boldsymbol{F}^{\bullet} \boldsymbol{H}, \overline{\boldsymbol{F}}^{\bullet} \boldsymbol{H}\right) \mid$ Holom. vect. bdle \mathscr{H} on $\mathbb{P}^{\mathbf{1}}$

Twistor structures

(C. Simpson)

Hodge structures

Filtered vect. sp. $\left(\boldsymbol{F}^{\bullet} \boldsymbol{H}, \overline{\boldsymbol{F}}^{\bullet} \boldsymbol{H}\right) \mid$ Holom. vect. bdle \mathscr{H} on $\mathbb{P}^{\mathbf{1}}$ Conjugation $\boldsymbol{H} \rightarrow \overline{\boldsymbol{H}}$

Twistor structures
Twistor conjugation

Twistor structures

(C. Simpson)

Hodge structures

Twistor structures

Filtered vect. sp. $\left(\boldsymbol{F}^{\bullet} \boldsymbol{H}, \overline{\boldsymbol{F}}^{\bullet} \boldsymbol{H}\right)$ Holom. vect. bdle \mathscr{H} on $\mathbb{P}^{\mathbf{1}}$
Conjugation $\boldsymbol{H} \rightarrow \overline{\boldsymbol{H}}$

Twistor conjugation
$\mathscr{H} \rightarrow \overline{\mathscr{H}}=\sigma^{*} \overline{\mathscr{H}}$

Twistor structures

(C. Simpson)

Hodge structures

Filtered vect. sp. $\left(\boldsymbol{F}^{\bullet} \boldsymbol{H}, \overline{\boldsymbol{F}}^{\bullet} \boldsymbol{H}\right)$ Holom. vect. bdle \mathscr{H} on $\mathbb{P}^{\mathbf{1}}$ Conjugation $\boldsymbol{H} \rightarrow \overline{\boldsymbol{H}}$

Twistor structures

Twistor conjugation
$\mathscr{H} \rightarrow \overline{\mathscr{H}}=\sigma^{*} \overline{\mathscr{H}}$
$\sigma: z \mapsto-1 / \bar{z}$

Twistor structures

(C. Simpson)

Hodge structures

Filtered vect. sp. $\left(\boldsymbol{F}^{\bullet} \boldsymbol{H}, \overline{\boldsymbol{F}}^{\bullet} \boldsymbol{H}\right) \mid$ Holom. vect. bdle \mathscr{H} on \mathbb{P}^{1} Conjugation $\boldsymbol{H} \rightarrow \overline{\boldsymbol{H}}$

Twistor structures

Twistor conjugation
$\mathscr{H} \rightarrow \overline{\mathscr{H}}=\sigma^{*} \overline{\mathscr{H}}$
$\sigma: z \mapsto-1 / \bar{z} \quad(\bar{z}=-1 / z)$

Twistor structures

(C. Simpson)

Hodge structures

Filtered vect. sp. $\left(\boldsymbol{F}^{\bullet} \boldsymbol{H}, \overline{\boldsymbol{F}}^{\bullet} \boldsymbol{H}\right) \mid$ Holom. vect. bdle \mathscr{H} on \mathbb{P}^{1} Conjugation $\boldsymbol{H} \rightarrow \overline{\boldsymbol{H}}$

Twistor conjugation
$\mathscr{H} \rightarrow \overline{\mathscr{H}}=\sigma^{*} \overline{\mathscr{H}}$
$\sigma: z \mapsto-1 / \bar{z} \quad(\bar{z}=-1 / z)$
Pure Hodge structure w

Twistor structures

$\mathscr{H}=Q_{0}(w)^{d}$
$\mathscr{H} \simeq \mathscr{O}_{\mathbb{P}^{1}}(\boldsymbol{w})^{d}$

Twistor structures

(C. Simpson)

Hodge structures

Filtered vect. sp. $\left(\boldsymbol{F}^{\bullet} \boldsymbol{H}, \overline{\boldsymbol{F}}^{\bullet} \boldsymbol{H}\right) \mid$ Holom. vect. bdle \mathscr{H} on \mathbb{P}^{1} Conjugation $\boldsymbol{H} \rightarrow \overline{\boldsymbol{H}}$

Pure Hodge structure w
Vector space $H(w=0)$
$\mathscr{H} \rightarrow \overline{\mathscr{H}}=\sigma^{*} \overline{\mathscr{H}}$
$\sigma: z \mapsto-1 / \bar{z} \quad(\bar{z}=-1 / z)$

Twistor structures

Twistor conjugation
$\mathscr{H} \simeq \mathscr{O}_{\mathbb{P}^{1}}(\boldsymbol{w})^{d}$
$\Gamma\left(\mathbb{P}^{1}, \mathscr{H}\right)$

Twistor structures

(C. Simpson)

Hodge structures

Filtered vect. sp. $\left(\boldsymbol{F}^{\bullet} \boldsymbol{H}, \overline{\boldsymbol{F}}^{\bullet} \boldsymbol{H}\right) \mid$ Holom. vect. bdle \mathscr{H} on \mathbb{P}^{1} Conjugation $\boldsymbol{H} \rightarrow \overline{\boldsymbol{H}}$

Twistor structures

Twistor conjugation

Pure Hodge structure w
Vector space $H(w=0)$
$S: H \simeq H^{*}$
$\mathscr{H} \rightarrow \overline{\mathscr{H}}=\sigma^{*} \overline{\mathscr{H}}$
$\sigma: z \mapsto-1 / \bar{z} \quad(\bar{z}=-1 / z)$
$\mathscr{H} \simeq \mathscr{O}_{\mathbb{P}^{1}}(\boldsymbol{w})^{d}$
$\Gamma\left(\mathbb{P}^{1}, \mathscr{H}\right)$
$\mathscr{S}: \mathscr{H} \simeq \mathscr{H}^{*}:=\overline{\mathscr{H}}^{\vee}$

Twistor structures

(C. Simpson)

Hodge structures

Filtered vect. sp. $\left(\boldsymbol{F}^{\bullet} \boldsymbol{H}, \overline{\boldsymbol{F}}^{\bullet} \boldsymbol{H}\right)$ Holom. vect. bdle \mathscr{H} on \mathbb{P}^{1} Conjugation $\boldsymbol{H} \rightarrow \overline{\boldsymbol{H}}$

Pure Hodge structure w
Vector space $H(w=0)$
$S: H \simeq H^{*}$

Twistor structures

Twistor conjugation
$\mathscr{H} \rightarrow \overline{\mathscr{H}}=\sigma^{*} \overline{\mathscr{H}}$
$\sigma: z \mapsto-1 / \bar{z} \quad(\bar{z}=-1 / z)$
$\mathscr{H} \simeq \mathscr{O}_{\mathbb{P}^{1}}(\boldsymbol{w})^{d}$
$\Gamma\left(\mathbb{P}^{1}, \mathscr{H}\right)$
$\mathscr{S}: \mathscr{H} \simeq \mathscr{H}^{*}:=\overline{\mathscr{H}}^{\mathrm{V}}$
$\rightarrow \Gamma\left(\mathbb{P}^{1}, \mathscr{S}\right): \Gamma\left(\mathbb{P}^{1}, \mathscr{H}\right) \simeq$
$\Gamma\left(\mathbb{P}^{1}, \mathscr{H}\right)^{*}$

Twistor structures

(C. Simpson)

Hodge structures

Filtered vect. sp. $\left(\boldsymbol{F}^{\bullet} \boldsymbol{H}, \overline{\boldsymbol{F}}^{\bullet} \boldsymbol{H}\right)$ Holom. vect. bdle \mathscr{H} on \mathbb{P}^{1} Conjugation $\boldsymbol{H} \rightarrow \overline{\boldsymbol{H}}$

Pure Hodge structure w Vector space $H(w=0)$ $S: H \simeq H^{*}$

Positivity of h

Twistor structures
Twistor conjugation
$\mathscr{H} \rightarrow \overline{\mathscr{H}}=\sigma^{*} \overline{\mathscr{H}}$
$\sigma: z \mapsto-1 / \bar{z} \quad(\bar{z}=-1 / z)$
$\mathscr{H} \simeq \mathscr{O}_{\mathbb{P}^{1}}(\boldsymbol{w})^{d}$
$\Gamma\left(\mathbb{P}^{1}, \mathscr{H}\right)$
$\mathscr{S}: \mathscr{H} \simeq \mathscr{H}^{*}:=\overline{\mathscr{H}}^{\vee}$
$\rightarrow \Gamma\left(\mathbb{P}^{1}, \mathscr{S}\right): \Gamma\left(\mathbb{P}^{1}, \mathscr{H}\right) \simeq$
$\Gamma\left(\mathbb{P}^{1}, \mathscr{H}\right)^{*}$
Positivity of $\Gamma\left(\mathbb{P}^{1}, \mathscr{S}\right)$

Twistor structures

(C. Simpson)

Hodge structures

Filtered vect. sp. $\left(\boldsymbol{F}^{\bullet} \boldsymbol{H}, \overline{\boldsymbol{F}}^{\bullet} \boldsymbol{H}\right)$ Holom. vect. bdle \mathscr{H} on \mathbb{P}^{1} Conjugation $\boldsymbol{H} \rightarrow \overline{\boldsymbol{H}}$

Pure Hodge structure w Vector space $H(w=0)$ $S: H \simeq H^{*}$

Positivity of h
Tate twist (k), $k \in \mathbb{Z}$

Twistor structures

Twistor conjugation
$\mathscr{H} \rightarrow \overline{\mathscr{H}}=\sigma^{*} \overline{\mathscr{H}}$
$\sigma: z \mapsto-1 / \bar{z} \quad(\bar{z}=-1 / z)$
$\mathscr{H} \simeq \mathscr{O}_{\mathbb{P}^{1}}(\boldsymbol{w})^{d}$
$\Gamma\left(\mathbb{P}^{1}, \mathscr{H}\right)$
$\mathscr{S}: \mathscr{H} \simeq \mathscr{H}^{*}:=\overline{\mathscr{H}}^{\vee}$
$\rightarrow \Gamma\left(\mathbb{P}^{1}, \mathscr{S}\right): \Gamma\left(\mathbb{P}^{1}, \mathscr{H}\right) \simeq$
$\Gamma\left(\mathbb{P}^{1}, \mathscr{H}\right)^{*}$
Positivity of $\Gamma\left(\mathbb{P}^{1}, \mathscr{S}\right)$
$\otimes \mathscr{O}_{\mathbb{P}^{1}}(-2 k) \quad\left(k \in \frac{1}{2} \mathbb{Z}\right)$

Variation of twistor structures

(C. Simpson)

Variation of twistor structures

(C. Simpson)
X : complex manifold, $\mathscr{X}=X \times \mathbb{P}^{1}$.

Variation of twistor structures

(C. Simpson)

X : complex manifold, $\mathscr{X}=X \times \mathbb{P}^{1}$.

- Twistor conjugation: ordinary conjugation on X and twistor conjugation on \mathbb{P}^{1}.

Variation of twistor structures

(C. Simpson)

X : complex manifold, $\mathscr{X}=X \times \mathbb{P}^{1}$.

- Twistor conjugation: ordinary conjugation on X and twistor conjugation on \mathbb{P}^{1}.
- $\mathscr{H}: C^{\infty}$ vect. bdle on \mathscr{X}, holom. w.r.t. \mathbb{P}^{1},

Variation of twistor structures

(C. Simpson)

X : complex manifold, $\mathscr{X}=X \times \mathbb{P}^{1}$.

- Twistor conjugation: ordinary conjugation on X and twistor conjugation on \mathbb{P}^{1}.
- $\mathscr{H}: C^{\infty}$ vect. bdle on \mathscr{X}, holom. w.r.t. \mathbb{P}^{1},
- Relative connections $\mathcal{D}^{\prime}, \mathcal{D}^{\prime \prime}$:

Variation of twistor structures
 (C. Simpson)

X : complex manifold, $\mathscr{X}=X \times \mathbb{P}^{1}$.

- Twistor conjugation: ordinary conjugation on X and twistor conjugation on \mathbb{P}^{1}.
- $\mathscr{H}: C^{\infty}$ vect. bdle on \mathscr{X}, holom. w.r.t. \mathbb{P}^{1},
- Relative connections $\mathcal{D}^{\prime}, \mathcal{D}^{\prime \prime}$:

$$
\mathcal{D}^{\prime}: \mathscr{H} \longrightarrow \frac{1}{z} \Omega_{\mathscr{X} / \mathbb{P}^{1}}^{1} \otimes \mathscr{H}
$$

Variation of twistor structures (C. Simpson)

X : complex manifold, $\mathscr{X}=X \times \mathbb{P}^{1}$.

- Twistor conjugation: ordinary conjugation on X and twistor conjugation on \mathbb{P}^{1}.
- $\mathscr{H}: C^{\infty}$ vect. bdle on \mathscr{X}, holom. w.r.t. \mathbb{P}^{1},
- Relative connections $\mathcal{D}^{\prime}, \mathcal{D}^{\prime \prime}$:
$\begin{aligned} & \mathcal{D}^{\prime}: \mathscr{H} \longrightarrow \frac{1}{z} \Omega_{\mathscr{X} / \mathbb{P}^{1}}^{1} \otimes \mathscr{H}, \\ & \mathcal{D}^{\prime \prime}: \mathscr{H} \longrightarrow \frac{1}{z} \Omega_{\mathscr{X} / \mathbb{P}^{1}}^{1} \otimes \mathscr{H}=z \overline{\Omega_{\mathscr{X} / \mathbb{P}^{1}}^{1}} \otimes \mathscr{H},\end{aligned}$

Variation of twistor structures (C. Simpson)

X : complex manifold, $\mathscr{X}=X \times \mathbb{P}^{1}$.

- Twistor conjugation: ordinary conjugation on X and twistor conjugation on \mathbb{P}^{1}.
- $\mathscr{H}: C^{\infty}$ vect. bdle on \mathscr{X}, holom. w.r.t. \mathbb{P}^{1},
- Relative connections $\mathcal{D}^{\prime}, \mathcal{D}^{\prime \prime}$:
$\mathcal{D}^{\prime}: \mathscr{H} \longrightarrow \frac{1}{z} \Omega_{\mathscr{X} / \mathbb{P}^{1}}^{1} \otimes \mathscr{H}$,
$\mathcal{D}^{\prime \prime}: \mathscr{H} \longrightarrow \frac{1}{z} \Omega_{\mathscr{X} / \mathbb{P}^{1}}^{1} \otimes \mathscr{H}=z \overline{\Omega_{\mathscr{X} / \mathbb{P}^{1}}^{1}} \otimes \mathscr{H}$,
Flatness:

$$
\mathcal{D}^{2}=\left(\mathcal{D}^{\prime}+\mathcal{D}^{\prime \prime}\right)^{2}=0
$$

Variation of twistor structures
 (C. Simpson)

X : complex manifold, $\mathscr{X}=X \times \mathbb{P}^{\mathbf{1}}, \pi: \mathscr{X} \longrightarrow \boldsymbol{X}$.

- Purity $(\boldsymbol{w}=0): \mathscr{H}=\pi^{*} \boldsymbol{H}$

Variation of twistor structures (C. Simpson)

X : complex manifold, $\mathscr{X}=X \times \mathbb{P}^{1}, \pi: \mathscr{X} \longrightarrow X$.

- Purity $(w=0): \mathscr{H}=\pi^{*} H$
- Nondeg. sesquilinear flat pairing:
$\mathscr{S}:(\mathscr{H}, \mathcal{D}) \xrightarrow{\sim}(\mathscr{H}, \mathcal{D})^{*}$.

Variation of twistor structures (C. Simpson)

X : complex manifold, $\mathscr{X}=X \times \mathbb{P}^{1}, \pi: \mathscr{X} \longrightarrow X$.

- Purity $(w=0): \mathscr{H}=\pi^{*} H$
- Nondeg. sesquilinear flat pairing:
$\mathscr{S}:(\mathscr{H}, \mathcal{D}) \xrightarrow{\sim}(\mathscr{H}, \mathcal{D})^{*}$.
- Polarization in weight $0: h:=\pi_{*} \mathscr{S}$ is a Hermitian metric on H.

Variation of twistor structures
 (C. Simpson)

X : complex manifold, $\mathscr{X}=X \times \mathbb{P}^{1}, \pi: \mathscr{X} \longrightarrow X$.

- Purity $(w=0): \mathscr{H}=\pi^{*} \boldsymbol{H}$
- Nondeg. sesquilinear flat pairing:
$\mathscr{S}:(\mathscr{H}, \mathcal{D}) \xrightarrow{\sim}(\mathscr{H}, \mathcal{D})^{*}$.
- Polarization in weight $0: h:=\pi_{*} \mathscr{S}$ is a Hermitian metric on H.
C. Simpson: Variations of pol. twistor struct. of weight 0

Variation of twistor structures (C. Simpson)

X : complex manifold, $\mathscr{X}=X \times \mathbb{P}^{1}, \pi: \mathscr{X} \longrightarrow X$.

- Purity $(\boldsymbol{w}=0): \mathscr{H}=\pi^{*} \boldsymbol{H}$
- Nondeg. sesquilinear flat pairing: $\mathscr{S}:(\mathscr{H}, \mathcal{D}) \xrightarrow{\sim}(\mathscr{H}, \mathcal{D})^{*}$.
- Polarization in weight $0: h:=\pi_{*} \mathscr{S}$ is a Hermitian metric on H.
C. Simpson: Variations of pol. twistor struct. of weight 0
$\stackrel{z=1}{\longleftrightarrow}$ holom. vector bundle on X with flat connection ∇ and Hermitian metric h which is harmonic

Variation of twistor structures

(C. Simpson)

X : complex manifold, $\mathscr{X}=X \times \mathbb{P}^{1}, \pi: \mathscr{X} \longrightarrow X$.

- Purity $(\boldsymbol{w}=0): \mathscr{H}=\pi^{*} \boldsymbol{H}$
- Nondeg. sesquilinear flat pairing: $\mathscr{S}:(\mathscr{H}, \mathcal{D}) \xrightarrow{\sim}(\mathscr{H}, \mathcal{D})^{*}$.
- Polarization in weight $0: h:=\pi_{*} \mathscr{S}$ is a Hermitian metric on H.
C. Simpson: Variations of pol. twistor struct. of weight 0
$\stackrel{z=1}{\longleftrightarrow}$ holom. vector bundle on X with flat connection ∇ and Hermitian metric h which is harmonic $\stackrel{z=0}{\longrightarrow}$ holom. vector bundle on X with a Higgs field θ, and Hermitian metric h which is harmonic.

Behaviour on a punctured disc

Behaviour on a punctured disc

Δ^{*} : punctured disc, $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor structure, $w=0$.

Behaviour on a punctured disc

Δ^{*} : punctured disc, $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor structure, $w=0$.
$\boldsymbol{\theta}:=\operatorname{Res}_{z=0} \mathcal{D}^{\prime}:$ Higgs field on $\boldsymbol{E}:=\mathscr{H}_{z=0}$.

Behaviour on a punctured disc

Δ^{*} : punctured disc, $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor structure, $\boldsymbol{w}=0$.
$\theta:=\operatorname{Res}_{z=0} \mathcal{D}^{\prime}:$ Higgs field on $\boldsymbol{E}:=\mathscr{H}_{z=0}$.

- tame:

Behaviour on a punctured disc

Δ^{*} : punctured disc, $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor structure, $w=0$.
$\theta:=\operatorname{Res}_{z=0} \mathcal{D}^{\prime}:$ Higgs field on $E:=\mathscr{H}_{\mid z=0}$.

- tame: Eigenvalues of θ have growth $1 /|x|^{a}, a \leqslant 1$.

Behaviour on a punctured disc

Δ^{*} : punctured disc, $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor structure, $w=0$.
$\boldsymbol{\theta}:=\operatorname{Res}_{z=0} \mathcal{D}^{\prime}:$ Higgs field on $\boldsymbol{E}:=\mathscr{H}_{z=0}$.

- tame: Eigenvalues of θ have growth $1 /|x|^{a}, a \leqslant 1$.
- wild:

Behaviour on a punctured disc

Δ^{*} : punctured disc, $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor structure, $w=0$.
$\theta:=\operatorname{Res}_{z=0} \mathcal{D}^{\prime}:$ Higgs field on $E:=\mathscr{H}_{\mid z=0}$.

- tame: Eigenvalues of θ have growth $1 /|x|^{a}, a \leqslant 1$.
- wild: Eigenvalues of θ have moderate growth.

Behaviour on a punctured disc

Δ^{*} : punctured disc, ($\left.\mathscr{H}, \mathcal{D}, \mathscr{S}\right)$ var. pol. twistor structure, $w=0$.
$\theta:=\operatorname{Res}_{z=0} \mathcal{D}^{\prime}:$ Higgs field on $E:=\mathscr{H}_{\mid z=0}$.

- tame: Eigenvalues of θ have growth $1 /|x|^{a}, a \leqslant 1$.
- wild: Eigenvalues of θ have moderate growth.
- not controlled:

Behaviour on a punctured disc

Δ^{*} : punctured disc, ($\left.\mathscr{H}, \mathcal{D}, \mathscr{S}\right)$ var. pol. twistor structure, $w=0$.
$\theta:=\operatorname{Res}_{z=0} \mathcal{D}^{\prime}:$ Higgs field on $E:=\mathscr{H}_{\mid z=0}$.

- tame: Eigenvalues of θ have growth $1 /|x|^{a}, a \leqslant 1$.
- wild: Eigenvalues of θ have moderate growth.
- not controlled: Eigenvalues of θ have other growth.

Behaviour on a punctured disc

Δ^{*} : punctured disc, $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor structure, $w=0$.
$\theta:=\operatorname{Res}_{z=0} \mathcal{D}^{\prime}:$ Higgs field on $E:=\mathscr{H}_{\mid z=0}$.

- tame: Eigenvalues of θ have growth $1 /|x|^{a}, a \leqslant 1$.
- wild: Eigenvalues of θ have moderate growth.
- not controlled: Eigenvalues of θ have other growth.
- Analysis of the tame case:
- Simpson (1990),

Behaviour on a punctured disc

Δ^{*} : punctured disc, $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor structure, $w=0$.
$\theta:=\operatorname{Res}_{z=0} \mathcal{D}^{\prime}:$ Higgs field on $E:=\mathscr{H}_{\mid z=0}$.

- tame: Eigenvalues of θ have growth $1 /|x|^{a}, a \leqslant 1$.
- wild: Eigenvalues of θ have moderate growth.
- not controlled: Eigenvalues of θ have other growth.
- Analysis of the tame case:
- Simpson (1990),
, on ($\left.\Delta^{*}\right)^{n}$: T. Mochizuki (2002-2007).

Behaviour on a punctured disc

Δ^{*} : punctured disc, ($\left.\mathscr{H}, \mathcal{D}, \mathscr{S}\right)$ var. pol. twistor structure, $w=0$.
$\theta:=\operatorname{Res}_{z=0} \mathcal{D}^{\prime}:$ Higgs field on $E:=\mathscr{H}_{\mid z=0}$.

- tame: Eigenvalues of θ have growth $1 /|x|^{a}, a \leqslant 1$.
- wild: Eigenvalues of θ have moderate growth.
- not controlled: Eigenvalues of θ have other growth.
- Analysis of the tame case:
- Simpson (1990),
- on ($\left.\Delta^{*}\right)^{n}$: T. Mochizuki (2002-2007).
- Analysis of the wild case on $\left(\Delta^{*}\right)^{n}$: T. Mochizuki (2008).

Wild twistor \mathscr{D}-modules on a disc

THEOREM:

Wild twistor \mathscr{D}-modules on a disc

THEOREM: Assume $(\mathscr{T}, \mathscr{S})$ is a polarized wild twistor \mathscr{D}-module on Δ at $x=0$.

Wild twistor \mathscr{D}-modules on a disc

THEOREM: Assume $(\mathscr{T}, \mathscr{S})$ is a polarized wild twistor \mathscr{D}-module on Δ at $x=0$. Then it is so at any x^{o} in some neighbourhood of $x=0$.

Wild twistor \mathscr{D}-modules on a disc

THEOREM: Assume $(\mathscr{T}, \mathscr{S})$ is a polarized wild twistor \mathscr{D}-module on Δ at $x=0$. Then it is so at any x^{o} in some neighbourhood of $x=0$.

- Particular case previously obtained by Hertling-Sevenheck (2006)

Wild twistor \mathscr{D}-modules on a disc

Theorem: Assume (\mathscr{T}, \mathscr{S}) is a polarized wild twistor \mathscr{D}-module on Δ at $x=0$. Then it is so at any x^{o} in some neighbourhood of $x=0$.

- Particular case previously obtained by Hertling-Sevenheck (2006)
- Theorem now contained in the general framework of T. Mochizuki (2008).

Wild twistor \mathscr{D}-modules on a disc

$$
z=1
$$

Wild twistor \mathscr{D}-modules on a disc

$$
z=1
$$

- (V, ∇): free $\mathscr{O}_{\Delta}[1 / x]$-module with a (possibly irreg.) connection.

Wild twistor \mathscr{D}-modules on a disc

$$
z=1
$$

- (V, ∇): free $\mathscr{O}_{\Delta}[1 / x]$-module with a (possibly irreg.) connection.
- $(\hat{V}, \widehat{\nabla})=\mathbb{C} \llbracket x \rrbracket \otimes_{\mathbb{C}\{x\}}(V, \nabla)$.

Wild twistor \mathscr{D}-modules on a disc

$$
z=1
$$

- (V, ∇) : free $\mathscr{O}_{\Delta}[1 / x]$-module with a (possibly irreg.) connection.
- $(\widehat{V}, \widehat{\nabla})=\mathbb{C} \llbracket x \rrbracket \otimes_{\mathbb{C}\{x\}}(V, \nabla)$.
- Turrittin-Levelt:

$$
\text { - }(\widehat{V}, \widehat{\nabla}) \simeq \underset{\varphi \in \frac{1}{x} \mathbb{C}[1 / x]}{\bigoplus}\left(\widehat{V}_{\varphi}, \widehat{\nabla}_{\varphi}+d \varphi\right)\left(\text { up to } x \mapsto x^{q}\right)
$$

Wild twistor \mathscr{D}-modules on a disc

$$
z=1
$$

- (V, ∇) : free $\mathscr{O}_{\Delta}[1 / x]$-module with a (possibly irreg.) connection.
- $(\widehat{V}, \widehat{\nabla})=\mathbb{C} \llbracket x \rrbracket \otimes_{\mathbb{C}\{x\}}(V, \nabla)$.
- Turrittin-Levelt:

$$
\text { - }(\widehat{V}, \widehat{\nabla}) \simeq \underset{\varphi \in \frac{1}{x} \mathbb{C}[1 / x]}{\bigoplus}\left(\widehat{V}_{\varphi}, \widehat{\nabla}_{\varphi}+d \varphi\right)\left(\text { up to } x \mapsto x^{q}\right)
$$

- Each $\left(V_{\varphi}, \nabla_{\varphi}\right)$: regular singularity.

Wild twistor \mathscr{D}-modules on a disc

$$
z=1
$$

- (V, ∇) : free $\mathscr{O}_{\Delta}[1 / x]$-module with a (possibly irreg.) connection.
- $(\widehat{V}, \widehat{\nabla})=\mathbb{C} \llbracket x \rrbracket \otimes_{\mathbb{C}\{x\}}(V, \nabla)$.
- Turrittin-Levelt:

$$
\text { - }(\widehat{V}, \widehat{\nabla}) \simeq \underset{\varphi \in \frac{1}{x} \mathbb{C}[1 / x]}{\bigoplus}\left(\widehat{V}_{\varphi}, \widehat{\nabla}_{\varphi}+d \varphi\right)\left(\text { up to } x \mapsto x^{q}\right)
$$

- Each $\left(V_{\varphi}, \nabla_{\varphi}\right)$: regular singularity.
- $(V, \nabla) \longleftrightarrow(\widehat{V}, \widehat{\nabla})+$ Stokes structure.

Wild twistor \mathscr{D}-modules on a dise

Wild twistor \mathscr{D}-modules on a dise

Wild twistor \mathscr{D}-modules on a disc

$$
z=0
$$

Wild twistor \mathscr{D}-modules on a dise

$$
z=0
$$

- (E, θ) : free $\mathscr{O}_{\Delta}[1 / x]$-module, $\theta: E \longrightarrow E$ is \mathscr{O}-linear.

Wild twistor \mathscr{D}-modules on a disc

$$
z=0
$$

- (E, θ) : free $\mathscr{O}_{\Delta}[1 / x]$-module, $\theta: E \longrightarrow E$ is \mathscr{O}-linear.
- $\boldsymbol{\theta}=\Theta d x, \quad \Theta \in \operatorname{End}(\boldsymbol{E})$,

Wild twistor \mathscr{D}-modules on a disc

$$
z=0
$$

- (E, θ) : free $\mathscr{O}_{\Delta}[1 / x]$-module, $\theta: E \longrightarrow E$ is \mathscr{O}-linear.
- $\boldsymbol{\theta}=\Theta d x, \quad \Theta \in \operatorname{End}(\boldsymbol{E})$,
- $(E, \theta) \simeq \bigoplus\left(E_{\varphi}, \theta_{\varphi}+d \varphi\right)\left(\right.$ up to $\left.x \mapsto x^{q}\right)$

$$
\varphi \in \frac{1}{x} \mathbb{C}[1 / x]
$$

Wild twistor \mathscr{D}-modules on a disc

$$
z=0
$$

- (E, θ) : free $\mathscr{O}_{\Delta}[1 / x]$-module, $\theta: E \longrightarrow E$ is \mathscr{O}-linear.
- $\boldsymbol{\theta}=\Theta d x, \quad \Theta \in \operatorname{End}(\boldsymbol{E})$,
- $(E, \theta) \simeq \underset{\varphi \in \frac{1}{x} \mathbb{C}[1 / x]}{\bigoplus}\left(E_{\varphi}, \theta_{\varphi}+d \varphi\right)\left(\right.$ up to $\left.x \mapsto x^{q}\right)$
- Each θ_{φ} : pole of order $\leqslant 1$.

Wild twistor \mathscr{D}-modules on a disc

$$
z=0
$$

- (E, θ) : free $\mathscr{O}_{\Delta}[1 / x]$-module, $\theta: E \longrightarrow E$ is \mathfrak{O}-linear.
- $\theta=\Theta d x, \quad \Theta \in \operatorname{End}(E)$,
- $(E, \theta) \simeq \underset{\varphi \in \frac{1}{\mathbb{C}}[1 / x]}{\bigoplus}\left(E_{\varphi}, \theta_{\varphi}+d \varphi\right)$ (up to $x \mapsto x^{q}$)
- Each θ_{φ} : pole of order $\leqslant 1$.
- No Stokes phenomenon.

Wild twistor \mathscr{D}-modules on a disc

Wild twistor \mathscr{D}-modules on a disc

Wild twistor \mathscr{D}-modules on a disc

Wild twistor \mathscr{D}-modules on a dise

Conclusion: Wild Hodge Theory

Conclusion: Wild Hodge Theory

- Among wild twistor \mathscr{D}-modules, subclass of wild Hodge \mathscr{D}-modules?

Conclusion: Wild Hodge Theory

- Among wild twistor \mathscr{D}-modules, subclass of wild Hodge \mathscr{D}-modules?
- Motivation: find numerical invariants.

Conclusion: Wild Hodge Theory

- Among wild twistor \mathscr{D}-modules, subclass of wild Hodge \mathscr{D}-modules?
- Motivation: find numerical invariants.
- 'Hodge' condition:

Conclusion: Wild Hodge Theory

- Among wild twistor \mathscr{D}-modules, subclass of wild Hodge \mathscr{D}-modules?
- Motivation: find numerical invariants.
- 'Hodge' condition:
$\mathcal{D}^{\prime}: \mathscr{H} \longrightarrow \frac{1}{z} \Omega_{\mathscr{X} / \mathbb{P}^{1}}^{1} \otimes \mathscr{H}$,

Conclusion: Wild Hodge Theory

- Among wild twistor \mathscr{D}-modules, subclass of wild Hodge \mathscr{D}-modules?
- Motivation: find numerical invariants.
- 'Hodge' condition:
$\widetilde{\mathcal{D}}^{\prime}: \mathscr{H} \longrightarrow \frac{1}{z} \Omega_{\mathscr{X}}^{1}(\log \{z=0\}) \otimes \mathscr{H}$,

Conclusion: Wild Hodge Theory

- Among wild twistor \mathscr{D}-modules, subclass of wild Hodge \mathscr{D}-modules?
- Motivation: find numerical invariants.
- 'Hodge' condition:
$\widetilde{\mathcal{D}}^{\prime}: \mathscr{H} \longrightarrow \frac{1}{z} \Omega_{\mathscr{X}}^{1}(\log \{z=0\}) \otimes \mathscr{H}$,
$\widetilde{\mathcal{D}}^{\prime \prime}: \mathscr{H} \longrightarrow z \overline{\Omega_{\mathscr{X}}^{1}(\log \{z=0\})} \otimes \mathscr{H}$,

Conclusion: Wild Hodge Theory

- Among wild twistor \mathscr{D}-modules, subclass of wild Hodge \mathscr{D}-modules?
- Motivation: find numerical invariants.
- 'Hodge' condition:
$\widetilde{\mathcal{D}}^{\prime}: \mathscr{H} \longrightarrow \frac{1}{z} \Omega_{\mathscr{X}}^{1}(\log \{z=0\}) \otimes \mathscr{H}$,
$\widetilde{D}^{\prime \prime}: \mathscr{H} \longrightarrow z \overline{\Omega_{\mathscr{X}}^{1}(\log \{z=0\})} \otimes \mathscr{H}$,
Flatness:

$$
\widetilde{\mathcal{D}}^{2}=\left(\widetilde{\mathcal{D}}^{\prime}+\widetilde{\mathcal{D}}^{\prime \prime}\right)^{2}=0
$$

Conclusion: Wild Hodge Theory

- $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor str., $w=0, \stackrel{z=1}{\longleftrightarrow}$ $\left(H, D_{\mid z=1}, h\right)$ flat harmonic bundle

Conclusion: Wild Hodge Theory

- $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor str., $\boldsymbol{w}=0, \stackrel{z=1}{\longleftrightarrow}$ $\left(H, D_{\mid z=1}, h\right)$ flat harmonic bundle Hodge condition \rightarrow selfadjoint $\mathscr{Q}: \boldsymbol{H} \longrightarrow \boldsymbol{H}$.

Conclusion: Wild Hodge Theory

- $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor str., $\boldsymbol{w}=0, \stackrel{z=1}{\longleftrightarrow}$ $\left(H, D_{\mid z=1}, h\right)$ flat harmonic bundle Hodge condition \rightarrow selfadjoint $\mathscr{Q}: \boldsymbol{H} \longrightarrow \boldsymbol{H}$.
- 2 : new supersymmetric index of

Ceccoti-Vafa (1991), Hertling (2003).

Conclusion: Wild Hodge Theory

- $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor str., $\boldsymbol{w}=0, \stackrel{z=1}{\longleftrightarrow}$ $\left(H, D_{\mid z=1}, h\right)$ flat harmonic bundle Hodge condition \rightarrow selfadjoint $\mathscr{Q}: \boldsymbol{H} \longrightarrow \boldsymbol{H}$.
- 2 : new supersymmetric index of Ceccoti-Vafa (1991), Hertling (2003).
- Eigenspace decomposition of \mathscr{Q} : 'Hodge' decomposition

Conclusion: Wild Hodge Theory

- $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor str., $\boldsymbol{w}=0, \stackrel{z=1}{\longleftrightarrow}$ $\left(H, D_{\mid z=1}, h\right)$ flat harmonic bundle Hodge condition \rightarrow selfadjoint $\mathscr{Q}: \boldsymbol{H} \longrightarrow \boldsymbol{H}$.
- 2 : new supersymmetric index of Ceccoti-Vafa (1991), Hertling (2003).
- Eigenspace decomposition of \mathscr{Q} : 'Hodge' decomposition
- Eigenvalues of \mathscr{Q} : ‘Hodge’ indices.

Conclusion: Wild Hodge Theory

- $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor str., $\boldsymbol{w}=0, \stackrel{z=1}{\longleftrightarrow}$ $\left(H, D_{\mid z=1}, h\right)$ flat harmonic bundle Hodge condition \rightarrow selfadjoint $\mathscr{Q}: \boldsymbol{H} \longrightarrow \boldsymbol{H}$.
- \mathscr{Q} : new supersymmetric index of Ceccoti-Vafa (1991), Hertling (2003).
- Eigenspace decomposition of \mathscr{Q} : 'Hodge' decomposition
- Eigenvalues of \mathscr{Q} : 'Hodge' indices.

Theorem: $\left(\boldsymbol{H}, \boldsymbol{F}^{\bullet}, \boldsymbol{\nabla}, \boldsymbol{S}\right)$ var. pol. Hodge structure weight w on $\mathbb{A}^{1} \backslash\left\{p_{1}, \ldots, p_{r}\right\}$.

Conclusion: Wild Hodge Theory

- $(\mathscr{H}, \mathcal{D}, \mathscr{S})$ var. pol. twistor str., $\boldsymbol{w}=0, \stackrel{z=1}{\longleftrightarrow}$ $\left(H, D_{\mid z=1}, h\right)$ flat harmonic bundle Hodge condition \rightarrow selfadjoint $\mathscr{Q}: \boldsymbol{H} \longrightarrow \boldsymbol{H}$.
- 2 : new supersymmetric index of Ceccoti-Vafa (1991), Hertling (2003).
- Eigenspace decomposition of \mathscr{Q} :
'Hodge' decomposition
- Eigenvalues of \mathscr{Q} : 'Hodge' indices.

Theorem: $\left(\boldsymbol{H}, \boldsymbol{F}^{\bullet}, \boldsymbol{\nabla}, \boldsymbol{S}\right)$ var. pol. Hodge structure weight w on $\mathbb{A}^{1} \backslash\left\{p_{1}, \ldots, p_{r}\right\}$. The Fourier-Laplace transform is a var. pol. wild Hodge structure weight w on $\widehat{\mathbb{A}}^{1} \backslash\{0\}$, irregular sing. at ∞.

