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Abstract. We give a description of the work of Andrey Bolibrukh on isomonodromic

deformations and relate it to existing results in this domain.

Résumé (Les travaux d’Andrei Bolibroukh sur les déformations isomono-

dromiques)
Nous décrivons les travaux d’Andrëı Bolibroukh sur les déformations isomonodro-

miques en les situant dans le contexte des résultats existant dans ce domaine.
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Introduction

Let me begin by quoting [8]:

“Therefore, in essence, the invariant geometric language of vector bundles
is unavoidable for the rigorous analysis of the inverse monodromy problem
and isomonodromy deformations in the case of general linear systems. At
the same time, for specific linear systems related to the Painlevé equations,
it is possible to perform a rigorous study of the inverse problem on the basis
of analytic considerations only.”
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This phrase illustrates the approach of Andrey to differential equations: he was
able to speak the language of vector bundles with algebraic/differential geometers and
the classical language with analysts. His work on isomonodromy problems was much
influenced by the algebraic geometry approach, through Malgrange’s papers, but he
was also much involved in applications to Painlevé equations from a more analytic
and concrete point of view, working on explicit formulas, as in [8]. For instance, he
worked on an algorithmic computation of the τ function of Miwa and Jimbo in [7].

In this article, we try to explain his results concerning isomonodromic deformations
of systems with regular singularities or Fuchsian systems(1) and to relate them to other
results in this domain. When necessary, we will use the language of vector bundles
with connection and, in any case, we try to give translations of the results in this
language.

1. What is an isomonodromic deformation?

Let Xt be a holomorphic family of connected complex manifolds parametrized by a
complex connected manifold T with base point to, which have constant fundamental
group π1(Xt, ∗). Let (Eto ,∇to) be a vector bundle on Xto equipped with a flat
holomorphic connection ∇to : Eto → Ω1

Xto ⊗OXto
Eto .

An isomonodromic deformation of (Eto ,∇to) is a holomorphic family Et of holo-
morphic vector bundles equipped with a flat connection ∇t : Et → Ω1

Xt
⊗OXt

Et such
that the conjugation class of the monodromy representation defined by horizontal
sections of ∇t is constant.

Such a situation often occurs in the following way. We start with a complex
manifold X with a smooth divisor Y and a holomorphic map π : X → T which is
assumed to be smooth on the pair (X,Y ) and therefore defines a C∞ fibration. We
put X = X rY and π still defines a C∞ fibration on X, so that all fibres Xt have the
same topological type (in fact, the topological type of the pair (Xt, Yt) is constant).
Assume that we have a holomorphic vector bundle E on X and a flat meromorphic
connection ∇ on E with poles along Y . The π1 of the fibers Xt is constant, and the
monodromy representation of π1(Xt) defined by each ∇t on E|Xt

is constant up to
conjugation.

Example 1.1. We will mainly consider below the case where T is the (universal cover of
the) n-fold product P1×· · ·×P1 minus diagonals (a point in a ∈ T is an ordered set of
n distinct points a1, . . . , an of P1), X = P1×T and Y = ∪n

i=1Yi, where Yi = {x = ai}
if x is the point in the first P1. Then X is the n + 1-fold product P1 × · · · × P1 minus
diagonals and the fibre Xa is P1 r {a1, . . . , an}.

(1)this explains why we do not consider his joint article [8], which is concerned with a special

example of irregular isomonodromic deformation and would necessitate the introduction of many

other notions.
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We will also consider the case where X = D × T , where D is a disc centered at 0
in C, and Y = {0} × T .

One has to be careful that the integrability property above (flatness of ∇) may be
strictly stronger than isomonodromy, if one does not impose a supplementary con-
dition, namely that ∇ has regular singularity along Y . In practice however, various
authors use the word “isomonodromy” instead of “integrability” when irregular sin-
gularities occur. This is justified by an extension of what one calls “monodromy
representation”: in the irregular singular case, one adds to the classical monodromy
representation the Stokes data.

In [5, 3], Andrey considered the question of comparing precisely these two notions,
namely isomonodromy and integrability. Although he only considers the example
above, his results apply in a much more general situation.

Theorem 1.2 (mainly in [3] and [5]). Let π : X → T and Y ⊂ X be as above. Assume
that the π1 of some (or any) fibre Xt is finitely generated.

(1) Let (Eto ,∇to) be a vector bundle on Xto equipped with a meromorphic flat
connection with poles along Yto , having regular singularities along Yto . Then any
isomonodromic deformation of (Eto|Xto ,∇to) in the family π : X → T can be realized,
locally near to, by a meromorphic bundle E′(∗Y ) equipped with a flat connection ∇′

with regular singularities along Y , such that (E′
to(∗Yto),∇′

to)
∼−→ (Eto(∗Yto),∇to).

(2) Let (E,∇X/T ) be a vector bundle on X equipped with a meromorphic relative
flat connection ∇X/T with poles along Y , defining an isomonodromic deformation
on X and such that each (Et,∇t) has regular singularities along Yt. Then, locally
on T , there exists a meromorphic connection ∇ on E with poles on Y , having ∇X/T

as associated relative connection, and with regular singularities along Y .

Remarks 1.3
(1) Of course, the assumption on the fundamental group of fibres is satisfied in all

usual examples.
(2) Assume that each fibre Xt is a curve. If we moreover assume that (Eto ,∇to)

is Fuchsian (i.e., has only simple poles at each point of Yto), then there exists locally
on T a unique isomonodromic deformation (E,∇) where ∇ has logarithmic poles
along Y (cf. [11] or Theorem 3.1 below). There may exist other isomonodromic
deformations. By the theorem, these deformations can be searched as meromorphic
connections with regular singularities along Y . This will be used in § 2.

(3) Let us explain the difference between the two statements. In the second one,
we fix a meromorphic structure of the bundle along Y and, knowing that the relative
connection is meromorphic with respect to it, we show that the absolute connection
is also meromorphic with respect to this structure. In the first one, such a structure
is constructed simultaneously with the absolute connection, in such a way that the
latter is meromorphic with respect to the former.
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Proof. For the first part, the proof has 2 steps: the smooth step, where one forgets
about the polar locus Y and the meromorphic step, where one shows that ∇ can be
chosen to be meromorphic along Y .

Proof of 1.2(1), first step. Consider a holomorphic vector bundle E on X equipped
with a flat relative connection ∇X/T : E → Ω1

X/T ⊗OX
E. By the Cauchy-Kowalevski

theorem with parameters, Ker∇X/T is a locally constant sheaf of locally free π−1OT -
modules (cf. [10, Th. 2.23]) and (E,∇X/T ) ∼−→ (OX ⊗π−1OT

Ker∇X/T , dX/T ⊗ Id).
Under the isomonodromy condition, we want to show that there exists, locally with
respect to T , a locally constant sheaf F of finite dimensional C-vector spaces on X

such that Ker∇X/T = π−1OT ⊗C F . We will then define ∇ so that (E,∇) ∼−→
(OX ⊗CF , dX ⊗ Id), and by definition we will have (Eto ,∇to) ∼−→

(
OXto ⊗CF|Xto , d

)
.

We fix to ∈ T and work in a neighbourhood of to. The fundamental group π1(Xto , ∗)
is generated by loops γ1, . . . , γp. A linear representation of π1(Xto , ∗) in GLd(C)
consists of the datum of p invertible matrices M1, . . . ,Mp which satisfy the same
relations as the γi do. The set Rep of these is therefore the closed algebraic subset
of (GLd(C))p defined by algebraic equations of the form Mn1

1 · · ·Mnp
p − Id = 0. The

group GLd(C) acts on (GLd(C))p by P · (M1, . . . ,Mp) = (PM1P
−1, . . . , PMpP

−1)
and leaves Rep invariant. The orbit of a given representation ρo consists of the
representations which are conjugate to ρo.

The assumption of the theorem shows that there exists a neighbourhood V of to

in T and a holomorphic map V → (GLd(C))p, sending to to ρo, such that its image
is contained in the orbit of ρo. As the natural map GLd(C) → GLd(C) · ρo has
everywhere maximal rank, one can locally lift V → GLd(C) ·ρo to a holomorphic map
V → GLd(C). The holomorphic family ρt of representations of π1(Xto , ∗) is therefore
conjugate to the constant family ρo.

Proof of 1.2(1), second step. By [10], the bundle OX ⊗C F with its flat connection d

extends as a meromorphic bundle E′(∗Y ) with a connection ∇′ having regular sin-
gularities along Y . The isomorphism (Eto ,∇to) ∼−→ (E′

|Xto
,∇′

to) that we constructed
in the first step is a relative horizontal section σ on Xto of the meromorphic bundle
HomOXto

(∗Yto )(Eto(∗Yto), E′
to(∗Yto)). The connection on this bundle (obtained from

∇to and ∇′
to) has a regular singularity along Yto , hence the section σ is meromor-

phic along Yto . A similar argument applies to σ−1, so that we have an isomorphism
(Eto(∗Yto),∇to) ∼−→ (E′

|Xto
(∗Yto),∇′

to).

Proof of 1.2(2). The proof is similar to that of 1.2(1). We first construct (E′(∗Y ),∇′)
as above. We now have an isomorphism (E|X ,∇) ∼−→ (E′

|X ,∇′) constructed
in the first step: it is a horizontal section σ on X of the meromorphic bundle
HomOX(∗Y )(E(∗Y ), E′(∗Y )). Restricting to each fibre Xt, the connection on this
bundle (obtained from ∇X/T and ∇′

X/T
) has a regular singularity along Yt, hence the

section σ|Xt
is meromorphic along Yt. The order of its pole is locally bounded by a
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constant computed from the matrices of ∇X/T and ∇′
X/T

in local meromorphic bases
of E(∗Y ) and E′(∗Y ). Hence σ is meromorphic along Y . A similar argument applies
to σ−1. We therefore have an isomorphism (E(∗Y ),∇X/T ) ∼−→ (E′(∗Y ),∇′

X/T
).

2. Isomonodromic deformations: the local setting

In this section, we consider a disc D centered at the origin in the complex plane,
with coordinate x, and a parameter space T , which is a neighbourhood of the origin
in Cn, with coordinates t = (t1, . . . , tn).

We consider a linear differential system of size d in the variable x, which is Fuchsian,
that is

(∗) x · du

dx
= A(x) · u(x),

where u(x) is a vector of size d of unknown functions, and A(x) is a matrix of size d

with holomorphic entries.
In other words, we consider the trivial holomorphic vector bundle Eo (free OD-

module) of rank d on D, with a meromorphic connection∇ : Eo → Ω1
D(log{0})⊗OD

Eo

having a pole of order at most one at the origin.
A Fuchsian isomonodromic deformation of (∗) parametrized by T is a system

(∗t) x · du(x, t)
dx

= A(x, t) · u(x, t),

such that A(x, t) is holomorphic and that, for any to ∈ T , the monodromy at the
origin of the system (∗to) is independent of to (up to conjugation). By Theorem 1.2,
the isomonodromy condition can also be stated by saying that there exists a matrix

(2.1) Ω = A(x, t)
dx

x
+

n∑
i=1

Ωi(x, t) dti,

where Ωi(x, t) are holomorphic on D∗ × T , such that Ω satisfies the integrability
condition

dΩ + Ω ∧ Ω = 0.

We say that the isomonodromic deformation is regular if Ω is meromorphic along
x = 0 (equivalently, each Ωi is so). By Theorem 1.2(2), any Fuchsian isomonodromic
deformation is regular.

Equivalently, we are given a trivial vector bundle E on D × T with an integrable
meromorphic connection

∇ : E −→ ΩD×T

[
∗ ({0} × T )

]
⊗OD×T

E

having poles along x = 0 at most, and such that its restriction to each D×{to} is log-
arithmic. In particular, the meromorphic connection ∇ has regular singularities along
x = 0. But it may or may not be logarithmic along x = 0, that is, some Ωi may not
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be holomorphic at x = 0. In the following, we consider only Fuchsian isomonodromic
deformations, even if some statements hold in a more general situation.

Proposition 2.2. In an isomonodromic deformation, the eigenvalues of A(0, t) are in-
dependent of t.

Proof. Indeed, for t fixed, the characteristic polynomial of A(0, t) determines the char-
acteristic polynomial of the monodromy of the corresponding system by the following
rule: to any term (X − α)µα , associate (S − e−2iπα)µα . As the latter is constant
by isomonodromy, the eigenvalues of A(0, t) can only vary by integral jumps, so, by
continuity, they are constant.

The datum of a Fuchsian system of rank d on the disc D, with pole at 0 only,
is equivalent to the datum of a C-vector space H of dimension d equipped with
an automorphism M (monodromy) and a decreasing filtration F •H stable by M

(called the Levelt filtration). This filtration takes into account the resonances (nonzero
integral differences of eigenvalues) in the matrix of the connection.

Corollary 2.3 ([3, Theorem 2]). In an isomonodromic deformation, the Levelt normal
form can be achieved locally holomorphically with respect to the parameters.

Proof. According to the previous proposition, there exists, locally with respect to t

(say near to), a base change such that the matrix A(0, t) is block-diagonal, one
(constant) eigenvalue per block. We order the blocks in such a way that the in-
tegral parts of eigenvalues are decreasing, hence we get a diagonal matrix Λ =
diag(λ1, . . . , λd) where the integers λj satisfy λj > λj+1. Put λ = maxi,j |λi − λj |.
Then A0(t) := A(0, t) commutes with Λ. One looks for a formal power series
P̂ (x, t) = Id+

∑
k>1 xkPk(t) and matrices B1(t), . . . , Bλ(t) such that [Λ, Bj(t)] =

−jBj(t) (j = 1, . . . , λ) and, putting B(x, t) = A0(t)+xB1(t)+ · · ·+xλBλ(t), we have

xP̂ ′(x, t) = P̂ (x, t)B(x, t)−A(x, t)P̂ (x, t).

The formal solution P is obtained by solving successively, for k > 1,

(adA0(t) + k Id)Pk(t) = Bk(t) + Φk(A6k(t), B<k(t), P<k(t))

where Φk depends on the previous coefficients. As A0(t) commutes with Λ, we can
decompose this equation on the eigenspaces of the semisimple endomorphism adΛ.
For the eigenvalue µ, we have then to solve, for k > 1,

(adA0(t) + k Id)P (µ)
k (t) =

{
Bk(t) + Φ(µ)

k (A6k(t), B<k(t), P<k(t)) if µ + k = 0,

Φ(µ)
k (A6k(t), B<k(t), P<k(t)) if µ + k 6= 0,

by assumption on Bk. If k 6= −µ, the endomorphism (ad A0(t) + k Id) is invertible on
Ker(adΛ− µ Id), hence we can solve in a unique way the second line. If k = −µ, we
choose Bk(t) so that the right-hand term is in the image of (ad A0(t) + k Id).
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Then, by a standard argument for regular singularities, one shows that the ma-
trix P̂ is convergent in some neighbourhood of (0, to) and we denote it by P . Therefore,
after the base change given by P , the matrix of the connection can be written as

(2.4) Ω′ =
(
A0(t) + xB1(t) + ·+ xλBλ(t)

) dx

x
+

n∑
i=1

Ω′i(x, t) dti

with Ω′i(x, t) meromorphic and having a pole of order less than or equal to that of Ωi

along x = 0, as the base change is holomorphically invertible.

In terms of filtrations, this result means that the family F •
t H of filtrations of H

parametrized by T is holomorphic, i.e., defines a filtration of the bundle OT ⊗C H

by holomorphic subbundles, in such a way that the graded pieces are vector bundles
(i.e., the rank does not jump with t).

Corollary 2.5 ([3, Theorem 3]). In an isomonodromic deformation, the pole of each ma-
trix Ωi along x = 0 has order at most λ.

Proof. By Corollary 2.3, we can assume that we start with a matrix Ω as in (2.1) such
that A(x, t) has the Levelt normal form (2.4). The eigenvalues of A(0, t)− Λ do not
differ by a nonzero integer and the monodromy matrix is exp−2iπ

(
A(0, t)−Λ

)
. Then

there exists a holomorphic invertible matrix C(t) such that exp−2iπ
(
A(0, t)− Λ

)
=

C(t)−1 ·exp−2iπ
(
A(0, 0)−Λ

)
·C(t). Therefore, after the base change of matrix C(t),

the connection can be written as d + (A(0, 0) − Λ)dx/x. Putting P (x, t) = xΛC(t),
we therefore have Ωi = xΛ∂ti

C(t)C(t)−1x−Λ, which has a pole of order 6 λ along
x = 0.

This corollary implies, in particular that, under some circumstances, any regular
isomonodromic deformation is in fact logarithmic. This occurs for instance when A(0)
in (∗) is nonresonant, that is, if its eigenvalues do not differ by a nonzero integer.

3. Logarithmic isomonodromic deformations of Fuchsian systems on
the Riemann sphere: the Schlesinger system

3.a. The Painlevé property, after Malgrange. Let me recall the proof of the
Painlevé property of the Schlesinger system given by Malgrange in [11].

We fix a finite set of distinct points ao = {ao
1, . . . , a

o
n} in the Riemann sphere

P1(C) and we consider a vector bundle Eo on P1 equipped with a connection ∇o

having logarithmic poles at ao and no other pole.
Our parameter space T is now global: it is the universal covering of (P1)n r

diagonals (one can reduce the dimension by 3, if we fix by a homography three points
among the ai to 0, 1,∞, say). We view ao as point of (P1)n rdiagonals and we choose
a lift ão of ao in T . On P1 × T we have natural hypersurfaces Yi defined by the
equation x = ãi (ãi is the lift to T of the function ai).
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Theorem 3.1 ([11]). There exists a unique vector bundle E on P1×T equipped with an
integrable logarithmic connection ∇ having poles along the hypersurfaces Yi, and with
an identification (E,∇)P1×{eao}

∼−→ (Eo,∇o).

Assume now that Eo is trivial. If we fix a basis of this bundle and a coordinate x

on P1 r {∞}, the datum of ∇o is equivalent to the datum of a Fuchsian system

(3.2)
du

dx
=

n∑
i=1

Ao
i

x− ao
i

· u,

where Ao
i are d×d matrices. Then there exists a divisor Θ in T consisting of points ã

where EP1×{ea} is not trivial. More precisely, there exists a meromorphic (along P1×Θ)
trivialization of E which extends the trivialization of Eo. In other words, there exists
a basis of E(∗Θ) extending the given basis of Eo. The matrix of ∇ in this basis takes
the form

n∑
i=1

Ai(ã)
d(x− ãi)
(x− ãi)

+
n∑

i=1

Bi(ãi)dãi.

The basis can moreover be chosen in such a way that all the B-terms vanish identically:
this is obtained by imposing flatness with respect to the residual connection on Yn, say.
To simplify notation, it is simpler (but not less general) to assume that Yn = {∞}×T .
In such a basis, the matrix of ∇ thus takes the form

(3.3)
n∑

i=1

Ai(ã)
d(x− ãi)
(x− ãi)

and the integrability property is equivalent to the fact that the Ai are solutions of
the Schlesinger system

(Schl) dAi =
∑
j 6=i

[Ai, Aj ]
d(ãi − ãj)
(ãi − ãj)

, i = 1, . . . , n.

These equations imply in particular that the residue −
∑

i Ai(ã) along {∞} × T is
constant (the basis is chosen precisely so that this property is satisfied).

Corollary 3.4. The solutions of the Schlesinger system (Schl) with initial value Ao
i

at ão are meromorphic on T with poles along Θ at most.

The behaviour of the solutions to (Schl) near the polar set Θ is hard to analyze. In
[4] and [7], Andrey has given a method to produce examples and describe in concrete
terms this behaviour. I will try to explain his approach.

3.b. Equation for the “theta divisor”. Starting from a solution of the Schlesinger
system with initial values Ao

i at ão, we obtain a hypersurface Θ in T , which is the
set of points ã where the bundle EP1×{a} is not trivial (however its degree remains
equal to 0). Let ã∗ be a point on Θ. We will work locally near ã∗, and therefore we
will not distinguish between ã and a ∈ (P1)n r diagonals. Moreover, we now forget
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about the initial data which have produced this isomonodromic deformation and the
corresponding Θ, and we denote by T a small neighbourhood of a∗. We also assume,
for convenience, that none of the points ai (i = 1, . . . , n and a ∈ T ) is equal to ∞
(it is enough to assume that this is true for a∗i and take T small enough).

The bundle Ea∗ is not trivial. By the Birkhoff-Grothendieck theorem, it is de-
composed as a sum of rank-one vector bundles ⊕d

j=1O(kj) with some kj 6= 0 and
k1 > · · · > kd (and deg Ea∗ = k1 + · · ·+ kd = 0, so that there exists `,m ∈ {1, . . . , d}
such that k` − km > 2). The typical example when d = 2 is Ea∗ = O(1)⊕O(−1).

The meromorphic bundle E[∗(∞ × T )] is trivializable. It contains E as a holo-
morphic subbundle. The bundle with connection (E,∇) can be characterized as the
unique extension of

(
E[∗(∞× T )],∇

)
which is holomorphic at infinity.

On the other hand, there exists a holomorphic subbundle E
(0)
a∗ of the meromorphic

bundle Ea∗ [∗∞] which is trivial and on which the connection ∇ has only logarithmic
poles. One can choose E

(0)
a∗ such that, in any trivialization, the matrix of the connec-

tion ∇ has residue −K(0) at ∞, with K(0) := diag(k(0)
1 , . . . , k

(0)
d ) (with k

(0)
i = ki):

Andrey uses Sauvage Lemma to do so; in terms of vector bundles, remark that there
exists a basis of O(kj)[∗∞] = O[∗∞] in which the matrix of the differential d has
a pole at ∞ only, which is logarithmic with residue −kj ; using the splitting of Ea∗

given by the Birkhoff-Grothendieck theorem, one gets the desired basis of Ea∗ .
Denote by B

(0)
i (a∗) the residue of the connection ∇ at the pole a∗i . The matrix of

the connection in the chosen basis is then written as
n∑

i=1

B
(0)
i (a∗)
x− a∗i

dx

The point at infinity is an apparent (logarithmic) singularity and we have∑
i B

(0)
i (a∗) = K(0).

Apply now Theorem 3.1 starting with (E(0)
a∗ ,∇) to construct a holomorphic sub-

bundle E(0) of E[∗(∞× T )] with a logarithmic connection having poles at Y1 ∪ · · · ∪
Yn ∪ ({∞}× T ) and, maybe after taking a smaller T , choose the canonical trivializa-
tion by extending flatly the basis along {∞}× T . In this basis of E(0), the matrix of
∇ is written in the form ∑

i

B
(0)
i (a)

d(x− ai)
(x− ai)

and the B
(0)
i (a) satisfy the Schlesinger system.

Lemma 3.5 ([7, Lemma 1]). There exists `,m ∈ {1, . . . , d} such that k
(0)
m −k

(0)
` > 2 and

i ∈ {1, . . . , n} such that the (`,m)-entry B
(0)
i,`m(a) does not vanish identically.

Proof. Otherwise, the base change near {∞} × T with matrix xK(0)
would simul-

taneously (with respect to a) eliminate the apparent singularity. We would obtain
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the bundle E as a result, as mentioned above. This would mean that Ea has split-
ting type k

(0)
d , . . . , k

(0)
1 for any a ∈ T . But Ea is known to be trivial for a 6∈ Θ, a

contradiction.

Lemma 3.6 ([7, § 2]). Fix `,m ∈ {1, . . . , d} such that k
(0)
m − k

(0)
` > 2 and B

(0)
i,`m(a) 6≡ 0.

Put τ (0)(a) =
∑

i B
(0)
i,`m(a)ai = 0 and let Θ(0) be the support of Div(τ (0)). Then

there exists an holomorphic extension E(1)[∗Θ(0)] of E[∗(∞× T ) ∪Θ(0)] such that,
out of Θ(0),

(1) for any a ∈ T r Θ(0), the bundle E(1)[∗Θ(0)]a is trivial,
(2) the connection ∇ is logarithmic on E(1)[∗Θ(0)] with poles on Y1 ∪ · · · ∪ Yn ∪

(∞× T ) and its residue along ∞× T is −K(1) = −diag(k(1)
1 , . . . , k

(1)
d ) with

d∑
j=1

(k(1)
j )2 6

d∑
j=1

(k(0)
j )2 − 2.

Notice that these lemmas implies that the stratum of Θ consisting of points a ∈ Θ
where the splitting type of Ea is the same as that of Ea∗ is defined by the equations
B

(0)
i,`m(a) = 0 for all i = 1, . . . , n and all pairs `,m with km − k` > 2.
If K(1) = 0, then E(1)[∗Θ(0)] coincides with E[∗Θ(0)], by the uniqueness of the

extension of E[∗({∞} × T )] which is smooth along {∞} × T . We therefore have
Θ ⊂ Θ(0).

If K(1) 6= 0, we are in the situation of Lemma 3.5, except the fact that all the
coefficients are meromorphic along Θ(0) and maybe not holomorphic. Then, applying
Lemmas 3.5, we construct the meromorphic function τ (1) (with poles on Θ(0) at
most) and we define Θ(1) as the union of the support of Div(τ (1)) and Θ(0). We then
construct E(2)[∗Θ(1)], etc.

In a finite number of applications of Lemmas 3.5 and 3.6, we get a divisor Θ̃ in T

and an extension Ẽ[∗Θ̃] of E[∗(∞×T )∪Θ̃] on which the connection has no pole along
{∞} × T and which is trivial. In particular, it coincides with E out of Θ̃ and, more
precisely, we have Ẽ[∗Θ̃] = E[∗Θ̃]. By definition of Θ, we have the inclusion

Θ ⊂ Θ̃.

In some sense, this inductive procedure transfers the apparent polar locus {∞} × T

to a polar locus Θ̃ contained in T .
We also have a finite sequence of meromorphic functions τ (0), τ (1), . . . (τ (0) being

holomorphic) and we put τ̃ =
∏

ν τ (ν).
On the other hand, denote by τ the function of Miwa and Jimbo defining the

divisor Θ, after the theorem of Miwa (see [11]). We have near a∗

dτ

τ
=

1
2

∑
i 6=j

tr
(
Bi(a)Bj(a)

) d(ai − aj)
(ai − aj)

.
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Theorem 3.7 ([7, § 3]). The functions τ and τ̃ define the same divisor.

Proof. At each step of the previous procedure, the coefficients B
(ν)
i (a) satisfy a

Schlesinger system. Therefore, the form

ω(ν) :=
1
2

∑
i 6=j

tr
(
B

(ν)
i (a)B(ν)

j (a)
) d(ai − aj)

(ai − aj)

is closed. Notice that ω(0) is holomorphic on T (as we have ai 6= aj if i 6= j), so that
in particular ω(0) = d log h for h holomorphic and nonvanishing near a∗, but ω(ν) is
only meromorphic for ν > 1. More precisely we have:

Lemma 3.8 ([7, § 3]). For any ν > 1, we have ω(ν)−ω(ν−1) = d log τ (ν−1), where τ (ν−1)

is the equation obtained by the previous procedure when going from the step ν − 1 to
the step ν.

At the final step νfinal, the form ω(νfinal) is the form ωMJ of Miwa and Jimbo for
the original system (3.3). Putting τ̃ =

∏νfinal−1
ν=0 τ (ν), we find

ωMJ − ω(0) = d log τ̃ .

As we know, by a theorem of Miwa, that ωMJ represents Θ (in the sense of [11,
Def. 6.1]), we obtain the equality Div τ = Div τ̃ .

Remark 3.9 (effectivity). Although it is in general difficult to compute the functions
B

(0)
i,`m, and then the functions τ (ν), hence the function τ̃ , it is possible, in some

examples, to compute the k-jets of these functions for k large enough, and to get
information on the geometry of Θ as well as on the order of poles of the solutions of
the Schlesinger system.

3.c. The order of the pole along Θ of the solutions to the Schlesinger
system. We start again with the situation of § 3.a with a system (3.2). Assume
now that the size of the matrices Ao

i is 2 (i.e., d = 2 above). We have initial data
(Ao

i , a
o
i )i=1,...,n, and an isomonodromy deformation (3.3) of Schlesinger type (i.e., the

matrices Ai satisfy (Schl)) with a corresponding polar divisor Θ for the matrices Ai.
Make moreover the following assumptions:

(1) The monodromy representation defined by ∇o on Eo is irreducible;
(2) at a point a∗ of Θ, the splitting type of Ea∗ is (1,−1).

Remark 3.10. As Ea∗ has degree 0 and is not trivial, its splitting type is (k,−k)
with k > 1. As the monodromy representation is irreducible and as d = 2, one
has the bound 2k 6 n − 2. When n = 4, Assumption (2) is therefore implied by
Assumption (1).
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Theorem 3.11 ([4, Theorem 2]). Under these assumptions, for i = 1, . . . , n, the matrix
Ai(a) has a pole of order 6 2 on Θ near a∗.

We assume for convenience that none of the numbers a∗i (i = 1, . . . , n) is 0 or ∞.
We denote now by T a neighbourhood of a∗.

By the same(2) procedure as in § 3.b, introduce an apparent singularity (now at
x = 0, not at x = ∞) to get a trivial bundle with connection E′

a∗ .
The procedure described in § 3.b has only one step, because of Assumption (2).
The matrix of ∇ in a basis of E′

a∗ is written as

B′(x) dx =
(B′

0

x
+

n∑
i=1

B′
i

x− ai

)
dx

with B′
0 = diag(1,−1) and

∑n
i=0 B′

i = 0. Hence the entry b′12(x) of B′(x) is holomor-
phic and vanishes at x = 0.

Lemma 3.12 ([4], p. 68). Under Assumption (1), the valuation (order of vanishing) of
b′12(x) at x = 0 is < n− 1.

Proof. Indeed, the coefficient of xm (m > 1) in b′12(x) is −
∑n

i=1 b′i,12/a
∗(m−1)
i . If the

valuation of b′12(x) is > n − 1, this implies that all b′i,12 are zero, and (E′
a∗ ,∇) is

reducible, hence its monodromy too, in contradiction with Assumption (1).

Applying the procedure (with one step) described in § 3.b, Andrey computes the
equation of Θ̃ and finds that Θ̃ is smooth at a∗. This clearly implies that Θ = Θ̃.

On the other hand, the original system (3.3) can be obtained by a simple base
change from the system obtained after the previous procedure. A detailed computa-
tion shows that the original matrices Ai(a) have a pole of order 6 2 along Θ.

Remarks 3.13
(1) In [4], there is an explicit example where the order of the pole is 2.
(2) In [6, § 3], Andrey indicates that, without Assertion (2), a result similar to

Theorem 3.11 still holds, but the order of the pole is 6 2k, if Ea∗ has splitting type
(k,−k).

4. Isomonodromic confluences

It is well known that a family of linear differential equations of one variable having
only regular singularities may acquire, for some values of the parameter, an irregular
singularity when various singular points for the generic value of the parameter merge
together. In the algebraic or analytic setting, we have a vector bundle E on X as in
§ 1 and we moreover assume that

(2)However, Theorem 3.11 appeared in a Nice preprint dated july 1995, and the results of § 3.b were

obtained later.
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– π : X → T is smooth of relative dimension one,
– π : Y → T is finite (but Y is not necessarily smooth).

Given a relative connection ∇X/T on E, such that a generic fibre ∇t on Et has regular
singularities on Yt, it may happen that a special fibre ∇to has an irregular singularity
at some point of Yto .

Example 4.1. Let X = C × C with coordinates x, t and Y = {x2 − t2 = 0}. Take
the trivial rank one bundle on X with the relative connection having the matrix
dx/(x2 − t2). For t 6= 0, we have a regular singularity at x = ±t, and, for t = 0, we
have an irregular singularity at x = 0.

The results below say that, under an isomonodromy condition, such a phenomenon
does not appear.

A setting more general than the previous one happens to be useful. This occurs
for instance when one considers confluence in a Schlesinger family parametrized by
the universal covering of (P1)n r diagonals: the confluence takes place in the inverse
image in T of a neighbourhood of the diagonals. Near a generic point of the diagonals,
when only two points coincide, such an open set looks like the product of a upper half
plane by an open set in Cn−1, and one studies the confluence in vertical strips in this
upper half plane.

4.a. The algebraic/analytic case. This case was studied by Deligne [10] (see
also [12]). Deligne used the full strength of Hironaka’s theorem on resolution of
singularities. His approach has been much simplified by Z. Mebkhout, who gives a
proof using resolution of singularities in dimension two only (cf. [13, 14], see also
[15]).

We put here X = D × T , where D is a disc in C. Let Y be a divisor in X on
which the projection π : X → T is finite. Let E be a holomorphic vector bundle on X

equipped with a meromorphic integrable connection ∇ : E → Ω1
X

(∗Y ) ⊗OX
E with

poles along Y at most. It defines a meromorphic connection ∇t on Et with poles at
the finite set of points Yt for any t ∈ T .

Theorem 4.2 (Deligne). Assume that, for generic t ∈ T , the connection ∇t has only
regular singularities at Yt. Then this holds for any t ∈ T .

Sketch. The proof uses a variant of the Riemann existence Theorem. One constructs
a meromorphic bundle with a connection having regular singularities along Y at
most, and having the same monodromy as the original connection. This auxiliary
system satisfies the property of the theorem. Once such a system is constructed, one
proves that it is isomorphic to the original one: one has an isomorphism between both
bundles with connection out of Y ; due to the generic regular singularity of the original
system, such an isomorphism is generically meromorphic along Y ; by Hartogs, it is
meromorphic.
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Moreover, it is then clear by a topological argument that, for to ∈ T , the mon-
odromy of ∇to on Eto around some point in Yto can be computed as the product of
well-chosen representatives of the monodromy operators of ∇t on Et near those points
in Yt which tend to the chosen point in Yto when t → 0.

4.b. Other confluences. Denote by D an open disc centered at 0 in the complex
plane and by ∆ the open disc {|t−1| < 1}. Denote by Y the intersection of X = D×∆
with the lines x = ao

i t, with ao
i ∈ D for i = 1, . . . , n.

Consider an integrable (or isomonodromic) meromorphic system of differential
equations on X with poles on Y , with matrix Ω = A(x, t)dx + C(x, t)dt having poles
along Y at most. Assume that the limits of A(x, t), C(x, t) when t → 0 exist and are
meromorphic on D with pole at 0 at most.

Theorem 4.3 ([3, theorem 4]). Assume that, for generic t ∈ ∆, the system with matrix
A(x, t)dx has regular singularities at the points ao

i t (i = 1, . . . , n). Then the limiting
system at t = 0 has a regular singularity at x = 0.

In such a situation, Theorem 4.2 does not apply. The method of proof given
by Andrey is nevertheless similar: to construct a system with the same monodromy
satisfying the property of the theorem, and then show, by an argument using Hartogs,
that this system is isomorphic to the original one. The existence result uses the
particular form of the polar divisor Y , by solving explicitly the Schlesinger system.
We only give details of the existence part.

Proof. For simplicity, let us first consider, as in loc. cit., the case where the mon-
odromy around the boundary of D (i.e., the product of well-chosen representatives of
the monodromies around each ao

i ) is equal to the identity.
For the value t = 1 extend the system as a system on C. Choose a point ao

0 distinct
from the other ao

i . There exists therefore, according to Plemelj, a Fuchsian system on
P1 with no singularity at ∞ and an apparent singularity at ao

0, having the monodromy
of the original system. Let us write the matrix of this Fuchsian system as

n∑
i=0

Bi
dx

x− ao
i

, with
∑

i

Bi = 0.

The Schlesinger system (Schl) with respect to the parameter t describing the isomon-
odromic deformation with pole on Ỹ = Y ∪ {x = ao

0t} can be written as

dBi(t) =
∑
j 6=i

[Bi(t), Bj(t)]
dt

t

and therefore
∑

i Bi(t) is constant, hence 0. The system can then be written as

dBi(t) =
[
Bi(t),

∑
j Bj(t)

] dt

t
= 0,
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that is, the Bi(t) are constant. The matrix of the connection (3.3) is written as∑n
i=0 Bi d(x− ao

i t)/(x− ao
i t), its limit when t → 0 does exist and is equal to 0, hence

the regular singularity of the system restricted at t = 0. The original system is then
shown to be meromorphically isomorphic to the previous model(3).

If the monodromy around the boundary of D is not the identity, the previous
construction can still been done, but we now have

∑n
i=0 Bi = −B∞ 6= 0. In the

Schlesinger system, we still have B∞ constant, and Bi(t) is a solution to the Fuchsian
linear system

dBi(t)
dt

=
adB∞

t
·Bi(t),

hence Bi(t) = tB∞Bit
−B∞ . The matrix of the connection, which is as in (3.3):

Ω =
n∑

i=0

Bi(t)
d(x− ao

i t)
(x− ao

i t)

satisfies, out of x = 0,

lim
t→0

xΩ = B∞ dx,

hence the regular singularity at the limit.

4.c. Confluence as a dynamical version of apparent singularities. Let us
begin with preliminary remarks. Let a∗ be a set of n distinct points in P1 and let
Ea∗ be a nontrivial holomorphic bundle of degree 0 with a connection ∇a∗ having
logarithmic poles at a∗. If T is as in § 3.a, we have, after Theorem 3.1 applied to
the initial condition (Ea∗ ,∇a∗), a vector bundle E on P1 × T with a logarithmic
connection having poles on Y , which restricts to the initial condition at a = a∗.

The bundle with connection (Ea∗ ,∇a∗) is contained in a meromorphic bundle with
connection (Ea∗(∗a∗),∇a∗), in which the Riemann-Hilbert problem may or may not
have a solution.

One can ask the question: Is Ea trivial for generic a?

Andrey has given examples of a monodromy representation for which the R-H
problem has no solution, whatever the choice of a position a of the poles could be
(cf. [1, Prop. 5.2.1, p. 126]). In particular, the answer to the previous question may
be negative.

On the other hand, if one allows confluence, he has obtained the following result
in [5].

(3)Some eigenvalues of some Bi may differ by a nonzero integer: this usually happens at the apparent

singularity; this would not happen in Deligne’s method where the choice of a “Deligne extension”

allows one, by its uniqueness, to construct a Fuchsian system in a global situation (after resolution

of singularities) by a local procedure.
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Let E′
a∗ be a trivial holomorphic subbundle of Ea∗(∗an) on which the connection

has a pole of Poincaré rank r > 1 at an. It is then possible to construct an isomon-
odromic confluence (as in § 4.b) of trivial bundles E′

t with logarithmic connection ∇t

(i.e., Fuchsian systems) having poles at a1, . . . , an and at a finite number of distinct
points bj(t) which converge to an when t → 0, so that the limit bundle is E′

a∗ . The
points bj(t) are apparent singularities for ∇t and their number can be bounded by
(rd(d− 1)/2)2, using a result of E. Corel [9].
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