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Introduction

In order to give some information on the fundamental group of smooth complex
projective varieties, one consider the linear representations of this group: ρ :

π1(X, ?)→ GL(d, C).
There is a “base-point-free” approach to such question: replace the linear repre-

sentation ρ by the locally constant sheaf Lρ of rank d that it defines (in the same
way one uses to replace subgroups of π1(X, ?) by coverings of X).

So I will mainly consider locally constant sheaves of C-vector spaces on X.
Saying that the representation ρ is irreducible (resp. semisimple) is then equivalent
to saying that the locally constant sheaf Lρ does not possess any nontrivial locally
constant subsheaf (resp. is the direct sum of irreducible locally constant sheaves).

It is classical that giving a locally constant sheaf L is equivalent to giving a
holomorphic vector bundle L equipped with a holomorphic connection

∇ : L −→ Ω1
X ⊗OX

L

which is integrable, that is, such that its curvature ∇2 is zero. By GAGA, this is
also equivalent to giving an algebraic vector bundle equipped with an algebraic
connection (but be careful when using GAGA for the connection).

Example: the constant rank-one local system CX corresponds to OX equipped
with the standard differential d : OX → Ω1

X .
On the other hand, this is also equivalent to giving a C∞ vector bundle H on X

with an integrable C∞ connection D : H → A 1
X ⊗H.

Let X be a smooth complex projective variety and let L be a locally constant
sheaf of C-vector spaces on X (also called a local system of coefficients).
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Pull-back

Theorem 0 (C. Simpson, 1992). Let f : Y → X be a morphism between smooth
complex projective varieties. If L is semisimple, then f−1L is also semisimple.

Note that the property for a representation ρ to be irreducible (or semisimple)
is a property of the image Γ of ρ. So for instance the theorem is clear if f∗ :

π1(Y ) → π1(X) is onto, e.g. when Y is a general hyperplane section of X. But
it is not clear otherwise.

Sketch of proof. The idea is to replace a global property like semisimplicity, which
is difficult to manipulate, by a local one. The is a theorem of K. Corlette (1988):
A C∞ vector bundle with flat connection (H, D) corresponds to a semisimple
representation of π1(X, ?) iff it admits a harmonic metric.

Given a metric, to check that it is harmonic is a local property. However,
the existence of such a metric is a global property. The harmonicity property is
preserved by pull-back.

Push-forward. Let now f : X → Y be a morphism between smooth complex
projective varieties. There exists a Zariski dense open set V ⊂ Y such that
f : U := f−1(V ) → V is smooth. For any y ∈ V , we get a local system Ly

on the smooth projective variety Xy = f−1(y). Taking its cohomologies enables
one to get various local systems on V (related to the Gauss-Manin connection
of f), that is, for a fixed yo in V , representations of π1(V, yo) in the vector spaces
Hk(Xyo

, Lyo
), k = 0, 1, . . . I will denote by Rkf∗LU the corresponding local

system on V .

Theorem 1. If L is semisimple on X, then any of the local systems Rkf∗LU are
semisimple.

Two kinds of proofs. This theorem has various proofs and leads to various
generalizations. The first important case is that of the constant local system CX .
The previous statement is then a simplified version of the Decomposition Theorem
of Beilinson, Bernstein, Deligne and Gabber [1]. The first proof of this Decom-
position theorem was obtained through characteristic-p methods. Later (1986), a
proof using Hodge theory and D-modules was given by M.Saito [8].

Similarly, the previous theorem has been given two proofs. The first one, by
V.Drinfeld [3], goes through characteristic-p methods, and relies on a conjecture
by de Jong. That this conjecture is now proved in the generality needed for
Drinfeld’s argument is not clear for me, but D.Gaitsgory [4] on the one hand
and Böckle–Khare [2] on the other hand, obtained far reaching results in this
direction. The second one was obtained in [7] by using analytic methods in the
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spirit of Simpson’s proof of the first theorem, as well as an extension of M.Saito’s
D-module technique.

Sketch of the analytic proof

Polarized regular twistor

D-module on Y

Semi-simple perverse

sheaf on Y

decomposition
theorem (C.S.)

Simpson
+ Hamm-Lê D.T.

Corlette
+ Simpson

(smooth case)

Polarized smooth twistor

D-module onX
Semi-simple local

system onX

Proof of Theorem 1

Extension of the statement. The theorem can be extended to the case where
one only assumes that X is smooth and quasiprojective. The vector spaces
Hk(Xyo

, Lyo
) have then to be replaced by the spaces IH k(Xyo

, Lyo
), where f :

X → Y is some projectivization of f : X → Y , and IH denotes the Goresky-
MacPherson Intersection cohomology (with coefficients in the local system Lyo

).
This extension of the theorem was completely taken into account in B-B-D-G
and M.Saito’s approaches when L is the constant local system (i.e. the trivial
rank-one representation of the fundamental group of X). It is also taken into
account in Drinfeld’s approach. On the other hand, the analytic approach “à la
Simpson” needs further highly non trivial improvements to get the general case.
These were obtained, approximately at the same time I got the previous theorem,
by T.Mochizuki [6].

The final result is expressed in the following way (Decomposition Theorem):

Theorem 2 (V. Drinfeld, T. Mochizuki). Let f be a morphism between (smooth)
complex projective varieties. If F is a semisimple perverse sheaf of C-vector
spaces on X, then the direct image complex Rf∗F decomposes as the direct sum
of its perverse cohomology sheaves (conveniently shifted):

Rf∗F '
⊕
k

pRkf∗F [−k]

and each perverse cohomology sheaf pRkf∗F is a semisimple perverse sheaf on Y .

This theorem was conjectured by M.Kashiwara (approximately in 1998, [5]),
inspired by the theorem of C. Simpson stated at the beginning.
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What is a semisimple perverse sheaf?

A semisimple perverse sheaf is the direct sum of simple perverse sheaves. A
simple perverse sheaf on Xis obtained by the following recipe:

(1) Take an irreducible closed subvariety Z of X.
(2) Take a smooth Zariski dense open set Zo of Z.
(3) Take an irreducible linear representation of the fundamental group of Zo,

that is, an irreducible local system L on Zo.
(4) Take the Goresky-MacPherson Intersection complex on Z with coefficients

in L . This is a simple perverse sheaf.
In order to prove the theorem, there are three locks to unlock:
(1) To get the decomposition of the complex Rf∗F as the direct sum of its

perverse cohomology subcomplexes: this uses an argument of Deligne, (Hard
Lefschetz Theorem) going back to 1968.

(2) For any perverse cohomology complex G , to get the decomposition with
respect to the irreducible components of the support. This is a geometric state-
ment, which uses the analysis of vanishing cycles. It is obtained simultaneously
with the property that G is the “intermediate extension” of its restriction to a
smooth Zariski dense open subset of its support.

(3) To show the semisimplicity of the representation on this Zariski open set.
All three points are shown simultaneously, and are interdependent, while being of
a different nature.

Sketch of the analytic proof

Polarized regular twistor

D-module on Y

Semi-simple perverse

sheaf on Y

decomposition
theorem (C.S.)

Simpson
+ Hamm-Lê D.T.

Polarized regular twistor

D-module onX
T. Mochizuki
(NCD)

Semi-simple perverse

sheaf onX

Proof of Theorem 2

The conjecture of Kashiwara. The original conjecture of Kashiwara is much
more ambitious than what has been already proved. It is stated at the level of
D-modules.
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Conjecture (M. Kashiwara, [5]). Let f : X → Y be a morphism between smooth
complex projective varieties. If M is any semisimple holonomic DX-module,
then the direct image complex f+M decomposes as the direct sum of its cohomol-
ogy modules H kf+M (which are known to be holonomic DY -modules) and each
H kf+M is a semisimple holonomic DY -module.

The point in this conjecture is to be able to treat holonomic D-modules with
irregular singularities, going beyond the Riemann-Hilbert correspondence

Regular holonomic D-modules←→ Perverse sheaves

Applications. At the moment, there are no direct applications of the decom-
position theorem for semisimple perverse sheaves (or holonomic D-modules). For
instance, we are lacking numerical invariants to get numerical consequences (in
Hodge theory, one would have the Hodge numbers).

Nevertheless, there are applications of the techniques or of intermediate results.
Here are some, which I am aware of.

T.Mochizuki has given restrictions to the fundamental group of quasiprojective
varieties analogous to that given for projective varieties by C. Simpson (rigid dis-
crete subgroups of real algebraic groups which are not of “Hodge type” cannot be
the fundamental group of a smooth quasiprojective variety).

The dream of understanding the analogies between D-module theory and `-
adic perverse sheaves has become more realistic, by better understanding Fourier
transform of variations of Hodge structures.

The following is a first step toward an analogue of results of Katz and Laumon
on the Fourier-Deligne transform of `-adic perverse sheaves.

Theorem 3. The Fourier-Laplace transform of a variation of polarized Hodge
structure is an integrable variation of polarized twistor structure.

Similar objects were considered by physicists (Cecotti and Vafa) at the begin-
ning of the 90’. They were introduce the expression ‘topological-antitopological
fusion’. Mathematical proofs of some of there results are now possible by using
the tools developed for proving (in the analytic way, and in the case of regular
singularities, i.e. for perverse sheaves) the conjecture of Kashiwara.
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Variation of twistor structure after C. Simpson

Hodge structure. H is a C-vector space equipped with a decomposition H =

⊕pH
p,w−p. It is equipped with a sesquilinear pairing k : H ⊗C H → C for which

the decomposition is orthogonal and (−1)pi−wk is a metric (i.e. positive definite)
on Hp,w−p. In particular, k is nondegenerate. We set h = ⊕p(−1)pi−wk and

F ′p =
⊕
q>p

Hq,w−q and F ′′p =
⊕
q>p

Hw−q,q.

Twistor structures.

Hodge structure Twistor structure

Filtered vect. sp. (H, F ′•H, F ′′•H) Holom. vect. bundle on P1

Conjugation H → H Twistor conjugation H →H := σ∗H

σ : z 7→ −1/z

Pure Hodge structure of weight w = 0 H ' Od
P1

Underlying vector space H Γ(P1, H )

Nondeg. sesqu. pairing k : H ' H∗ H 'H ∗ := H
∨

(⇒ Γ(P1, H ) ' Γ(P1, H )∗)
Positivity of h Positivity on Γ(P1, H )

Tate twist (`), ` ∈ Z ⊗ OP1(2`), ` ∈ 1
2Z.

Triples. We set S = {z | |z| = 1}.

Hodge structure Twistor structure

Filtered vect. sp. (H, F ′•H, F ′′•H) Holom. vect. bundles H ′, H ′′ on A1

plus a sesq. pairing C : H ′
|S ⊗OS

H ′′
|S → OS

Adjoint H∗ Twistor adjoint (H ′, H ′′, C)∗ = (H ′′, H ′, C∗)

C∗(v,u)
def
= C(u,v)

Nondeg. sesqu. form H ' H∗ (H ′, H ′′, C) ' (H ′, H ′′, C)∗

Tate twist (`), ` ∈ Z (H ′, H ′′, C)(`) = (H ′, H ′′, (iz)−2`C), ` ∈ 1
2Z.

Example. To any Hodge structure we associate a twistor structure in the fol-
lowing way:

H ′∨ =
⊕
p

F
′p
z−p, H ′′ =

⊕
p

F ′′pz−p
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and C is induced by the natural C-duality pairing 〈 , 〉:

(H
p,w−p

)∨zp ⊗H
p,w−p

zw−p −→ zwC[z]

x∨zp ⊗ yzw−p 7−→ 〈x∨, y〉zw.

Variation of twistor structures. Let X be a complex manifold. We set X =

X ×A1. The twistor conjugation will now be the ordinary conjugation on X and
the twistor conjugation with respect to z. We introduce triples (H ′, H ′′, C),
where H ′, H ′′ are holomorphic bundle on X × A1, and C is a “gluing”:

C : H ′
|X×S ⊗OS

H ′′
|X×S −→ C∞,an

X×S .

We assume that we have flat relative connections ∇′,∇′′:

H ′(′′) −→ 1

z
Ω1

X /A1 ⊗H ′(′′)

which are compatible with the pairing:

d′XC(u,v) = C(∇′u,v), d′′XC(u,v) = C(u,∇′′v).

Adjunction and Tate twist are similar to the case X = pt.
A Hermitian pairing in weight 0 is an isomorphism (H ′, H ′′, C) ' (H ′, H ′′, C)∗.

It is a polarization if, when restricted to any x ∈ X, it gives a polarization of the
corresponding twistor structure.

Lemma 4 (C. Simpson). Variations of polarized twistor structures of weight 0
z=1←→ holom. vector bundle on X with flat connection ∇ and Hermitian metric h

which is harmonic
z=0←→ holom. vector bundle on X with a Higgs field θ, and Hermitian metric h

which is harmonic.

In fact, if X is compact Kähler, then, according to a result of K. Corlette,
the category for z = 1 is equivalent to that of semisimple representations of
the fundamental group of X. Similarly, according to a result of C. Simpson, the
category for z = 0 is equivalent to that of polystable Higgs bundles with vanishing
Chern classes.

Explanation of Theorem 3

On the punctured affine line A1 r {p1, . . . , pr} with complex coordinate t we
consider a variation of polarized Hodge structure (of weight w = 0, say). We
associate to it a variation of polarized twistor structure (H ′, H ′′, C) of weight 0.
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Exponential twist. We add a new variable τ and we want to apply Fourier-
Laplace transform with respect to the kernel e−tτ . This operation is possible at
the level of variations of twistor structures.

Start with (H ′, H ′′, C) and add a new variable τ trivially (i.e. consider the
pull-back of (H ′, H ′′, C) by the projection (t, τ) 7→ t) to get (H ′[τ ], H ′′[τ ], C)

which is a variation of twistor structure on (A1 r {p1, . . . , pr})× A1.
The exponential twist (H ′[τ ], H ′′[τ ], C)⊗ e−tτ/z is defined as follows:
• Its first (resp. second) component is H ′[τ ] (resp. H ′′[τ ]) with connection

∇− 1

z
(τdt + tdτ);

• the sesquilinear pairing is etτz−tτ/z · C.
Note that, when z ∈ S, then z = 1/z and etτz−tτ/z = e−2i Im(tτ/z), hence we are

applying a Fourier kernel to C and a Laplace kernel to H ′, H ′′.

Integration. The next step is to integrate (H ′[τ ], H ′′[τ ], C) ⊗ etτ/z along
A1 r {p1, . . . , pr}. The theorem tells us that we get a polarized variation of
twistor structure. In general, this is not a variation of Hodge structure, because
the underlying connection (by restricting to z = 1) has in general an irregular
singularity at infinity.
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