Universal unfoldings of Laurent polynomials and $\mathbf{t t}^{*}$ structures

Claude Sabbah

Centre de Mathématiques Laurent Schwartz
UMR 7640 du CNRS
École polytechnique, Palaiseau, France

Integrable variations of twistor structure

Integrable variations of twistor structure

- C. Simpson: Equivalence between variations of polarized pure twistor structures of weight 0 and harmonic bundles by taking \mathbb{P}^{1}-global sections.

Integrable variations of twistor structure

- C. Simpson: Equivalence between variations of polarized pure twistor structures of weight 0 and harmonic bundles by taking \mathbb{P}^{1}-global sections.
- C. Hertling: Equivalence between integrable variations of polarized pure twistor structures of weight 0 and harmonic bundles $(E, h, \theta)+$ a holomorphic endomorphism \mathscr{U} and a C^{∞} endomorphism 2 satisfying

$$
\left\{\begin{aligned}
{[\theta, \mathscr{U}] } & =0 \\
D^{\prime}(\mathscr{U})-[\theta, \mathscr{Q}]+\theta & =0 \\
D^{\prime}(\mathscr{Q})+\left[\theta, \mathscr{U}^{\dagger}\right] & =0
\end{aligned}\right.
$$

Corollary (C. Hertling).

- M is 1-connected, $x^{o} \in M$.

Corollary (C. Hertling).

- M is 1 -connected, $x^{o} \in M$.
- $\left(\mathscr{H}^{\prime}, \nabla\right)$ a holomorphic bundle on $M \times \mathbb{C}$ with a meromorphic connection ∇ having Poincaré rank one along $M \times\{0\}$

Corollary (C. Hertling).

- M is 1 -connected, $x^{o} \in M$.
- $\left(\mathscr{H}^{\prime}, \nabla\right)$ a holomorphic bundle on $M \times \mathbb{C}$ with a meromorphic connection ∇ having Poincaré rank one along $M \times\{0\}$
- $\mathscr{L}=\operatorname{ker} \nabla_{\mid M \times S}, \quad \mathscr{L}^{o}=\mathscr{L}_{\mid\left\{x^{o}\right\} \times S}$

Corollary (C. Hertling).

- M is 1 -connected, $x^{0} \in M$.
- $\left(\mathscr{H}^{\prime}, \nabla\right)$ a holomorphic bundle on $M \times \mathbb{C}$ with a meromorphic connection ∇ having Poincaré rank one along $M \times\{0\}$
- $\mathscr{L}=\operatorname{ker} \nabla_{\mid M \times S}, \quad \mathscr{L}^{o}=\mathscr{L}_{\mid\left\{x^{o}\right\} \times S}$
- a non-degenerate Hermitian pairing $\mathscr{K}^{o}: \mathscr{L}^{o} \otimes \iota^{-1} \overline{\mathscr{L}^{o}} \longrightarrow \mathbb{C}_{S}$.

Corollary (C. Hertling).

- M is 1 -connected, $x^{0} \in M$.
- $\left(\mathscr{H}^{\prime}, \nabla\right)$ a holomorphic bundle on $M \times \mathbb{C}$ with a meromorphic connection ∇ having Poincaré rank one along $M \times\{0\}$
- $\mathscr{L}=\operatorname{ker} \nabla_{\mid M \times S}, \quad \mathscr{L}^{o}=\mathscr{L}_{\mid\left\{x^{o}\right\} \times S}$
- a non-degenerate Hermitian pairing $\mathscr{K}^{o}: \mathscr{L}^{o} \otimes \iota^{-1} \overline{\mathscr{L}^{o}} \longrightarrow \mathbb{C}_{S}$.
- $\mathscr{K}: \mathscr{L} \otimes \iota^{-1} \overline{\mathscr{L}} \longrightarrow \mathbb{C}_{M \times S}$ the unique non-degenerate Hermitian pairing extending \mathscr{K}^{o}.

If the twistor structure at x^{o} corresponding to these data is pure of weight 0 and polarized

If the twistor structure at x^{o} corresponding to these data is pure of weight 0 and polarized
then there exists a (possibly empty) real analytic subvariety
$\Theta \not \supset x^{o}$ of M such that, on the connected component of
$M \backslash \Theta$ containing x^{o}, the variation of twistor structure $\left(\mathscr{H}^{\prime}, \nabla, \mathscr{K}\right)$ is pure of weight 0 and polarized.

Hodge-Simpson Theorem. Given a variation of polarized twistor structure of weight $\mathbf{0}$ on a compact Kähler manifold \boldsymbol{X}, its de Rham cohomology carries a polarized twistor structure (of some weight).

Theorem. The space of L^{2} harmonic sections of $\boldsymbol{E} \otimes \mathscr{A}_{\mathbb{A}^{1} \backslash P}^{1}$, with respect to the metric h and a metric on $\mathbb{A}^{\mathbf{1}} \backslash P$ equivalent to the Poincaré metric near $\boldsymbol{P} \cup\{\infty\}$, and with respect to the Laplace operator of $d^{\prime \prime}+\theta-d t+\boldsymbol{z}\left(D^{\prime}+\theta^{\dagger}-d \bar{t}\right)$ is finite dimensional and independent of \boldsymbol{z}.

Sketch of the proof

Sketch of the proof

- Starting from $f: U \longrightarrow \mathbb{A}^{1}$, we consider the Gauss-Manin system M (a mixed Hodge module on \mathbb{A}^{1}, after M. Saito).

Sketch of the proof

- Starting from $f: U \longrightarrow \mathbb{A}^{1}$, we consider the Gauss-Manin system M (a mixed Hodge module on \mathbb{A}^{1}, after M. Saito).
- We extract from it a polarized pure Hodge module $M_{!*}$.

Sketch of the proof

- Starting from $f: U \longrightarrow \mathbb{A}^{1}$, we consider the Gauss-Manin system M (a mixed Hodge module on \mathbb{A}^{1}, after M. Saito).
- We extract from it a polarized pure Hodge module $M_{!*}$.
- It defines a tame harmonic bundle on $\mathbb{A}^{1} \backslash P$, where P are the critical values of f, which corresponds to an integrable variation of polarized pure twistor structure.

Sketch of the proof

- Starting from $f: U \longrightarrow \mathbb{A}^{1}$, we consider the Gauss-Manin system M (a mixed Hodge module on \mathbb{A}^{1}, after M. Saito).
- We extract from it a polarized pure Hodge module $M_{!*}$.
- It defines a tame harmonic bundle on $\mathbb{A}^{1} \backslash P$, where P are the critical values of f, which corresponds to an integrable variation of polarized pure twistor structure.
- We twist this variation by $e^{-t / z}$ and take its de Rham cohomology: we get an integrable twistor structure.

Sketch of the proof

- Harmonic sections considered in the theorem above give a global frame of this twistor structure, hence purity.

Sketch of the proof

- Harmonic sections considered in the theorem above give a global frame of this twistor structure, hence purity.
- Positivity of the natural L^{2} Hermitian form on the harmonic sections gives a polarization.

Sketch of the proof

- Harmonic sections considered in the theorem above give a global frame of this twistor structure, hence purity.
- Positivity of the natural L^{2} Hermitian form on the harmonic sections gives a polarization.
- This polarization coincides with \mathscr{K}^{o}.

