MODERATE AND RAPID-DECAY NEARBY CYCLES FOR
HOLONOMIC #-MODULES

by

Claude Sabbah

Abstract. We introduce the notion of moderate and rapid decay nearby cycles
relative to a holomorphic function f for an arbitrary holonomic Z-module. They
are proved to be R-constructible complexes on the product of the special fiber of the
function and the circle S1 parametrizing the values of f/|f|. Duality properties are
conjectured in general, and proved in special cases. Relations with the irregularity
complexes as defined by Z. Mebkhout are given.
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1. Introduction

Let X be a complex manifold and let f : X — C be a holomorphic function. We set
Xo = f71(0) and we denote by jr : X \ X — X and if : Xo — X the open and
closed inclusions respectively. Let y : X (f) — X be the real blowing up of f~1(0).
One has 0X(f) := wf_l(Xo) ~ Xg x S! (see Section 2.a below). We also denote
by jf © X N X < X(f) and [ X (f) < X(f) the open and closed inclusions
respectively. Let .# be a holonomic Zx-module.
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On the one hand, the theory of the Kashiwara-Malgrange V-filtration enables one
to define a holonomic Zx-module supported on Xy, denoted here by vy.#, equipped
with an automorphism T.

On the other hand, the construction of Grothendieck-Deligne of the nearby cy-
cle functor, applied to the perverse de Rham complex "DR .#, produces a perverse
complex ")y "DR .# supported on Xy, equipped with an automorphism T.

If # has regular singularities along X, a theorem of Kashiwara and Malgrange
identifies ("DR¢y.#,T) with (%; "DR.#,T). For a general holonomic .#, both
complexes may differ. If X = C and f = Id, "DR¢s.# and Py "DR.# are finite-
dimensional vector spaces with an automorphism T, that one can equivalently regard
as local systems of finite rank on the circle S (that we can interpret here as dX (f)).
The relation between both local systems is obtained by introducing the subsheaves of
the latter consisting of sectorial germs of horizontal sections of .# having moderate
growth /rapid decay on X (f). One recovers the former as the quotient sheaf of these
two sheaves.

Our aim is to perform a similar construction in arbitrary dimension and for arbi-
trary f. Given a holonomic Zx-module ., we will construct an R-constructible com-
plex W’,va*//l on B)?(f), that we will compare with that coming from (™); "DR.Z,T).
We will then construct the moderate growth and rapid-decay complexes in the cate-
gory Dﬁ_c(a)z(f)), denoted by %m"d//{ and %A/J}rd//l, and get from them a complex
WA/)}mOd/rd/// on 8)2’(]”) corresponding to ("DR1y.#, T). This construction can also be
performed for .# in DP_;(Zx). We have two distinguished triangles of Dﬁ_c(a)z (N):

%modﬂﬁ%*%_)%>mod% +1

wp s vl — v SN
If dmX = 1 and .# is a holonomic Zx-module, these triangles are in fact
short exact sequences of sheaves, as follows from the Hukuhara-Turrittin theorem

(see e.g. [Mal91, Th. 1, p. 205]) and %*/// is a local system.
Let us recall that, for a holonomic Zx-module .#, the irregularity complexes

Irrx, M o=Trrx, #[dim X] and "Ity A4 = Tir, #[dim X]

are perverse (see [Meb04, Th.3.5-2]). For a holonomic Zx-module .#, we denote
by 4" its dual, which is the left Zx-module associated to the right Zx-module
511%;?)((%, Dx).

Proposition 1.1. Let 4 be a holonomic Px-module. We have functorial isomorphisms
ijc*%rd///[l] ~ "Irr, A, ijc*Plr/meOd/// ~"Trrx, M.
We conclude that both complexes wa*%rd/// [1] and wa*%mod//z are per-
verse. Our main result is an analogous statement for objects on 0X (f)-

If ¢ is an R-constructible sheaf on §X (f), the Xo-support of ¢4 is by definition the
smallest closed complex analytic subset of X containing the image of the support of ¢4
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by w : 0X (f) = Xo. We will say that a bounded complex ¥* with R-constructible
cohomology on 90X (f) satisfies the Xq-support condition if

V4, dim Xo-Supp #79G° < —j.

Theorem 1.2. Let .# be a holonomic PDx-module. Then the complexes I’%*//l,
%f>rrlod%7 pwf>rd'///} pll}fmod/rde/l/} pwfmod//[l] and pwfrdt//é/[l] on a)?(f) have

R-constructible cohomology and satisfy the Xo-support condition.

The R-constructibility part of this theorem follows from Remark 5.1 and Theo-
rem 4.7.

We denote by D either the Poincaré-Verdier duality functor (see e.g. [KS90,
Chap. 3]), or the duality functor for Zx-modules (so that, for a holonomic Zx-module,

DA ~ ).

Conjecture 1.3 (Behaviour with respect to duality). Let .# be an object of D2 (Zx).
The Poincaré-Verdier dual in D}_(0X (f))

Do — Doyl — Doy
of the distinguished triangle
R — ol — v
18 functorially isomorphic to the distinguished triangle

W DA (1] — iyt Do [1] —s w7 DL 1] L
We prove Conjecture 1.3 in the special case in a local setting and when .Z is
a meromorphic flat bundle on X, by applying results of [Moc14]|. Functoriality of
this isomorphism is lacking in order to obtain the general case, which would rely on
triple compatibility pushforward, duality and moderate/rapid decay de Rham func-
tors. We can gather these results as follows.

Corollary 1.4. If M is_a holonomic Zx-module for which Conjecture 1.3 holds,
both szf>m°d/// and Dpl/)f>m°d/// satisfy the Xo-support condition. Similarly, both
W/Jf>rd/// and Dpzbf>rd///, and both ®p;* M and D™* A, satisfy the Xo-support
condition, as well as both ;™4 A (1] and D (x4 1]), and both »;" . .#[1] and
D (v [1]). O

Remark 1.5. One can wonder whether a stronger property occurs in Theorem 1.2,
namely, that P(Ab}m‘)d/// and l’gA[J/frd/// satisfy the Xy-support condition. This holds in
the “good case” (see Subsection 6.d). Would this be the case, we could then replace
the Poincaré duality functor in Corollary 1.4 with the shifted functor D[-1] : F —
(DF)[-1].

If we consider the notion of generalized t-structure on D} (C, % f)) as defined in
[Kas16] (which we refer to for the notation), we obtain:
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Corollary 1.6. If ///Az;s a holonomic @X—[nvodule for which Conjec@/re 1.3 holds,
then the complexes »p* M F’wfm‘)d///[l], Plbfrd///[l], "L/me(’d/rd///, ow>‘“°d/// and

Pzzz”d/// are objects of the categories */*Dy " *(Cy5 ) and ofl/"‘DfRfCl/z(Cai(f)). O

(f ))
For the complexes P],’/Tf*/// and %mOd/ *d g, we have a more precise relation with

the moderate or topological nearby cycles. We consider the diagram (with the iden-
tification 0X (f) = Xo x S* and @y, = @y 55(;))

Xo xR 225 X, x S

N

Xo

Theorem 1.7.

(1) There is a functorial isomorphism
Qo " My DR~ py et A
(2) There is a functorial isomorphism

qal pDRp’(/}f% ~ ﬁalq/{med/rd%-

Organization of the paper. In Section 2 we recall basic constructions involving real
blow-up spaces and in Section 3 we introduce the various sheaves of functions that
we will need on these spaces. Their fundamental properties (mainly, flatness) have
been proved in [Mocl4] and we review them in Appendix B. To any holonomic
P x-module we associate various de Rham complexes on the real blow-up space X (f)-
We examine their relations and prove their R-constructibility in Section 4. We also
conjecture duality properties for these de Rham complexes, that are shown to hold
for meromorphic flat bundles in Appendix C, according to results in [Moc14]. For
further purpose, we also consider a relative statement in Section 4.c.

2. Real blow-up spaces and their stratifications

2.a. Real blow-up space along f = 0. Let f : X — C be a holomorphic func-
tion on a complex manifold X and set X, = f71(0), X* = X \ Xp. Recall
(see [Sabl3, §8.b]) that the real oriented blow-up X(f) of X along X is the clo-
sure in X x S* of the graph of f/|f] : X* — S, The map wy : X(f) — X is the
restriction to X (f) of the first projection. We have X (f) := wjfl(Xo) = Xo x SL.
As a consequence, X (f) is the subset of the real analytic manifold X x S defined by
the equation f(z) — |f(z)|e? = 0, if € is the coordinate on S. This endows X (f)
with the structure of a semi-analytic subset of X x S!.
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Let us consider the graph inclusion v :  — (z, f(z)) in the following diagram:

Id
f r
X——XxC——X
1| /
C
We then have the corresponding graph inclusion 7y in the corresponding diagram:
wy

X(f)(LXx@L)XxCLX
!

LA

C

(2.1)

where C = S xR is the oriented real blow-up of C at the origin, and ’?}()z(f)) is also
identified with the closure of J;(X*) = (X*) in X x C. We thus have % = (o, .

For every morphism 7 : Y — X of complex manifold, setting ¢ = f o w, we have
natural morphism 7 : Y (g) — X (f) induced by the real-analytic map 7 x Idg:.

We can make the construction of X (f) more global, and attached to the divisor
defined by f. Let D be any divisor in X and let L(D) be the bundle associated with D,
having a section f : Ox — Ox(D) defining the divisor D as f*(0). Let S'(D) be
the associated S'-bundle on X. We thus have a section f/|f| : X ~ D — SY(D),
and the closure of its image is “the” real blow-up space of X along D. Locally, it is
defined by a real-analytic equation in S*(D) as above, and this gives the structure of
a semi-analytic subset of the real analytic manifold S*(D). If we change the section
(by a unit u € (X, 0%)), then the map u/|u| : SY(D) — S'(D) induces a real-
analytic isomorphism between both real blown-up spaces.

2.b. The case of a normal crossing divisor. Let Y be a complex manifold
equipped with a normal crossing divisor D with smooth components D; (i € I).
We choose sections f; of L(D;).

The real blow-up space ?(Die 1) of Y along the components D; of D, that we simply
denote here, and in the remaining part of this article, by f/(D)7 is the closure in the
fibre product xy,;e;S'(D;) of the image of Y \. D by the section (fi/|fi|)icr. A local
computation shows that Y (D) = XY,iEIi;(Di)' Therefore, Y (D) is a semi-analytic
subset of the real manifold Xy ;c1S L(D;), and this structure does not depend on the
choices made (sections f;, order on I to define the fibre product). Moreover, Y (D) is a
complex manifold with a topologically smooth boundary, locally real-analytic isomor-
phic to (S1)? x (R;)* x C**, in the neighbourhood of any point in the intersection
of exactly ¢ components of D.

Assume now that g : Y — C is a holomorphic function such that ¢=1(0) = D,
with D as above. Let m; be the multiplicity of g along D;. Then Y (g) = }N’(ZZ m;D;).
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We have a factorization of wp:

WD,g

V(D) V() =,

where wp, is induced by the natural real analytic map xy,e;S'(m;D;) —

Sl(zi mlDl)

2.c. Semi-analytic stratification attached to a stratified J-covering

Local study. Let us keep the setting as in §2.b and let us fix local coordinates
(y1,.-.,Yn) on Y centered at a point of D such that D = {y;---y, = 0} in the
neighbourhood of this point, that we still denote by Y. Let d = (dy,...,ds,1,...,1)
be an n-multi-index consisting of positive integers and let

v, Py
(WU oe) — Wyl = (W' Yl

be the corresponding ramified covering. Then D ~ Dg := p;'(D) = {y} ---y, = 0}.
We have Yy = (S1)! x RS x C"¢ with coordinates (e',1/,y ), OYq is defined by
Hle r, = 0, and the map pq lifts as the map pg : Y4 — Y given in coordinates by
(ew', 7, y;é) N (eide” T/d’ y/>£)

Let ¢ € Oy,(xDgq)/ Oy, which is purely monomial, that is, ¢ = u(y')y'~™ for some
m € N’ and v/ invertible. It defines a semi-analytic stratification of dYy formed by

. the closed subsets of (S')¢ x IR, x C"~¢ defined by the equation
argu(y’) — Zmlﬂg = +m/2

(these are the product of 2 ged(m) disjoint subtori (S1)*~! with ORY x C"~¢),
« their open complements.

Similarly, any finite family ®4 C Oy, (*Dq)/ Oy, whose elements are purely monomial
defines a semi-analytic stratification 8@; of OYy which is finer than that defined by
any element of ®4. There exists then a semi-analytic stratification O of Y whose
pull-back by pq is finer than the latter. Let us finally notice that, if .% is an object of
Db((ij,) and if p;'.Z is a sheaf (in degree zero) which is constructible with respect
to 0%, then Z is a also sheaf (in degree zero), and it is constructible with respect

to 0% .

Global study. The notion of a subset ®4 can be globalized along D as the notion of
stratified J-covering (see [Sab13, Def. 1.46 & §9.c]). It corresponds to that of a system
of irregular values as defined in [Mocl1, Def.2.4.2]. One usually adds a goodness
condition for ®4U{0} (see [Sab13, Def. 9.12]), which ensures the pure monomiality of
its local sections. Recall that a meromorphic flat bundle .#Z on Y with poles along D
and having good formal structure along D determines a good stratified J-covering of
dY (D) (see loc. cit.).
One then obtains the following lemma in an obvious way.
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Lemma 2.2. Let ¥ be a good stratified J-covering of 8}7(D). Then the locally defined
semi-analytic stratifications 0%, (y € D) glue together and define a semi-analytic
stratification, denoted by 0%, of Y. O

3. Sheaves on the real blow-up spaces

In this section, we recall various results of [Moc14]. We add some easy comple-
ments, whose proof is given in Appendix B, following the same lines as in loc. cit.

3.a. Sheaves of functions on the real blow-up space along f = 0. We keep
the notation as in §2.a and we implicitly refer to Diagram (2.1). We will be mainly
interested in the following two sheaves of functions on X (f), whose restriction to X*
is equal to Ox+:

. ,QZ;‘(C}‘;XO that we simply denote by /2 “‘(Od), is the sheaf of functions which are

holomorphic on X* and have moderate growth along 0X (),

)%d(jf)“ that we simply denote by 4&7 rd 0y is the sheaf of functions which are

holomorphic on X* and have rapid decay along X (f).

We thus have natural inclusions

rd mo . *

« We will moreover set
42{>m°d —jf*ﬁx /42{

>rd L
DZg) = IO 1

mod/rd mod rd _ >rd ~mod
Tz =R TR = TR R

f)’

which are sheaves supported on 9X (f)-

Notation 3.1. We will use the notation ﬂ;{f ) to denote any of the previous sheaves,

with * = %, mod, rd, >mod, >rd, mod/rd.

Similarly, we will consider the special case of a projection, i.e., the space X x C with
divisor X x {0} and real blown-up space X x C, and the corresponding sheaves sz;f e
Let us first notice the following properties.

(a) Multiplication by f is invertible on sz)? ) (obvious).
(b) We have ij*ﬁx* = jf*ﬁx*.

Indeed, each point of X x St C X x C as a fundamental system of open neighbour-
hoods in X x C whose trace on X x C* is a Stein open set, since each open sector
centered at the origin in C* is convex. By taking the trace of these neighbourhoods on
the graph of 7; and by applying Cartan-Serre’s Theorem B, we obtain Assertion (b).

Let us recall basic results concerning these sheaves in the present setting, proved
in [Moc14, Th.4.1.5] with bigger generality. (See Appendix B for details.)
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(1) The sheaves ﬂ;{fw) are wflﬁx—ﬂat.

(2) "Zf;xc “10xxc w_lﬁ'Yf(X) = R,%*d)l(\:(f)'

On the other hand, we have (see e.g. [Sab00, §II.1.1])

(3) Rw*d;(n;’% = w*,fzf;“;% ~ Oxxc(*(X x 0)),

(4) Rw. o/} = =~ {0 = Oxxc — ﬁXx(C\XXO — 0}, where the latter sheaf is the
formal completion of Ox ¢ along X x 0 (it is zero on X x C*).

We then deduce

(5) wa*%)r?n(od wf*fQ{X( ~ ﬁx(*Xo) Indeed,

R’yf*wa*szX(f) Row. Ryp g

~ Rw*(%mod ®w

od
X
Loy @ O, s(x)) (after (2))

:Rw*(;szOci wlo, ;(x)) (after (1))

w=10xxc

~ Rw*,sa/m"d ®5XXC O, (x) (projection formula)

~ Oxwc(*(X x 0)) ®5XXC O(x) = Ry Ox(xXo) (after (3)). O
(6) Rch*d)%d( ~{0— Ox = Oz - = 0} or, equivalently,

Indeed, we have similarly

L
R’yf*wa*,Q/Ed ~{0— Oxxc — ﬁXxC|X><O — 0} RO ¢ ﬁ’Yf(X)

and by flatness of ﬁ’ X <CXx0
(see e.g. [Ser65, Cor.11.2])

over Ox xc, the assertion is reduced to the identification

ﬁx@xo@%’xm O (x) = W+ O57%5 O
We set Zx, = if_l(ﬁm/ﬁx) = zf X|X /zf Ox (notation of [Meb90]). Then
i;lwa*M)g(f) ~ Dx,[-1]. O

(7) We also conclude that
mod/rd _
wa*sz{g(f) ﬁX‘XO( Xo).

For every projective morphism 7 : Y — X, setting ¢ = f o m, we also have,
according to [Moc14, Th.4.1.5],
L L
_ —1
(8) V& € Db, (Y), RW*(,Q%Y( ) Omitoy Py 16) ~ ,;zf;(f) 15, @y RTE.
For example, if e : Y — X is a proper modification which is an 1som0rphism above
X ~\ Xo, we deduce from (8):

(9) F=  =e.TdT Re*,;a/

X(f) Y(9) Y(g)
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3.b. The case of a normal crossing divisor. The sheaves dg (D) 2Te defined on

XN/(D) in a way similar to the case of a smooth divisor (§3.a). The following results
hold, according to [Moc14, Th.4.1.5, Prop.4.2.4, Th.4.5.1].
(1) The sheaves "Q{};(D) are wp,' Oy-flat.

* _ * _ *
(2) Bopge G 1) = 00w ) = D5,

3.c. Localization and formalization of Zx-modules. For a coherent Zx-mod-
ule ., the localized Zx-module #(xXy) is defined as Ox(xXy) ®g, 4. On the
other hand, the formalized Zx-module ///XI X along X is defined as ﬁ ®ﬁx M.

There are natural morphisms
///—>///(*X0) and .///—)J/)?I')?

Let us denote by 2—— the complex Ox — ﬁ’/\g with terms in degrees 0 and 1

X|Xo

respectively. With the previous notation, we have ¢, o9 _— X% ~ = Zx,. The sheaf-
theoretic restriction of ,@X‘X to X* is Ox~ and that to X¢ is O+ <% /Ox[—1]. This
complex is isomorphic to the complex Ox (xXy) — ﬁﬁ(*Xo) For a bounded
complex of Zx-modules, there is a distinguished triangle in D®(Zx):

+1
(3.2) 2/‘\ ®é>x M — M(xXo) — ///XlX (*Xo) —— .

Since @y 19 acts in a natural way on d Z i.e., the condition x is preserved by

X() (i
derivation), the sheaf

* _ * -1 *
@X(f) %X(f 1ﬁx wf @)(—wf @X 15}( %)}(f)

is a sheaf of rings on X(f) Any Zx-module . gives rise to a @*m -module

* -1 * -1
% '@X(f) 1jxwf .// %X(f vlﬁxwf %

Flatness of 42%)? () Over w; Loy immediately implies:

Proposition 3.3. Let # be a Dx-module. The pushforward by wy of the exzact sequence
0 — ol — Pl — }“Od/rd///—)O

is isomorphic to the distinguished triangle (3.2). O

4. The moderate and rapid-decay de Rham complexes on X (f)

4.a. Moderate and rapid-decay de Rham complexes for Zx-modules
We still use Notation 3.1. Let .# be a Zx-module. Since sz/)i;(f) is a left

wjflgx—module, we can set
* * .
DR (1) A = (9% ) Oyron Ok © M), V)
and

"DRYj) .# := DR% , [dim X].

X(f)
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We can replace Q% with Q% (*X) since f is invertible on ﬂ;{f(f). Recall that the
Spencer complex Sp(Zx) is a resolution of &x by locally free left Zx-modules. Then
Sp(.@* )) = ;zf)l;(f) ®wf—lﬁx wf_l Sp(Zx) is a resolution of ucf)ig(f) by locally free left

_@; ) modules. The following result is obtained in a standard way, and can be used

for the definition of pDsz(f) M for A in DP(Dx).

Lemma 4.1. For a left Px-module # we have

X
(D% gy )

p *
DRy () A = Homgy (Sp (Sp(2%, ;) wf M)

~ ijom@*
X(f)

-1 *
:R%ﬁomwf_lgx (wf ﬁx,wf///). O

The de Rham complexes with x = >mod, >rd, mod/rd are supported on 8)?(]”)
We have the following natural distinguished triangles

) "DR(S) 4 — "DRY(p 4 — "DRES .0 Ly
4.2
>rd
DRX(f) M — DRX(f)% — DRX(f L
and
mod mod/rd +1
(4.3) DRX(f)///—> DRX(f)j/—> DRXU M ——

Proposition 4.4. If ./ is an object of D2, (Zx), then the natural morphism
‘DR y)-# — Rj;.j; ' "DRx A

18 an 1somorphism.

Proof. Tt is enough to prove the result for a coherent Zx-module, and the assertion
is local. We will work with the unshifted de Rham complex DR. We first notice, in a
way similar to 3.a(b), that for each €x-coherent sheaf Z, we have ij*jf_lf =
jf* 7.7Y.%. Then, by using a local resolution of .# by free 'x-modules of finite rank,
one Checks that the natural morphism

~ -1 ~ ~
]f*ﬁx* ®wflﬁx @y F — Jpxds F

is an isomorphism. Let us choose a local good filtration F,.# and filter the de Rham
complex by
F,DRx M := {Fptl — Q% @ Fpordl — ---},

that we also denote by DRx Fpt..#. It is known that, for p > 0 locally, the natural
morphism DRx Fj4..# — DRx .# is an isomorphism. We thus have a commutative
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diagram

DR )Ty dy ~ Ox+ © @) ' Fpacl) —— DRy (G, Ox- © ) ' M)

|

DR)}(f) (jf *jf_le%u//)

]

R:]Vf*jfil DRx Fp_;,../%

R:]} *jf71 DRx . #
and the right vertical morphism is an isomorphism if and only if the upper horizontal
one is so. For the latter, it is enough to show that for p > 0,

DR)’Z(f)(jf*jj}_lﬁX* ® wfl grng. %) ~ (.

Since grg M is Ox-coherent for each ¢, the latter complex is isomorphic to

ij *jf*1 DR x gr5+. M , hence is zero for p > 0 locally. O
As a consequence, for .# in DP, (2x), we can identify the natural distinguished

triangles (4.2) with the distinguished triangles

p mod ~ ~ _1p mod ~1p mod +1
w5 DRY(j)-# — Rj,.J, " "DRX(j) M — Riy.iy "DRY () M[1] ——
' +1

P I‘d ~ -~ 1 p I"d ~ | p I‘d
DRY (- # — Rj,.J, ' "DR% sy # — Rip.%' "DRY ) M[1] — .
From 3.a(5) and (6) we obtain the following, due to the flatness property 3.a(1).

Lemma 4.6. For a 9x-module # we have
Rwy. "DR% ) # ~ Rjp.j; ' "DRx A,
p mod p
Ry "DRY () M ~ "DRx (A (xXy)),

Rw;. "DR, ) # =~ Cone['DRx .4 — "DR(Osrx ®ox )] [-1]
= Cone["DRx (# (xXo)) — pDR(ﬁ’)T')?0 oy M (xX0))][—1]

P mod/rd P
Ry, DR)?(f) M~ DR(ﬁm ®ey M (xX0)),

Rewy, "DRY(;y A ~ Rig.if' "DRx (A (+X0))[1]. O

Theorem 4.7. Let .# be a holonomic Px-module. Then pDR}((f) A belongs to
Du%-c((c)?(f))~

Proof. The case * = * will follow from Theorem 1.7 and we postpone its proof. It is
then enough to prove the cases x = mod and x = rd. By a standard “dévissage”,
we can assume that .# is a meromorphic flat bundle on X with pole divisor P
containing Xy. We can work locally on X, so we can find a projective modification
such that the pole divisor of the pull-back connection has only normal crossings with
smooth components. Moreover, according to the theorem of Kedlaya and Mochizuki
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(see [Ked11]|, and [Moc09] in the algebraic case), up to blowing-up more, we can also
assume that the pull-back connection has a good formal structure along its normal
crossing pole set D. We denote by e : (Y, D) — (X, P) the projective modification
thus obtained and we set g = foe, D, = g71(0) = e7'(Xy) C D (it is the union of
some compounents of D). We consider the commutative diagram

(4.8) V(D) —22% (D) — 202 () —E— X(f)
WD,g Wy Wy
wp l

y —¢% X

The spaces Y (D) and ?(Dg) are complex manifolds with corners. We set D = D, ,UD’,
where D’ has no common component with D,. It will be useful to distinguish between
the behaviors along Dy and D'.

Let .4’ := e*.# be the pull-back meromorphic flat bundle. Then one can check
that A = e M.

Remark 4.9. In [Moc14|, the de Rham functors DRf,(DD), DRY(D) <P ote. are con-

sidered, where the symbol < D refers to coefficients in the Nilsson class, and < D to

rapid decay coefficients. On the other hand, we will consider the de Rham functors

DRmodD pDerD modD
Y (D) » v

This is no problem since we only considered these functors when applied to meromor-

etc., with the more general condition of moderate growth.

phic flat bundles which have a good formal structure along (Y, D). In this case, the
natural morphisms between the corresponding de Rham functors is an isomorphism:
this follows from [Moc14, Prop. 5.1.3] and Theorem 4.11 below.

We then have:

modD

Y
rdD

DR 4" ~ Rwp, g "DRE(D) M,

(410) rdDyg, ,modD’

Y(D)
Indeed, this is obtained by applylng first [Moc14, Lem. 5.1.6] to the morphism wp p,,
according to the remark above, and then [Moc14, Prop.4.7.4] to p = wp

.M~ Rop . "DRY M

9.9
Since R-constructibility is stable by proper push-forward by a real analytic map

between real analytic manifolds, we conclude from (4.10) and Corollary B.7 (due to the
modD

remarks in §2), that it is enough to prove the R-constructibility of DRy( py ' and
DRif(l;)mOdD A'. The generalized Hukuhara-Turrittin theorem gives the following

consequence (see [Sabl13, §12.d]):

Theorem 4.11. Let A" be a meromorphic flat bundle on' Y with poles along D. As-
sume moreover that .#' has a good formal structure along D. Then the complexes

erD M DR;i(DDg)’mOdD A and DR?E’ED M have cohomology in degree zero at
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most, and their #° are nested subsheaves of the local system #° DR;—‘;(D) M, which

are R-constructible with respect to the stratification on 817(D) determined by the good
stratified J-covering associated with A’ (see §2.c). O

This concludes the proof of Theorem 4.7 (modulo the case * = x). O

Example 4.12 (Regular singularities). Assume that .# is a regular holonomic Zx-
module. Then, in the “dévissage” aforementioned, the meromorphic bundle with flat
connection .#’ has regular singularities along D. In Theorem 4.11, one finds that the

sheaf J#0 DRI;(D;)’mOle ' vanishes along @' (D,) and is equal to the local system
0 DR;i,(D) A" when restricted to wp' (D~ D,). Similarly, 7#° DR2 #" is equal

to 0 DR%,(D) A'. One concludes that )
"DRY(}) M ~ DRy 4 = Rjp. j7 "DRx A,
"DRY ;) # ~ RjpJ; "DRx A,
DRI A =0.

4.b. Duality properties
Conjecture 4.13. Let .# be a holonomic Px-module.
(1) We have a functorial isomorphism
D'DRY(}, 4 ~"DRY ;) DA,
so that the dual of the distinguished triangle

"DRY(j) 4 — "DR sy # — "DRY}) M 1,
s functorially isomorphic to the natural triangle

Rij; ' "DRY, ;) DA |-1] — R j; " "DRx D — "DRY ) Dt 55 |

(2) We have a functorial isomorphism
D pDRng(f) % ~ pDR;C()}i) D%,
so that the dual of the distinguished triangle

"DRY, ;) # — "DR(y M — "DRE 4 L

18 functorially isomorphic to the natural triangle
~ _ mod ~ . mod +1
Ry~ "DR% () DA |-1] — Rj,1 j; ' "DRx Dol — "DRE(j) DMl —— .

Corollary 4.14. Let A be a holonomic Dx-module. We have a natural isomorphism
mod/rd mod/rd

Remark 4.15. We show in Appendix C how to use the results of [Moc14]| to ob-
tain a local version of Conjecture 4.13 when .# is a meromorphic flat bundle on X
(see Proposition C.1).
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4.c. Non-characteristic properties. Let p : X — S be a smooth holomorphic
map to a disc S with coordinate ¢t. For s € S, we denote by fs : X; — C the function
induced by f on X := p~1(s), by is : Xs — X and 7 : X,(fs) = X(f) the inclusions.

Proposition 4.16. For each x, € p~1(0) there exist an open neighbourhood of x, in X
such that, up to shrinking S, the following holds for each s € S~ {0}:

(1) Xs(fs) = X(f)ix.
* —Tx = Liro*

@) % 0 =5 = RR
Proof. We consider the setting and notation of the proof of Theorem 4.7, and X still
denotes a small neighbourhood of x,. Since e is proper, we can shrink X and §
so that, on each stratum of the natural stratification of D, p o e has maximal rank
over S\ {0}. Locally near a point of Y \ (poe)~1(0), we can find local coordinates
(Y1,.-.,Yn) such that D = {y1---y¢ = 0} (¢{ < n) and poe = y,,. Let us check that he
assertions corresponding to (1) and (2) for Y (D) and poe are true in this local setting,

hence all over Y(D). This is clear for (1). For (2), this is clear for di}(D) JxOy~.

We can argue with the maximum principle as in [Moc14, Lem. 4.4.1] for d;,“(%i) and

JZ%;?D) It remains to show the injectivity of t —s on 7, Oy« /Jz{;‘(Dd , 1Oy~ | - Y(D) and
d;}l(‘;l / 427;((1 D)’ This is obtained by the same argument using the maximum principle.

We note that, for s # 0, Y,(D,) is the closure of Y;* in Y (D), and we have a similar
property for Y;(gs). Since wp 4 is proper, we conclude that (1) holds for Y'(g). Using
now the properness of €, we obtain similarly (1) for X (f).

Now, (2) for X (f) is obtained from (2) for Y (D) by using 3.b(2) and 3.a(9). O

We consider the sheaf Zx /g of relative differential operators, which is a subsheaf
of Zx and, for a holonomic Zx-module .#, the relative de Rham complex DR /s .,
which is a complex of p~!@g-modules. By pulling it back to X (f ) and tensoring the

terms with ,Qf)i; () e obtain the relative xde Rham complex DRX /// which is

o/
a complex of (poms)~!0s-modules.

On the other hand, DR;% ) A is the single complex associated with the double
complex
* *
DRX(f)/SJ// DRX(f)/SJ/Z
and the natural morphism

9

* t *

DRY ;)5 # —— DR ;) s A
DRY , g M ———0

XN/

induces a (powy) ! @g-linear morphism (powy) ' 0g ®@DR~ % — DRfc(f)/s M.
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Proposition 4.17. Let .# be a holonomic Px-module. Up to shrinking X, and re-

stricting away from p~'(0), the natural morphism (p o wf)~'0s ®c DR}U) M —
* . .. .

DR)?(f)/S A is a quasi-isomorphism.

Corollary 4.18. With the assumptions above, for s # 0 we have
HE M =0 ifk#0,
and a functorial isomorphism

.—1 * ~ * .

Proof. For X small enough, X is non-characteristic for .# if s # 0, hence the first
point. Then, according to Proposition 4.16,

* - ~ -3 :
DR% 1) ix, M ~ Lix, DR ;s A, ifs#0.

We then conclude the proof by using Proposition 4.17. O

Remark 4.19. By definition, pDR;%( ) M has nonzero cohomology in non-positive de-

grees at most. On the other hand, we claim that .#° I)DR;%(f) M = 0 away from
the pull-back by w; of a discrete set of points in X. Indeed, Let z, € X and let
p :nb(z,) — S be a smooth function defined in a neighbourhood of x,, that we still
denote by X. Then Corollary 4.18 reads

ix' "DRY(y) M ~"DRX, (1) A°i% M| for s 0,

hence the vanishing of i}ijfo pDR;%(f) M for s # 0. One obtains the assertion by
applying this to the projections along all coordinate hyperplanes centered at z,.

Proof of Proposition 4.17. Since the argument for proving Corollary B.7 relies on
[Moc14, Th.4.1.5], one obtains that it holds for the relative xde Rham complex,
provided p o 7 is smooth. Similarly, (4.10) holds in the relative case provided p o e is
smooth. The smoothness assumption holds when we restrict to S ~ {0} if (X, z,) is
small enough.

We take up the setting and notation of the proof of Theorem 4.7, in particular as
indicated in (4.8). Then, according to the preliminary remark above, we have

~ * ! * !
RE* DR?(D)% 7DRX(f) E+%,

~ * *
Ré'* DR?(D)/S .ﬂ/ ~ DR;((f)/S E_A'_%,-

On the other hand,

RZ, [(p oeowp) 10s®c DR;(;(D) ///’] ~ Rz, [(p 0wy 08) 105 ®c DR;(;(D) //l’}

~ (powys) '0s @c RE, DR;:,(D) M
~ (p o Wf)ilﬁg Rc DR}U) €+.////,
so that it is enough to prove the proposition for }N/(D) and poe. The case when x = %

being easy, we are reduced to checking the cases when x = rd and x = mod. We can
now work locally on (Y, D) near a point y, € e~ !(x,), due to the properness of e. We
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then take the notation .# instead of .#’. We choose local coordinates near a point
of a neighbourhood of y, not in (p o e)~1(0), as in the proof of Proposition 4.16.

Let pg be a local ramification along the components of D. Then .Z is a direct
summand of pgt p;/// so, by the push-forward argument already used, we can assume
that .# has a good formal decomposition along D. According to the generalized
Hukuhara-Turrittin theorem already used in Theorem 4.11 (see e.g. [Sab13, Th. 12.5]
and the references given therein), we can reduce to the case where .# = &% @ %,
where &% = (Oy(xD),d + dy¢) and ¢ is purely monomial, and # has a regular
singularity. By induction on the rank of %, we can assume that &% has rank one as
an Oy (xD)-module.

By the theorems of Majima [Maj84] (see also [Sab93, App.| for the rapid-decay
case and [Hie07, App.| for the case with moderate growth), one proves that both
the relative and the absolute de Rham complexes (in the variants rd and mod) have
cohomology in degree zero only. Due to the special form of .#, computing the #°
of these complexes is easy, by twisting with e~%, and the desired isomorphism is then
straightforward to obtain, as it is clear to decide whether e=%z2® (a € C*) has rapid
decay (resp. moderate growth) in any given small multi-sector. O

5. The sheaf of nearby cycles as a sheaf on the real blow-up space

5.a. The functor %* Let .Z be an object of DP(Cyx). We set
%*3; 3:,1}71R_]~f*3}71y,
and %*54‘ = ;/);*f[—l] (vecall that, similarly, "), F 1= ¢y F[-1]).

Remark 5.1. If 7 is an object of D} _(Cx), then ;/);*ﬁ is an object of DR_(C,%):
« the pullback w}lﬁ is R-constructible, as follows from [KS90, Prop. 8.4.10(i)];
. weak R-constructibility ij! jf’lﬁ follows from the existence of a subanalytic

refinement compatible with the pair ()? , 0X ) of a given subanalytic stratification of X ,
and the finiteness property for obtaining R-constructibility is clear since ij! ij 1z

is zero on X ;
« by duality (see [KS90, Prop.8.4.9]), jf*jfflﬂ’ is R-constructible, and applying

once more [KS90, Prop. 8.4.10(i)] one obtains the R-constructibility of @;*ﬁ

Lemma 5.2. Let w:Y — X be a proper morphism between complex manifolds and set
g= fom. For9 in DP(Cy), we have a functorial isomorphism

Rr»),* 9 ~ v R, 7.

Proof. The lemma immediately follows from the base change theorem for a proper
morphism and the property that Y (g) =Y xx X(f). O
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As a consequence, one can reduce the computation of W’L}*ﬁ to the case where f
is the projection X = Xy x C — C, by applying the lemma to the graph embedding
of f.

For an object .# of D*(Zx), we set

(5.3) vt = "DR A .
Lemma 5.4. Same setting as in Lemma 5.2. For .4 in D) . ..(Pv), we have a
functorial isomorphism

Rr.op)* M~ »p " (1 M), O

5.b. Proof of Theorem 1.7(1). This theorem follows from Proposition 5.5 below,
which applies to any C-constructible complex .%. We will use the notation of the
diagram in Figure 1, where all squares are cartesian, X=X (f), and all maps p are
defined from the universal covering R — St.

Rx0C—— 3 RxR, «— IR xR}

:/TA :/ 36 ~ /
R x Xo= 0X X T 5%
Po 3 P
oSt x0C—|— S xR, +—— | — O S xR
q0 ~ + +
7y < Iy
S x X = 0X C X > X+
Wy wf
0c¢ C o> CH
f .
X, 7 X I X
FiGure 1.

Let us set #* = jfflﬁ . Our first aim is to express the complex of nearby cycles
(¢p-F,T) as defined by Deligne [Del73| in terms of wa*ﬁ Let op : 0X — 0X
be the automorphism induced by 6 — 6 + 1 on R. Since py o 69 = pg, we have an
isomorphism

po U F < 0 by " T
hence an isomorphism
T : Rpo.py 'V F — Rpoupy Uy Z,

and thus an automorphism T of Rqo.py 1;/;;*9 .
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Proposition 5.5. We have a functorial isomorphism (yy%,T) ~ (Rq()*ﬁo_lqz;*ﬁ,’f)
and the morphism

(5.5 %) @ o F — by Wt F
induced by the adjunction qalR(Jo* — 1Id ¢s an isomorphism.
Lemma 5.6. Let us set F* .= jfflﬁz. We have a functorial isomorphism
(Rpo.pg s * 7. T) = (' Rj(Rp.p™ ), T).
Proof. We have
% Rj,(Rpop ™' F7) =0 ' Rp.Ripp T
~u 'Rp.p R} T (pt=pl 5t =00)
~ Rﬁo*/?;lﬁ_lef*ﬁ* (Example A.3)
= Rpo.py i ' R, 7" = Riopy Uy 7.
The compatibility with ’T, T is then clear. O
Proof of Proposition 5.5 (first part). We have
Y F = i;lef*Rp*p_lﬁ* (by definition)
= if_lRw]v*ij*Rp*p_lf*
= Ruwy, JfﬁlRff*Rp*pflﬁ* (wy proper)
~ waU*RﬁO*ﬁglszf*gi (Lemma 5.6)
= Rqo*‘b“al{/;\;*j,
The compatibility with ’T‘, T follows from the previous lemma. O

Proof that (5.5%) is an isomorphism.

Lemma 5.7. Let ¥ be a weakly R-constructible bounded complex on dX (f) (see [KS90,

Def. 8.4.3]) satisfying the following property:

(5.7%) For each x € Xo and 7y : wﬁl(z) ~ S x {z} < OX(f) ~ S x Xy, the
cohomology sheaves of the restriction i, ~*4 to S* x {z} are locally constant
with finite rank.

Then the adjunction morphism qaquo*ﬁalg — ﬁalg s an isomorphism.

Proof. We first reduce to proving the lemma when Xy is a point. It is enough to prove
that, for every = € Xy, the morphism

%'y ' Raopy 'Y —u P 'Y
is an isomorphism, and this reduces to showing

4 'RU(S" x {a},7, " Rpo.py ') — 5,759
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is an isomorphism. Due to the assumption on ¢, we can apply Example A.3 to write
the right-hand side as gy 'RI'(R x {z}, 5y 17, '9), so we are reduced to proving the
lemma for 7;'% on S* x {z}.

Now, if 4 is a bounded complex on S' whose cohomology is locally constant
and of finite rank, the cohomology of py !4 on R is constant of finite rank, and
HFR, #794) = 0 for k # 0, so it is easy to conclude that g5 ' RT(R, p,'¥) — p, 'Y

is an isomorphism. O

Lemma 5.8. Let m : Y — X be a proper morphism and set g = f ox. If the mor-
phism (5.5 %) for g and a C-constructible bounded complex 4 on'Y is an isomorphism,
then so is the morphism (5.5 %) for f and % = Rn.9 on X.

Proof. Straightforward due to the base change property for a proper morphism. [

By a standard ‘dévissage’, we can assume that there exists a divisor D’ C X with
normal crossings and smooth components, such that, denoting by j : U = XD’ — X
the inclusion, .# = 4., where £ is a local system on U, and f~1(0) = D C D/,
so Xo = D with the previous notation. Let wp : )~((D) — X be the real blowing
up of the components of D, so that X (D) is a manifold with corners. Then we have
a decomposition wp = wy o wp 4 with wp 4 : X(D) — X(f). We will prove that
(5.7 %) holds for {/J;*f with these assumptions.

We can choose local coordinates (z1,...,%¢, Y1, - Ym, 21, - -, 2p) o0 X such that
flx,y,2) = Hle xi' =: x° (e; > 0 for all i) and D' = [[x; [[y; = 0. Then X(D)
has partial polar coordinates (p,e’®,y,z) (p; € Ry) and X (D) = {p1---pe = 0}.
The map wp,q : 8)?(D) — 8)~((f) is induced by the map (S1)* — S! given by

1'0 — eZe i0;

With obv1ous notation, we have wf*J Rwp 47, R]Dl . If we restrict to
[Ty; # 0, we have F* = £ and F = leR]Dl Z* is a local system with the same
monodromy as .. On 8)?(D) we then have 7' Rj,L F* = jgg(extension by zero
along [Jy; = 0).

Since the map wp 4 : dX(D) — 8X(f) is a fibration and & is a local system,
we conclude that, for € D\ {]]y; = 0}, the cohomology of 7;1%:*347 is locally
constant and of finite rank, while if € DN {[]y; = 0}, it is zero, so (5.7 *) holds for
Ut F. O

6‘*

5.c. The Xy-support condition and duality for P,IZJ;*% Since ™)y "DR .4 sat-
isfies the support condition on Xy, the isomorphism (5.5%) shows that p,ll);*% =
9171;* "DR . satisfies the Xy-support condition.

In order to prove the property for the Verdier dual complex DPT/);*/// it is
enough to prove that, for a constructible complex %, we can find an 1som0rphlsm
ng/Jf = PgZJfD/[ ], since "DR. is compatible with duality. Since Pz/) ZF and &
are R-constructible, we have (see [KS90, Chap. 3]):

D" 7 ~ ' RjDF ~ (" DF)[-1].
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We conclude:

Doy F = D(iy* F|-1]) = (Diy* F)[1] = o DF ~ (), DF)[1]. O

6. The moderate and rapid-decay nearby cycles
6.a. The functors F’T/}}*. We keep Notation 3.1 and we set
—~ - _ *

By the faithful flatness of zf_ 1@’@ over zf_ Lo x, we have for every & x-module .#

the equality (see §3.a(6) for the notation Zx,)
(6.2) D, éiflﬁx i = 2, @ i
Lemma 6.3. We have
Ry w0 =~ iy~ "DRy (M (X)) [ 1]
Rop )l ~ "DR(2x, @ iy ' )[~2)
(here we regard 2x, ® if_l/// as an if_lgx—module, and "DR(Z2x, ® zf_l///) =

DR(Z2x, @ i; .4 )[dim X]). O
Recall that pDR}T}))d A and pDR}r&) M are supported on dX(f). According to

(4.5) we also have:

o>mod = — uod ~7'"DRY(;

(6.4) Wy =TT DR G A1) =y "DRY ) A
Pl/\p;>rd¢% ::fi}—l PDR§YS‘.) %[_1] :’i}_! pDRE?(f) M.

Applying the functor 7% ~*[—1] to the distinguished triangles (4.2) or (4.5), we obtain
two distinguished triangles
o R e v
Wl — iyt — L
Let 7 : Y — X be a morphism of complex manifold and set ¢ = f oxw. There is a
natural morphism 7 = Y (g) — X (f) extending 7 : Y* — X*.

Proposition 6.6 (Compatibility with projective push-forward)
Assume that m is projective. Let .4 be an object of Ds’r_good(.@y). We have a
functorial isomorphism of distinguished triangles

— — — 1
pl,[)med'Tr_A,_%%%f*ﬂ+%*>p1/)f>m0dﬂ+%+4>

I / L
R, ™l —— RE.) Ml —— R, L,
and a similar one with rapid decay.

Proof. This is a direct consequence of Corollary B.7. O
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Corollary 6.7. Assume that f : X — C is projective and let t be a coordinate on C.
Let A be a holonomic Px-module. Then the long exact sequence

o HPREOVM s AR M —s AR
— %’““Rf*r%cm"d//l —
splits into short exact sequences, and the short exact sequence
0 — HEREAp ™M —s AR M —s AR — 0
1s identified with the short exact sequence
0 — PRI fotl — Ay AV fll — w7 A ol — 0.

A similar result holds for the rapid-decay complexes. Moreover, L%”ka*l%*e//l s a
local system on S for each k. O

6.b. Proof of Proposition 1.1. Assume .# is holonomic. We have, after [Kas03,
(3.13)] and (6.2):

"DR(2x, ®i; ' M) ~ RAom-1g (MY, 2x,)[dim X] = i, 1,
after [Meb04, Cor. 3.4-4]. Therefore,
Rowp. o)™t = i V"DR(Dx, @ i 'l)[~2] = i ey Y [1)
Similarly, ijc*PzIf>m°d/// is isomorphic to the cone of
i ' "DR.# (+X0) — i; ' Rjp.j; ' "DR.A

hence is isomorphic to i;l "Irrx, # (see [Meb04, Def. 3.4-1]). O

6.c. Proof of Theorem 1.2. The R-constructibility property follows from Theo-
rem 4.7 and the case of %*/// has been treated in §5.c, hence we are left with prov-
ing the Xy-support condition for PQAZJ}mOd///[l], PLAZJ}rdg///[lL %7}}>m°d/// and P(A/J;”d///.
We will argue for the moderate-growth case, the rapid-decay one being done similarly.
We first notice that, obviously,

%jplpfmod%[l] _ jf_1%j+(iimx DDR)?(f) M =0 fOI"j >0,

and the equality %j%>m°d/// = 0 for j > 0 follows then from %j%*j/ =0 for
j > 0. On the other hand, Remark 4.19 shows that %ﬂopwfm"d///[l] is supported on

the pull-back by wy of a discrete set of points. The same holds for %Of’%*/fl , due
to Theorem 1.7(1) and the perversity of ™)y "DR.#. Therefore, the same property

holds for #0mp, >0 71

Remark 6.8. At this point, we note that if we could prove %O%mOd///[l] =0, then the
proof by induction done below would lead to the Xy-support condition for %mOd/fl .
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Using a standard “dévissage” as in the proof of Theorem 4.7, we can assume that .4
is a meromorphic flat bundle with pole divisor P containing X(. The question is local
on Xy, so we fix x, € Xy, we replace X with a sufficiently small neighbourhood of z,,
that we still denote by X, so that there exists, according to [Ked11], a projective
modification e : Y — X such that D = e~(P) is a divisor with normal crossings
having smooth components and e*.# has a good formal structure along D. Since
the map e is proper, we can stratify X and Y by complex analytic strata such that
Xo, P, D are union of strata and the map e is a stratified map, smooth on each
stratum of Y to the corresponding stratum of X. We will show by induction on
dim X that, given a meromorphic flat bundle .# with such data, then for j > 0,
%‘j%m"d%[l] = 0 on each stratum Sy of dimension k > j.

Up to shrinking X, we can find a local coordinate system centered at x, such that
each coordinate defines a morphism p : X — S which is smooth on each stratum of
dimension > 1. In such a way, Corollary 4.18 reads

il (1] w0 L [2).
We also notice that, given s # 0, 5 Oi}s/// is a meromorphic flat bundle, and the
restriction to X of the data attached to .# are data attached to %Oi}s/fl. By the
inductive assumption, we have %‘j%fsm‘)dc%”oi}s//ﬂskmxs 1]=0ifk—1>35>0,
and thus
AT i ol g x (1] =0 ifk>j+1andj > 0.
This holds for each s # 0. By changing the coordinate projection p, we finally obtain
A 6, [1] =0 if k> jand j > L.

The case where j = 0 has been treated in the first part of the proof. Since the case
where dim X = 1 is obvious, the proof of Theorem 1.2 is complete. O

6.d. An improvement of Theorem 1.2 in the good case. Let (Y,D) be a
smooth complex manifold with a normal crossing divisor having smooth components,
and let .# be a good meromorphic flat bundle on Y with poles along D. Let g : Y — C
be a holomorphic function such that Dy := ¢~*(0) is contained in D. We will use the
notation as in the proof of Theorem 4.7.

Proposition 6.9. The complezes %mOdDg/// and Pz,bvgrdDg/// satisfy the Xg-support con-
dition.

Proof. The statement is local, so we can use local coordinates z1,...,z, adapted
to D, i.e., such that D = {z;-- -2, = 0} and g(x1,...,2,) = 27" -+ 2}* = x°, with
e; =2 0. We have

V(D) = (84! x (Ry) x €™, 9¥(D) = (S1)f x A(R,)" x €,

with coordinates (01,...,00p1,...,p0;%041,---,Ty), where O(R. )" is defined by
p1---p¢ = 0. The map wp 4 is given by the formula

(01,0001, PO Tps1y ey Tp) — (Zeiﬂi,npfi,mﬂ,...,xn).
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More precisely, if e; >0 for j=1,...,kand e; =0 for j = k+1,...,¢, then we have
Y(D) — Y(D,)

(61,0601, -, pr;ag) — (01, Ok pr, s pis pore’®>" o)
and Y(D,) — Y(g)

(01, Ok 1y - - s P1; Pk 0>F @ g) (Zle 61‘92‘,1_[?:1 PfiaP>k€i9>’“7w>4)-
Let S be the stratum defined by 1 = --- = 2, = 0 and x; # 0 for j > £. Above
this stratum, 0Y (D) is defined by p1 = --- = py = 0 and the map wp 4 is given
by (61,...,0¢,@op) — (Ele e, ,T-p), hence its fibre is a compact manifold of

real dimension ¢ — 1. As a consequence, for every sheaf ¥ on 857(D)| 5, we have
Riwp g«4 = 0 for j > ¢ — 1. The X¢-support (i.e., Dy-support) condition follows
then from (4.10) and the generalized Hukuhara-Turrittin theorem 4.11. O

Remark 6.10. In such a case, the support condition for pIerg/// and pIrrEq M
(see [Meb04, Th.3.5-2]) can be obtained as in dimension one, e.g. as in [Sab13,
Cor. 3.16], by using [Sab13, Prop. 9.23].

Appendix A. Base change for a covering map

Let us consider a cartesian square of topological spaces:

/

x -4 x

f’l O Jf

Y/TY

1

Lemma A.1. There is a canonical morphism of functors g~ o f, — flog' L.

1

Proof. The adjunction morphism Id — ¢/, o ¢'~* induces a morphism

/—1 /—1

=g.ofioyg
1

f*—>f*°9;°g

log,oflog’~!, and by using now the adjunction
g~ ! og, — Id, we obtain the desired morphism. O

We deduce a morphism g 'o f, — ¢~

For a sheaf & on Y, we consider the following property:

(P) Each point y € Y admits a fundamental system 2, of open neighbourhoods
such that, for each V' € U,;, the natural morphism I'(V,¥) — ¥, is an isomorphism.
We say that a bounded complex ¥* satisfies Property (P) if all its cohomology sheaves
do so.

Proposition A.2. Assume moreover that f is a covering map. Let 4° be a complex
of sheaves on'Y satisfying Property (P), as well as g~'9°* on Y'. Then the natural
morphism

(A.2) g o RE(fTIYY) — RfLog T (YY)

s an isomorphism.
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Proof. Assume first that ¢° is a sheaf 4. Since the question is local on Y, we can
assume that f is the projection X = Y x F — Y, where F is a discrete set. Then f~'¥
also satisfies property (P) at each point x € X with U, = Uy(,. Set F = f~'4 and
denote by p : F® — X the étalé space attached to .#. Then Property (P) implies
that fopu:.Z% — Y is the étalé space attached to f..Z.

On the other hand, the étalé space of ¢~ '.¥% = f/~1(g71¥) is by definition
(g ) = X! xx F — X', and by applying Property (P) to ¢~'¢ we find
that the étalé space of flg7 1% is flop' : X' xx .F¢ — Y’. Since we have a cartesian
square, we identify the latter with Y’ xy Z#¢ — Y, as wanted.

For an arbitrary bounded complex 4° as in the statement, we note that, since f
and f’ are covering maps, we have

HgT o RI(fTIY) =g o ([T AY),
jijf; Og/fl(fflgo) _ f; og/fl(ffljfj%.)’
so we can apply the first part of the proof. O

Example A.3. Assume that g : Y/ — Y is a morphism of real analytic manifolds
and that ¢° is weakly R-constructible (see [KS90, Def.8.4.3]). Then so is g~ 1¥°,
and both satisfy Property (P), according to [KS90, Prop. 8.1.4]. Therefore, if f is a
covering map, the morphism (A.2x) is an isomorphism.

Appendix B. Proof of the results in §3.a

For the sake of completeness, we indicate how to use the results of [Moc14,
Chap. 4 & 5] to obtain those stated in §3.

Let f : X — C be a holomorphic function. Set Dx = f~1(0). Let C denote the
real blow up of C at the origin. The product X x C is denoted by X, the real blowing
up map along X x {0} by w : X — X and the open subset X x C* by X*. For a
complex manifold Y with a normal crossing divisor Dy with smooth components, we
denote by ?(Dy) the real blow up of each component of Dy-.

The closure of v#(X™*) in X is the real blow up )~((f) of X along f. We have a
commutative diagram

XHLx
Jf = 7
(B.1) . ! @ o
PR NG TN T

Df = Vpixe

Proposition B.2 ([Mocl4, Th.4.5.1]). For all values of x, the following holds:
(1) The derived tensor product wilﬁvf(x) ®;,1ﬁx sz% has cohomology in degree
zero only, and is supported on )?(f)
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(2) Let p : Y — X be a birational morphism which induces an isomorphism
Y N~ p Y (Dx) = X \ Dx and such that Dy := p~'(Dx) has normal crossings
with smooth components, and let p : ?(Dy) — X be the induced morphism. Then

kﬁ*%);((Dy) =0 for k > 0 and the natural morphism

wilﬁ,”(x)(@ -10y JZ%« Hp*%*Dy)

induced by p* is an isomorphism.

Proof. The values *x = mod,rd are treated in loc. cit. (case £ = 1 there), and the
value * = x is obtained in a very similar way. Proving (1) for x = >mod, >rd, mod/rd
amounts to proving injectivity of

w ﬁ X)® “10y %§“°d—>w 1ﬁf(X w10y JZ%Z,*

and similarly for the pairs (rd,*) and (rd,mod). This follows from (2) for these
pairs. On the other hand, (2) for x = >mod, >rd, mod/rd is obtained by a similar
argument. O

Corollary B.3 ((Mocl4, Th.4.5.3]). For all values of x, the natural morphism

w ﬁf(X) Q- lﬁxﬁ{ —)’)/f*ﬂ};(f)

is an isomorphism.
*
Proof. For x = %, mod,rd, we have a natural identification p*,ngY(D ) = ’yf*,;zfx(f)

For the remaining cases, e.g. for x = >mod, p*ﬂ;{g()d) is identified with the cokernel

mod ~ * : sy vt >mod
of p.Z oy ™ p*xsz,(D . according to B.2(2), and by definition 'Yf*ﬂ{}?(f) is the

cokernel of Vf*%)?(f) — 'yf*,dg(f), hence the assertion. O

Let 7 : Y — X be a morphism of complex manifold and set g = f o 7. It can be
extended in a unique way as a morphism 7 : Y (g) — X (f).

Corollary B.4 ([Mocl4, Th.4.43 & Th.4.54]). Let w:Y — X be a projective morphism
and let A be an inductive limit of coherent Oy -modules. Then, for any values of x,
the natural morphism

* -1 ~ * L 71
JZ/X(f) = ox ©F Rrm, N —)RW*(JA/?(Q)(XJ “lgy N)
18 an isomorphism. O

Theorem B.5 (Flatness, [Mocl4, Th.4.6.1]). For all values of %, the sheaves ,Q%}i;(f) are
w?lﬁx -flat. Furthermore, for any coherent Ox-module 4 , and for x = mod,rd, the

natural morphism

CQ{;(((f) 1 Xw;1%—>7f*ﬁX* ®w;lﬁx wjjlﬁzjf*‘%p(*

18 1njective.
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Proof. The theorem is proved in loc. cit. for x = mod,rd. Flatness in the case
* = * is easy: it amounts to proving that ij*jf/// = jf*ﬁ?l/// for any coherent
Ox-module ., and this follows from the argument used to prove (b) in Section 3.a.
Last, flatness in the remaining cases, expressed as the vanishing the cohomology of

%@L w;l 4 in negative degrees for any coherent @x-module .#, follows
X(f) “w; Ox f
from both statements in the cases x = %, mod, rd by the snake lemma. O

For the following results, we consider the case of a right Zy-module .# for sim-
plicity and we use the Spencer complex Sp.

Corollary B.6 ([Mocl4, Prop.4.7.1]). Setting as in Corollary B.4. For any coherent
Dy -module A having a good filtration (locally with respect to X ), there is a natural

isomorphism in Db(@)’%(f)):

(B.6%) &%

L ~ ((os* -1 1
X(f)®w;1ﬁx7r+%—>R7T*((d~(g)®w;16’ng M) =1 5, TSPy, x)-

%

Proof. We can replace .# by its canonical resolution by induced Zy-modules
M ® ¢y Spy, so that we can assume that 4 = A ®¢g, Py, where ./ is an inductive
limit of coherent 2y-modules, due to the assumption of existence of a good filtration.
Then 7y # = Rm. N ®p, Px and the natural morphism

* L -1 ~ * L
TR0y Oron T Tl BRSO,

w, )

is an isomorphism by Corollary B.4. Due to the wg_lﬁ’y—ﬂatness of /X , the latter

Y(g)’
term is equal to the right-hand side of (B.6 ) with # = A4 ®g, Dy.
Corollary B.7 ([Mocl4, Cor.4.7.3]). Setting as in Corollary B.4. For any coherent

Dy -module A there is a functorial isomorphism
Proof. We tensor (B.6 *) on the right by wj?l Spx and we apply the projection formula
to the right-hand side:

R7, |2,

(9) ®wg—1(ﬁy (% ®_@y Spyﬁx):| ®W;1@X w;l SpX

s R, [dg(g) ® -ty (M 2, SPy_,x Or-1g,m ) pr)]

~ ~ P *
~ R | @10y (M @oy Spy)| = RF.'DRY ) 4 O

Appendix C. Results about duality

We prove a special case of Conjecture 4.13. Let f, g : X — C be holomorphic func-
tions and let V be a meromorphic flat bundle on X with poles along f~1(0) Ug~*(0).
By definition, we have V' = V(xf, *g). We denote by V" the dual meromorphic flat
bundle.
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Proposition C.1. Locally on X, there exist isomorphisms
P mod P rd v
P rd P mod v

compatible with the natural morphisms from rapid decay to moderate de Rham com-
plexes and inducing the natural isomorphisms existing on X*.

C.a. The case of normal crossing divisors and good meromorphic flat bun-
dle. Let (Y,D) be a complex manifold with a normal crossing divisor D with a
partition of its components in two disjoint sets, giving rise to the decomposition
D = D;UD5. Let V be a meromorphic flat bundle with poles along D and let V¥ be
the dual meromorphic flat bundle. The dual localization V (!D) is defined as D (V).
We take up the notation of [Moc14, §4.1.4] where < D means rapid decay along D
and < D means of Nilsson’s class along D. The following de Rham complexes on Y (D)
<D <D1,<D> <D2,<D: <D
DR?(D)(V), DR?(D) V), DR?(D) V), DR?(D)(V)
enter a natural commutative diagram

<D <D5,<Dy
DR?(D)(M)  — DR?([?) (M)

| |

<D1,<D2 <D
DR?(D) (M)—>DR§7(D)(M)

The dual diagram D(C.2) is obtained by taking the Verdier dual at each vertex
and by considering the dual arrow, which then point toward the opposite direction.
In order to obtain a diagram similar to (C.2), it is thus necessary to consider first a
diagram (C.2)" obtained from (C.2) by symmetry with respect to its center. Then
D(C.2)" is

<D <D1,<D>
DDRS( (V) —— DDREV<P2(V)

(D(C.2)") | j

<D2,<D <D
DDR »SP (V) ——— DDRE (), (V)

There is a natural morphism of squares
(C.3) (C.2)(VY) — (D(C.2)")(V),

meaning that there is a natural morphism between the corresponding vertices
(in Db((Cf,( D))) and these morphisms are compatible with the arrows in the squares.

Theorem C.4 ((Mocl4, Th.5.2.2]). IfV is a good meromorphic flat bundle along (Y, D),
the morphism (C.3) is an isomorphism.



28 C. SABBAH

C.b. De Rham complexes on ?(Dl). We now consider the real blow-up w; :
Y(D;1) — Y and the commutative diagram of morphisms

V(D) —— V(D)

NP

Y
We also consider the following de Rham complexes on }N’(Dl);
= sh SDs ! <Dy |
DRSS (V). DREG (V) DRE( (V(ID2)), DRER (V(1D2).

There is a natural commutative diagram

DRg (3, (V(1D2)) ——DRE 5 (V(1D2))

| |

<D N
DRE(} (V) ————DR5(} (V)

Proposition C.6. If V is a good meromorphic flat bundle along (Y, D), there is a func-
torial isomorphism (in the derived category) (C.5) — Rp.(C.2) (i.e., a morphism
between the corresponding vertices which is compatible with the arrows).

Proof. We denote by O one of the symbols < D, ..., < D entering the diagram (C.2).

Lemma C.7. We have the following identifications:

Rp*JZ{§D ~ %éDl (*DQ),

D) = Uy

Rp*%;(f;)’@? ~ o5 (+D2),

Boesg )< = A0 — Hony 5, )
Bo- 850 = %0y — oo}

where, denoting by fo an equation of Do, we have set

<Dy 1 <D k 7<D1 <D1 R E <D1 <D1
7 (D1)1Bs %n”‘z{ywl)/f? Doy Prons, T RS, 125

Proof. The first two identifications follow from [Moc14, Th.4.3.2 & Th.4.3.1] and
the last two from the same references together with [Sab00, Lem.I1.1.1.18]. O
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We know from [Moc14, Th.4.3.1] that dxlf](p) is w1 0y-flat. For any holonomic
Py-module M, we have
L —1 —1
(Rp*,cfg(D) ®wflﬁy w; M) ®w1’1@y w;  Spy

;> Rp* (%}E(D) ®éflﬁy w_lM) ®wf1@Y wl_l SpY

= Rp. ('Q{}E(D) B0y w_lM) ®wf19y wfl Spy

ASN Rp. [(M?D(D) Rw-16y wilM) Qw19 w ! Spy]

Let us denote by dﬁl’](D ) the object defined by the right-hand sides in Lemma C.7.
1

From the first two lines of Lemma C.7 together with flatness properties (that also

hold for 5P  and #=P1 . according to loc. cit.), the first line above reads
Y (D1)|D2 Y (D1)|D2
~1 ~1
(d}l,](Dl) Doy W1 M) Dpigy, W1 Spy -

Let us consider the square

<D <D3,<D:
DR?(Dl)(M) } DR?(Dl) (M)

| |

DR (M (+Dz)) —— DRE 7 (M (+D2))

~

Then for any holonomic %y-module M, we have a functorial isomorphism (C.5") —
Rp.(C.2).

Let us now assume that M = M(!D3). Then there is a natural morphism (C.5") —
(C.5) which is the identity on the lower lines. It is induced by the morphism of
complexes (for x = <D, <Dy)

{%};(Dl) Qw M — d?*(Dl)lf)Q ®w; M} — ,Q/;(Dl) ® wy M.

The proposition follows then from Lemma C.8 below. O

Lemma C.8 ((Moc14]). Assume that V is a good meromorphic flat bundle along (Y, D).
Then DR§(D1)|52(V(!D2)) =0.
Proof. This statement is proved in [Moc14, Prop.3.2.2] when one replaces Y (D;)
with Y. We adapt a first proof of the latter statement which appeared in a preliminary
version of [Moc14]. A similar proof is given in Lemmas 5.1.6 and 5.1.8 of loc. cit.
Let us set Dy = |J;c; Di (J # @) and, for any nonempty subset I C J, let us
set Dr = (\;c; Di- By a Mayer-Vietoris argument (see [Sab00, Lem.II.1.1.13]), it
is enough to prove the vanishing DR§(D1)|51 (V(!D2)) = 0. This is a local question,
so that we can use a local coordinate system (x1,...,%,) adapted to D. It is then
enough to prove that, for some ¢ € I, the differential

. * —1 * —1
Ous + TE 15y Or oy T1(V(ID2)) — T2 5 @1, @7 (V(1D2)
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is bijective. In the following, we fix such an i. We have an identification

* -1 _ * -1 R
"fo/([)l)‘ﬁl(gw;lﬁywl (V(!DQ))*%?(Dl)‘fh@w;lﬁy‘ﬁlwl (ﬁY|D1®wflﬁyV(!D2))a

and by goodness, ﬁYl b Potey V locally decomposes, possibly after a finite ram-
ification around D, into a direct sum of terms obtained from regular holonomic
‘@Yl B, (*D3)-modules R by twisting their connection by d¢p for some good local section
p of Oy (xD)/0Oy (i.e., ¢ is a the product of a monomial in z1,...,z, with negative
exponents by a unit in €y). Since R is a successive extension of rank-one objects, it
is enough to assume that R has rank one by an easy induction. We can thus assume
that V = (Oy (xD),d + dy + w, where w is a logarithmic 1-form with constant coef-
ficients. Then the computation is standard (such computations are done in [Moc14,
Proof of Lem. 5.1.6]). O

Corollary C.9. There exists an isomorphisms of squares from

DR;Z;l)(vv(!DQ)) — DRéﬁ;I)(W(!Dz))

| |

DRS” (V) ————DRS! (V)

Y(D1) Y (D1)
to
<D: <D:
D DR?(Dl) (V)— D DRY/(DI)(V)

J J

<D1 <D
D DR?(DI)(V(!DQ)) ——D DR?(Dll)(V(!DQ))

which extend the natural isomorphisms existing on Y* :=Y N\ D;.

Proof. We first apply Rp, to the isomorphism (C.3). By applying the isomorphism
of Proposition C.6 together with the commutation isomorphism Rp.D ~ DRp,,
we obtain the desired isomorphism. Let us check compatibility with the natural
isomorphisms when restricted to Y*. We note that p : Y*(Dy) — Y* is the real blow-
up of the components of Ds. We apply [Mocl4, Prop.5.2.1] to this real blow-up
(denoted by 7 in loc. cit.) and with D = Ds. O

C.c. End of the proof of Proposition C.1. The question is local on X. Let
m:Y — X be a projective modification with Y smooth such that fg o defines a di-
visor with normal crossings D. We denote by D; the divisor defined by fom and by Dy
the union of the remaining components of D. There exists a unique lift 7 : }N/(Dl) —
X(f) of w. Let V be a meromorphic flat bundle on X with poles on (fg)~*(0) and
let V3 denote its pullback on Y, which has poles along D. We have 7 Vy =V (this
is seen for example by computing the pushforward by means of induced Z-modules).
Since duality commutes with pushforward, we deduce that 74 (Vy (lg o m)) ~ V(lg).
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On the other hand, one checks that V3 (lg o 7)(xD;1) = Vy(1D3), so that, when con-
sidering the de Rham complexes of Corollary C.9 one can replace Vy (lg o w) with
Vy (IDs3). Finally, applying R, to the isomorphism of Corollary C.9 together with
the isomorphism of Corollary B.7 (stated for Y (f o ), but which also applies to
Y (D)), we obtain the isomorphisms of Proposition C.1.

Last, the compatibility statement is a consequence of that obtained in Corol-

lary C.9. O

Appendix D. A complement on ¢s.#

A shift is missing in [Sab13, Cor. 14.5]. We correct the error here. Let f: X —C
be a holomorphic function on a smooth manifold X and let .# be a holonomic
Zx-module. The error comes from the identification ipif,.# with RT|pj.#. For
the hypersurface D = f~1(0), we should make the identification of iD+iB/// with
RT'p.#[1]. We denote RI'jpj.# = DRUp)D. .

Proposition D.1. There is a natural isomorphism

pDwa’,\.// ~ MPDR(ﬁB Qo .//)\’k)[—l].
k

Proof. Let 75 : X — X x C denote the graph inclusion and let ig : X x {0} — X xC
denote the natural inclusion. We first note that vy (# ) =~ (Vf+ 4 )x 1k (notation
of loc. cit.). By definition,

(D.2) Vgl =lim A (ilyp Mo 1),
k

and the limit is achieved on any compact set of f~1(0) for k large enough. Further-
more, the limit of 5! is zero (see e.g. [MMO4]).
By definition we have ig = Dif D, and so

i0+i$ ~ Di0+i8_D = DRF[(XX{Q})] [I]D = RF[!(XX{O})] [—1].
Furthermore, since vy4 RI'|p) =~ RI|(x x{0})]Vs+, and since vy commutes with dual-
ity, we deduce that
Y#+ R Dy = R (x < {o})] Y5+
On the other hand, since 7 ».# is supported on D = f71(0), we have tox VM ~
Yr+W g according to the following lemma.

Lemma D.3. Let N be a Px-module supported on f=1(0). Then there exists a natural
isomorphism

")/f+</1/ >~ i0+JV.
Proof. We write yp4 4" =3, N &5(t — f), which is supported on X x {0}, hence of
the form ig4.#". We have A" = ker[t : v+ A" — v544]. An element > ;0 8(t —
f) belongs to kert if and only if the coefficients n; € A" satisfy

Ly (>0

Nj+1 = m
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the isomorphism .4/~ — 4" is defined by n Z];o fin/j! (the sum is finite since .4
is supported on f~1(0)). O

Form the lemma and (D.2) we conclude

VeV M = h%%(i0+i$7f+////\,k)
~ li%%(RF[!(XX{()})]'Yf+-//{>\7k[_1])
o~ liTDg%'ﬁ(VHRF[!D]//,\,k[—l])
~ Vit %%(RF[!D] M k[ —1]).

We conclude that ¢, .4 ~ lim, (R 1 p).A 1 [—1]) and we finally obtain
pDR(T/)fJ//) = BPDR%(RF[!D]%AJ{)[fl].
k

We have a natural morphism
pDR%(RF[ID]//f)\yk) — pDR(RF[ID].//f)\yk),

which becomes an isomorphism after passing to the limit (on a compact set of D),
and the latter space is identified with "DR(& 5 ®ex Ax). This concludes the proof
of the proposition. O

References

[Del73] P. DELIGNE — Le formalisme des cycles évanescents (exposés 13 et 14), in SGA 711,
Lect. Notes in Math., vol. 340, Springer-Verlag, 1973, p. 82-173.

[Hie07] M. HIEN — Periods for irregular singular connections on surfaces, Math. Ann. 337
(2007), p. 631-669.

[Kas03] M. KASHIWARA — D-modules and microlocal calculus, Translations of Mathematical
Monographs, vol. 217, American Mathematical Society, Providence, R.I., 2003.

[Kas16] —, Self-dual t-structure, Publ. RIMS, Kyoto Univ. 52 (2016), no. 3, p. 271
295.

[KS90] M. KASHIWARA & P. SCHAPIRA — Sheaves on Manifolds, Grundlehren Math. Wiss.,
vol. 292, Springer-Verlag, Berlin, Heidelberg, 1990.

[Ked1l] K. KEDLAYA — Good formal structures for flat meromorphic connections, II: excel-
lent schemes, J. Amer. Math. Soc. 24 (2011), no. 1, p. 183-229.

[MMO04] PH. MAISONOBE & Z. MEBKHOUT — Le théoréme de comparaison pour les cy-
cles évanescents, in Eléments de la théorie des systémes différentiels géométriques,
Séminaires & Congreés, vol. 8, Société Mathématique de France, Paris, 2004, p. 311—
3809.

[Maj84] H. MaJmma — Asymptotic analysis for integrable connections with irregular singular
points, Lect. Notes in Math., vol. 1075, Springer-Verlag, 1984.

[Mal91] B. MALGRANGE — Equations différentielles & coefficients polynomiauz, Progress in
Math., vol. 96, Birkh&user, Basel, Boston, 1991.

[Meb90] Z. MEBKHOUT — Le théoréme de positivité de 'irrégularité pour les Zx-modules, in
The Grothendieck Festschrift, Progress in Math., vol. 88, no. 3, Birkh&user, Basel,
Boston, 1990, p. 83-132.



MODERATE AND RAPID-DECAY NEARBY CYCLES FOR HOLONOMIC 2-MODULES 33

[Meb04] , Le théoréme de positivité, le théoréme de comparaison et le théoréme
d’existence de Riemann, in Eléments de la théorie des systémes différentiels
géométriques, Séminaires & Congrés, vol. 8, Société Mathématique de France, Paris,
2004, p. 165-310.

[Moc09] T. MocHIZUKI — On Deligne-Malgrange lattices, resolution of turning points and

harmonic bundles, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 7, p. 2819-2837.

[Moc11] , Wild harmonic bundles and wild pure twistor D-modules, Astérisque, vol.
340, Société Mathématique de France, Paris, 2011.
[Moc14] , Holonomic 2-modules with Betti structure, Mém. Soc. Math. France (N.S.),

vol. 138-139, Société Mathématique de France, Paris, 2014.
[Sab93] C. SaBBaH - Equations différentielles & points singuliers irréguliers en dimension 2,
Ann. Inst. Fourier (Grenoble) 43 (1993), p. 1619-1688.

[Sab00] , Equations différentielles & points singuliers srréguliers et phénomeéne de
Stokes en dimension 2, Astérisque, vol. 263, Société Mathématique de France, Paris,
2000.

[Sab13] , Introduction to Stokes structures, Lect. Notes in Math., vol. 2060, Springer-

Verlag, 2013.
[Ser65] J.-P. SERRE — Algébre locale et multiplicités, 3rd ed., Lect. Notes in Math., vol. 11,
Springer-Verlag, 1965.

March 31, 2021

C. SaBBaH, CMLS, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau
cedex, France e [E-mail : Claude.Sabbah@polytechnique.edu
Url : https://perso.pages.math.cnrs.fr/users/claude.sabbah



	1. Introduction
	2. Real blow-up spaces and their stratifications
	3. Sheaves on the real blow-up spaces
	4. The moderate and rapid-decay de Rham complexes on Xf
	5. The sheaf of nearby cycles as a sheaf on the real blow-up space
	6. The moderate and rapid-decay nearby cycles
	Appendix A. Base change for a covering map
	Appendix B. Proof of the results in §3.a
	Appendix C. Results about duality
	Appendix D. A complement on psifM
	References

