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Main themes

Isomonodromy and integrability.

Possible general form of an isomonodromic
deformation of a Fuchsian system.

The Schlesinger system and the Painlevé property.
Equation for the “Theta divisor”.
Bounds for the order of the pole of the solutions
along the “Theta divisor”.
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Main themes— continuation

Isomonodromic confluences.
Preservation of regularity at the confluence point.
Any vector bundle with logarithmic connection on
the Riemann sphere can be obtained from
Fuchsian systems by confluence
(a dynamical version of the adjunction of an
apparent singularity).

Isomonodromy and irregular singularities
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Ωj(x, t) dtj, dΩ + Ω ∧ Ω = 0
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o) = Ao

i Ai(t) holomorphic
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integrable meromorphic connection
with logarithmic poles along Y o

Isomonodromic deformation parametrized by T :

∇ : E → Ω1
X

(∗Y ) ⊗ E, ∇◦∇ = 0, ∇|Eo = ∇o

integrable meromorphic connection with regular
singularities along Y and each ∇t on Et has
logarithmic poles along Yt

The work of Andrey Bolibrukh – p. 7/18



Vector bundles
P

1

tt
o T

ai(t
o)

ai(t)

π

Y

Eo holomorphic vector bundle on P
1

∇o : Eo → Ω1
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integrable meromorphic connection
with logarithmic poles along Y o

Isomonodromic deformation parametrized by T :

∇ : E → Ω1
X

(log Y ) ⊗ E, ∇◦∇ = 0, ∇|Eo = ∇o

integrable meromorphic connection with logarithmic
poles along Y
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a system
du

dx
=

∑n
i=1

Ao
i

x − ao
i

· u,
∑

i Ao
i = 0.

⇐⇒ a logarithmic connection ∇o on the trivial
bundle Eo of rank d on P

1, with poles at ao.

T : universal cover of (P1)n
r diagonals, with base

point ão.

Theorem (Malgrange). There exists a unique vector bundle E on

P
1 × T equipped with an integrable logarithmic connection ∇

having poles along the hypersurfaces Yi, and with an identification

(E, ∇)|P1×{eao}
∼

−→ (Eo, ∇o).
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On can choose the basis such that Bi ≡ 0.

The work of Andrey Bolibrukh – p. 9/18



The Schlesinger system— continuation

Divisor Θ = {ã ∈ T | Eea is not trivial},

The matrix of ∇ in a basis of E(∗Θ) extending that
of Eo is:

n∑

i=1

Ai(ã)
d(x − ãi)

(x − ãi)

On can choose the basis such that Bi ≡ 0.

The Schlesinger system (integrability condition):

dAi =
∑

j 6=i

[Ai, Aj]
d(ãi − ãj)

(ãi − ãj)
, i = 1, . . . , n.
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Corollary. The solutions of the Schlesinger system with initial value
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Corollary. The solutions of the Schlesinger system with initial value
Ao

i at ão are meromorphic on T with poles along Θ at most.

Behaviour of the solutions to the Schlesinger system
near the polar set Θ?

Andrey has given a method to produce examples and
describe in concrete terms this behaviour.
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Local equation for Θ

Initial data ão, Ao
i  (E, ∇) on P

1 × T , Θ ⊂ T .

Take a∗ ∈ Θ. Hence Ea∗ ' ⊕d
j=1O(−kj), with

k1 6 · · · 6 kd and deg Ea∗ = −(k1 + · · · + kd) = 0.
Typical example: Ea∗ ' O(1) ⊕ O(−1)
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Hence ∃ `, m ∈ {1, . . . , d} such that k` − km > 2.

There exists a holomorphic subbundle E
(0)
a∗ of the

meromorphic bundle Ea∗ [∗∞] which is trivial and on
which the connection ∇ has only logarithmic poles.
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j=1O(−kj), with
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Hence ∃ `, m ∈ {1, . . . , d} such that k` − km > 2.

There exists a holomorphic subbundle E
(0)
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meromorphic bundle Ea∗ [∗∞] which is trivial and on
which the connection ∇ has only logarithmic poles.

Matrix of the connection:
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Local equation for Θ

Initial data ão, Ao
i  (E, ∇) on P

1 × T , Θ ⊂ T .

Take a∗ ∈ Θ. Hence Ea∗ ' ⊕d
j=1O(−kj), with

k1 6 · · · 6 kd and deg Ea∗ = −(k1 + · · · + kd) = 0.
Hence ∃ `, m ∈ {1, . . . , d} such that k` − km > 2.

There exists a holomorphic subbundle E
(0)
a∗ of the

meromorphic bundle Ea∗ [∗∞] which is trivial and on
which the connection ∇ has only logarithmic poles.

Matrix of the connection:
∑n

i=1

B
(0)
i (a∗)

x − a∗
i

dx

∞ = apparent singularity and
∑

i B
(0)
i (a∗) = diag(k1, . . . , kd) =: K(0)
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Local equation for Θ— continuation

Malgrange’s theorem applied to E
(0)
a∗ near a∗
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Local equation for Θ— continuation

Malgrange’s theorem applied to E
(0)
a∗ near a∗

 (E(0), ∇) trivial on P
1 × nb(a∗),

matrix of ∇:

∑

i

B
(0)
i (a)

d(x − ai)

(x − ai)
,

∑

i

B
(0)
i (a) ≡ K(0)

and the B
(0)
i (a) satisfy the Schlesinger system.
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Local equation for Θ— continuation

Malgrange’s theorem applied to E
(0)
a∗ near a∗

 (E(0), ∇) trivial on P
1 × nb(a∗),

matrix of ∇:

∑

i

B
(0)
i (a)

d(x − ai)

(x − ai)
,

∑

i

B
(0)
i (a) ≡ K(0)

and the B
(0)
i (a) satisfy the Schlesinger system.

Lemma 1. There exists `, m ∈ {1, . . . , d} such that
km − k` > 2 and i ∈ {1, . . . , n} such that the (`, m)-entry

B
(0)
i,`m(a) does not vanish identically.
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Local equation for Θ— continuation
Lemma 2. Fix `, m ∈ {1, . . . , d} such that km − k` > 2 and

B
(0)
i,`m(a) 6≡ 0.
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Local equation for Θ— continuation
Lemma 2. Fix `, m ∈ {1, . . . , d} such that km − k` > 2 and

B
(0)
i,`m(a) 6≡ 0.

Put τ (0)(a) =
∑

i B
(0)
i,`m(a)ai and Θ(0) = {τ (0) = 0}.
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B
(0)
i,`m(a) 6≡ 0.

Put τ (0)(a) =
∑

i B
(0)
i,`m(a)ai and Θ(0) = {τ (0) = 0}.

Then there exists an extension E(1)[∗Θ(0)] of

E[∗(∞ × T ) ∪ Θ(0)] such that, out of Θ(0),

for any a ∈ T r Θ(0), the bundle E(1)[∗Θ(0)]a is trivial,

the connection ∇ is logarithmic on E(1)[∗Θ(0)] with poles on
Y1 ∪ · · · ∪ Yn ∪ (∞ × T ) and its residue along ∞ × T is

−K(1) = −diag(k
(1)
1 , . . . , k

(1)
d ) with

∑d
j=1(k

(1)
j )2 6

∑d
j=1(k

(0)
j )2 − 2.
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Local equation for Θ— continuation

If K(1) =0, then E(1)[∗Θ(0)]=E[∗Θ(0)] and Θ⊂Θ0.
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Local equation for Θ— continuation

If K(1) =0, then E(1)[∗Θ(0)]=E[∗Θ(0)] and Θ⊂Θ0.

If K(1) 6= 0, the matrix of ∇:
∑

i B
(1)
i (a)

d(x − ai)

(x − ai)
,

∑
i B

(1)
i (a) ≡ K(1) and the B

(1)
i (a) satisfy the

Schlesinger system.
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Local equation for Θ— continuation

If K(1) =0, then E(1)[∗Θ(0)]=E[∗Θ(0)] and Θ⊂Θ0.

If K(1) 6= 0, the matrix of ∇:
∑

i B
(1)
i (a)

d(x − ai)

(x − ai)
,

∑
i B

(1)
i (a) ≡ K(1) and the B

(1)
i (a) satisfy the

Schlesinger system.
Apply Lemma 1.
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Local equation for Θ— continuation

If K(1) =0, then E(1)[∗Θ(0)]=E[∗Θ(0)] and Θ⊂Θ0.

If K(1) 6= 0, the matrix of ∇:
∑

i B
(1)
i (a)

d(x − ai)

(x − ai)
,

∑
i B

(1)
i (a) ≡ K(1) and the B

(1)
i (a) satisfy the

Schlesinger system.
Apply Lemma 1.

Lemma 1. There exists `, m ∈ {1, . . . , d} such that

k
(1)
m −k

(1)
` >2 and i ∈ {1, . . . , n} such that the (`, m)-entry

B
(1)
i,`m(a) does not vanish identically.
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Local equation for Θ— continuation

If K(1) =0, then E(1)[∗Θ(0)]=E[∗Θ(0)] and Θ⊂Θ0.

If K(1) 6= 0, the matrix of ∇:
∑

i B
(1)
i (a)

d(x − ai)

(x − ai)
,

∑
i B

(1)
i (a) ≡ K(1) and the B

(1)
i (a) satisfy the

Schlesinger system.
Apply Lemma 1.
Get τ (1) and Θ(1) ⊃ Θ(0).
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Local equation for Θ— continuation
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∑
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(1)
i (a)

d(x − ai)

(x − ai)
,

∑
i B

(1)
i (a) ≡ K(1) and the B

(1)
i (a) satisfy the

Schlesinger system.
Apply Lemma 1.
Get τ (1) and Θ(1) ⊃ Θ(0).
Apply Lemma 2 and get E(2)[∗Θ(1)] and K(2).
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Local equation for Θ— continuation

If K(1) =0, then E(1)[∗Θ(0)]=E[∗Θ(0)] and Θ⊂Θ0.

If K(1) 6= 0, the matrix of ∇:
∑

i B
(1)
i (a)

d(x − ai)

(x − ai)
,

∑
i B

(1)
i (a) ≡ K(1) and the B

(1)
i (a) satisfy the

Schlesinger system.
Apply Lemma 1.
Get τ (1) and Θ(1) ⊃ Θ(0).
Apply Lemma 2 and get E(2)[∗Θ(1)] and K(2).

etc. Get τ (ν), Θ(ν) ⊃ Θ(ν−1), E(ν+1)[∗Θ(ν)],
K(ν+1) = 0.
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Local equation for Θ— continuation

If K(1) =0, then E(1)[∗Θ(0)]=E[∗Θ(0)] and Θ⊂Θ0.

If K(1) 6= 0, the matrix of ∇:
∑

i B
(1)
i (a)

d(x − ai)

(x − ai)
,

∑
i B

(1)
i (a) ≡ K(1) and the B

(1)
i (a) satisfy the

Schlesinger system.
Apply Lemma 1.
Get τ (1) and Θ(1) ⊃ Θ(0).
Apply Lemma 2 and get E(2)[∗Θ(1)] and K(2).

etc. Get τ (ν), Θ(ν) ⊃ Θ(ν−1), E(ν+1)[∗Θ(ν)],
K(ν+1) = 0.

Then E(ν+1)[∗Θ(ν)] = E[∗Θ(ν)] and Θ ⊂ Θ(ν).
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A picture illustrating the method
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A picture illustrating the method
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A picture illustrating the method
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A picture illustrating the method
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Theorem. Set τ̃ = τ (0) · τ (1) · · · τ (ν).
Then τ̃ is a local equation for Θ.
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Theorem. Set τ̃ = τ (0) · τ (1) · · · τ (ν).
Then τ̃ is a local equation for Θ.

Sketch of the proof.
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Theorem. Set τ̃ = τ (0) · τ (1) · · · τ (ν).
Then τ̃ is a local equation for Θ.

Sketch of the proof.

ω(µ) =
1

2

∑

i 6=j

tr
(
B

(µ)
i (a)B

(µ)
j (a)

) d(ai − aj)

(ai − aj)
.
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Theorem. Set τ̃ = τ (0) · τ (1) · · · τ (ν).
Then τ̃ is a local equation for Θ.

Sketch of the proof.

ω(µ) =
1

2

∑

i 6=j

tr
(
B

(µ)
i (a)B

(µ)
j (a)

) d(ai − aj)

(ai − aj)
.

ω(ν) =
dτ

τ
with Θ = {τ = 0} (Theorem of Miwa).
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Sketch of the proof.

ω(µ) =
1
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∑

i 6=j

tr
(
B

(µ)
i (a)B

(µ)
j (a)

) d(ai − aj)

(ai − aj)
.

ω(ν) =
dτ

τ
with Θ = {τ = 0} (Theorem of Miwa).

ω(0) is holomorphic and closed (Schlesinger).
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Theorem. Set τ̃ = τ (0) · τ (1) · · · τ (ν).
Then τ̃ is a local equation for Θ.

Sketch of the proof.

ω(µ) =
1

2

∑

i 6=j

tr
(
B

(µ)
i (a)B

(µ)
j (a)

) d(ai − aj)

(ai − aj)
.

ω(ν) =
dτ

τ
with Θ = {τ = 0} (Theorem of Miwa).

ω(0) is holomorphic and closed (Schlesinger).

ω(µ) − ω(µ−1) =
dτ (µ−1)

τ (µ−1)
.
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