ERRATA TO "POLARIZABLE TWISTOR @-MODULES"

by

Claude Sabbah

- (1) On page 21, line 5 and page 22, line 5, replace $\boldsymbol{L}_{z_o}^*$ with $Li_{z_o}^*$.
- (2) On page 30, Lemma 1.5.3 and in its proof, replace $\mathscr{C}_{X|\mathbf{S}}^{\infty,\mathrm{an}}$ with $\mathscr{C}_{\mathscr{X}|\mathbf{S}}^{\infty,0}$
- (3) On page 30, (1.5.5) reads

$$(1.5.5) (t\eth_t - \beta \star z)u_{\beta,\ell} = -zu_{\beta,\ell-1}$$

and on page 31, (1.5.6) reads

(1.5.6)
$$(\overline{t} \overrightarrow{\eth}_t - \beta \star z) u_{\beta,\ell} = \frac{1}{z} u_{\beta,\ell-1}.$$

- (4) On page 32, line 8, the isomorphism $\mathscr{T}^*(-k) \to \mathscr{T}(k)^*$ is not the morphism obtained by adjunction of (1.6.3), but the inverse morphism obtained from (1.6.3) where we replace \mathscr{T} by \mathscr{T}^* . The choice of (1.6.3) is universal and holds for any \mathscr{T} .
- (5) On page 33, 4th line of 1.6.b, replace $\mathscr{C}_{X|\mathbf{S}}^{\infty,\mathrm{an}}$ with $\mathscr{C}_{\mathscr{X}|\mathbf{S}}^{\infty,0}$
- (6) On page 48, the text of Remark 2.2.1 has to be replaced by the following text:
- **Remark 2.2.1.** We have seen that the sesquilinear pairing C takes values in $\mathscr{C}_{\mathcal{X}|\mathbf{S}}^{\infty,0}$, according to Lemma 1.5.3. So the restriction to x_o of each component of the smooth twistor structure is well defined. Then, according to (2.1.1), C takes values in $\mathscr{C}_{X|\mathbf{S}}^{\infty,\mathrm{an}}$. It is also nondegenerate and gives a gluing of \mathscr{H}^{I*} with $\overline{\mathscr{H}^{I'}}$, defining thus a $\mathscr{C}_{X\times\mathbb{P}^1}^{\infty,\mathrm{an}}$ -bundle $\widetilde{\mathscr{H}}$ on $X\times\mathbb{P}^1$.
- (7) On page 89, formulas (3.6.4)(*) and (3.6.5)(*), the exponent of the Γ factor is -L, not L.
- (8) On page 90, second line after Remark 3.6.8, read "with respect to s" instead of "with respect to S".

2 C. SABBAH

(9) The statement of Lemma 3.6.33 (which is not used in the text) has to be replaced with

$$\left\langle \phi_{t,0}C([m'_0], \overline{[m''_0]}), \bullet \right\rangle = \operatorname{Res}_{s=0} \frac{-1}{s} \left\langle (|t|^{2s} - s)C(m'_0, \overline{m''_0}), \bullet \wedge \chi(t) \frac{i}{2\pi} dt \wedge d\overline{t} \right\rangle.$$

Proof. — We write $m_0'' = \eth_t m_{-1}'' + \mu_{\leq 0}''$. By definition,

$$\begin{split} \left\langle \phi_{t,0} C([m'_0], \overline{[m''_0]}), \varphi \right\rangle &= \operatorname{Res}_{s=0} \left\langle C(m'_0, \overline{\eth_t m''_{-1}}), \varphi \wedge I_{\widehat{\chi}} \chi \frac{i}{2\pi} dt \wedge d\overline{t} \right\rangle \\ &= \operatorname{Res}_{s=0} \left\langle C(m'_0, \overline{m''_{-1}}), \varphi \wedge (\overline{\eth_t} I_{\widehat{\chi}}) \chi \frac{i}{2\pi} dt \wedge d\overline{t} \right\rangle \\ &= -z^{-1} \operatorname{Res}_{s=-1} \left\langle C(m'_0, \overline{m''_{-1}}), \varphi \wedge t | t |^{2s} \chi(t) \frac{i}{2\pi} dt \wedge d\overline{t} \right\rangle. \end{split}$$

by (3.6.23). On the other hand,

$$\begin{aligned} \operatorname{Res}_{s=0} & \frac{-1}{s} \left\langle |t|^{2s} C(m_0', \overline{\eth_t m_{-1}''}), \varphi \wedge \chi(t) \frac{i}{2\pi} dt \wedge d\overline{t} \right\rangle \\ & = \operatorname{Res}_{s=-1} \frac{-1}{s+1} \left\langle C(m_0', \overline{\eth_t m_{-1}''}), \varphi \wedge |t|^{2(s+1)} \chi(t) \frac{i}{2\pi} dt \wedge d\overline{t} \right\rangle \\ & = \operatorname{Res}_{s=-1} \frac{1}{s+1} \left\langle C(m_0', \overline{m_{-1}''}), \varphi \wedge \overline{\eth_t} (|t|^{2(s+1)} \chi(t)) \frac{i}{2\pi} dt \wedge d\overline{t} \right\rangle \\ & = -z^{-1} \operatorname{Res}_{s=-1} \left\langle C(m_0', \overline{m_{-1}''}), \varphi \wedge t |t|^{2s} \chi(t) \frac{i}{2\pi} dt \wedge d\overline{t} \right\rangle \\ & + \operatorname{Res}_{s=-1} \frac{1}{s+1} \left\langle C(m_0', \overline{m_{-1}''}), \varphi \wedge |t|^{2(s+1)} \overline{\eth_t} \chi(t) \frac{i}{2\pi} dt \wedge d\overline{t} \right\rangle \\ & = -z^{-1} \operatorname{Res}_{s=-1} \left\langle C(m_0', \overline{m_{-1}''}), \varphi \wedge t |t|^{2s} \chi(t) \frac{i}{2\pi} dt \wedge d\overline{t} \right\rangle \\ & - \left\langle C(m_0', \overline{\eth_t m_{-1}''}), \varphi \wedge \chi \frac{i}{2\pi} dt \wedge d\overline{t} \right\rangle \end{aligned}$$

and

$$\operatorname{Res}_{s=0} \frac{-1}{s} \left\langle |t|^{2s} C(m_0', \overline{\mu_{<0}''}), \varphi \wedge \chi(t) \frac{i}{2\pi} dt \wedge d\bar{t} \right\rangle = - \left\langle C(m_0', \overline{\mu_{<0}''}), \varphi \wedge \chi \frac{i}{2\pi} dt \wedge d\bar{t} \right\rangle. \ \Box$$

- (10) On page 119, in the statement of Corollary 4.2.9, replace w + 1 with w.
- (11) On page 121, the argument given on lines 10–14 is not correct, as the inverse image by the projection is not known to be a polarizable twistor \mathscr{D} -module. One can argue as follows.

Choose a finite morphism $\pi:Z\to Z'$ with Z' smooth and projective (a projective line, for instance) and consider the composed morphism $\nu\circ\pi:\widetilde Z\to Z'$. On $Z^o\subset\widetilde Z$, the object $(\mathscr T,\mathscr S)$ defines a harmonic bundle (H,D_E'',θ_E,h) in the sense of C. Simpson [3], according to the correspondence of Lemma 2.2.2 on Z^o . We can restrict Z^o so that $\pi:Z^o\to Z'^o$ is a finite covering. We wish to show that the eigenvalues of the Higgs field are (multivalued) meromorphic one-forms, with a pole of order at most one at each puncture, and a purely imaginary residue at any such punctures. Indeed, this will imply that the harmonic bundle (H,D_E'',θ_E,h) on Z^o is tame on $\widetilde Z$, and that its parabolic

filtration at the punctures is the trivial one, so, by [3], the corresponding local system is semisimple.

It is then enough to prove that such a property is satisfied for the direct image $\pi_*(H, D_E'', \theta_E, h)$ on Z'^o , as locally the covering is trivial (in a local coordinate t on \widetilde{Z} and t' on Z' for which $\pi(t) = t' = t^q$, we have dt'/t' = qdt/t, and, if the eigenvalues of θ_E' are written as $\alpha(t)dt/t$, the eigenvalues of $\pi_*\theta_E'$ are of the form $\frac{1}{q}\alpha(\zeta t)\frac{dt'}{t'}$, with $\zeta^q = 1$; hence the condition on eigenvalues is satisfied for θ_E' if and only if it is satisfied for $\pi_*\theta_E' = \theta_{\pi_*E}'$).

Now, a particular case of Theorem 6.1.1 (the case when π is finite) implies that $\pi_+(\mathscr{T},\mathscr{S})$ is an object of $\mathrm{MT}^{(r)}(Z,0)^{(p)}$, and we apply the correspondence of Theorem 5.0.1.

- (12) On page 127, line -7: replace "for some integers a_k " with "for some coefficients $a_k(z)$ ".
- (13) On page 135, the line after (5.3.5), read $\mathscr{O}_{\mathscr{X}}$ instead of $\mathscr{O}_{\mathscr{G}}$.
- (14) On page 156, line -1 and page 157, line 1, replace $n_j + \beta_j = -1$ by $n_j + \beta_j = 0$, and $\ell_z(n_j + \beta_j) = -1$ by $\ell_z(n_j + \beta_j) = 0$. This does not affect thre reasoning.
- (15) On page 167, line 2: it is implicitly understood that $\omega_{\beta,\ell,k}$ is holomorphic even at t=0, although the previous reasoning only gives the holomorphy away from t=0. The argument that $(\mathcal{D}'_z\eta_{\neq(0,0)})_{\neq(0,0)}$ is L^2 has to be corrected. I thank T. Mochizuki for pointing out the mistake and providing the following proof.
- (a) Let us set $\widetilde{\omega}_{\beta,\ell,k} = t\omega_{\beta,\ell,k}$, which is holomorphic on $D^* \times \operatorname{nb}(z_o)$. Assume first (see (b) below) we have proved that $\widetilde{\omega}_{\beta,\ell,k} e'^{(z_o)}_{\beta,\ell,k}$ is L^2 when we fix z in $\operatorname{nb}(z_o)$. Then, if we expand $\widetilde{\omega}_{\beta,\ell,k} = \sum_{n \in \mathbb{Z}} \widetilde{\omega}_{\beta,\ell,k,n}(z) t^n$, we claim that the coefficients $\widetilde{\omega}_{\beta,\ell,k,n}(z)$ identically vanish when $n \leqslant -1$. In order to prove this, we can argue with z fixed. The L^2 condition we assume is that, for any $n \in \mathbb{Z}$, $|\widetilde{\omega}_{\beta,\ell,k,n}(z)| r^{n+\ell_z(q_\beta,\zeta_o+\beta)} \operatorname{L}(r)^{\ell/2-1} \in L^2_{\operatorname{loc}}(d\theta \, dr/r)$. But when $n \leqslant -1$ and a < 1 (as is $\ell_z(q_{\beta,\zeta_o}+\beta)$ for z near z_o), $r^{n+a}\operatorname{L}(r)^{k/2}$ does not belong to $L^2_{\operatorname{loc}}(d\theta, dr/r)$, hence the coefficients $\widetilde{\omega}_{\beta,\ell,k,n}(z)$ have to vanish when $n \leqslant -1$.

In order to conclude, we want to show that $\widetilde{\omega}_{\beta,\ell,k}e_{\beta,\ell,k}^{\prime(z_o)}dt/t$ is L^2_{loc} , while we have only assumed that $\widetilde{\omega}_{\beta,\ell,k}e_{\beta,\ell,k}^{\prime(z_o)}$ is so. If $\ell_{z_o}(q_{\beta,\zeta_o}+\beta)\neq 0$, multiplying by L(r) will not cause an escape from the L^2 space, as the L^2 condition is governed by terms like $r^{n+\ell_z(q_{\beta,\zeta_o}+\beta)}$. If $\ell_{z_o}(q_{\beta,\zeta_o}+\beta)=0$, the previous argument is not valid if n=0. But we precisely considered the $\neq (0,0)$ parts, so the corresponding coefficient $\widetilde{\omega}_{\beta,\ell,k,0}(z)$ is identically 0 by definition.

(b) Let us now fix $z \in \operatorname{nb}(z_o)$, that we still denote by z_o for simplicity. The operator $D_E + z_o \theta_E'' - \overline{z_o} \theta_E' = \mathcal{D}_{z_o}'' + \delta_{z_o}'$ is compatible the harmonic metric h on H by definition, and we have $\mathcal{D}_{z_o}' = z_o \delta_{z_o}' + (1 + |z_o|^2) \theta_E'$. If we know (cf. (c) below) that $(\mathcal{D}_{z_o}'' + \delta_{z_o}')(\eta_{\neq(0,0)})$ is a section of $\mathcal{L}_{(2)}^1(H, h)$ then, by the

4 C. SABBAH

definition of η , the same property holds for $\delta'_{z_o}(\eta_{\neq(0,0)})$. On the other hand, by the expression of Θ'_{z_o} given before (6.2.7), $\mathcal{L}(t)^{-1}\theta'_{z_o}(\eta_{\neq(0,0)})$ is also in $\mathcal{L}^1_{(2)}(H,h)$ (the term $\mathcal{L}(t)^{-1}$ is here to compensate the norm of dt/t). Therefore, we find that $\mathcal{L}(t)^{-1}\mathcal{D}'_{z_o}(\eta_{\neq(0,0)})$ is in $\mathcal{L}^1_{(2)}(H,h)$ and finally, by definition of ω , that $\mathcal{L}(t)^{-1}\omega$ is in $\mathcal{L}^1_{(2)}(H,h)$, so the assumption in (a) above is fulfilled.

(c) As $D_{z_o} \stackrel{\text{def}}{=} \mathcal{D}_{z_o}'' + \delta_{z_o}'$ is compatible with h, we have, for a C_c^{∞} section e of H on D^* :

$$0 = d^{2}h(e, \overline{e}) = 2||D_{z_{o}}e||_{h}^{2} + h(R_{z_{o}}e, \overline{e}) + h(e, \overline{R_{z_{o}}e}),$$

where R_{z_o} denotes the curvature operator of D_{z_o} , and where the (fiberwise) norm of $D_{z_o}e$ is computed with the metric h and the Poincaré metric (for the 1-form components). Arguing as in [3, page 737], we find the the L^2 norm of the operator R_{z_o} with respect to the metric h and the Poincaré metric is bounded by a constant. It follows that $||D_{z_o}e||_h \leq C||e||_h$ and therefore, if e moreover is a local section of $\mathcal{L}^0_{(2)}(H,h)$, then $D_{z_o}e$ is a local section of $\mathcal{L}^0_{(2)}(H,h)$. By density, we conclude that this holds for any local section of $\mathcal{L}^0_{(2)}(H,h)$. We apply this to $\eta_{\neq(0,0)}$ to get (b).

(16) On page 172, step (2) of the proof: the argument is not correct, since the spectral sequence is not as indicated, and the indices are not correct. A correct proof of this step has later been given [1, §18.4] by T. Mochizuki in the more general case of wild twistor 𝒯-modules, by using moreover the weak Lefschetz theorem and Gysin morphisms, as originally does by M. Saito [2, §5.3.8].

References

- [1] T. Mochizuki Wild harmonic bundles and wild pure twistor D-modules, Astérisque, vol. 340, Société Mathématique de France, Paris, 2011.
- [2] M. Saito "Modules de Hodge polarisables", Publ. RIMS, Kyoto Univ. 24 (1988), p. 849–995.
- [3] C. Simpson "Harmonic bundles on noncompact curves", J. Amer. Math. Soc. 3 (1990), p. 713–770.

C. Sabbah, UMR 7640 du CNRS, Centre de Mathématiques Laurent Schwartz, École polytechnique, F-91128 Palaiseau cedex, France • E-mail: sabbah@math.polytechnique.fr
Url: http://www.math.polytechnique.fr/cmat/sabbah/sabbah.html