Universal unfoldings of Laurent polynomials and tt* structures

Claude Sabbah

Centre de Mathématiques Laurent Schwartz UMR 7640 du CNRS École polytechnique, Palaiseau, France

Integrable variations of twistor structures

Integrable variations of twistor structures

C. Simpson: Equivalence between variations of polarized pure twistor structures of weight 0 and harmonic bundles by taking P¹-global sections.

Integrable variations of twistor structures

- C. Simpson: Equivalence between variations of polarized pure twistor structures of weight 0 and harmonic bundles by taking P¹-global sections.
- C. Hertling: Equivalence between *integrable* variations of polarized pure twistor structures of weight 0 and harmonic bundles (*E*, *h*, θ) + a *holomorphic endomorphism %* and a *C*[∞] *endomorphism 2* satisfying

 $\left\{egin{aligned} & [heta,\mathscr{U}]=0\ & D'(\mathscr{U})-[heta,\mathscr{Q}]+ heta=0\ & D'(\mathscr{Q})+[heta,\mathscr{U}^\dagger]=0 \end{aligned}
ight.$

• M is 1-connected, $x^o \in M$.

- M is 1-connected, $x^o \in M$.
- (𝒴, ▽) a holomorphic bundle on M × C with a
 meromorphic connection ∇ having Poincaré rank one along
 $M × \{0\}$

- M is 1-connected, $x^o \in M$.
- (𝒴, ▽) a holomorphic bundle on M × C with a
 meromorphic connection ∇ having Poincaré rank one along
 $M × \{0\}$

- M is 1-connected, $x^o \in M$.
- (𝒴, ▽) a holomorphic bundle on M × C with a
 meromorphic connection ∇ having Poincaré rank one along
 $M × \{0\}$
- a non-degenerate Hermitian pairing $\mathscr{K}^{o}: \mathscr{L}^{o} \otimes \iota^{-1}\overline{\mathscr{L}^{o}} \longrightarrow \mathbb{C}_{S}.$

- M is 1-connected, $x^o \in M$.
- (\mathscr{H}', ∇) a holomorphic bundle on $M \times \mathbb{C}$ with a
 meromorphic connection ∇ having Poincaré rank one along
 $M \times \{0\}$
- a non-degenerate Hermitian pairing $\mathscr{K}^{o}: \mathscr{L}^{o} \otimes \iota^{-1}\overline{\mathscr{L}^{o}} \longrightarrow \mathbb{C}_{S}.$
- $\mathscr{K}: \mathscr{L} \otimes \iota^{-1} \mathscr{\overline{L}} \longrightarrow \mathbb{C}_{M \times S}$ the unique non-degenerate Hermitian pairing extending \mathscr{K}^{o} .

If the twistor structure at x^{o} corresponding to these data is **pure of weight 0 and polarized**

If the twistor structure at x^{o} corresponding to these data is **pure of weight 0 and polarized**

then there exists a (possibly empty) real analytic subvariety $\Theta \not\supseteq x^{o}$ of M such that, on the connected component of $M \setminus \Theta$ containing x^{o} , the variation of twistor structure ($\mathscr{H}', \nabla, \mathscr{K}$) is pure of weight 0 and polarized. **Hodge-Simpson Theorem.** Given a variation of polarized twistor structure of weight 0 on a compact Kähler manifold X, its de Rham cohomology carries a polarized twistor structure (of some weight).

Theorem. The space of L^2 harmonic sections of $E \otimes \mathscr{A}^1_{\mathbb{A}^1 \smallsetminus P}$, with respect to the metric h and a metric on $\mathbb{A}^1 \smallsetminus P$ equivalent to the Poincaré metric near $P \cup \{\infty\}$, and with respect to the Laplace operator of $d'' + \theta - dt + z(D' + \theta^{\dagger} - d\overline{t})$ is finite dimensional and independent of z.

• Starting from $f: U \longrightarrow \mathbb{A}^1$, we consider the Gauss-Manin system M (a mixed Hodge module on \mathbb{A}^1 , after M. Saito).

- Starting from $f: U \longrightarrow \mathbb{A}^1$, we consider the Gauss-Manin system M (a mixed Hodge module on \mathbb{A}^1 , after M. Saito).
- We extract from it a polarized pure Hodge module $M_{!*}$.

- Starting from $f : U \longrightarrow \mathbb{A}^1$, we consider the Gauss-Manin system M (a mixed Hodge module on \mathbb{A}^1 , after M. Saito).
- We extract from it a polarized pure Hodge module M_{!*}.
- It defines a tame harmonic bundle on A¹ < P, where
 P are the critical values of f, which corresponds to an integrable variation of polarized pure twistor structure.

- Starting from $f: U \longrightarrow \mathbb{A}^1$, we consider the Gauss-Manin system M (a mixed Hodge module on \mathbb{A}^1 , after M. Saito).
- We extract from it a polarized pure Hodge module M_{!*}.
- It defines a tame harmonic bundle on A¹ < P, where P are the critical values of f, which corresponds to an integrable variation of polarized pure twistor structure.
- We twist this variation by $e^{-t/z}$ and take its de Rham cohomology: we get an integrable twistor structure.

Harmonic sections considered in the theorem above give a global frame of this twistor structure, hence purity.

- Harmonic sections considered in the theorem above give a global frame of this twistor structure, hence purity.
- Positivity of the natural L^2 Hermitian form on the harmonic sections gives a polarization.

- Harmonic sections considered in the theorem above give a global frame of this twistor structure, hence purity.
- Positivity of the natural L² Hermitian form on the harmonic sections gives a polarization.
- This polarization coincides with \mathscr{K}^{o} .