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Abstract. This article surveys various duality statements attached to a pair con-
sisting of a smooth complex quasi-projective variety and a regular function on it.
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1. Introduction

1.a. Comparing cohomologies of complexes of differential forms. The origin
of this note is a question of Bumsig Kim: given a regular function f on a smooth
connected complex quasi-projective variety U of dimension n, to compare two kinds
of cohomologies attached to f together with their natural duality pairings:

• the hypercohomology of the twisted de Rham complex (Ω•
U ,d+df) together with

a variant with compact support (to be defined since it is not a complex in Mod(OU ))
and the natural pairing between them,

• the cohomology and cohomology with compact support of the complex (Ω•
U ,df),

together with the Serre duality pairing between them (see e.g. [Har72]).

A first observation is that, although the first (hyper)cohomologies are finite dimen-
sional, the second ones are not, unless some assumption on f is added, e.g. the critical
set, which is the support of the cohomology sheaves H j(Ω•

U ,df), is compact (recall
that it is anyway contained in a finite number of fibers of f). This leads us to choose
a good projectivization of (U, f) as a projective morphism f : Y → A1, so that Y is
smooth quasi-projective and H := Y ∖ U is a divisor with normal crossings, and to
consider suitable cohomologies on Y .

Furthermore, one way to compare them is to introduce a parameter u and to
consider the twisted de Rham complex (Ω•

U [u], ud + df), where, all along this note,
the notation [u] means the tensor product ⊗CC[u]. The main question is then whether
the hypercohomology Hk(U, (Ω•

U [u], ud + df)) of the latter complex is a free C[u]-
module of finite rank.

(i) This property does not hold in general, as shown by the following simple ex-
ample. Let U = A1 with coordinate t and set f = 0. Then

H1(U, ud + df) = coker
[
C[t, u] u∂t−−−−→ C[t, u]

]
and this C[u]-module is identified with the C-vector space C[t] on which u acts by
zero, hence is not of finite type.

(ii) This property holds if f is proper, but we are mainly interested in cases where f
is not proper.

(iii) This property holds if we replace C[u] with the ring of Laurent polynomials
C[u, u−1], meaning that the problem of comparison only occurs at the origin u = 0

(see (1.2)).
(iv) As indicated above, a way to prevent the infinite dimensionality at u = 0 is to

replace the twisted de Rham complex with parameter u by a subcomplex that solves
the comparison. This can be done by choosing a good projectivization (Y, f) as above
and by considering the twisted logarithmic complex (Ω•

Y (logH)[u], ud + df) with
parameter u (a meromorphic version of this complex, called the de Rham complex of
the Brieskorn lattice, is considered in [SY15, §8]). This will be our starting point.

The abutment of the pairing we look for is obtained by means of a smooth projec-
tivization X of Y such that f extends as a morphism f : X → P1 and D = X ∖ U
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is a normal crossing divisor. The de Rham hypercohomologies Hk(X, (Ω•
X ,d)) and

Hk(X, (Ω•
X , 0)) have the same dimension due to Hodge degeneration. It follows that

the hypercohomology of the complex (Ω•
X [u], ud) is C[u]-free of finite rank: its has

finite type over C[u] and for any uo ∈ C, the dimension of the hypercohomology of
(Ω•

X , uod) is independent of uo, so that the assertion follows from Lemma 1.7 below.
We can then identify H2n(X, (Ω•

X [u], ud)) with

H2n
dR(X, (Ω

•
X ,d))⊗ C[u] ≃ Hn(X,Ωn

X)⊗ C[u] ≃ C[u].

Theorem A. The C[u]-modules

Hk
(
Y, (Ω

•
Y (logH)[u], ud + df)

)
and Hk

(
Y, (Ω

•
Y (logH)(−H)[u], ud− df)

)
,

are C[u]-free of finite rank, and equipped with a meromorphic connection having a
pole of order at most 2 at u = 0, a regular singularity at infinity and no other pole.
Furthermore, there is a natural perfect pairing

(1.1) Hn+k
(
Y, (Ω

•
Y (logH)[u], ud + df)

)
⊗C[u] H

n−k
(
Y, (Ω

•
Y (logH)(−H)[u], ud− df)

)
−→ C[u],

which is compatible with the connections. All these objects are independent of the
choice of the good projectivization (Y, f) of (U, f).

Note that the freeness of Hk
(
Y, (Ω•

Y (logH)[u], ud+df)
)

also follows from a variant
of the Barannikov-Kontsevich theorem [Sab99, §0.6]. The independence on the choice
of the good projectivization follows from [Yu14] and [CY18, Prop. 2.3].

Let us emphasize that, by restricting modulo uC[u] according to Lemma 1.7 below,
we find that the perfect pairing

Hn+k(Y, (Ω
•
Y (logH),df))⊗C Hn−k(Y, (Ω

•
Y (logH)(−H),−df)) −→ C

coincides with Serre’s duality pairing as constructed in [Har72] since the complexes
involved are compactly supported (they are supported on the union of the closures
of the critical locus of the restriction of f to each stratum of (Y,H), hence in a finite
number of fibers of f).

If f : U → A1 is proper, the divisor H is empty and U = Y , so this theorem
justifies the assertion (ii). If on the other hand f satisfies a tameness condition
(see Definition 4.3 below), then the twist (−H) on the second term of (1.1) can be
omitted (see Corollary 4.6).

(v) One can give a D-module-theoretic interpretation of the previous results
(see Section 4). Letting DU denote the ring of algebraic differential operators on U

with its filtration F• by the order, we consider the Rees ring RFDU =
⊕

k⩾0 FkDU ·uk.
We regard (OU [u], ud+df) as a coherent RFDU -module and Hk(U, (Ω•

U [u], ud+df))

as isomorphic to the de Rham cohomology of this RFDU -module. Although the
ring RFDU has properties similar to those of DU , it does not satisfy Bernstein’s
inequality because of the possible occurrence of u-torsion, and this prevents us to
apply Bernstein’s results to deduce finiteness of the de Rham cohomology.
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For (iii), we first notice that the second term in (1.1) plays the role of hyperco-
homology with compact support. In order to give a meaning to this remark, it is
worthwhile working with modules over the ring of differential operators. More pre-
cisely, we consider the ring DU [u, u

−1] = DU ⊗C C[u, u−1] of algebraic differential op-
erator on U with coefficients in OU [u, u

−1], so that the base ring is C[u, u−1] instead
of the field C (it would be equivalent to consider differential operators on U × Gm

relative to the projection to Gm). We denote by E
f/u
U the left DU [u, u

−1]-module
(OU [u, u

−1],d + df/u).
We consider the two extensions in the sense of D-modules, denoted E

f/u
Y (∗H)

and E
f/u
Y (!H) of E

f/u
U by the open inclusion U ↪→ Y , corresponding to the full

extension and the extension with “proper support” (see Section 3 for details). Note
that E

f/u
Y also exists. We will show that, for any k ∈ Z, both C[u, u−1]-modules

Hk
dR(Y,E

f/u
Y (∗H)) and Hk

dR(Y,E
f/u
Y (!H)) are free C[u, u−1]-modules of finite rank

equipped with a connection having a regular singularity at u = ∞, that we also
denote by Hk

dR(U,E
f/u
U ) and Hk

dR,c(U,E
f/u
U ) respectively. By definition of Ef/u

Y (∗H),
we have

Hk
dR(U,E

f/u
U ) = Hk(U, (Ω

•
U [u, u

−1],d + df/u)).

On the other hand, we will see the isomorphism in (3.1 ∗∗):

Hk
(
Y, (Ω

•
Y (logH)[u, u−1],d+df/u) ≃Hk

(
Y, (Ω

•
Y (logH)[u],d+df/u)⊗C[u]C[u, u−1],

compatible with the connections, and similarly after twisting the complexes by (−H).

Theorem B. Restriction to U induces isomorphisms of free C[u, u−1]-modules of finite
rank with connection

Hn+k
(
Y, (Ω

•
Y (logH)[u, u−1],d + df/u)

) ∼−→ Hk
dR(U,E

f/u
U )(B∗)

Hn−k
(
Y, (Ω

•
Y (logH)(−H)[u, u−1],d− df/u)

) ∼−→ H−k
dR,c(U,E

−f/u
U ),(B!)

giving rise to a perfect pairing compatible with the connections, by means of (1.1):

(1.2) Hk
dR(U,E

f/u
U )⊗C[u,u−1] H

−k
dR,c(U,E

−f/u
U ) −→ C[u, u−1].

This theorem makes clear the independence of the choice of the good projectiviza-
tion (Y, f) in Theorem A if we restrict to Gm = SpecC[u, u−1]. It is similar to
[Wei20, Th. 3], where mixed Hodge modules are considered (see also [ES19]). Note
that a perfect pairing like that of Theorem B can be obtained by means of D-module
theory (see [Mal91, App. 2]) but we will not compare these two ways of defining a
perfect pairing. Theorem A provides each term in (B∗) and (B!) of a canonical lattice,
i.e., a free C[u]-submodule which has the same rank as the corresponding C[u, u−1]-
module, on which the connection has a pole of order two. It is a generalization of the
Brieskorn lattice of singularity theory ([Bri70, Pha85]).

Remark 1.3. Such twisted de Rham complexes have been considered from many points
of view and their cohomology sometimes takes the name of Dwork cohomology. Also,
since df is the main object used to define the twisted de Rham complex, one could
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consider a pair (U, ω), where ω is any closed regular 1-form, instead of a pair (U, f).
In addition to the references used in this text, let us mention only a few articles
representing other directions of research: [AS97, DMSS00, BD04, Her05, ST08,
Fan11, LW22] and [Ara97], [Sab13, §2.4].

1.b. Formalization with respect to u. If the critical set of f in U is assumed
to be compact, then the cohomology Hk(U, (Ω•

U ,df)) is finite-dimensional since the
complex of coherent sheaves is supported on this critical set. One would naturally
expect that, consequently, Hk(U, (Ω•

U [u], ud+ df)) is of finite type over C[u]. We do
not know whether this property holds. However, as shown in Theorem Ĉ below,
it holds if we replace C[u] with the ring C[[u]] of formal power series in a suitable way,
under the following condition:(1)

(1.4) There exists a projectivization fZ : Z → A1 of f : U → A1 with Z smooth (no
other assumption on Z ∖ U), such that the critical set of fZ is contained in U (in
particular it is compact).

Some care has to be taken when working with formal power series. For a coherent
OU -module F , we have F [u] := C[u]⊗C F and we set F [[u]] = lim←−ℓ

(F [u]/uℓF [u]).
This is in general not equal to C[[u]] ⊗C F and for x ∈ U we have a strict inclusion
F [[u]]x ⊊ Fx[[u]]: a germ of section of F [[u]] at x ∈ U consists of a formal power series∑

n fnu
n where fn are sections of F defined on a fixed neighbourhood of x, while for

Fx[[u]] we allow the neighbourhood to be shrunk when n → ∞. In particular, there
is a natural morphism C[[u]] ⊗C F → F [[u]]. We then set F ((u)) := F [[u]][u−1] =

C((u))⊗C[[u]] F [[u]].

Theorem Â. The statement of Theorem A holds if we replace everywhere [u] with [[u]],
and the free C[[u]]-modules and pairings are obtained from those of Theorem A by
tensoring with C[[u]] over C[u].

Theorem Ĉ. Under Condition (1.4), the C[[u]]-modules

Hk
(
U, (Ω

•
U [[u]], ud + df)

)
are C[[u]]-free, coincide via the restriction morphism with the corresponding C[[u]]-mod-
ules in Theorem Â, and the pairing (1.1) induces a perfect pairing

(1.5) Hn+k
(
U, (Ω

•
U [[u]], ud + df)

)
⊗C[u] H

n−k
(
U, (Ω

•
U [[u]], ud− df)

)
−→ C[[u]]

which itself induces, by working modulo uC[[u]], the Serre duality pairing

Hn+k
(
U, (Ω

•
U ,df)

)
⊗C Hn−k

(
U, (Ω

•
U ,−df)

)
−→ C.

See Proposition 5.2 for a more precise result. The way (1.1) induces (1.5) will be
explained in detail in Section 5.

(1)Added on May 2023: T.Mochizuki has sent me a proof assuming only compactness of the critical
set and which extends to the case where U is complex analytic and Kähler, and f holomorphic.
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Remark 1.6. The pairing (1.5) can be regarded as a global version (with respect to U)
of K. Saito’s higher residue pairings [Sai83] for a germ of holomorphic function with
an isolated singularity.

1.c. Setting and notation. Let U be a smooth connected quasi-projective variety
of dimension n and let f ∈ O(U) be any regular function on U , that we regard as a
morphism f : U → A1. Let u be a new variable. We consider the twisted de Rham
complex (Ω•

U [u], ud+df), with Ω•
U [u] := Ω•

U ⊗CC[u], , whose hypercohomology on U

is Hk(U, (Ω•
U [u], ud + df)). We sometimes make use of the isomorphic subcomplex

(u−•Ω•
U [u],d + df/u) of (Ω•

U [u, u
−1],d + df/u), the isomorphism being obtained by

multiplying the degree k term by u−k. We will also define the cohomology with
compact support Hk

c (U, (Ω
•
U [u], ud + df)) ≃Hk

c (U, (u
−•Ω•

U (−D)[u],d + df/u)).
It is convenient to choose a good projectivization of (U, f), namely, a pair (X, f)

consisting smooth projective variety X containing U as a Zariski open subset and
such that

(a) D := X ∖ U is a normal crossing divisor in X,
(b) f : U → A1 extends as a morphism f : X → P1.
We then set P = f∗(∞) (the pole divisor of f), we denote by |P | its support,

which is contained in D, and we decompose D = |P | ∪H, where H is some normal
crossing divisor in X having no irreducible component contained in |P |. We let
j : U := X ∖D ↪→ X denote the open inclusion. We note that f induces a projective
morphism f : X∖|P | =: Y → A1. We can also regard f as a global section of OX(∗D).
We will keep the notation H for H ∩ Y .

The following lemma will be of constant use.

Lemma 1.7. Let K•
u be a bounded complex of sheaves on X of C[u]-modules such that

Hj(X,K•
u) has finite type over C[u] for every j. Then the following properties are

equivalent:

(1) For every uo ∈ C and every j, dimHj(X,K•
u/(u−uo)K

•
u) is independent of uo.

(2) For every j, Hj(X,K•
u) is a free C[u]-module.

In such a case, for every uo ∈ C and every j, we have

(1.7 ∗) Hj(X,K
•
u/(u− uo)K

•
u) = Hj(X,K

•
u)/(u− uo)H

j(X,K
•
u).

Furthermore, for any morphism φ : K•
u → L•

u between two such complexes satisfy-
ing (1) or (2), if the induced morphism

Hj(X,K
•
u/(u− uo)K

•
u) −→Hj(X,L

•
u/(u− uo)L

•
u)

is an isomorphism for any uo ∈ C and any j ∈ Z, then RΓ(X,φ) is a quasi-
isomorphism, that is,

Hj(X,φ) : Hj(X,K
•
u) −→Hj(X,L

•
u)

is an isomorphism of free C[u]-modules for any j ∈ Z.
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Proof. Let C[u]loc be a localization of C[u] such that C[u]loc⊗C[u]H
j(X,K•

u) is C[u]loc-
free for every j. If uo is a closed point of SpecC[u]loc, the maps (u− uo) in the long
exact sequence

· · ·Hj(X,K
•
u)

u− uo−−−−−−→Hj(X,K
•
u) −→Hj(X,K

•
u/(u− uo)K

•
u) −→ · · ·

are all injective. By decreasing induction on j, one identifies Hj(X,K•
u/(u− uo)K

•
u)

with Hj(X,K•
u)/(u− uo)H

j(X,K•
u) for all j, i.e., that (1.7 ∗) holds for such an uo.

If (2) holds, then the above property holds for any uo ∈ C and the dimension of
Hj(X,K•

u/(u− uo)K
•
u) is constant and equal to the rank of Hj(X,K•

u), so that (1)
also holds.

Assume now that (1) holds. We argue by decreasing induction on j. Assume
that u − uo : Hj+1(X,K•

u) → Hj+1(X,K•
u) is injective for any uo. Then the exact

sequence above implies that (1.7 ∗) holds in degree j for any uo. Since the dimension is
independent of uo, the C[u]-module Hj(X,K•

u) is C[u]-free, so that u−uo is injective
on it for any uo ∈ C and we conclude by induction since Hk(X,K•

u) = 0 for k ≫ 0.
For the last assertion, the assumption and the first part imply that φ induces an

isomorphism Hj(X,K•
u)/(u− uo)H

j(X,K•
u)

∼−→Hj(X,L•
u)/(u− uo)H

j(X,L•
u) for

any uo ∈ C. We conclude by applying a variant of Nakayama’s lemma: if a morphism
between free C[u]-modules of finite rank induces an isomorphism after restriction to
any uo ∈ C, then it is an isomorphism.

Acknowledgements. This work grew out from discussions with Bumsig Kim during
my visit at KIAS on February 2019. It was supposed to be a starting point to
understanding some questions related to gauged linear sigma models like the one
described in [FK20, Ex. 2.4]. It was Bumsig Kim who insisted to make precise the
comparison between the various dualities occurring in this context. I would like to
thank KIAS for the excellent working conditions during this visit. I thank Jeng-Daw
Yu for explaining some parts of his article [Yu14] and for his comments, and the
referee for noticing a mistake in the original proof of Proposition 5.2 and providing a
correction.

2. Freeness and duality for the Kontsevich complexes

Before considering the hypercohomology Hk(U, (Ω•
U [u], ud + df)), it is useful to

gather some properties of a variant of this de Rham cohomology where the compu-
tation is made on the projective variety X and the terms of the de Rham complexes
are OX -coherent. If f = 0, this amounts to computing the hypercohomology of the
logarithmic de Rham complex instead of that of the meromorphic de Rham complex
on X (see Notation of Section 1.c).

2.a. Kontsevich complexes. For k ⩾ 0, we set

Ωk
f = {ω ∈ Ωk

X(logD) | df ∧ ω ∈ Ωk+1
X (logD)}.
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Since d sends Ωk
X(logD) to Ωk+1

X (logD), we obtain the Kontsevich complex

(Ω
•
f ,d + df).

We will also consider the twisted complex (Ω•
f (−|P ]),d + df), whose terms are

Ωk
f (−|P |).
One can equip these complexes with the decreasing filtration σ• by the stupidly

truncated subcomplexes. The inclusion of filtered complexes

(Ω
•
f (−|P |),d + df, σ

•
) ↪−→ (Ω

•
f ,d + df, σ

•
)

and
(Ω

•
f (−D),d + df, σ

•
) ↪−→ (Ω

•
f (−H),d + df, σ

•
)

are filtered quasi-isomorphisms (see [ESY17, Prop. 1.4.2]).
The local computation of Ωk

f (see [ESY17, (1.3.1)]) shows that the wedge product

(2.1) Ωk
f ⊗OX

Ωn−k
f (−D) −→ Ωn

X(logD)(−D) = Ωn
X

is a perfect pairing. It also induces a pairing of complexes

(2.2) (Ω
•
f ,d + df)⊗C (Ω•

f (−D),d− df) −→ (Ω
•
X ,d),

where the termwise product is induced by

Ωk
X(logD)⊗ Ωℓ

X(logD)(−D) −→ Ωk+ℓ
X (logD)(−D) ↪−→ Ωk+ℓ

X .

Proposition 2.3 (J.-D. Yu [Yu14]). The corresponding cohomological pairing

Hn+k
(
X, (Ω

•
f ,d + df)

)
⊗C Hn−k

(
X, (Ω

•
f (−D),d− df)

)
−→ H2n

dR(X)

is perfect.

Corollary 2.4. Through the quasi-isomorphism (Ω•
f (−|P |),d+df) ↪→ (Ω•

f ,d+df), the
pairing obtained from that of Proposition 2.3:

Hn+k
(
X, (Ω

•
f ,d + df)

)
⊗C Hn−k

(
X, (Ω

•
f (−H),d− df)

)
−→ H2n

dR(X)

is perfect.

Proof of Proposition 2.3. We will make use of the following lemma.

Lemma 2.5 (J.-D. Yu). Let A•, B• be bounded complexes of OX-modules equipped with

• finite exhaustive decreasing filtrations F •,
• a pairing A• ⊗B• → (Ω•

X ,d)

satisfying the two conditions

(1) the pairing induces a well-defined pairing F pA• ⊗ (B•/Fn+1−pB•) → (Ω•
X ,d)

for each p,
(2) the induced pairing Hn+k

(
X, grpF A•

)
⊗C Hn−k

(
X, grn−p

F B•
)
→ H2n

dR(X) is
perfect for each k, p.

Then the induced pairing Hn+k
(
X,A•

)
⊗C Hn−k

(
X,B•

)
→ H2n

dR(X) is perfect for
each k.
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Proof. We argue by induction on p. We consider the commutative diagram (omit-
ting X in the notation and setting F p := F pA• and Gn+1−p := B•/Fn+1−pB•)

Hn+k−1(grpF )

��

// Hn+k(F p+1)

��

// Hn+k(F p)

��

// Hn+k(grpF )

��

// Hn+k+1(F p+1)

��

Hn−k+1(grn−p
F )∨ // Hn−k(Gn−p)

∨ // Hn−k(Gn+1−p)
∨ // Hn−k(grn−p

F )∨ // Hn−k−1(Gn−p)
∨

By decreasing induction on p and Condition (2), the vertical morphisms except maybe
the middle one are isomorphisms. Hence the middle one is so. For p≫ 0, both terms
Hn+k(F p) and Hn−k(Gn+1−p)

∨ are zero, and for p≪ 0,

Hn+k(F p) = Hn+k(X,A
•
) and Hn−k(Gn+1−p)

∨ = Hn−k(X,B
•
).

If we equip each complex in (2.2) with the filtration σ•, the pairing (2.2) clearly
satisfies 2.5(1). Furthermore, 2.5(2) follows from Serre’s duality applied to (2.1).
Therefore, an application of Lemma 2.5 concludes the proof.

Remark 2.6.

(1) A similar argument with the complex (Ω•
X , 0) instead of (Ω•

X ,d) yields a perfect
pairing induced by Serre’s duality:

Hn+k
(
X, (Ω

•
f ,df)

)
⊗C Hn−k

(
X, (Ω

•
f (−D),−df)

)
−→Hn(X,Ωn

X).

As for the Kontsevich complex, the inclusion (Ω•
f (−|P |),df) ↪→ (Ω•

f ,−df) is a quasi-
isomorphism, as well as (Ω•

f (−D),df) ↪→ (Ω•
f (−H),−df), so that we deduce a perfect

pairing

Hn+k
(
X, (Ω

•
f ,df)

)
⊗C Hn−k

(
X, (Ω

•
f (−H),−df)

)
−→Hn(X,Ωn

X).

(2) There exist natural perfect pairings

Hn+k
(
Y, (Ω

•
(logH),d + df)

)
⊗C Hn−k

(
Y, (Ω

•
(logH)(−H),d− df)

)
−→ C

and

Hn+k
(
Y, (Ω

•
(logH),df)

)
⊗C Hn−k

(
Y, (Ω

•
(logH)(−H),−df)

)
−→ C.

This will be shown with a parameter in Lemma 2.9 below, by identifying the source
of these pairings respectively with the sources of the pairing of Proposition 2.3 and
that of the previous remark.

2.b. Kontsevich complexes with the variable u. We now replace (Ω•
f ,d + df)

with (Ω•
f [u], ud + df). If we make u2∂u act on Ωk

f [u] by

u2∂u(η ⊗ h(u)) = η ⊗ (u2∂u + ku)(h(u))− fη ⊗ h(u),

then this action commutes with the differential of the complex and induces a natural
action on its hypercohomology, i.e., a meromorphic connection with a pole of order
two at u = 0 and no other pole except at infinity.
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Corollary 2.7. The cohomologies

Hn+k
(
X, (Ω

•
f [u], ud + df)

)
and Hn−k

(
X, (Ω

•
f (−D)[u], ud + df)

)
are C[u]-free of finite rank, and the pairing

Hn+k
(
X, (Ω

•
f [u], ud + df)

)
⊗C[u] H

n−k
(
X, (Ω

•
f (−D)[u], ud + df)

)
−→ H2n

dR(X)[u]

is perfect and compatible with the natural meromorphic action of ∂u. Moreover, the
natural morphism

Hn−k
(
X, (Ω

•
f (−D)[u], ud + df)

)
−→Hn−k

(
X, (Ω

•
f (−H)[u], ud + df)

)
is an isomorphism which induces, by means of the previous pairing, a perfect pairing

Hn+k
(
X, (Ω

•
f [u], ud + df)

)
⊗C[u] H

n−k
(
X, (Ω

•
f (−H)[u], ud + df)

)
−→ H2n

dR(X)[u].

Proof of Corollary 2.7. Recall that dimHk
(
X, (Ω•

f , uod + df)
)

is independent of uo

(see [ESY17, Th. 1.3.2]). Since the C[u]-finiteness is clear by a spectral sequence
argument owing to the fact that each term of the complex is OX [u]-coherent, the
C[u]-freeness of Hk

(
X, (Ω•

f [u], ud+df)
)

follows from Lemma 1.7. By duality (Propo-
sition 2.3 and Remark 2.6), dimHk

(
X, (Ω•

f (−D), uod − df)
)

is independent of uo,
and since C[u]-finiteness is also clear, C[u]-freeness follows.

We deduce the perfectness of the pairing by tensoring with C[u]/(u−uo) for any uo,
where it follows from loc. cit. The last assertion follows then from Remark 2.6.

Remark 2.8. From the point of view developed in Theorem B and the other proof
given in Section 4, it is convenient to consider the complexes (u−•Ω•

f [u],d ± df/u)

with degree k term u−kΩk
f [u] ⊂ Ωk

f [u, u
−1]. Multiplication by uk on the degree k term

induces an isomorphism with (Ω•
f [u], ud± df). We deduce isomorphisms

Hk
(
X, (u−•

Ω
•
f [u],d± df/u)

)
≃Hk

(
X, (Ω

•
f [u], ud± df)

)
.

Due to the perfect pairing u−jΩj
f [u] ⊗ uj−nΩn−j

f (−D)[u] → u−nΩn
X [u] obtained

from (2.1), we see that the perfect pairing between these free C[u]-modules takes
values in u−nH2n

dR(X)[u].

2.c. Proof of Theorem A. A first part of the theorem, namely C[u]-freeness and
finiteness, as well as perfectness of (1.1), follows from Corollary 2.7, according to the
next lemma.

Lemma 2.9. For each k, the natural morphisms

Hk
(
X, (Ω

•
f [u], ud + df) −→Hk

(
X, (Ω

•
f (∗P )[u], ud + df)

)
−→Hk

(
Y, (Ω

•
Y (logH)[u], ud + df)

)
,

and the similar ones after twisting the complexes by (−H), are isomorphisms.
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Proof. We will treat the case without twist, the other case being treated similarly.
The proof of [ESY17, Cor. 1.4.3] shows that, for any uo ∈ C and any ℓ ⩾ 1, the
inclusion of complexes

(Ω
•
f , uod + df) ↪−→ (Ω

•
f (ℓP ), uod + df)

is a quasi-isomorphism. Since Hk
(
X, (Ω•

f (ℓP )[u], ud+df)
)

has finite type over C[u],
we can apply Lemma 1.7 to deduce that the morphism

Hk
(
X, (Ω

•
f [u], ud + df)

)
−→Hk

(
X, (Ω

•
f (ℓP )[u], ud + df)

)
is an isomorphism for any k and ℓ. Since Ωk

f (∗P ) = lim−→ℓ
Ωk

f (ℓP ), we only need to
justify the commutation of direct limits and hypercohomology.

Lemma 2.10. Let (K•
ℓ , δ)ℓ be an inductive system of complexes of fixed amplitude on an

algebraic variety Z, whose terms are quasi-coherent OX-modules. Then, for each k,
we have

lim−→
ℓ

Hk(Z, (K
•
ℓ , δ))

∼−→Hk(Z, lim−→
ℓ

(K
•
ℓ , δ)).

Proof. We filter the complexes by stupid truncation. We have such a morphism at each
level of the corresponding spectral sequence and it is enough to prove the assertion
for the first page of the spectral sequence. This amounts to show the isomorphism

lim−→
ℓ

Hk(Z,Kj
ℓ )

∼−→ Hk(Z, lim−→
ℓ

Kj
ℓ ),

which follows from Noetherianity of Z, since Kj
ℓ are quasi-coherent.

To show that the second morphism is an isomorphism, we argue with the same
spectral sequence argument. We are thus reduced to showing that the restriction
morphism

Hk(X,Ωj
f (∗P )[u]) −→ Hk(Y,Ωj

Y (logH)[u])

is an isomorphism. By the commutation with inductive limits, we are left with showing
Hk(X,Ωj

f (∗P ))
∼−→ Hk(Y,Ωj

Y (logH)), which is clear since Ωk
Y (logH) is the restric-

tion to Y of Ωk
f (∗P ).

End of the proof of Theorem A. The existence of a compatible action of u2∂u has
been seen in Section 2.b. The regularity of the connection at u = ∞ will be seen in
Remark 3.2.

It remains to show the independence of the good projectivization. It is enough to
consider a morphism π : (Y ′, H ′) → (Y,H) of such kind which is the identity on U ,
and set f ′ = f ◦ π. We have natural morphisms of complexes compatible with the
actions of u2∂u and u2∂u respectively:

(Ω
•
Y (logH)[u], ud + df) −→ Rπ∗π

−1(Ω
•
Y (logH)[u], ud + df)

−→ Rπ∗(π
∗Ω

•
Y (logH)[u], ud + df)

−→ Rπ∗(Ω
•
Y ′(logH ′)[u], ud + df ′)
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inducing a natural morphism of free C[u]-modules of finite rank with meromorphic
connection:

Hk(Y, (Ω
•
Y (logH)[u], ud + df)) −→Hk(Y ′, (Ω

•
Y ′(logH ′)[u], ud + df ′)).

and a similar property after twisting by (−H) and (−H ′) respectively. The perfect
pairings are also compatible with these morphisms. We are thus reduced to showing
that such a morphism and its analogue after the twist is an isomorphism.

Its restriction to any uo ̸= 0 is an isomorphism, according to [ESY17, Cor. 1.4.3].
The argument for the twisted case will be given in the proof of Theorem B. To con-
clude with Lemma 1.7 it remains to show that the natural morphism

Hk(Y, (Ω
•
Y (logH),df)) −→Hk(Y ′, (Ω

•
Y ′(logH ′),df ′))

is an isomorphism, and similarly after a twist by (−H) and (−H ′) respectively. The
non twisted case is proved in [CY18, Prop. 2.3]. The twisted case can be obtain by
duality, by showing that the perfect pairings considered in Remark 2.6 are compatible
with the isomorphisms induced by π. This ends the proof of Theorem A.

Remark 2.11 (Computation of the rank). For f : U → A1 as above, let jY : U ↪→ Y

denote the inclusion. We consider the complex RjY ∗CU on Y , and for any c ∈ C, the
vanishing cycle complex ϕf−cRjY ∗CU . It follows from [Sab99, Th. 2] that

rkHk
(
Y, (Ω

•
Y (logH)[u], ud + df)

)
=

∑
c∈C

dimHk−1(f−1(c), ϕf−cRjY ∗CU ).

3. The generic pairing: proof of Theorem B

In Theorem A, one can replace the logarithmic complex Ω•
Y (logH) with the mero-

morphic complex Ω•
Y (∗H) if one also replaces polynomials in u with Laurent polyno-

mials in u, and we will instead consider the C[u, u−1]-module

Hk(U, (Ω
•
U [u, u

−1],d + df/u))

with its connection induced by the action of ∂u coming from that of ∂u − f/u2 on
each term of the complex.

Lemma 3.1. The restriction morphisms

(3.1 ∗) Hk(X, (Ω
•
X(∗D)[u, u−1],d + df/u))

−→Hk(Y, (Ω
•
Y (∗H)[u, u−1],d + df/u))

−→Hk(U, (Ω
•
U [u, u

−1],d + df/u))

are isomorphisms of C[u, u−1]-modules compatible with the action of ∂u for each k,
as well as the natural morphisms

(3.1 ∗∗) Hk
(
Y, (u−•

Ω
•
Y (logH)[u],d + df/u)

)
⊗C[u] C[u, u−1]

−→Hk
(
Y, (u−•

Ω
•
Y (logH)[u, u−1],d + df/u)

)
−→Hk(Y, (Ω

•
Y (∗H)[u, u−1],d + df/u)).
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Proof. Compatibility with the action of ∂u is clear, as it already holds at the level
of complexes. The isomorphism property follows Lemma 2.10, except for the last
morphism of (3.1 ∗∗).

For the latter, its left-hand side is C[u, u−1]-free of finite rank, after Theorem A.
Its rank is given in Remark 2.11. The right-hand side is interpreted as the localized
Fourier transform of the pushforward by f (at a suitable degree) of the DY -mod-
ule OY (∗H). It is well-known to be C[u, u−1]-free of the rank given by Remark 2.11.
If we fix uo ̸= 0, then the corresponding morphism in cohomology is an isomorphism,
as follows from [Yu14, Cor. 1.4] and noticed in [ESY17, §1.2]. The conclusion follows
from Lemma 1.7 (over the ring C[u, u−1] instead of C[u]).

Remark 3.2. The interpretation in terms of Fourier transform shows that the action
of ∂u has a regular singularity at u = ∞, since the Gauss-Manin systems of f have
regular singularity at each of their singularities.

In order to interpret Hk
(
Y, (Ω•

Y (logH)(−H)[u, u−1],d+df/u)
)

(to which the first
isomorphism of (3.1 ∗∗) applies in a similar way) in meromorphic terms, we work in
the category of holonomic D-modules on Y . More precisely, we consider the ring

Du
Y := DY [u, u

−1] = DY ⊗C C[u, u−1]

of algebraic differential operator on Y with coefficients in Ou
Y := OY [u, u

−1], so that
the base ring is C[u, u−1] instead of the field C (it would be equivalent to consider
differential operators on Y ×Gm relative to the projection to Gm).

The Du
Y -module E

f/u
Y = (Ou

Y ,d + df/u) comes with two localizations along H,
denoted by E

f/u
Y (∗H) and E

f/u
Y (!H). They satisfy the following properties:

• E
f/u
Y (∗H) is generated, as a Du

Y -module, by E
f/u
Y (H) which is a Du

Y (logH)-
module.(2) It satisfies moreover

E
f/u
Y (∗H) ≃ Du

Y ⊗Du
Y (logH) (E

f/u
Y (H)).

• E
f/u
Y (!H) is defined as

E
f/u
Y (!H) := Du

Y ⊗Du
Y (logH) (E

f/u
Y (−H)),

where E
f/u
Y (−H) is regarded as a Du

Y (logH)-module.

Lemma 3.3. The C[u, u−1]-modules Hk
dR(Y,E

f/u
Y (∗H)) and Hk

dR(Y,E
f/u
Y (!H)) are free

of finite rank for each k.

Proof. For a regular holonomic D-module M on the affine line A1 with affine coordi-
nate t, the de Rham cohomology Hk

dR(A1,M [u, u−1]⊗ Et/u) is nonzero in degree k = 1

at most, and this cohomology is C[u, u−1]-locally free of finite rank (see e.g. [Mal91]).
On noting that, for ⋆ = ∗, !, we have E

f/u
Y (⋆H) ≃ OY (⋆H)⊗OY

E
f/u
Y (where OY (⋆H)

is defined in a way similar to that of Ef/u
Y (⋆H)), we obtain the statement by applying

(2)Du
Y (logH) is locally generated by vector fields which are logarithmic along H, and the notation

(− logH) should be more adapted.
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the previous result to the D-module pushforward M = H k−1−nf+OY (⋆H), which is
known to be regular holonomic.

Proof of Theorem B. As already noticed, the right-hand side in (3.1 ∗∗) can be rewrit-
ten as Hk−n

dR (Y,E
f/u
Y (∗H)), and this yields the first line (B∗) of Theorem B.

We now prove the isomorphism of the second line (B!). The proof can also be
adapted to the first line, and thereby gives another way to obtain (3.1 ∗∗). For a
Du

Y -module M , the de Rham complex is a realization (up to a shift [n]) of ωu
Y ⊗L

Du
Y
M

and, similarly, for a Du
Y (logH)-module N , the logarithmic de Rham complex of N

is a realization (up to a shift [n]) of ωu
Y ⊗L

Du
Y (logH) N , where the canonical sheaf

ωu
Y = ωY ⊗C C[u, u−1] is equipped with its natural structure of right Du

Y -module.
We interpret (up to a shift [n]) the left-hand side of (B!) as the hypercohomology
on Y of ωu

Y ⊗L
Du

Y (logH)E
f/u
Y (−H) and the right hand side as that of ωu

Y ⊗L
Du

Y
E

f/u
Y (!H).

Due to the isomorphism

ωu
Y ⊗L

Du
Y
(Du

Y ⊗L
Du

Y (logH) E
f/u
Y (−H)) ≃ ωu

Y ⊗L
Du

Y (logH) E
f/u
Y (−H),

the isomorphism (B!) would follow from the isomorphism

Du
Y ⊗Du

Y (logH) E
f/u
Y (−H) ≃ Du

Y ⊗L
Du

Y (logH) E
f/u
Y (−H).

Although Du
Y is not Du

Y (logH)-flat, one can use the criterion of [ES19, Prop. B.5]:
this isomorphism holds if in any local coordinate system adapted to the divisor H

where H = {x1 · · ·xℓ = 0}, any subsequence of the sequence (x1, . . . , xℓ) is a regular
sequence for E

f/u
Y (−H). In the present setting, this criterion is easily checked, and

this ends the proof of (B!). By replacing E
f/u
Y (−H) with E

f/u
Y (H), one would obtain

another proof of (B∗).

4. Another approach to Theorem A

4.a. Application of the theory of mixed Hodge module. We will make use
of the theory of mixed Hodge modules of M. Saito [Sai88, Sai90] in order to prove
C[u]-freeness in Theorem A.

We consider the algebraic mixed Hodge modules on Y whose underlying filtered
DY -modules are respectively (OY (∗H), F•OY (∗H)) and (OY (!H), F•OY (!H)). There
exists a natural morphism of mixed Hodge modules inducing the natural morphism
of filtered DY -modules:

(OY (!H), F•OY (!H)) −→ (OY (∗H), F•OY (∗H)).

It is understood that the Hodge filtrations F•OY (!H), F•OY (∗H) are coherent filtra-
tions with respect to the filtration F•DY of DY by the order of differential operators.

We consider the Rees module construction, by setting RFDY =
⊕

k FkDY u
k and

similarly for filtered DY -modules. In particular, RFOY = OY [u].
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We set G0[⋆H] = RF (OY (⋆H)), with ⋆ = !, ∗, that we consider as an RFDY -
module. We obtain corresponding de Rham complexes of C[u]-modules:

DRY G0[⋆H] =
{
0→ RF (OY (⋆H))

d + df/u
−−−−−−−→ · · ·

d + df/u
−−−−−−−→ u−nΩn

Y ⊗RF (OY (⋆H))→ 0
}
.

Proposition 4.1. We have a commutative diagram for each k:

Hk
(
Y, (u−•Ω•

Y (logH)(−H)[u],d + df/u)
)

≀
��

// Hk
(
Y, (u−•Ω•

Y (logH)[u],d + df/u)
)

≀
��

Hk
(
Y,DRY G0[!H]

)
// Hk

(
Y,DRY G0[∗H]

)
Proof. The proof of the isomorphisms is similar to that of Theorem B by using the
sheaves RFDY and RFDY (logH) (denoted respectively D̃Y and D̃Y (logH) in [ES19])
instead of the sheaves Du

Y and Du
Y (logH). The criterion of [ES19, Prop. B.5] applies

in a straightforward way.

Remark 4.2. The notation G0(∗H) (instead of G0[∗H]) would mean (RFOY )(∗H)

(instead of RF (OY (∗H))). Thus G0(∗H) = OY (∗H)[u], and the associated twisted
de Rham complex is that considered at the end of Section 1.c. Its hypercohomology
may not be of finite type, as we have seen in 1.a(i). This means that, in order to
obtain finite type, one needs to take into account the Hodge filtration at infinity on U

(with f remaining finite). A similar comment applies to G0(!H). On the other hand,
Theorem B shows that this distinction disappears if we invert u.

4.b. The case of tame functions. For tame functions, we will show that there is
no need to twist by (−H) in the pairing (1.1) of Theorem A, similarly to what occurs
in the proper case.

Definition 4.3 (Katz tameness, see [Kat90, Prop. 14.13.3]). We say that f : U → C is
Katz-tame if the cone of the natural morphism of complexes

Rf!CU −→ Rf∗CU

has constant cohomology sheaves.

Proposition 4.4. Assume that f : U → C is Katz-tame. Then, for every k, the natural
morphism

(4.4 ∗) Hk
(
Y,DRY G0[!H]

)
−→Hk

(
Y,DRY G0[∗H]

)
is an isomorphism.

Proof. If M is a left DA1 -module on the affine line with coordinate t, we also con-
sider it as an OA1 -module with connection ∇. Let (M,F•M) be the coherent fil-
tered D-module and let RFM denote the associated RFDA1-module equipped with
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its u-connection u∇. The twisted de Rham complex

0 −→ RFM
∇+ dt/u
−−−−−−−−→ u−1Ω1

A1 ⊗RFM −→ 0

has nonzero cohomology in degree 1 at most (i.e., ∇ + dt/u is injective). Further-
more, it also has nonzero hypercohomology in degree 1 at most: hypercohomology is
computed by means of global sections on A1 of the latter complex, and injectivity of
∇+ dt/u is checked similarly.

On the other hand, for each j, the j-th pushforward by the map f : Y → A1 of the
Rees modules RFOY (⋆H) (⋆ = !, ∗) takes the form RFM for some filtered DA1-mod-
ule M : this property is equivalent to the degeneration at E1 of the spectral sequence
attached to the proper pushforward of a coherent filtered DY -module when the latter
underlies a mixed Hodge module [Sai90]. It follows that Hk

(
Y,DRY G0[⋆H]

)
can

be computed as the hypercohomology of RFM
k
⋆ , where RFM

k
⋆ is the RFDA1-module

underlying the pushforward (of the suitable degree) of RFOY (⋆H).
The morphism of constructible complexes in the assumption of Katz-tameness

comes from a morphism of the corresponding objects in the derived category
Db(MHM(A1)) (see [Sai90]), hence of the corresponding cohomology mixed Hodge
modules M j

! and M j
∗ .

Lemma 4.5. Under the assumption of Katz-tameness, for each k, the kernel and cok-
ernel of the natural morphism M j

! → M j
∗ are constant mixed Hodge modules (i.e.,

whose associated perverse sheaf is the constant sheaf up to a shift).

Proof. It is a matter of proving that a constructible complex on A1an whose coho-
mology is constant has also constant perverse cohomology. This is standard (e.g. by
using that a constructible complex on A1an has constant cohomology resp. perverse
cohomology if and only if for any c ∈ A1an the associated complex of vanishing cycles
at c is isomorphic to zero).

A constant mixed Hodge module on A1 has a finite filtration (the weight filtra-
tion) whose pure graded Hodge modules are also constant, and the associated filtered
DA1-modules are isomorphic to OA1 with its standard filtration possibly shifted, so
that RFOA1 ≃ OA1 [u]. With the notation above, for each k, the kernel and cokernel
of the natural morphism RFM

k
! → RFM

k
∗ are of that form.

By the first part of the proof, that the natural morphism (4.4 ∗) is an isomorphism
will thus be proved if we prove that the hypercohomology of the twisted de Rham
complex associated to RFOA1 is zero, that is, the kernel and cokernel of

C[t, u]
∂t + 1/u
−−−−−−−−→ u−1C[t, u]

are zero. This is a simple check (for the vanishing of the cokernel, one uses that a
polynomial of degree d in C[t] is annihilated by ∂d+1

t ).

It follows immediately from Proposition 4.1 that, in the tame case, we can omit
the twist by (−H) in (1.1):
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Corollary 4.6. Assume that f : U→C is Katz-tame. Then, for each k, the pairing (1.1)
induces a nondegenerate pairing between free C[u]-modules of finite rank:

Hn+k
(
Y, (u−•

Ω
•
Y (logH)[u],d + df/u)

)
⊗C[u] H

n−k
(
Y, (u−•

Ω
•
Y (logH)[u],d− df/u)

)
−→ u−nC[u].

According to (3.1 ∗∗), this implies:

Corollary 4.7. Assume that f : U→C is Katz-tame. Then, for each k, the pairing (1.1)
induces a nondegenerate pairing between free C[u, u−1]-modules of finite rank:

Hn+k(U, (Ω
•
U [u, u

−1],d + df/u))⊗C[u,u−1] H
n−k(U, (Ω

•
U [u, u

−1],d + df/u))

−→ C[u, u−1].

Example 4.8. Assume that H is smooth and f|H is smooth. It follows that for each
t ∈ A1, f−1(t) is smooth near H and cuts H transversally. Let j : U ↪→ Y denote
the open inclusion and i : H ↪→ Y the complementary closed inclusion. Then the
cone of the natural morphism j!CU → Rj∗CU is supported on H and its restriction
to H is isomorphic to i−1Rj∗CU , which has constant cohomology sheaves. It follows
that the Katz-tameness condition is satisfied by f on U (use e.g. the argument with
vanishing cycles and the good behaviour of the vanishing cycle functor by proper
pushforward). Let us also notice that the assumptions in Theorem Ĉ are also fulfilled
in this example.

5. The formal pairing

5.a. Proof of Theorem Â. We first make formal the Kontsevich complex with the
u-parameter. For that purpose, we set Ωk

f [[u]] := lim←−ℓ
Ωk

f [u]/u
ℓΩk

f [u]. We refer to
[Sab10] for some properties of this construction.

Proposition 5.1. For any k, we have

Hk
(
X, (Ω

•
f [[u]], ud + df)

)
= C[[u]]⊗C[u] H

k
(
X, (Ω

•
f [u], ud + df)

)
and a similar property for Ω•

f (−D), Ω•
f (−H), and the pairs (Y,Ω•

Y (logH)) and
(Y,Ω•

Y (logH)(−H)).

Proof. We prove the case of Ω•
f , the other cases being proved similarly (by using

Lemma 2.9 for the latter two pairs). By a straightforward induction, arguing as in
Lemma 1.7 (due to the freeness property in Corollary 2.7), we find for each ℓ ⩾ 1:

Hk
(
X, (Ω

•
f [u]/u

ℓΩ
•
f [u], ud + df)

)
≃Hk

(
X, (Ω

•
f [u], ud + df)

)
/uℓHk

(
X, (Ω

•
f [u], ud + df)

)
,

so that the conclusion follows.

Proof of Theorem Â. We just apply the functor C[[u]]⊗C[u] to the statements of The-
orem A, according to Proposition 5.1.
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5.b. Proof of Theorem Ĉ. We consider the complex (Ω•
U [[u]], ud+df). The C-cons-

tructible complex of vanishing cycles ϕf−cCUan (which is perverse up to a shift) will
come into play.

Proposition 5.2. Assume that the critical set of f is compact. Then the C[[u]]-module
Hk

(
U, (Ω•

U [[u]], ud+df)
)

is of finite type for each k. It is C[[u]]-free for every k if and
only if

dimHk
(
U, (Ω

•
U ,df)

)
=

∑
c∈C

dimHk−1(f−1(c)an, ϕf−cCUan) ∀ k.

Note that we do not assert the existence of an isomorphism similar to that of
Proposition 5.1 for Hk

(
U, (Ω•

U [[u]], ud + df)
)
, since we do not know whether the

assumption of finite-dimensionality of Hk
(
U, (Ω•

U ,df)
)

is enough to ensure that
Hk

(
U, (Ω•

U [[u]], ud + df)
)

is of finite type over C[u]. We first review some results
of [BS07, Sab10, SS14].

Lemma 5.3. For each k, the natural restriction morphism

Hk
(
X, (Ω

•
X(∗D)[[u]], ud + df)

)
−→Hk

(
U, (Ω

•
U [[u]], ud + df)

)
is an isomorphism.

Proof. By a spectral sequence argument, it is enough to prove that for any j, k, the
restriction morphism

Hk
(
X,Ωj

X(∗D)[[u]]
)
−→ Hk

(
U,Ωj

U [[u]]
)

is an isomorphism. It follows from [Har75, §4], as noted in [Sab10, §2.a], that in
such cases, [[u]] commutes with taking cohomology. Then the assertion is clear.

Lemma 5.4 (Algebraic/analytic comparison). For each k, the natural morphism

Hk
(
X, (Ω

•
X(∗D)[[u]], ud + df)

)
−→Hk

(
Xan, (Ω

•
Xan(∗D)[[u]], ud + df)

)
is an isomorphism.

Proof. We consider the morphism between the spectral sequences associated to the
filtration of the de Rham complexes by the stupid truncation. The morphism at
the E1 level is

Hk
(
X,Ωj

X(∗D)[[u]]
)
−→Hk

(
Xan,Ωj

Xan(∗D)[[u]]
)
.

By [Sab10, (2.3)], this morphism is an isomorphism, which implies the lemma by a
spectral sequence argument.

Lemma 5.5. The natural morphism of complexes

(Ω
•
Xan(∗D)[[u]], ud + df) −→ Rj∗(Ω

•
Uan [[u]], ud + df)

is a quasi-isomorphism.

Proof. Although the result of [Sab10, Prop. 4.1] is stated for ((u)) instead of [[u]], one
can follow its proof with [[u]] instead of ((u)).



DUALITY FOR LANDAU-GINZBURG MODELS 19

Lemma 5.6. The order of the u-torsion of each cohomology sheaf

H j(Ω
•
Uan [[u]], ud+df)

is locally bounded and, modulo its torsion, this sheaf is a constructible sheaf of
C[[u]]-modules of finite type.

Proof. This is essentially [BS07, Th. 1] if we work with the isomorphic complex
(u−•Ω•

U [u],d + df/u). Let us give details on the reduction to loc. cit. In [SS14,
(1.5.2)], two complexes are considered, with the notation ∂−1

t for our notation u (and
the function −f is considered, instead of f). One is F0 = (u−•Ω•

U [u],d + df/u) and
for each ℓ ⩾ 0, the subcomplex Fℓ with terms uℓ(u−•Ω•

U [u]). The other one is G0 and
similarly Gℓ, with inclusions uℓ+1F0 ⊂ uℓG0 ⊂ uℓF0 for each ℓ ⩾ 0, so that F0/G0 has
u-torsion of order one. The result of [BS07, Th. 1] together with the identification of
[SS14, (1.5.5)] implies the assertion of the lemma for the complex lim←−ℓ

(G0/Gℓ). On
the other hand, the complex occurring in the lemma is lim←−ℓ

(F0/Fℓ), so the inclusions
above yield the statement of the lemma.

Proof of Proposition 5.2. We start with the finiteness statement. By Lemmas 5.3–
5.5, we are reduced to proving the C[[u]]-finiteness of Hk

(
Uan, (Ω•

Uan [[u]], ud + df)
)

for each k.
The complex (Ω•

Uan [[u]], ud + df) is supported on the critical set of f : U → A1:
indeed, this follows from the fact that, on the product ∆ × V an of an open disc ∆

with coordinate x by a complex manifold V an, the morphism

O(∆× V an)[[u]]
u∂x + 1−−−−−−−→ O(∆× V an)[[u]]

is an isomorphism, which is easily checked. Since the critical set of f is compact
by assumption, we conclude from Lemma 5.6 that the order of the u-torsion of each
cohomology sheaf is bounded, say by N .

We consider the spectral sequence with

Ep,q
2 = Hp

(
Uan,H q(Ω

•
Uan [[u]], ud + df)

)
.

Since it can be realized as the spectral sequence of a bounded double complex, it con-
verges at a finite step. Let T q be the C[[u]]-torsion of H q := H q(Ω•

Uan [[u]], ud + df)

and I q the quotient H q/T q. Since H q is supported on a compact set, Lemma 5.6
implies that Hp(Uan,I q) has finite type over C[[u]] and Hp(Uan,T q) is of N -torsion.
Therefore, Ep,q

2 has C[[u]]-torsion of order bounded by N and its quotient by torsion
has finite type over C[[u]]. This property goes through the spectral sequence, and we
conclude that it holds for Hk

(
Uan, (Ω•

Uan [[u]], ud + df)
)
.

On the other hand, the quotient complex (Ω•
Uan [[u]]/uNΩ•

Uan [[u]], ud + df) has a
finite filtration F • whose graded terms are all isomorphic to the complex (Ω•

Uan ,df).
The latter is a complex in Modcoh(OUan) supported on the compact critical set of f .
Therefore, Hk

(
Uan, grF (Ω

•
Uan [[u]]/uNΩ•

Uan [[u]], ud+df)
)

is finite dimensional, and so is
Hk

(
Uan, (Ω•

Uan [[u]]/uNΩ•
Uan [[u]], ud + df)

)
. We conclude the proof of the first state-

ment by considering the hypercohomology exact sequence deduced from the exact



20 C. SABBAH

sequence

0→ (Ω
•
Uan [[u]], ud+df)

uN

−−→ (Ω
•
Uan [[u]], ud+df)→ (Ω

•
Uan [[u]]/uNΩ

•
Uan [[u]], ud+df)→ 0.

We now consider the second statement. Since C((u)) is C[[u]]-flat, tensoring with
C((u)) commutes with taking cohomology, and we have

Hk
(
U, (Ω

•
U ((u)), ud + df)

)
= C((u))⊗C[[u]] H

k
(
U, (Ω

•
U [[u]], ud + df)

)
= Hk

(
U, (Ω

•
U [[u]], ud + df)

)
[u−1].

Indeed, this is seen first for each Hk(U,Ωj
U ((u))) by Noetherianity of U , and then

deduced for Hk
(
U, (Ω•

U ((u)), ud+df)
)

by a spectral sequence argument already used.
We now apply the property that, for a C[[u]]-module of finite type M , M is C[[u]]-free

if and only if
dimC M/uM = dimC((u)) M [u−1].

Set Mk = Hk
(
U, (Ω•

U [[u]], ud+df)
)
. We argue by induction on the length of the long

exact sequence of hypercohomology associated with the short exact sequence

0 −→ (Ω
•
U [[u]], ud + df)

u−−→ (Ω
•
U [[u]], ud + df) −→ (Ω

•
U ,df) −→ 0.

Let k be such that M j = 0 for j > k. Then Mk/uMk = Hk
(
U, (Ω•

U ,df)
)
. On

the other hand, dimC((u)) M
k[u−1] = dim

∑
c∈C dimHk−1(f−1(c)an, ϕf−cCUan) by the

main theorem of [SS14] (see also [Sab10, Th. 1.1]). We conclude that Mk is C[[u]]-free
if and only if both dimensions are equal. In such a case, u : Mk → Mk is injective.
We can thus truncate the long exact sequence mentioned above after k − 1 and we
conclude by decreasing induction on k.

Proof of the first part of Theorem Ĉ. In view of Proposition 5.2, we only need to show
the equality of dimensions occurring in that proposition under Condition (1.4). This
is precisely [Sab99, Th. 2].

Proof of the second part of Theorem Ĉ. In view of Theorem Â, it is enough to prove
that the natural morphisms

Hk
(
X, (Ω

•
f (−D)[[u]], ud + df)

)
−→Hk

(
X, (Ω

•
f [[u]], ud + df)

)
−→Hk

(
X, (Ω

•
X(∗D)[[u]], ud + df)

)
are isomorphisms. Together with Lemma 5.3, this shows the correspondence with the
C[[u]]-modules of Theorem Â. These are free C[[u]]-modules of finite rank, according
to the first part of Theorem Ĉ. It is thus enough to prove this modulo uC[[u]]. We are
left with the morphisms

Hk
(
X, (Ω

•
f (−D),df)

)
−→Hk

(
X, (Ω

•
f ,df)

)
−→Hk

(
X, (Ω

•
X(∗D),df)

)
.

Since X is compact, we can replace the complexes which one takes hypercohomology
of by their analytic counterpart on Xan by GAGA. These analytic complexes are
supported on the critical set of f , which is contained in U , hence they coincide in a
neighbourhood of this set. The assertion follows.
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6. Geometry

Let An+1 be the affine chart with coordinates (x0, . . . , xn) in Pn+1 with comple-
ment Pn∞, and let ϖ : P̃n+1 → Pn+1 be the blow-up of Pn+1 at the origin, with
exceptional divisor ϖ−1(0) = Pn. We identify ϖ−1(An+1) with the total space
Tot(OPn(−1)) and P̃n+1 to P(OPn(−1)⊕ 1).

For d ⩾ 1, we consider the action of µd on An+1 by x 7→ ζx (ζ ∈ µd). This action
lifts to P̃n+1. We note that µd acts trivially on ϖ−1(0) and Pn∞. Moreover,

Tot(OPn(−1))/µd ≃ Tot(OPn(−d)), P(OPn(−1)⊕ 1)/µd ≃ P(OPn(−d)⊕ 1).

The quotient space Pn+1/µd is smooth away from the origin. We have a commutative
diagram

P(OPn(−1)⊕ 1)
ϖ //

ρ̃d
��

Pn+1

ρd
��

P(OPn(−d)⊕ 1)
ϖd // Pn+1/µd

Let f ∈ C[x0, . . . , xn] be a homogeneous polynomial of degree d, such that f−1(0)

has an isolated singularity at the origin. Let V ⊂ Pn denote the smooth hypersurface
defined by f and let X denote the closure of the graph {t−f(x) = 0} ⊂ Cn+1×A1t in
Pn+1×A1t. Since f is invariant by µd, it descends as a regular function fd on Cn+1/µd

whose graph in (Cn+1/µd)×A1t has closure Xd := X/µd ⊂ (Pn+1/µd)×A1t. Similarly
f̃ := f ◦ ϖ descends as a function on Tot(OPn(−d)) whose graph has closure X̃d in
P(OPn(−d)⊕1)×A1t. There is a natural proper modification which is an isomorphism
away from the origin:

πd : X̃d −→ Xd.

Lemma 6.1. The space Xd is smooth away from the origin, and the projection
p : Xd → A1t is smooth away from the origin.

As a consequence, the composition f̃d : X̃d→A1t is smooth away from π−1
d (0)≃Pn.

Lemma 6.2. The critical fiber f̃−1
d (0) is a reduced divisor with two components,

one being π−1
d (0) ≃ Pn, intersecting normally along the smooth projective variety

V ⊂ π−1
d (0).

As a consequence, the vanishing cycle complex ϕf̃d
CX̃d

is a complex of sheaves
supported on V and has cohomology in degree 1 only. Moreover, H 1ϕf̃d

CX̃d
is a

local system of rank one, which is constant if n ⩾ 3, since V is 1-connected.
We apply the results of Section 2 to Y = X̃d and f̃d : X̃d → A1t. By Theorem A,

Hk(X̃d, (Ω
•

X̃d
[u], ud + df̃d)) is C[u]-free of finite rank. Its rank is given by the com-

putation of Remark 2.11, that is,

dimHk−1(V, ϕf̃d
CX̃d

) = dimHk−1(V,H 1ϕf̃d
CX̃d

[−1]) = dimHk−2(V,C).

Proposition 6.3. The function f̃d : Y = X̃d → A1t together with U := Tot(OPn(−d))
and H = Y ∖ U satisfies the tameness property of Example 4.8.
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Proof. Since X̃d and Xd are equal in the neighbourhood of H, it is enough to work
with Xd and fd. Recall that X denotes the closure of the graph of f in Pn+1 × A1t.
Then X ∖ (An+1 × A1t) = X ∩ (Pn∞ × A1t) is the product V × A1t and the restriction
of f to it is simply the projection. It is thus obviously smooth, and the same property
remains true after taking the quotient by µd, since µd acts as the identity on Pn∞.

We conclude that Corollaries 4.6, 4.7 and Theorem Ĉ apply to f̃d : Y = X̃d → A1t.
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