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Integrable variations of twistor structures

C. Simpson: Equivalence between variations of
polarized pure twistor structures of weight 0 and
harmonic bundles by taking P1-global sections.
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Integrable variations of twistor structures

C. Simpson: Equivalence between variations of
polarized pure twistor structures of weight 0 and
harmonic bundles by taking P1-global sections.

C. Hertling: Equivalence between integrable
variations of polarized pure twistor structures of
weight 0 and harmonic bundles (E, h, θ) +
a holomorphic endomorphism U and
a C∞ endomorphism Q satisfying















[θ, U ] = 0

D′(U ) − [θ, Q] + θ = 0

D′(Q) + [θ, U
†] = 0
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Corollary (C. Hertling).

M is 1-connected, xo ∈ M .
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(H ′, ∇) a holomorphic bundle on M × C with a
meromorphic connection ∇ having Poincar é rank one along
M × {0}
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Corollary (C. Hertling).

M is 1-connected, xo ∈ M .

(H ′, ∇) a holomorphic bundle on M × C with a
meromorphic connection ∇ having Poincar é rank one along
M × {0}

L = ker ∇|M×S , L o = L|{xo}×S
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Corollary (C. Hertling).

M is 1-connected, xo ∈ M .

(H ′, ∇) a holomorphic bundle on M × C with a
meromorphic connection ∇ having Poincar é rank one along
M × {0}

L = ker ∇|M×S , L o = L|{xo}×S

a non-degenerate Hermitian pairing

K o : L o ⊗ ι−1L o −→ CS .
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Corollary (C. Hertling).

M is 1-connected, xo ∈ M .

(H ′, ∇) a holomorphic bundle on M × C with a
meromorphic connection ∇ having Poincar é rank one along
M × {0}

L = ker ∇|M×S , L o = L|{xo}×S

a non-degenerate Hermitian pairing

K o : L o ⊗ ι−1L o −→ CS .

K : L ⊗ ι−1L −→ CM×S the unique non-degenerate
Hermitian pairing extending K o.
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If the twistor structure at xo corresponding to these data is
pure of weight 0 and polarized
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If the twistor structure at xo corresponding to these data is
pure of weight 0 and polarized

then there exists a (possibly empty) real analytic subvariety

Θ 6∋ xo of M such that, on the connected component of

M r Θ containing xo, the variation of twistor structure

(H ′, ∇, K ) is pure of weight 0 and polarized.
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Hodge-Simpson Theorem. Given a variation of polarized twistor
structure of weight 0 on a compact Kähler manifold X , its de Rham
cohomology carries a polarized twistor structure (of some weight).
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Theorem. The space of L2 harmonic sections of E ⊗ A 1

A1rP , with

respect to the metric h and a metric on A1 r P equivalent to the
Poincaré metric near P ∪ {∞}, and with respect to the Laplace

operator of d′′ + θ − dt + z(D′ + θ† − dt) is finite dimensional
and independent of z.
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Sketch of the proof
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Sketch of the proof

Starting from f : U −→ A1, we consider the
Gauss-Manin system M (a mixed Hodge module
on A1, after M. Saito).
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Sketch of the proof

Starting from f : U −→ A1, we consider the
Gauss-Manin system M (a mixed Hodge module
on A1, after M. Saito).

We extract from it a polarized pure Hodge module
M!∗.
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Sketch of the proof

Starting from f : U −→ A1, we consider the
Gauss-Manin system M (a mixed Hodge module
on A1, after M. Saito).

We extract from it a polarized pure Hodge module
M!∗.

It defines a tame harmonic bundle on A1 r P , where
P are the critical values of f , which corresponds to
an integrable variation of polarized pure twistor
structure.
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Sketch of the proof

Starting from f : U −→ A1, we consider the
Gauss-Manin system M (a mixed Hodge module
on A1, after M. Saito).

We extract from it a polarized pure Hodge module
M!∗.

It defines a tame harmonic bundle on A1 r P , where
P are the critical values of f , which corresponds to
an integrable variation of polarized pure twistor
structure.

We twist this variation by e−t/z and take its de Rham
cohomology: we get an integrable twistor structure.
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Sketch of the proof

Harmonic sections considered in the theorem above
give a global frame of this twistor structure, hence
purity.
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Sketch of the proof

Harmonic sections considered in the theorem above
give a global frame of this twistor structure, hence
purity.

Positivity of the natural L2 Hermitian form on the
harmonic sections gives a polarization.
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Sketch of the proof

Harmonic sections considered in the theorem above
give a global frame of this twistor structure, hence
purity.

Positivity of the natural L2 Hermitian form on the
harmonic sections gives a polarization.

This polarization coincides with K o.
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