FOURIER TRANSFORM OF INDICES AND INTERVALS AUGSBURG, NOVEMBER 6, 2023

by
Claude Sabbah

Contents

1. Introduction 1
2. Reminder of the formal Fourier transformation $F^{\infty, \infty}$ 2
3. Transformation of intervals 3
3.a. The simplest example 4
3.b. The p-ramified case 4

1. Introduction

We consider the formal Fourier transformation

$$
F^{\infty, \infty}: \operatorname{Mod}\left(\mathbb{C}((z)), \partial_{z}\right) \longrightarrow \operatorname{Mod}\left(\mathbb{C}((u)), \partial_{u}\right)
$$

with kernel $E^{1 / z u}$. The aim of the workshop is to understand the description by Mochizuki of the extension of this functor to Stokes-filtered local system around ∞, so that the transformation of graded Stokes-filtered local system corresponds to $F^{\infty, \infty}$ via the Deligne-Malgrange RH correspondence. In this lecture, we focus on the behavior of the exponential factors $\widetilde{\mathcal{J}}$ and the corresponding set of intervals $T(\overline{[\mathcal{J}]})$ by this transformation.

Let $n>p \geqslant 1$ be positive integers. We consider a set $\widetilde{\mathcal{J}}$ of p-ramified exponential factors with maximal order of the pole equal to n. We assume that \mathcal{J} contains at least two elements, one of them being 0 , so that n is also the maximal level of $\widetilde{\mathcal{J}}$, that is, the maximal order of the poles of the differences of elements of $\widetilde{\mathcal{J}}$.

We fix a p-th root $\zeta=z_{p}$ of z, so that we regard $\widetilde{\mathcal{J}}$ as a subset of $\zeta^{-1} \mathbb{C}\left[\zeta^{-1}\right]$. By the local stationary phase formula recalled below, we have to consider $(n-p)$-ramified exponential factors in the Fourier variable u, so we fix an $(n-p)$-th root $v=u_{n-p}$ of u.

2. Reminder of the formal Fourier transformation $F^{\infty, \infty}$

Let $\widetilde{U}(n, p)^{*} \subset \zeta^{-1} \mathbb{C}\left[\zeta^{-1}\right] \backslash\{0\}$ be the subset of polar parts having a pole of order equal to n, and set $\widetilde{U}(n, p)=\widetilde{U}(n, p)^{*} \cup\{0\}$. We call a ramification of order p any $\rho \in \zeta^{p} \mathbb{C}((\zeta)) \backslash \zeta^{p+1} \mathbb{C}((\zeta))$.

Let $\tilde{\mathfrak{a}} \in \widetilde{\mathcal{U}}(n, p)^{*}$ and let ρ be a ramification of order p. The (\pm) local formal Fourier transformation $F_{ \pm}^{\infty, \infty}$ from ∞ to ∞ transforms an elementary connection $\operatorname{El}(\widetilde{\mathfrak{a}}, \rho, R):=\rho_{*}\left(E^{\tilde{\mathfrak{a}}} \otimes R\right)$ (where R is finite-dimensional $\mathbb{C}((\zeta))$-vector space with a regular connection) to an elementary connection $\operatorname{El}(\widehat{\mathfrak{a}}, \widehat{\rho}, R(n / 2))$, with $\widehat{\mathfrak{a}} \in \widetilde{\mathcal{U}}(n, n-p)$, $\hat{\rho}$ is a ramification of order $n-p$ and $(n / 2)$ is the twist by the rank-one local system with monodromy $(-1)^{n}$, defined by the formulas, in the ζ variable (with $\rho(\zeta)=z^{p}$):

$$
u=\widehat{\rho}(\zeta)= \pm \frac{\rho^{\prime}(\zeta)}{\widetilde{\mathfrak{a}}^{\prime}(\zeta) \rho(\zeta)^{2}}, \quad \widehat{\mathfrak{a}}(\zeta)=\widetilde{\mathfrak{a}}(\zeta)+\frac{\rho(\zeta)}{\rho^{\prime}(\zeta)} \widetilde{\mathfrak{a}}^{\prime}(\zeta)=\widetilde{\mathfrak{a}}(\zeta) \pm \frac{1}{\rho(\zeta) \widehat{\rho}(\zeta)}
$$

Remark. These formulas make clear the \pm-involutiveness of $F_{ \pm}^{\infty, \infty}$, namely $F_{-}^{\infty, \infty}=$ $\left(F_{+}^{\infty, \infty}\right)^{-1}$. Indeed, we can write $\widetilde{\mathfrak{a}}=\widehat{\mathfrak{a}}-1 / \widehat{\rho} \rho$, and if we write the definition of $\widehat{\rho}$ as $\tilde{\mathfrak{a}}^{\prime} \widehat{\rho}=-(1 / \rho)^{\prime}$, then we find the converse definition for ρ :

$$
\widehat{\mathfrak{a}}^{\prime} \rho=\rho\left[\widetilde{\mathfrak{a}}^{\prime}+\frac{1}{\hat{\rho}}\left(\frac{1}{\rho}\right)^{\prime}+\frac{1}{\rho}\left(\frac{1}{\hat{\rho}}\right)^{\prime}\right]=\left(\frac{1}{\hat{\rho}}\right)^{\prime} .
$$

In the following, we focus on $F_{+}^{\infty, \infty}$, simply denoted by $F^{\infty, \infty} /$
Expression in the variable v. Fixing the variable ζ as above allows for an explicit expression of the action of $\mathbb{Z} / p \mathbb{Z}$ on the connection $\rho^{*} \operatorname{El}(\widetilde{\mathfrak{a}}, \rho, R)$, which is simple to compute if $\rho(\zeta)$ has the simple form $\rho(\zeta)=\zeta^{p}=z$:

$$
\rho^{*} \operatorname{El}(\widetilde{\mathfrak{a}}, \rho, R) \simeq \bigoplus_{k=1}^{p}\left(E^{\sigma_{k}^{*} \tilde{\mathfrak{a}}} \otimes R\right)
$$

with $\left(\sigma_{k}^{*} \mathfrak{\mathfrak { a }}\right)(\zeta)=\widetilde{\mathfrak{a}}(\exp (2 \pi i k / p) \zeta)$, and the action of $\ell \in \mathbb{Z} / p \mathbb{Z}$ is given by the natural isomorphisms

$$
\tau_{\ell}: \sigma_{\ell}^{*}\left(E^{\sigma_{k}^{*} \tilde{\mathfrak{a}}} \otimes R\right) \simeq\left(E^{\sigma_{k+\ell}^{*} \tilde{\mathfrak{a}}} \otimes R\right)
$$

due to the natural isomorphism $\sigma_{\ell}^{*} R \simeq R$. We set

$$
\omega=n / p>1 \quad \text { and } \quad \widehat{\omega}=\omega /(\omega-1)=n /(n-p), \quad \text { so } \frac{1}{\omega}+\frac{1}{\widehat{\omega}}=1
$$

and we write $\widetilde{\mathfrak{a}}(\zeta)=a_{n} \zeta^{-n}(1+\zeta O(\zeta))$. We have the following estimate:

$$
\left(\sigma_{k}^{*} \tilde{\mathfrak{a}}\right)(\zeta) \equiv e^{-2 \pi i k \omega} \widetilde{\mathfrak{a}}(\zeta) \quad \bmod \zeta^{-n+1} \mathbb{C} \llbracket \zeta \rrbracket .
$$

Similarly, the choice of the variable v is done in order to make explicit the action of $\mathbb{Z} /(n-p) \mathbb{Z}$ on $\widehat{\rho}^{*} \operatorname{El}(\widehat{\mathfrak{a}}, \widehat{\rho}, R(n / 2))$: we have

$$
\widehat{\rho}^{*} \operatorname{El}(\widehat{\mathfrak{a}}, \widehat{\rho}, R(n / 2)) \simeq \bigoplus_{j=1}^{n-p} E^{\widehat{\sigma}_{j}^{*} \hat{\mathfrak{a}}} \otimes R(n / 2)
$$

so that we first have to compute the change of variable $\zeta=\varphi(v)$ so that $\widehat{\rho}(\zeta)=v^{n-p}$. We have

$$
\operatorname{El}(\widehat{\mathfrak{a}}, \widehat{\rho}, R(n / 2)) \simeq \operatorname{El}(\widehat{\mathfrak{a}} \circ \varphi, \widehat{\rho} \circ \varphi, R(n / 2)),
$$

and

$$
\sigma_{j}^{*}(\widehat{\mathfrak{a}} \circ \varphi)(v)=(\widehat{\mathfrak{a}} \circ \varphi)\left(e^{2 \pi j i /(n-p)} v\right) \quad \text { for } j \in \mathbb{Z} /(n-p) \mathbb{Z}
$$

We set $A=-\omega a_{n}$, and we choose an $(n-p)$-th root $A^{1 / n-p}$ of A. We have

$$
\widehat{\rho}(\zeta)=\frac{p \zeta^{p-1}}{\left[-n a_{n} \zeta^{-n-1}(1+\zeta O(\zeta)) \cdot \zeta^{2 p}\right]}=A^{-1} \zeta^{n-p}(1+\zeta O(\zeta))
$$

There exists a solution for φ of the form

$$
\varphi(v)=A^{1 /(n-p)} v(1+v O(v))
$$

Equivalently, if we consider the two-variable function $G(\zeta, v)=\widetilde{\mathfrak{a}}(\zeta)+1 / v^{n-p} \zeta^{p}$, then $\varphi(v)$ is a solution of

$$
\left(\partial_{\zeta} G\right)(\varphi(v), v) \equiv 0
$$

as follows from the definition of $\widehat{\rho}(\zeta)=\left(1 / \mathfrak{a}^{\prime}(\zeta)\right) \cdot(-1 / \rho(\zeta))^{\prime}$.
We first notice that

$$
\widehat{\mathfrak{a}}(\zeta) \equiv(1-\omega) a_{n} \zeta^{-n} \quad \bmod \zeta^{-n+1} \mathbb{C} \llbracket \zeta \rrbracket
$$

and thus in the variable v (we now write $\widehat{\mathfrak{a}}(v)$ instead of $\widehat{\mathfrak{a}} \circ \varphi(v)$):

$$
\begin{aligned}
\widehat{\mathfrak{a}}(v) & \equiv(1-\omega) a_{n} \varphi(v)^{-n} \quad \bmod v^{-n+1} \mathbb{C} \llbracket v \rrbracket \\
& \equiv \frac{\omega-1}{\omega} A \cdot A^{-n /(n-p)} v^{-n} \quad \bmod v^{-n+1} \mathbb{C} \llbracket v \rrbracket \\
& \equiv \frac{1}{\widehat{\omega}} A^{-\widehat{\omega} / \omega} v^{-n} \quad \bmod v^{-n+1} \mathbb{C} \llbracket v \rrbracket
\end{aligned}
$$

so that we can write

$$
\widehat{a}_{n}=\star\left(-a_{n}\right)^{-\widehat{\omega} / \omega}
$$

where \star is the positive constant $\omega^{-\widehat{\omega}}(\omega-1)$. On the other hand, the action of $\mathbb{Z} /(n-p) \mathbb{Z}$ has the estimate

$$
\left(\widehat{\sigma}_{j}^{*} \widehat{\mathfrak{a}}\right)(v) \equiv e^{-2 \pi i j \widehat{\omega}} \widehat{\mathfrak{a}}(v) \quad \bmod v^{-n+1} \mathbb{C} \llbracket v \rrbracket
$$

We can also regard $\widehat{\sigma}_{j}^{*} \widehat{\mathfrak{a}}$ as the effect of changing the choice of the $(n-p)$-th root of A.

3. Transformation of intervals

The aim of this section is to describe the correspondence $T(\widetilde{\mathfrak{a}}) \mapsto T(\widehat{\mathfrak{a}})$ induced by $F^{\infty, \infty}$, and the inverse correspondence.
3.a. The simplest example. We consider the simplest case (Gauss type) where $n=2$ and $p=n-p=1$, so that $\omega=2$. We have $\zeta=z$ and $\widetilde{\mathfrak{a}}(\zeta)=a_{2} \zeta^{-2}(1+\zeta O(\zeta))$ and we set $a_{2}=\left|a_{2}\right| e^{i \vartheta_{2}}$. Let $J_{\zeta}=I\left(\vartheta_{0} ; \pi / 4\right)$ be an interval centered at ϑ_{0} and of radius $\pi / 4$. We have

$$
\tilde{\mathfrak{a}}(\zeta)<_{J_{\zeta}} 0\left(\text { resp. } 0<_{J_{\zeta}} \widetilde{\mathfrak{a}}(\zeta)\right) \Longleftrightarrow \vartheta_{2}=2 \vartheta_{0}+\pi \bmod 2 \pi\left(\text { resp. } \vartheta_{2}=2 \vartheta_{0} \bmod 2 \pi\right)
$$

In other words, $T(\widetilde{\mathfrak{a}})$ consists of two intervals $J_{\zeta}(\bmod 2 \pi)$ of length $\pi / 2$ on which $\widetilde{\mathfrak{a}}<J_{\zeta} 0$, that we denote $J_{\zeta}(\widetilde{\mathfrak{a}})_{<0}$, and two intervals $J_{\zeta}(\widetilde{\mathfrak{a}})_{>0}$ on which $0<_{J_{\zeta}} \tilde{\mathfrak{a}}$. These intervals are respectively

$$
I\left(\vartheta_{2} / 2+\pi / 2 \bmod \pi ; \pi / 4\right) \quad \text { and } \quad I\left(\vartheta_{2} / 2 \bmod \pi ; \pi / 4\right) .
$$

On the other hand, we have $v=\left(-1 / 2 a_{2}\right) \zeta$ and $\widehat{a}_{2}=\star\left(-a_{2}\right)^{-1}$ with $\star=1 / 4$. Therefore,

$$
\widehat{\vartheta}_{2}=-\left(\vartheta_{2}+\pi\right) \quad \bmod 2 \pi
$$

and the transformation of the arguments is

$$
\theta_{v}=\theta_{\zeta}-\left(\vartheta_{2}+\pi\right) \quad \bmod 2 \pi
$$

By this transformation, the interval

$$
I\left(\vartheta_{2} / 2+\pi / 2 \bmod \pi ; \pi / 4\right), \quad \text { resp. } I\left(\vartheta_{2} / 2 \bmod \pi ; \pi / 4\right),
$$

is mapped to

$$
I\left(\widehat{\vartheta}_{2} / 2 \bmod \pi ; \pi / 4\right), \quad \text { resp. } I\left(\widehat{\vartheta}_{2} / 2+\pi / 2 \bmod \pi ; \pi / 4\right) .
$$

In other words, $T(\widetilde{\mathfrak{a}})_{<0}$, resp. $T(\widetilde{\mathfrak{a}})_{>0}$, is mapped to $T(\widehat{\mathfrak{a}})_{>0}$, resp. $T(\widehat{\mathfrak{a}})_{<0}$.
3.b. The p-ramified case. We consider a pair $(\widetilde{\mathfrak{a}}(\zeta), \rho)$, with $\rho(\zeta)=\zeta^{p}=z$ and we set $z=|z| e^{i \theta}$ and $\zeta=|\zeta| e^{i \theta_{p}}$. The intervals J are considered either in \mathbb{R}_{θ}, in which case they are denoted by J_{z}, or in $\mathbb{R}_{\theta_{p}}$, in which case they are denoted by J_{ζ}. The bijection $\theta_{p} \mapsto \theta=p \theta_{p}$ induces a one-to-one correspondence $J_{\zeta} \mapsto J_{z}=p J_{\zeta}$. As we do not consider intervals in S^{1}, this is indeed one-to-one.
The sets $T\left(\sigma_{k}^{*} \mathfrak{a}\right)$. Assume that $J_{\zeta} \in T(\widetilde{\mathfrak{a}})_{\zeta}$ and that $\widetilde{\mathfrak{a}}<_{J_{\zeta}} 0$. Then $\widetilde{\mathfrak{a}}<_{J_{\zeta}+m \pi / n} 0$ for any even $m \in \mathbb{Z}$, and the converse inequality for any odd m. If $a_{n}=\left|a_{n}\right| e^{i \vartheta_{n}}$, then $T(\widetilde{\mathfrak{a}})_{\zeta,<0}$ consists of the intervals $I_{\zeta}\left(\left(\vartheta_{n}+\pi\right) / n ; \pi / 2 n\right)+2 \ell \pi / n$ and $T(\widetilde{\mathfrak{a}})_{\zeta,>0}$ consists of the intervals $I_{\zeta}\left(\vartheta_{n} / n ; \pi / 2 n\right)+2 \ell \pi / n(\ell \in \mathbb{Z})$.

On the other hand, for any $k \in \mathbb{Z} / p \mathbb{Z}$, let us consider the intervals for $\sigma_{k}^{*} \mathfrak{\mathfrak { a }}$ with $\left(\sigma_{k}^{*} \widetilde{\mathfrak{a}}\right)(\zeta)=\widetilde{\mathfrak{a}}\left(e^{2 \pi i k / p} \zeta\right)$. We have $\sigma_{k}^{*} \widetilde{\mathfrak{a}}<0$ on $J_{\zeta}-2 k \pi / p+m \pi / n$ for any even m, and the converse inequality for any odd m. Then $T\left(\sigma_{k}^{*} \mathfrak{a}\right)_{\zeta,<0}$ consists of the intervals $I_{\zeta}\left(\left(\vartheta_{n}+\pi\right) / n ; \pi / 2 n\right)+2 \ell \pi / n-2 k \pi / p$ and $T(\widetilde{\mathfrak{a}})_{\zeta,<0}$ consists of the intervals $I_{\zeta}\left(\vartheta_{n} / n ; \pi / 2 n\right)+2 \ell \pi / n-2 k \pi / p(\ell \in \mathbb{Z})$.

We write these properties in terms of intervals J_{z}. Then $T(\widetilde{\mathfrak{a}})_{z,>0}$, resp. $T(\widetilde{\mathfrak{a}})_{z,<0}$, consists of the intervals $(\ell \in \mathbb{Z})$
resp.

$$
\begin{aligned}
& J_{z}(\widetilde{\mathfrak{a}}, \ell,<0)=I_{z}\left(\left(\vartheta_{n}+\pi\right) / \omega ; \pi / 2 \omega\right)+2 \ell \pi / \omega \\
& J_{z}(\widetilde{\mathfrak{a}}, \ell,>0)=I_{z}\left(\vartheta_{n} / \omega ; \pi / 2 \omega\right)+2 \ell \pi / \omega
\end{aligned}
$$

Similarly, $T\left(\sigma_{k}^{*} \tilde{\mathfrak{a}}\right)_{z,<0}$, resp. $T\left(\sigma_{k}^{*} \widetilde{\mathfrak{a}}\right)_{z,>0}$, consists of the intervals $(\ell \in \mathbb{Z})$

$$
\begin{array}{ll}
& J_{z}\left(\sigma_{k}^{*} \tilde{\mathfrak{a}}, \ell,<0\right)=I_{z}\left(\left(\vartheta_{n}+\pi\right) / \omega ; \pi / 2 \omega\right)+2 \ell \pi / \omega-2 k \pi \\
\text { resp. } & J_{z}\left(\sigma_{k}^{*} \tilde{\mathfrak{a}}, \ell,>0\right)=I_{z}\left(\vartheta_{n} / \omega ; \pi / 2 \omega\right)+2 \ell \pi / \omega-2 k \pi
\end{array}
$$

The sets $T\left(\sigma_{j}^{*} \widehat{\mathfrak{a}}\right)$. By the formula for \widehat{a}_{n} in terms of a_{n}, we have

$$
\widehat{\vartheta}_{n}=-\frac{\widehat{\omega}}{\omega}\left(\vartheta_{n}+\pi\right)
$$

We have $v \equiv\left(-\omega a_{n}\right)^{-1 /(n-p)} \zeta$, which leads to the correspondence of the arguments $\theta_{v}=\theta_{\zeta}-\left(\vartheta_{n}+\pi\right) /(n-p), \quad$ i.e., $\theta_{u}=(\omega-1) \theta_{z}-\left(\vartheta_{n}+\pi\right), \quad$ i.e., $\widehat{\omega} \theta_{u}=\omega\left(\theta_{z}+\widehat{\vartheta}_{n}\right)$. Similarly, $T\left(\sigma_{j}^{*} \widehat{\mathfrak{a}}\right)_{u,<0}$, resp. $T\left(\sigma_{j}^{*} \widehat{\mathfrak{a}}\right)_{u,>0}$, consists of the intervals $(\widehat{\ell} \in \mathbb{Z})$

$$
J_{u}\left(\sigma_{j}^{*} \widehat{\mathfrak{a}}, \widehat{\ell},<0\right)=I_{u}\left(\left(\widehat{\vartheta}_{n} \pm \pi\right) / \widehat{\omega} ; \pi / 2 \widehat{\omega}\right)+2 \widehat{\ell} \pi / \widehat{\omega}-2 j \pi
$$

resp.

$$
J_{u}\left(\sigma_{j}^{*} \widehat{\mathfrak{a}}, \widehat{\ell},>0\right)=I_{u}\left(\widehat{\vartheta}_{n} / \widehat{\omega} ; \pi / 2 \widehat{\omega}\right)+2 \widehat{\ell} \pi / \widehat{\omega}-2 j \pi
$$

Fourier transformation of intervals. Let us consider $J_{z}(\widetilde{\mathfrak{a}}, 0,<0)$. The notation of Mochizuki is then $\vartheta_{o}=\left(\vartheta_{n}+\pi\right) / \omega$. Therefore, $\widehat{\vartheta}_{n} / \widehat{\omega}=-\vartheta_{o}$. We have found

$$
J_{z}(\widetilde{\mathfrak{a}}, 0,<0)=I_{z}\left(\vartheta_{o}, \pi / 2 \omega\right) \quad \text { and } \quad J_{u}\left(\sigma_{j}^{*} \widehat{\mathfrak{a}}, 0,>0\right)=I_{z}\left(-\vartheta_{o}, \pi / 2 \widehat{\omega}\right)-2 j \pi
$$

The map $\theta_{z} \mapsto \theta_{u}=(\omega / \widehat{\omega}) \theta_{z}-\vartheta_{n}$ induces a diffeomorphism between the interval $J_{z}(\widetilde{\mathfrak{a}}, 0,<0)$ and the interval $J_{u}(\widehat{\mathfrak{a}}, 0,>0)$. By affine transformations, we obtain a diffeomorphism from $J_{z}\left(\sigma_{k}^{*} \mathfrak{\mathfrak { a }}, \ell,<0\right)$ to $J_{u}\left(\sigma_{j}^{*} \widehat{\mathfrak{a}}, \widehat{\ell},>0\right)$.

On the other hand, by inverse Fourier transformation, we relate $J_{u}(\widehat{\mathfrak{a}}, 0,<0)$ with $J_{z}\left(\sigma_{k}^{*} \widetilde{\mathfrak{a}}, 0,>0\right)$, and then $J_{u}\left(\sigma_{j}^{*} \widehat{\mathfrak{a}}, \widehat{\ell},<0\right)$ to $J_{z}\left(\sigma_{k}^{*} \widetilde{\mathfrak{a}}, \ell,>0\right)$.

[^0]
[^0]: C. Sabbah, CMLS, École polytechnique, CNRS, Institut Polytechnique de Paris, F-91128

 Palaiseau cedex, France - E-mail: Claude.Sabbah@polytechnique.edu
 Url: https://perso.pages.math.cnrs.fr/users/claude.sabbah

