FOURIER TRANSFORM OF INDICES AND INTERVALS AUGSBURG, NOVEMBER 6, 2023

by

Claude Sabbah

Contents

1.	Introduction	1
2.	Reminder of the formal Fourier transformation $F^{\infty,\infty}$	2
3.	Transformation of intervals	3
	3.a. The simplest example	4
	3.b. The <i>p</i> -ramified case	4

1. Introduction

We consider the formal Fourier transformation

 $F^{\infty,\infty}: \mathsf{Mod}(\mathbb{C}((z)),\partial_z) \longrightarrow \mathsf{Mod}(\mathbb{C}((u)),\partial_u)$

with kernel $E^{1/zu}$. The aim of the workshop is to understand the description by Mochizuki of the extension of this functor to Stokes-filtered local system around ∞ , so that the transformation of graded Stokes-filtered local system corresponds to $F^{\infty,\infty}$ via the Deligne-Malgrange RH correspondence. In this lecture, we focus on the behavior of the exponential factors $\tilde{\mathcal{I}}$ and the corresponding set of intervals $T(\overline{[\mathcal{I}]})$ by this transformation.

Let $n > p \ge 1$ be positive integers. We consider a set $\widetilde{\mathcal{I}}$ of *p*-ramified exponential factors with maximal order of the pole equal to *n*. We assume that \mathcal{I} contains at least two elements, one of them being 0, so that *n* is also the maximal level of $\widetilde{\mathcal{I}}$, that is, the maximal order of the poles of the differences of elements of $\widetilde{\mathcal{I}}$.

We fix a *p*-th root $\zeta = z_p$ of *z*, so that we regard $\widetilde{\mathcal{I}}$ as a subset of $\zeta^{-1}\mathbb{C}[\zeta^{-1}]$. By the local stationary phase formula recalled below, we have to consider (n-p)-ramified exponential factors in the Fourier variable *u*, so we fix an (n-p)-th root $v = u_{n-p}$ of *u*.

C. SABBAH

2. Reminder of the formal Fourier transformation $F^{\infty,\infty}$

Let $\widetilde{\mathcal{U}}(n,p)^* \subset \zeta^{-1}\mathbb{C}[\zeta^{-1}] \setminus \{0\}$ be the subset of polar parts having a pole of order equal to n, and set $\widetilde{\mathcal{U}}(n,p) = \widetilde{\mathcal{U}}(n,p)^* \cup \{0\}$. We call a *ramification of order* p any $\rho \in \zeta^p \mathbb{C}(\zeta) \setminus \zeta^{p+1} \mathbb{C}(\zeta)$.

Let $\tilde{\mathfrak{a}} \in \widetilde{\mathfrak{U}}(n,p)^*$ and let ρ be a ramification of order p. The (\pm) local formal Fourier transformation $F_{\pm}^{\infty,\infty}$ from ∞ to ∞ transforms an elementary connection $\operatorname{El}(\tilde{\mathfrak{a}},\rho,R) := \rho_*(E^{\tilde{\mathfrak{a}}} \otimes R)$ (where R is finite-dimensional $\mathbb{C}((\zeta))$ -vector space with a regular connection) to an elementary connection $\operatorname{El}(\hat{\mathfrak{a}},\hat{\rho},R(n/2))$, with $\hat{\mathfrak{a}} \in \widetilde{\mathfrak{U}}(n,n-p)$, $\hat{\rho}$ is a ramification of order n-p and (n/2) is the twist by the rank-one local system with monodromy $(-1)^n$, defined by the formulas, in the ζ variable (with $\rho(\zeta) = z^p$):

$$u = \widehat{\rho}(\zeta) = \pm \frac{\rho'(\zeta)}{\widetilde{\mathfrak{a}}'(\zeta)\rho(\zeta)^2}, \quad \widehat{\mathfrak{a}}(\zeta) = \widetilde{\mathfrak{a}}(\zeta) + \frac{\rho(\zeta)}{\rho'(\zeta)} \,\widetilde{\mathfrak{a}}'(\zeta) = \widetilde{\mathfrak{a}}(\zeta) \pm \frac{1}{\rho(\zeta)\widehat{\rho}(\zeta)}.$$

Remark. These formulas make clear the \pm -involutiveness of $F_{\pm}^{\infty,\infty}$, namely $F_{-}^{\infty,\infty} = (F_{+}^{\infty,\infty})^{-1}$. Indeed, we can write $\tilde{\mathfrak{a}} = \hat{\mathfrak{a}} - 1/\hat{\rho}\rho$, and if we write the definition of $\hat{\rho}$ as $\tilde{\mathfrak{a}}'\hat{\rho} = -(1/\rho)'$, then we find the converse definition for ρ :

$$\widehat{\mathfrak{a}}'\rho = \rho \Big[\widetilde{\mathfrak{a}}' + \frac{1}{\widehat{\rho}} \Big(\frac{1}{\rho} \Big)' + \frac{1}{\rho} \Big(\frac{1}{\widehat{\rho}} \Big)' \Big] = \Big(\frac{1}{\widehat{\rho}} \Big)'.$$

In the following, we focus on $F_{+}^{\infty,\infty}$, simply denoted by $F^{\infty,\infty}/$

Expression in the variable v. Fixing the variable ζ as above allows for an explicit expression of the action of $\mathbb{Z}/p\mathbb{Z}$ on the connection $\rho^* \operatorname{El}(\tilde{\mathfrak{a}}, \rho, R)$, which is simple to compute if $\rho(\zeta)$ has the simple form $\rho(\zeta) = \zeta^p = z$:

$$\rho^* \operatorname{El}(\widetilde{\mathfrak{a}}, \rho, R) \simeq \bigoplus_{k=1}^p (E^{\sigma_k^* \widetilde{\mathfrak{a}}} \otimes R),$$

with $(\sigma_k^* \tilde{\mathfrak{a}})(\zeta) = \tilde{\mathfrak{a}}(\exp(2\pi i k/p)\zeta)$, and the action of $\ell \in \mathbb{Z}/p\mathbb{Z}$ is given by the natural isomorphisms

$$\tau_{\ell}: \sigma_{\ell}^*(E^{\sigma_k^*\tilde{\mathfrak{a}}} \otimes R) \simeq (E^{\sigma_{k+\ell}^*\tilde{\mathfrak{a}}} \otimes R),$$

due to the natural isomorphism $\sigma_{\ell}^* R \simeq R$. We set

$$\omega = n/p > 1$$
 and $\widehat{\omega} = \omega/(\omega - 1) = n/(n - p)$, so $\frac{1}{\omega} + \frac{1}{\widehat{\omega}} = 1$,

and we write $\tilde{\mathfrak{a}}(\zeta) = a_n \zeta^{-n} (1 + \zeta O(\zeta))$. We have the following estimate:

$$(\sigma_k^*\widetilde{\mathfrak{a}})(\zeta) \equiv e^{-2\pi i k\omega} \widetilde{\mathfrak{a}}(\zeta) \mod \zeta^{-n+1} \mathbb{C}[\![\zeta]\!].$$

Similarly, the choice of the variable v is done in order to make explicit the action of $\mathbb{Z}/(n-p)\mathbb{Z}$ on $\hat{\rho}^* \operatorname{El}(\hat{\mathfrak{a}}, \hat{\rho}, R(n/2))$: we have

$$\widehat{\rho}^* \mathrm{El}(\widehat{\mathfrak{a}}, \widehat{\rho}, R(n/2)) \simeq \bigoplus_{j=1}^{n-p} E^{\widehat{\sigma}_j^* \widehat{\mathfrak{a}}} \otimes R(n/2),$$

so that we first have to compute the change of variable $\zeta = \varphi(v)$ so that $\hat{\rho}(\zeta) = v^{n-p}$. We have

$$\operatorname{El}(\widehat{\mathfrak{a}}, \widehat{\rho}, R(n/2)) \simeq \operatorname{El}(\widehat{\mathfrak{a}} \circ \varphi, \widehat{\rho} \circ \varphi, R(n/2)),$$

and

$$\sigma_j^*(\widehat{\mathfrak{a}} \circ \varphi)(v) = (\widehat{\mathfrak{a}} \circ \varphi)(e^{2\pi j i/(n-p)}v) \quad \text{for } j \in \mathbb{Z}/(n-p)\mathbb{Z}$$

We set $A = -\omega a_n$, and we choose an (n-p)-th root $A^{1/n-p}$ of A. We have

$$\widehat{\rho}(\zeta) = \frac{p\zeta^{p-1}}{[-na_n\zeta^{-n-1}(1+\zeta O(\zeta))\cdot \zeta^{2p}]} = A^{-1}\zeta^{n-p}(1+\zeta O(\zeta))$$

There exists a solution for φ of the form

$$\varphi(v) = A^{1/(n-p)}v(1+vO(v)).$$

Equivalently, if we consider the two-variable function $G(\zeta, v) = \tilde{\mathfrak{a}}(\zeta) + 1/v^{n-p}\zeta^p$, then $\varphi(v)$ is a solution of

$$(\partial_{\zeta} G)(\varphi(v), v) \equiv 0,$$

as follows from the definition of $\widehat{\rho}(\zeta) = (1/\widetilde{\mathfrak{a}}'(\zeta)) \cdot (-1/\rho(\zeta))'$.

We first notice that

$$\widehat{\mathfrak{a}}(\zeta) \equiv (1-\omega)a_n \zeta^{-n} \mod \zeta^{-n+1} \mathbb{C}[\![\zeta]\!],$$

and thus in the variable v (we now write $\widehat{\mathfrak{a}}(v)$ instead of $\widehat{\mathfrak{a}} \circ \varphi(v)$):

$$\widehat{\mathfrak{a}}(v) \equiv (1-\omega)a_n\varphi(v)^{-n} \mod v^{-n+1}\mathbb{C}\llbracket v \rrbracket$$
$$\equiv \frac{\omega-1}{\omega}A \cdot A^{-n/(n-p)}v^{-n} \mod v^{-n+1}\mathbb{C}\llbracket v \rrbracket$$
$$\equiv \frac{1}{\widehat{\omega}}A^{-\widehat{\omega}/\omega}v^{-n} \mod v^{-n+1}\mathbb{C}\llbracket v \rrbracket,$$

so that we can write

$$\widehat{a}_n = \star (-a_n)^{-\widehat{\omega}/\omega},$$

where \star is the positive constant $\omega^{-\widehat{\omega}}(\omega - 1)$. On the other hand, the action of $\mathbb{Z}/(n-p)\mathbb{Z}$ has the estimate

$$(\widehat{\sigma}_{j}^{*}\widehat{\mathfrak{a}})(v) \equiv e^{-2\pi i j\widehat{\omega}}\widehat{\mathfrak{a}}(v) \mod v^{-n+1}\mathbb{C}\llbracket v \rrbracket.$$

We can also regard $\hat{\sigma}_{i}^{*}\hat{\mathfrak{a}}$ as the effect of changing the choice of the (n-p)-th root of A.

3. Transformation of intervals

The aim of this section is to describe the correspondence $T(\hat{\mathfrak{a}}) \mapsto T(\hat{\mathfrak{a}})$ induced by $F^{\infty,\infty}$, and the inverse correspondence.

C. SABBAH

3.a. The simplest example. We consider the simplest case (Gauss type) where n = 2 and p = n - p = 1, so that $\omega = 2$. We have $\zeta = z$ and $\tilde{\mathfrak{a}}(\zeta) = a_2 \zeta^{-2} (1 + \zeta O(\zeta))$ and we set $a_2 = |a_2|e^{i\vartheta_2}$. Let $J_{\zeta} = I(\vartheta_0; \pi/4)$ be an interval centered at ϑ_0 and of radius $\pi/4$. We have

 $\widetilde{\mathfrak{a}}(\zeta) <_{J_{\zeta}} 0 \text{ (resp. } 0 <_{J_{\zeta}} \widetilde{\mathfrak{a}}(\zeta)) \iff \vartheta_2 = 2\vartheta_0 + \pi \bmod 2\pi \text{ (resp. } \vartheta_2 = 2\vartheta_0 \bmod 2\pi).$

In other words, $T(\tilde{\mathfrak{a}})$ consists of two intervals $J_{\zeta} \pmod{2\pi}$ of length $\pi/2$ on which $\tilde{\mathfrak{a}} <_{J_{\zeta}} 0$, that we denote $J_{\zeta}(\tilde{\mathfrak{a}})_{<0}$, and two intervals $J_{\zeta}(\tilde{\mathfrak{a}})_{>0}$ on which $0 <_{J_{\zeta}} \tilde{\mathfrak{a}}$. These intervals are respectively

$$I(\vartheta_2/2 + \pi/2 \mod \pi; \pi/4)$$
 and $I(\vartheta_2/2 \mod \pi; \pi/4)$.

On the other hand, we have $v = (-1/2a_2)\zeta$ and $\hat{a}_2 = \star (-a_2)^{-1}$ with $\star = 1/4$. Therefore,

$$\widehat{\vartheta}_2 = -(\vartheta_2 + \pi) \mod 2\pi$$

and the transformation of the arguments is

 $\theta_v = \theta_{\zeta} - (\vartheta_2 + \pi) \mod 2\pi.$

By this transformation, the interval

 $I(\vartheta_2/2 + \pi/2 \mod \pi; \pi/4)$, resp. $I(\vartheta_2/2 \mod \pi; \pi/4)$,

is mapped to

$$I(\widehat{\vartheta}_2/2 \mod \pi; \pi/4)$$
, resp. $I(\widehat{\vartheta}_2/2 + \pi/2 \mod \pi; \pi/4)$.

In other words, $T(\hat{\mathfrak{a}})_{\leq 0}$, resp. $T(\hat{\mathfrak{a}})_{\geq 0}$, is mapped to $T(\hat{\mathfrak{a}})_{\geq 0}$, resp. $T(\hat{\mathfrak{a}})_{\leq 0}$.

3.b. The *p*-ramified case. We consider a pair $(\tilde{\mathfrak{a}}(\zeta), \rho)$, with $\rho(\zeta) = \zeta^p = z$ and we set $z = |z|e^{i\theta}$ and $\zeta = |\zeta|e^{i\theta_p}$. The intervals J are considered either in \mathbb{R}_{θ} , in which case they are denoted by J_z , or in \mathbb{R}_{θ_p} , in which case they are denoted by J_{ζ} . The bijection $\theta_p \mapsto \theta = p\theta_p$ induces a one-to-one correspondence $J_{\zeta} \mapsto J_z = pJ_{\zeta}$. As we do not consider intervals in S^1 , this is indeed one-to-one.

The sets $T(\sigma_k^* \widetilde{\mathfrak{a}})$. Assume that $J_{\zeta} \in T(\widetilde{\mathfrak{a}})_{\zeta}$ and that $\widetilde{\mathfrak{a}} <_{J_{\zeta}} 0$. Then $\widetilde{\mathfrak{a}} <_{J_{\zeta}+m\pi/n} 0$ for any even $m \in \mathbb{Z}$, and the converse inequality for any odd m. If $a_n = |a_n|e^{i\vartheta_n}$, then $T(\widetilde{\mathfrak{a}})_{\zeta,<0}$ consists of the intervals $I_{\zeta}((\vartheta_n + \pi)/n; \pi/2n) + 2\ell\pi/n$ and $T(\widetilde{\mathfrak{a}})_{\zeta,>0}$ consists of the intervals $I_{\zeta}(\vartheta_n/n; \pi/2n) + 2\ell\pi/n$ ($\ell \in \mathbb{Z}$).

On the other hand, for any $k \in \mathbb{Z}/p\mathbb{Z}$, let us consider the intervals for $\sigma_k^* \tilde{\mathfrak{a}}$ with $(\sigma_k^* \tilde{\mathfrak{a}})(\zeta) = \tilde{\mathfrak{a}}(e^{2\pi i k/p} \zeta)$. We have $\sigma_k^* \tilde{\mathfrak{a}} < 0$ on $J_{\zeta} - 2k\pi/p + m\pi/n$ for any even m, and the converse inequality for any odd m. Then $T(\sigma_k^* \tilde{\mathfrak{a}})_{\zeta,<0}$ consists of the intervals $I_{\zeta}((\vartheta_n + \pi)/n; \pi/2n) + 2\ell\pi/n - 2k\pi/p$ and $T(\tilde{\mathfrak{a}})_{\zeta,<0}$ consists of the intervals $I_{\zeta}(\vartheta_n/n; \pi/2n) + 2\ell\pi/n - 2k\pi/p$ ($\ell \in \mathbb{Z}$).

We write these properties in terms of intervals J_z . Then $T(\tilde{\mathfrak{a}})_{z,>0}$, resp. $T(\tilde{\mathfrak{a}})_{z,<0}$, consists of the intervals $(\ell \in \mathbb{Z})$

$$J_z(\tilde{\mathfrak{a}}, \ell, <0) = I_z((\vartheta_n + \pi)/\omega; \pi/2\omega) + 2\ell\pi/\omega,$$

resp.

Similarly, $T(\sigma_k^* \widetilde{\mathfrak{a}})_{z,<0}$, resp. $T(\sigma_k^* \widetilde{\mathfrak{a}})_{z,>0}$, consists of the intervals $(\ell \in \mathbb{Z})$

 $J_z(\widetilde{\mathfrak{a}}, \ell, > 0) = I_z(\vartheta_n/\omega; \pi/2\omega) + 2\ell\pi/\omega.$

 $J_z(\sigma_k^*\widetilde{\mathfrak{a}}, \ell, > 0) = I_z(\vartheta_n/\omega; \pi/2\omega) + 2\ell\pi/\omega - 2k\pi.$

$$J_z(\sigma_k^*\widetilde{\mathfrak{a}}, \ell, <0) = I_z((\vartheta_n + \pi)/\omega; \pi/2\omega) + 2\ell\pi/\omega - 2k\pi,$$

resp.

The sets $T(\sigma_i^* \widehat{\mathfrak{a}})$. By the formula for \widehat{a}_n in terms of a_n , we have

$$\widehat{\vartheta}_n = -\frac{\widehat{\omega}}{\omega} \left(\vartheta_n + \pi\right).$$

We have $v \equiv (-\omega a_n)^{-1/(n-p)} \zeta$, which leads to the correspondence of the arguments $\theta_v = \theta_{\zeta} - (\vartheta_n + \pi)/(n-p), \quad i.e., \ \theta_u = (\omega - 1)\theta_z - (\vartheta_n + \pi), \quad i.e., \ \widehat{\omega}\theta_u = \omega(\theta_z + \widehat{\vartheta}_n).$ Similarly, $T(\sigma_i^* \widehat{\mathfrak{a}})_{u,<0}$, resp. $T(\sigma_i^* \widehat{\mathfrak{a}})_{u,>0}$, consists of the intervals $(\widehat{\ell} \in \mathbb{Z})$

$$J_u(\sigma_j^*\widehat{\mathfrak{a}},\widehat{\ell},<0) = I_u((\widehat{\vartheta}_n \pm \pi)/\widehat{\omega};\pi/2\widehat{\omega}) + 2\widehat{\ell}\pi/\widehat{\omega} - 2j\pi,$$

resp.

$$J_u(\sigma_j^*\widehat{\mathfrak{a}},\widehat{\ell},>0) = I_u(\widehat{\vartheta}_n/\widehat{\omega};\pi/2\widehat{\omega}) + 2\widehat{\ell}\pi/\widehat{\omega} - 2j\pi.$$

Fourier transformation of intervals. Let us consider $J_z(\tilde{\mathfrak{a}}, 0, < 0)$. The notation of Mochizuki is then $\vartheta_o = (\vartheta_n + \pi)/\omega$. Therefore, $\hat{\vartheta}_n/\hat{\omega} = -\vartheta_o$. We have found

$$J_z(\widehat{\mathfrak{a}}, 0, <0) = I_z(\vartheta_o, \pi/2\omega) \quad \text{and} \quad J_u(\sigma_j^* \widehat{\mathfrak{a}}, 0, >0) = I_z(-\vartheta_o, \pi/2\widehat{\omega}) - 2j\pi$$

The map $\theta_z \mapsto \theta_u = (\omega/\hat{\omega})\theta_z - \vartheta_n$ induces a diffeomorphism between the interval $J_z(\tilde{\mathfrak{a}}, 0, < 0)$ and the interval $J_u(\hat{\mathfrak{a}}, 0, > 0)$. By affine transformations, we obtain a diffeomorphism from $J_z(\sigma_k^*\tilde{\mathfrak{a}}, \ell, < 0)$ to $J_u(\sigma_j^*\hat{\mathfrak{a}}, \hat{\ell}, > 0)$.

On the other hand, by inverse Fourier transformation, we relate $J_u(\hat{\mathfrak{a}}, 0, < 0)$ with $J_z(\sigma_k^* \tilde{\mathfrak{a}}, 0, > 0)$, and then $J_u(\sigma_i^* \hat{\mathfrak{a}}, \hat{\ell}, < 0)$ to $J_z(\sigma_k^* \tilde{\mathfrak{a}}, \ell, > 0)$.

C. SABBAH, CMLS, École polytechnique, CNRS, Institut Polytechnique de Paris, F-91128
 Palaiseau cedex, France • E-mail : Claude.Sabbah@polytechnique.edu

Url: https://perso.pages.math.cnrs.fr/users/claude.sabbah