TRIANGULABILITY AND IRREGULARITY

by

Claude Sabbah

Abstract. In this note, I answer a question of Jean-Baptiste Teyssier concerning the triangulability of the real blowing up map in a way compatible with the Stokes structure of a meromorphic flat bundle.

1. Introduction. Let (X, D) be a smooth complex manifold with a normal crossing divisor, let $\varpi : \widetilde{X} \to X$ be the real blowing up of the smooth local irreducible components of D and let $(\mathcal{L}, \mathcal{L}_{\bullet})$ be a good Stokes filtered local system on (X, D)(e.g. associated with a good meromorphic flat bundle on (X, D) by the de Rham functor). For each stratum E of the natural stratification of D, consider the restriction $\varpi_{|E} : \varpi^{-1}(E) \to E$. Corollary 14 shows that this map can be stratified in a way compatible with the Stokes structure of $(\mathcal{L}, \mathcal{L}_{\bullet})$ so that each pair of adjacent strata satisfy Whitney conditions and Thom condition. It follows from [4, 5] that it is triangulable in a way compatible with the Stokes structure.

2. Preliminaries on stratifications.

Definition 1 (Stratification).

- (1) Let Y be a topological space. A stratification S of Y is a locally finite family of locally closed subsets S of Y, called strata, which form a partition of Y and such that the closure of each stratum is equal to a union of strata. (We do not assume that the strata are connected.) For strata S', S in S, we denote $S' \prec S$ the property $S' \subset \overline{S}$.
- (2) Let \mathcal{F} be a locally finite family of closed subsets of Y and let $\overline{\mathcal{F}}$ denote the locally finite family of locally closed subsets obtained from \mathcal{F} by iterating a finite number of intersections and complements. We say that a stratification \mathcal{S} of Y is *compatible* with \mathcal{F} , or that \mathcal{S} is a stratification of (Y, \mathcal{F}) , if any locally closed subset of $\overline{\mathcal{F}}$ is a union of strata in \mathcal{S} .

CLAUDE SABBAH

(3) Let $f: X \to Y$ be a continuous map and let \mathcal{S}, \mathcal{T} be stratifications of X and Y respectively. We say that $(\mathcal{S}, \mathcal{T})$ is a stratification of f if f maps each stratum in \mathcal{S} to a stratum in \mathcal{T} , called its image stratum.

Below, we work within the subanalytic category, where topological spaces and continuous maps are assumed to be subanalytic, and strata are real-analytic manifolds. The restriction of a stratified map to a stratum S is assumed to be real-analytic and a submersion to its image stratum T; in particular, f(S) is open in T. A stratification $(\mathcal{S}, \mathcal{T})$ of $f: X \to Y$ is a Whitney regular Thom stratification if each pair of adjacent strata in \mathcal{S} or in \mathcal{T} satisfies Whitney's conditions (a) and (b) and each pair of adjacent strata in \mathcal{S} satisfies Thom's condition (a_f) . As we will have to apply base change to stratified maps, and as Whitney's conditions at the source do not necessarily behave well by base change (although Thom's condition does, see [3]), we will consider Verdier's (w) condition (see [6]) and its relative analogue (w_f) (see [2, 1]). We refer to [1, Def. 1.1] for the definition of (w_f) , and Verdier's (w) condition is obtained by applying (w_f) to the constant map f.

Recall the following well-known properties:

- (i) (w) implies Whitney's (a) and (b), and (w_f) implies Thom's (a_f) ,
- (ii) any subanalytic stratification of a subanalytic set can be refined into a (w)-regular stratification,
- (iii) any subanalytic stratification $(\mathcal{S}, \mathcal{T})$ of a continuous subanalytic map $f : X \to Y$ can be refined into a subanalytic stratification $(\mathcal{S}', \mathcal{T}')$ of f such that both \mathcal{S} and \mathcal{T} are (w)-regular.

Definition 2. Assume that X is closed subanalytic in $\mathbb{R}^{\ell} \times \mathbb{R}^{p}$, that Y is closed subanalytic in \mathbb{R}^{p} and f is the second projection. We say that a subanalytic stratification $(\mathcal{S}, \mathcal{T})$ of f is (w)-regular if \mathcal{T} satisfies (w) and \mathcal{S} satisfies (w_f).

The interest of this definition comes from the following two lemmas.

Lemma 3. Let $f : X \to Y$ be as in Definition 2 and let (S, \mathcal{T}) be a subanalytic stratification of f. If (S, \mathcal{T}) is (w)-regular, then S satisfies (w).

Proof. The regularity conditions are local and can be expressed by using any local embedding into real manifolds. We can thus assume that f induced by the projection $\mathbb{R}^m = \mathbb{R}^\ell \times \mathbb{R}^p \to \mathbb{R}^p$. We use the standard scalar products to define distances d. For nonzero subspaces E', E of \mathbb{R}^n (n = p, m), we set

$$\delta(E', E) = \sup_{\substack{u' \in E'\\ u \in E^{\perp}}} \frac{|\langle u', u \rangle|}{\|u'\| \|u\|},$$

so that $\delta(E', E) = 0 \iff E' \subset E$. Given a pair of adjacent strata $S' \prec S$ and $x' \in S'$, (S, S') satisfies (w) resp. (w_f) if there exists a neighbourhood of x' and a

constant C > 0 such that, for any $x \in S$ in this neighbourhood,

$$\delta(T_{x'}S', T_xS) \leqslant Cd(x', x), \quad \text{resp. } \delta\left(T_{x'}f_{|S'}^{-1}(f(x')), T_xf_{|S}^{-1}(f(x))\right) \leqslant Cd(x', x).$$

By the submersion property, we have in $\mathbb{R}^p \times \mathbb{R}^m$:

$$T_x S = \left(T_x f_{|S|}^{-1}(f(x)) \right) \times \left(T_{f(x)} T \right),$$

and similarly for $T_{x'}S'$. The conclusion follows from the property that, given nonzero subspaces E, E' of \mathbb{R}^{ℓ} and F, F' of \mathbb{R}^{p} ,

$$\delta(E' \times F', E \times F) \leqslant \delta(E', E) + \delta(F', F).$$

Let $f: X \to Y$ be as in Definition 2 and let $(\mathcal{S}, \mathcal{T})$ be a subanalytic stratification of f. A subanalytic refinement \mathcal{T}' of \mathcal{T} induces a refinement \mathcal{S}' of \mathcal{S} so that $(\mathcal{S}', \mathcal{T}')$ remains a subanalytic stratification of f in the following way: assume that a stratum Tin \mathcal{T} is partitioned into strata T' of \mathcal{T}' ; for any stratum S in \mathcal{S} such that f(S) is contained in T (as an open subset), we consider the partition of S by the smooth subanalytic submanifolds $f_{|S|}^{-1}(T')$; one checks that this partition \mathcal{S}' is a stratification (i.e., the closure of any stratum is a union of strata). We say that $(\mathcal{S}', \mathcal{T}')$ is the refinement of $(\mathcal{S}, \mathcal{T})$ induced by \mathcal{T}' .

Let $g: Z \to Y$ be a continuous subanalytic map and assume that there exists a stratification \mathcal{U} of Z such that $(\mathcal{U}, \mathcal{T})$ is a stratification of g. The fiber product $Z \times_Y X$ is partitioned by the fiber products $U \times_T S$ for pairs (U, S) of strata mapping submersively to the same stratum T in Y. One checks that $(\mathcal{U} \times_T \mathcal{S}, \mathcal{U})$ is a subanalytic stratification of the base-changed map $Z \times_Y X \to Z$. In practice, given \mathcal{T}, \mathcal{U} may not exist. However, according to (iii) above, we can refine \mathcal{T} as a stratification \mathcal{T}' so that there exists \mathcal{U} such that $(\mathcal{U}, \mathcal{T}')$ is a stratification of g.

Lemma 4. Let $f : X \to Y$ be as in Definition 2 and let (S, \mathcal{T}) be a (w)-regular subanalytic stratification of f.

- (Refinement) Let T' be a (w)-regular refinement of T and let (S', T') be the induced refinement of (S, T). Then (S', T') is (w)-regular.
- (2) (Base change) Let g : Z → Y be a subanalytic morphism and let U be a (w)-regular subanalytic stratification of Z such that (U, T) is a subanalytic stratification of g (we do not assume that this pair is (w)-regular). Then (U×_TS,U) is a (w)-regular subanalytic stratification of Z ×_Y X → Z.

Sketch of proof. In both cases, the tangent space to the fiber of a stratum remains unchanged after refinement or base change. The change of behaviour of the function δ is only due to the change in the stratification \mathcal{T} and the assumptions imply that (w) remains satisfied for \mathcal{T}' or \mathcal{U} .

CLAUDE SABBAH

3. Linear stratifications.

Definition 5 (Linear stratification of a linear map). Let $f : \mathbb{R}^m \to \mathbb{R}^p$ be a linear map. A linear stratification of f consists of a stratification $(\mathcal{S}_m, \mathcal{S}_p)$ of f such that the closure of each stratum is a linear affine subspace of \mathbb{R}^m , resp. \mathbb{R}^p .

Let us notice some obvious properties of a linear stratification of a linear map. Given a stratum S_m , its tangent space $T_x S_m$ at $x \in S_m$ is independent of x and equal to the direction of \overline{S}_m . The boundary $\partial S_m = \overline{S}_m \smallsetminus S_m$ is a union of strata, hence the union of their closures. It is thus a union of linear affine subspaces. For a stratum $S \subset$ ∂S_m , the rank of f on \overline{S} is smaller than or equal to the rank of f on \overline{S}_m . The closure $\overline{f(S_m)}$ is equal to the linear affine subspace $f(\overline{S}_m)$ and $f(S_m) = f(\overline{S}_m) \smallsetminus \bigcup_S f(\overline{S})$, where S varies in the set of strata of ∂S_m on which the rank of f is strictly smaller than the rank of f on S_m .

Lemma 6. Let \mathcal{F} be a locally finite family of linear affine subspaces of \mathbb{R}^m . Then there exists a linear stratification \mathcal{S}_m of \mathbb{R}^m which is compatible with \mathcal{F} .

Proof. We first replace \mathcal{F} with a larger locally finite family by adding to it all iterated intersections of the linear affine spaces in \mathcal{F} . In such a way, we can assume that \mathcal{F} is stable by intersections. We then define the stratification as follows. A stratum of dimension $d \ge 0$ is the complement, in a linear affine space of dimension d belonging to \mathcal{F} , of its subspaces belonging to \mathcal{F} of dimension < d. One checks by induction on d that any space of dimension d in \mathcal{F} is a union of strata, and the closure of a stratum of dimension d is a linear affine space of dimension d.

Lemma 7. Let $f : \mathbb{R}^m \to \mathbb{R}^p$ be a linear map and let \mathcal{F} be a locally finite family of linear affine subspaces of \mathbb{R}^m stable by intersections such that the family $f(\mathcal{F})$ is locally finite in \mathbb{R}^p . Then there exists a linear stratification $(\mathcal{S}_m, \mathcal{S}_p)$ of f such that \mathcal{S}_m is compatible with \mathcal{F} .

Proof. Let \mathcal{G} by the family obtained from $f(\mathcal{F})$ by adding all intersections. It remains locally finite. Any F in \mathcal{F} has image equal to some G in \mathcal{G} , hence is contained in $f^{-1}(G)$. Let \mathcal{F}' be the (locally finite) family stable by intersections generated by $\mathcal{F} \cup f^{-1}\mathcal{G}$. For any F' in \mathcal{F}' , f(F') belongs to \mathcal{G} : since \mathcal{F} and $f^{-1}\mathcal{G}$ are stable by intersections, we can write $F' = F \cap f^{-1}(G)$ for some F in \mathcal{F} and G in \mathcal{G} ; then $G' = f(F) \cap G$ also belongs to \mathcal{G} and we have $F' = F \cap f^{-1}(G')$, so that f(F') = G'.

The linear stratifications S_m resp. S_p associated with \mathcal{F}' resp. \mathcal{G} as in Lemma 6 form a linear stratification of f.

Lemma 8. Every linear stratification $(\mathcal{S}_m, \mathcal{S}_p)$ of a linear map $f : \mathbb{R}^m \to \mathbb{R}^p$ is (w)-regular.

Proof. Let us check (w_f) for example. Let $S \subset \overline{S}_m$ be a pair of strata (i.e., \overline{S} is a linear affine subspace of \overline{S}_m). Let $x \in S$ and $y \in S_m$ in some neighbourhood

of x. The tangent space to $f_{|S_m}$ at y is equal to ker $[f: T_y S_m \to \mathbb{R}^p]$, that is, ker $[f: \overline{S}_m \to \mathbb{R}^p]$ and does not depend on y. Similarly, the tangent space of $f_{|S}$ at x is equal to ker $[f: \overline{S} \to \mathbb{R}^p]$. Since $\overline{S} \subset \overline{S}_m$, the latter is included into the former and the distance $d(T_x S_{f(x)}, T_y S_{m,f(y)})$ is zero, hence smaller that d(x, y).

4. An example. Let L_1, \ldots, L_p be a finite family of linear forms $\mathbb{R}^{\ell} \to \mathbb{R}$ with integer coefficients (coordinates $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_{\ell})$ on \mathbb{R}^{ℓ}). We consider the family of linear forms $\Lambda_j(\boldsymbol{\theta}, \boldsymbol{\eta}) = L_j(\boldsymbol{\theta}) + \eta_j$ $(j = 1, \ldots, p)$, where $\boldsymbol{\eta} = (\eta_1, \ldots, \eta_p)$ are the coordinates on \mathbb{R}^p . We consider the family \mathcal{F}' of affine hyperplanes of $\mathbb{R}^m = \mathbb{R}^{\ell} \times \mathbb{R}^p$ defined by

$$\Lambda_{j}(\boldsymbol{\theta},\boldsymbol{\eta}) = \pm \pi/2 + 2k\pi, \quad j = 1, \dots, p, \ k \ni \mathbb{Z}.$$

Let $d = (d_1, \ldots, d_\ell)$ be a multi-index of positive integers and let us denote by $\frac{2\pi}{d}\mathbb{Z}^\ell$ the lattice $\prod_{i=1}^{\ell} (\frac{2\pi}{d_i}\mathbb{Z})$ of \mathbb{R}^ℓ . We denote by \mathcal{F} the locally finite family of affine hyperplanes having equation

$$\Lambda_j(\boldsymbol{\theta}+2\boldsymbol{k}\pi/\boldsymbol{d},\boldsymbol{\eta})=\pm\pi/2+2k\pi, \quad j=1,\ldots,p, \ \boldsymbol{k}\in\mathbb{Z}^\ell, \ k\ni\mathbb{Z}.$$

By construction, this locally finite family is stable by the additive action of $\frac{2\pi}{d}\mathbb{Z}^{\ell}$ on the factor \mathbb{R}^{ℓ} . From the results of Section 3, we obtain:

Corollary 9. With the previous assumptions, there exists a linear stratification (S_m, S_p) of the projection $\mathbb{R}^{\ell} \times \mathbb{R}^p \to \mathbb{R}^p$ compatible with \mathcal{F} . This stratification is (w)-regular.

Moreover, the construction of Lemmas 6 and 7 shows that the family \mathcal{F}' giving rise to \mathcal{S}_m is stable by the action of $\frac{2\pi}{d}\mathbb{Z}^\ell$, and thus the stratification \mathcal{S}_m is also stable, i.e., for any stratum S_m and any $\mathbf{k} \in \mathbb{Z}^\ell$, the set $S_m + 2\mathbf{k}\pi/\mathbf{d}$ is a stratum. We identify $\mathbb{R}^\ell/(\frac{2\pi}{d}\mathbb{Z}^\ell)$ with $(S^1)^\ell$. Taking the quotient of \mathcal{S}_m by $\frac{2\pi}{d}\mathbb{Z}^\ell$ gives thus rise to a stratification $(\widetilde{\mathcal{S}}_m, \mathcal{S}_p)$ of the projection $(S^1)^\ell \times \mathbb{R}^p \to \mathbb{R}^p$.

Corollary 10. The stratification $(\widetilde{\mathcal{S}}_m, \mathcal{S}_p)$ of the projection $(S^1)^{\ell} \times \mathbb{R}^p \to \mathbb{R}^p$ obtained in this way is (w)-regular.

Corollary 11. Let Z be a subanalytic space and let $g : Z \to \mathbb{R}^p$ be a continuous subanalytic map. Let $(\mathcal{U}, \mathcal{S}'_p)$ be a subanalytic stratification of g such that both \mathcal{U} and \mathcal{S}'_p are (w)-regular and \mathcal{S}'_p is a refinement of \mathcal{S}_p . Let $\widetilde{\mathcal{S}}'_m$ be the corresponding refinement of $\widetilde{\mathcal{S}}_m$. Then $(\mathcal{U} \times_{\mathcal{S}'_p} \widetilde{\mathcal{S}}'_m, \mathcal{U})$ is a (w)-regular stratification of the projection $(S^1)^\ell \times Z \to Z$.

5. Φ -irregular stratifications and triangulations. Let $X = \Delta_{\ell} \times E$ be an open subset of \mathbb{C}^n with coordinates x_1, \ldots, x_n , let D be the divisor $(x_1 \cdots x_{\ell})$ and set $E = \{x_1 = \cdots = x_\ell = 0\}$. Let $d = (d_1, \ldots, d_\ell)$ be a multi-index of positive integers and let

$$\rho_{\boldsymbol{d}} : \Delta'_{\ell} \longrightarrow \Delta_{\ell}$$
$$(x'_1, \dots, x'_{\ell}) \longmapsto (x'^{d_1}, \dots, x'^{d_{\ell}})$$

denote the ramified morphism of multi-degree d. We set $X' = \Delta'_{\ell} \times E$ and $D' = (x'_1 \cdots x'_{\ell})$.

Let $\varpi : \widetilde{X} \to X$, resp. $\varpi' : \widetilde{X}' \to X'$, be the real blowing up of the irreducible components of D, resp. D', and set $\widetilde{E} = \varpi^{-1}(E) \simeq (S^1)^\ell \times E$ resp. $\widetilde{E}' = \varpi'^{-1}(E) \simeq (S^1)^\ell \times E$. We set $\underline{E}' = \mathbb{R}^\ell \times E$ with coordinates $(\theta'_1, \ldots, \theta'_\ell, x_{\ell+1}, \ldots, x_n)$, and we identify \widetilde{E} with $\underline{E}'/\frac{2\pi}{d}\mathbb{Z}^\ell$.

Let $\Phi \subset \mathcal{O}(X')(*D')/\mathcal{O}(X')$ be a good finite family of polar parts of meromorphic functions. By definition, for any two distinct elements φ, ψ of Φ , the divisor of the difference $\varphi - \psi$ is supported on D' and is effective. We can thus write $\varphi - \psi = u(\mathbf{x}')\mathbf{x}'^{-\mathbf{a}}$ for some $\mathbf{a} \in \mathbb{N}^{\ell}$ and u is a unit, i.e., is holomorphic on X' and does not vanish. As a consequence, there is a well-defined real-analytic map

$$\lambda_{\varphi-\psi} = \frac{\varphi-\psi}{|\varphi-\psi|} : X' \smallsetminus D' \longrightarrow S^1,$$

and this map extends to \widetilde{X}' . Up to shrinking E, we can assume that there exists a real analytic function

$$g_{\varphi-\psi}: E \longrightarrow \mathbb{R}$$
$$\boldsymbol{x} = (x_{\ell+1}, \dots, x_n) \longmapsto \operatorname{Arg} u(0, x_{\ell+1}, \dots, x_n).$$

Then $\lambda_{\varphi-\psi}$ lifts to <u>E'</u> as

$$\Lambda_{\varphi-\psi}:\underline{E}'\longrightarrow\mathbb{R}$$
$$(\theta_1',\ldots,\theta_\ell',x_{\ell+1},\ldots,x_n)\longmapsto L_{\varphi-\psi}(\theta')+g_{\varphi-\psi}(\boldsymbol{x}),$$

with $L_{\varphi-\psi}(\boldsymbol{\theta}') = \sum_{i=1}^{\ell} a_i \theta'_i \ (a_i \in \mathbb{N}).$

Definition 12.

- (1) We say that E is small enough with respect to Φ if for any pair $\varphi, \psi \in \Phi$ with $\varphi \neq \psi$, there exists a continuous lift $g_{\varphi-\psi}: \boldsymbol{x} \mapsto \operatorname{Arg} u(0, \boldsymbol{x})$ from $E \to \mathbb{R}$.
- (2) Assume E is small enough with respect to Φ . A Φ -irregular stratification of \tilde{E} is a subanalytic stratification of \tilde{E} which is compatible with the family of closed subsets induced, after taking the quotient by $\frac{2\pi}{d}\mathbb{Z}^{\ell}$, by the family of relative hyperplanes $L_{\varphi-\psi}(\theta') + g_{\varphi-\psi}(x) = \pm \pi/2 + 2k\pi$, where k varies in \mathbb{Z} and $\varphi \neq \psi$ in Φ , their intersections and their translates by the lattice $\frac{2\pi}{d}\mathbb{Z}^{\ell}$.

Corollary 13. Let $\Phi \subset \mathcal{O}(X')(*D')/\mathcal{O}(X')$ be a good finite family of polar parts of meromorphic functions. Assume that E is small enough with respect to Φ . Then there exists a (w)-regular stratification (\tilde{S}, S) of $\varpi_{1\tilde{E}} : \tilde{E} \to E$ which is Φ -irregular.

Proof. We denote by p the cardinal of the set of pairs of distinct elements of Φ and we regard the family of functions $g_{\varphi-\psi}$ as defining a real-analytic map $g: E \to \mathbb{R}^p$. We conclude with Corollary 11.

Corollary 14 ([4, Lem. I.1.3'] and [5, Theorem]). Under the same assumptions, there exists a Φ -irregular stratification \widetilde{S} of \widetilde{E} and a triangulation of $\varpi_{|\widetilde{E}}$ which is compatible with S.

References

- J.P.G. HENRY, M. MERLE & C. SABBAH "Sur la condition de Thom stricte pour un morphisme analytique complexe", Ann. Sci. École Norm. Sup. (4) 17 (1984), p. 227–268.
- [2] V. NAVARRO AZNAR "Conditions de Whitney et sections planes", Invent. Math. 61 (1980), no. 3, p. 199–225.
- [3] C. SABBAH "Morphismes analytiques stratifiés sans éclatement et cycles évanescents", in Analyse et topologie sur les espaces singuliers (Luminy, 1981) (B. Teissier & J.-L. Verdier, eds.), Astérisque, vol. 101-102, Société Mathématique de France, Paris, 1983, p. 286–319.
- M. SHIOTA Geometry of subanalytic and semialgebraic sets, Progress in Math., vol. 150, Birkhäuser Boston, Inc., Boston, MA, 1997.
- [5] _____, "Thom's conjecture on triangulations of maps", Topology 39 (2000), no. 2, p. 383-399.
- [6] J.-L. VERDIER "Stratifications de Whitney et théorème de Bertini-Sard", Invent. Math. 36 (1976), p. 295–312.
- CLAUDE SABBAH, CMLS, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France • E-mail : Claude.Sabbah@polytechnique.edu