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Introduction

Let f : (C∗)n → C be a Laurent polynomial, that I assume to be convenient and
non-degenerate, e.g. f(u1, . . . , un) = u1+ · · ·+un+1/uw1

1 · · ·uwn
n . The base space

M of the “universal unfolding” of f is the analytic germ at the origin of the vector
space C[u, u−1]/J(f), where J(f) = (u1∂u1

f, . . . , un∂un
f). It is known that this

space carries a canonical Frobenius manifold structure. In this talk, I will explain
how to equip it with a canonical Hermitian metric which is harmonic and endows
it with a tt∗ structure, so that we get a CDV structure in the sense of Hertling.

1. Integrable variations of polarized twistor structures

1.1. Harmonic bundles. Let M be a complex manifold and let E be a holo-
morphic bundle on M , equipped with a Hermitian metric h and a holomorphic
Higgs field θ (i.e. θ ∧ θ = 0). Let D = D′ + d′′ be the Chern connection of h and
let θ† be the h-adjoint of θ. We say that (E, h, θ) is harmonic if D + θ + θ† is a
flat connection.

1.2. Variation of twistor structures. Let me recall the terminology intro-
duced by Carlos Simpson (1997). It is convenient to express this relation by
adding a parameter z and to express it with the notion of a z-connection. A
variation of twistor structure consists of the data of a C∞,an

M×P1 vector bundle H on
M × P1 with an integrable relative connection ∇ : H → Ω1

M×P1/P1(0,∞)⊗H. It
is pure of weight 0 if each bundle H|{x}×P1 is trivial.

Let σ : P1 → P1 be the anti-linear map defined by z 7→ −1/z. The conjugate
H of H is defined as σ∗H. This is also a C∞,an vector bundle, equipped with a
conjugate connection∇. A sesquilinear form on the variation of twistor structure
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is a non-degenerate pairing H ⊗OP1 H → C∞,an
M×P1 which is compatible with the

connections. The definition of “Hermitian” is then clear.
If the variation is pure of weight 0, then we say that a Hermitian non-degenerate

pairing is a polarization if the pairing induced on P1-global sections is a Hermitian
metric on the bundle H of P1-global sections of H.

C. Simpson: Equivalence between variations of polarized pure twistor structures
of weight 0 and harmonic bundles by taking P1-global sections.

1.3. Integrability. A variation of twistor structure is integrable if the relative
connection ∇ comes from a absolute connection also denoted by ∇, which has
Poincaré rank one. If there is a sesquilinear pairing, we also ask for the compati-
bility of the absolute connection with the pairing.

This notion is not new if M is compact Kähler, as is amounts to the notion of a
variation of Hodge structure. The same holds if M is a punctured compact Rie-
mann surface and the behaviour at the punctures is tame, as noticed by Christian
Sevenheck. Probably such a result holds in the higher dimensional case, always
with the assumption of tameness.

So one should think of non-tame, i.e. wild, possible degenerations of such vari-
ations.

C. Hertling: Equivalence between integrable variations of polarized pure twistor
structures of weight 0 and harmonic bundles (E, h, θ) + a holomorphic endomor-
phism U and a C∞ endomorphism Q satisfying

(1)


[θ,U ] = 0

D′(U)− [θ,Q] + θ = 0

D′(Q) + [θ,U †] = 0.

On the other hand, giving an integrable variation of twistor structure with a
non-degenerate Hermitian pairing is equivalent to giving

(1) A holomorphic vector bundle H′ on M × C with a meromorphic connec-
tion∇ having Poincaré rank one along M×{0} (i.e. z∇ has at most a logarithmic
pole along M × {0}),

(2) A non-degenerate pairing K : Ker∇|M×S ⊗ σ∗Ker∇|M×S → CM×S, where
S = {|z|=1}.

The second part of the data is of purely topological nature, as Ker∇|M×C∗ is
a locally constant sheaf. Moreover, if ι denotes the involution z 7→ −z, then ι

coincides with σ on S.
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Corollary (C. Hertling). Let us assume that M is 1-connected and let xo ∈ M .
Let (H′,∇) be a holomorphic bundle on M × C with a meromorphic connec-
tion ∇ having Poincaré rank one along M × {0}, let L = Ker∇|M×S, Lo =

L|{xo}×S and let Ko : Lo ⊗ ι−1Lo → CS be a non-degenerate Hermitian pairing.
Let K : L ⊗ ι−1L → CM×S be the unique non-degenerate Hermitian pairing ex-
tending Ko.

Let us moreover assume that the twistor structure at xo corresponding to these
data is pure of weight 0 and polarized. Then there exists a (possibly empty) real
analytic subvariety Θ 63 xo of M such that, on the connected component of M rΘ

containing xo, the variation of twistor structure (H′,∇,K) is pure of weight 0 and
polarized.

2. Variation of twistor structure attached to a Laurent polynomial

To the convenient non-degenerate Laurent polynomial f is associated in a canon-
ical way a Frobenius manifold structure on the germ (M, 0) of the vector space
C[u, u−1]/J(f). I will explain this later. As a consequence, the tangent bundle
TM comes equipped with a integrable holomorphic connection 5, and, according
to a construction of Dubrovin, the bundle H′ def

= π∗TM has an associated inte-
grable meromorphic connection ∇ with Poincaré rank one along M × {0}, given
by the formula

∇ξη = 5ξη −
ξ ? η

z

∇∂z
η = E ? η · 1

z2 −5ηE ·
1

z
.

(2)

Let me recall that the construction of the Frobenius manifold structure uses
many ingredients: the notion of primitive forms of K. Saito, the notion of “good
basis” of M. Saito, and Hodge theory at f = ∞. Moreover, the question of
how canonical such a structure is has been solved by A. Douai, using results of
Hertling and Manin, when one assumes that the Newton polyhedron associated
to f contains in its interior a basis of the lattice Zn ⊂ Rn. For the example given
in the introduction, it is enough to use an argument due to B. Malgrange.

With this construction, the bundle H′o = C[u, u−1]/J(f)⊗COC is identified to
the anlytization of the Brieskorn lattice

Ωn(U)[z]/(zd− df∧)Ωn−1(U)[z]

equipped with the connection ∇o defined by

z2∇o
∂z

[∑
k ωkz

k
]

=
[∑

k kωkz
k+1 +

∑
k fωkz

k
]
.
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On the other hand, it is classical (after the work of F. Pham) that the local
system Lo is identified to the locally constant sheaf

Hn
Φz

(U, C),

where Φz denotes the family of closed sets in U on which Re(f(u1, . . . , un)/z) 6
c < 0.

There is a natural intersection pairing (Poincaré duality pairing made sesquilin-
ear)

P̂z : Hn
Φz

(U, C)⊗Hn
Φ−z

(U, C) −→ C.

Definition (C. Hertling). The variation of twistor structure canonically attached
to f on (M, 0) is the variation defined, according to the corollary above, by the

data (H′,∇) as in (2) and the pairing Ko =
(−1)(n−1)n/2

(2iπ)n
P̂z.

Theorem. The twistor structure (H′o,∇o,Ko) is pure of weight 0 and polarized.

3. Proof of the theorem

3.1. Reduction of the problem to dimension one. How can one prove such
a positivity statement? One should start with a variation of polarized twistor
structure of weight 0 and get our twistor structure by a natural operation from
the previous one.

Example of such a result:

Hodge-Simpson Theorem. Given a variation of polarized twistor structure of
weight 0 on a compact Kähler manifold X, its de Rham cohomology carries a
polarized twistor structure (of some weight).

The main ingredient in the proof is the fact that, for any z ∈ C, the Laplace
operator ∆z relative to the operator Dz = d′′+θ+z(D′+θ†) and the Kähler metric
is essentially constant: ∆z = (1 + |z|2)∆0 (this is the analogue of the classical
Kähler identity ∆d = 2∆d′ = 2∆d′′). Hence, the space of harmonic sections does
not depend on z. This will give the pure weight 0 property. The positivity is
obtained by a standard argument, on primitive sections first.

One can obtain (H′o,∇o) in the theorem by
(1) considering the trivial variation of twistor structures (OU [z], zd) (the Higgs

field is equal to 0),
(2) twisting it by e−f/z, that is, adding a new Higgs field θ = −df ,
(3) and taking the de Rham cohomology of this new variation.
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The operator Dz is now d′′−df +z(d′−df). We are faced with two problems: U is
non-compact and f is not bounded on U (so that e−f can have an exponential
growth). The Hodge theory for the corresponding Laplacian can be difficult to
develop (although it has been developped in some special cases).

Instead, we use Horatio’s method : if we face numerous enemies, we fake escaping
by running fast, then kill the enemy running faster when he reaches us, then kill
the next one, etc. Here, we escape by falling down along the fibres of f : U → A1.

Let t be the coordinate on A1. The Gauss-Manin connection of f gives a bundle
with connection on A1 r {critical values of f}. The interesting bundle has fibre
Hn−1(f−1(t), C). It underlies a variation of mixed Hodge structure (M.Saito).
The assumption made on f (cohomological tameness) implies that this mixed
Hodge structure is an extension of pure Hodge structures for which one sub-
quotient is a variation of polarized Hodge structure and any other quotient is a
trivial variation of Hodge structure on A1. The generic fibre is identified to the
intersection cohomology of a suitable compactification of f−1(t).

The variation of polarized Hodge structure induces a variation of polarized
twistor structure of the same weight.

Remark. To be precise, one needs to have a control at the critical values of f .
This is done by considering the Gauss-Manin system of f , which underlies a mixed
Hodge module, and to extract from it a sub-quotient which is a polarizable pure
Hodge module, all other sub-quotients being isomorphic to a power of (C[t], d).
M. Saito’s theory also makes precise the polarization.

3.2. Exponentially twisted harmonic bundles in dimension one. Let E

be a holomorphic bundle on A1 r P , equipped with a Hermitian metric h and a
holomorphic Higgs field θ. We assume that (E, h, θ) is a tame harmonic bundle in
the sense of Simpson (1990). Let us consider the exponentially twisted harmonic
bundle (E, h, θ − dt). This remains a harmonic bundle which is tame at P , but
wild at ∞.

Theorem. The space of L2 harmonic sections of E ⊗ A1
A1rP , with respect to the

metric h and a metric on A1rP equivalent to the Poincaré metric near P ∪{∞},
and with respect to the Laplace operator of d′′ + θ− dt + z(D′ + θ†− dt) is finite
dimensional and independent of z.

Remark. The proof of this theorem that I gave first by using a degeneration
argument τ → 0 was only valid for (E, h, θ − τdt) for |τ | small (depending on
(E, h, θ)). On the other hand, S. Szabo gave a proof in a nearby context. One
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can arrange the proof I gave by using an argument similar to an argument used
by Szabo, which says:

The harmonic sections have an exponential decay when t →∞.

3.3. End of the proof of the theorem. The proof proceeds as follows:
(1) Starting from f : U → A1, we consider the Gauss-Manin system M (a mixed

Hodge module on A1, after M.Saito).
(2) We extract from it a polarized pure Hodge module M!∗.
(3) It defines a tame harmonic bundle on A1 r P , where P are the critical

values of f , which corresponds to an integrable variation of polarized pure twistor
structure.

(4) We twist this variation by e−t/z and take its de Rham cohomology: we get
an integrable twistor structure.

(5) Harmonic sections considered in the theorem above give a global frame of
this twistor structure, hence purity.

(6) Positivity of the natural L2 Hermitian form on the harmonic sections gives
a polarization.

(7) This polarization coincides with Ko.
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