MONODROMY AT INFINITY AND
FOURIER TRANSFORM II

by
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Abstract. — For a regular twistor Z-module and for a given function f, we compare
the nearby cycles at f = oo and the nearby or vanishing cycles at 7 = 0 for its partial
Fourier-Laplace transform relative to the kernel e~

Contents
L TREOAUCTHIONL - e e veee et e et et et e 1
[2. A quick review of polarizable twistor Z-modules|................ 2
13. Partial Laplace transform of % 9--modules|....................... 4
4. Partial Laplace transform and specializationl..................... 5
|b. Partial Fourier-Laplace transform of regular twistor Z-modules|. 15
References). . . ... vvvve 27

1. Introduction

The regular polarizable twistor Z-modules on a complex manifold form a cate-
gory generalizing that of polarized Hodge Z-modules, introduced by M. Saito in [6].
This category, together with some of its properties, has been considered in [3]. A
potential application is to produce a category playing the role, in complex algebraic
geometry, of pure perverse f-adic sheaves with wild ramification, that is, a category
enabling meromorphic connections with irreqular singularities together with a notion
of weight, compatible with various functors as direct images by projective morphisms
or nearby/vanishing cycles.

A way to obtain irregular singularity from a regular Z-module is to apply the
functor that we call partial Laplace transform.
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In [3, Appendix], we have sketched some results concerning the behaviour of regular
twistor Z-modules with respect to a partial Fourier-Laplace transform. We then
have extensively used such results in [2] and [5]. In this article, we give details
for the proof of the results which are not proved in [3, Appendix]. The proofs yet
appeared in a preprint form in [4, Chap. 8]. As indicated in [3] Appendix], the goal
is to analyze the behaviour of polarized regular twistor Z-modules under a partial
(one-dimensional) Fourier-Laplace transform. We generalize to such objects the main
result of [I], comparing, for a given function f, the nearby cycles at f = oo and the
nearby or vanishing cycles for the partial Fourier-Laplace transform in the f-direction
(Theorem [5.1J).

A remark concerning the terminology. — We use the term (partial) Laplace transform
when we consider the transform for 2-modules (or %Z-modules). The effect of such
a transform on a sesquilinear pairing is an ordinary Fourier transform. On a twistor
object, consisting of a pair of Z-modules and a sesquilinear pairing between them
with values in distributions, the corresponding transform is called Fourier-Laplace.

2. A quick review of polarizable twistor Z-modules

Let us quickly review some basic definitions and results concerning polarizable
twistor Z-modules. We refer to [3] for details.

2.a. Some notation. — We denote by €2y the complex line with coordinate z, and
by S the unit circle |z| = 1. In fact, one could also take for 2y any open neighbourhood
of the closed unit disc D = {z € Qg | |2| < 1}. For any z, € Q, we put
= Go = Im z,,
— 4., : C = R the function (¢/ +ia”) — o' — (Im z,)a”,
—akxz, =z, +id (22 +1)/2.
(See [3], Chap. 0] for more notation and definitions.)

2.b. The category %- Triples(X). — Given a n-dimensional complex manifold X,
we denote by 2" the manifold X x Qq, by &4 its structure sheaf, and by Z 4 the sheaf
of differential operators defined in local coordinates z1,...,z, as Og (0y,,...,04,),
where we put 0,, = 20,,.

A module over 04 or Zg is said to be strict if it has no Oq,-torsion.

The objects of the category %- Triples(X) are the triples 7 = (&', .#",C), where
M, M are left #g9--modules and C : ///l's Ry 7& — Dbxxs/s is a sesquilinear
pairing. Here, Os means Oq s, Dbxys/s is the sheaf of distributions on X x S
which are continuous with respect to z € S, and the conjugation is taken in the
twistor sense (cf. [3} § 1.5.a]): it is the usual conjugation functor in the X direction,
and is the involution z — —z~! in the z-direction.
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The morphisms are pairs (¢’, ¢”") of morphisms, contravariant on the “prime” side,
and covariant on the “double-prime” side, which satisfy the compatibility relation
Cu(p'mb, mT) = C(my, ml).

For any k € 3Z, the Tate twist (k) is defined by 7 (k) = (#',.#", (iz)~2*C), and
the adjoint J* of J is (A", 4", C*), with C*(m" ,m’) = C(m’,m")

A sesquilinear duality . of weight w € Z on & is a morphism . : F — T *(—w).

There is a natural notion of direct image by a morphism f between smooth complex

manifolds, which is denoted by f;.

2.c. Specialization along a smooth hypersurface. — We consider the following
situation: the manifold X is an open set in the product C x X’ of the complex line
with some complex manifold X', we regard the coordinate ¢ on C as a function on X,
and we put Xy = ¢t~1(0). There is a corresponding derivation d;, and Z - is equipped
with an increasing filtration V,%Z -, for which 0¥ has degree k, t* has degree —k (for
any k € N), and any local section of Zg;, has degree 0.

A coherent left Z 4 -module .# is said to be strictly specializable along 2 if there
exist, near any (z,,2,) € £, a finite set A C C and a good V-filtration indexed by
(.. (A+7) C R, denoted by V. *).#, such that, for any a € £, (A + Z),

— each graded piece grav(zﬂ) A is a strict Zg;,-module;
— on each gr}l/(%) M, the operator 0;t has a minimal polynomial which takes
the form

II FGe+axz)™,

a€A+Z
L., ()=a

where the integers v, only depend on a mod Z;
— if we denote by 1 o.# the kernel of a sufficiently large power of 0;t + o % 2
acting on gr¥"” ., with a = £._(a), then
oty oM — Py 1.4 is onto for £, (o) <0,
o Oyt Yy gl — Ypq41.# is onto for £, (o) > —1, but o # —1.
We say that the strictly specializable module .# is regular along 2 if each Va(z°)///
is # - jc-coherent (cf. [3], §3.1.d]).
Given an object 7 of %- Triples(X) for which .#' and .#" are strictly specializable
along 2o, and any « € C, the specialization 1 oC' is defined by

— P o C
Vrallis @ Vol 27 Dby, xs)s
S

(2.1)

(Im/], [m""]) ———— Res_auzyz ([P C(m',m/), o A x(t) S=dt A dE),
where m/, m” are local liftings of [m/'], [m”]. In such a way, we get an object ¥y o7
of %- Triples(Xp).
We also define the objects U, .7 by starting from the localization of .7 along 2y
(cf. Bl §3.4]).
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2.d. Polarizable twistor Z-modules. — Let w be an integer. The category
MT® (X, w) of regular twistor Z-modules is defined in [3, Def.4.1.2]. It is a full
subcategory of %- Triples(X). Each object of MT™ (X, w) is, in particular, strictly
specializable along any local analytic hypersurface, as well as all its successive spe-
cializations.

The Tate twist by (—w/2) is an equivalence between MT ™ (X, w) and MT® (X, 0).
If X is reduced to a point, the category MT® (pt,0) (the regularity condition is now
empty) was defined by C. Simpson in [7] as the category of twistor structures, which
is equivalent to the category of trivializable vector bundles on P!, or the category of
C-vector spaces.

A polarization of an object of MT® (X, w) is a sesquilinear duality . of weight w
which induces, by any successive specializations ending to a point, and gradation
by the successive monodromy filtrations, a polarization of the punctual twistor struc-
tures (cf. [3 §4.2]). The subcategory MT® (X, w)®) consisting of polarizable regular
twistor Z-modules is semisimple (c¢f. Prop. 4.2.5 in loc. cit.).

3. Partial Laplace transform of %4 -modules

3.a. The setting. — We consider the product Al x Al of two affine lines with
coordinates (¢,7), and the partial compactification P! x Al, covered by two affine
charts, with respective coordinates (¢,7) and (¢/,7), where we put t' = 1/t. We
denote by oo the divisor {t = oo} in P!, defined by the equation t' = 0, as well as its
inverse image in P' x AL,

Let Y be a complex manifold. We put X = Y xP*!, X =Y xAl and Z = Y xP! x Al
The manifolds X and Z are equipped with a divisor (still denoted by) co. We have

XyZY)?
A

Let .4 be aleft Z 9--module. We denote by M the localized module R [%00| R, M .
Then p*.4 is a left B [xoc]-module. We denote by pt.# ® E/% or, for short, by
ZH , the O[*oo]-module p*//? equipped with the twisted action of Z4 described
by the exponential factor: the Z4-action is unchanged, and, for any local section m

of A,

projections
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— in the chart (¢,7),

Or(m @ &"/%) = [(0; — T)m] @ €7'7/%,

3.2
( ) ST(m ® S_tT/Z) = —tm® 8—t7’/27
— in the chart (¢, 7),
3./ m®8—t7’/z _ 6/+T t/2 m (598—157'/27
(33) v ( ) = [0 +7/t"%)m]

5T(m® 8—t7—/z) — _m/t/ ® 8—t7—/z,

Definition 3.4. — The partial Laplace transform M of M is the complex of %
modules

Pt =p (vt M @ €T,
Recall (cf. [3, Prop. A.2.7]) that we have:

Proposition 3.5. — Let .# be a coherent # o -module. Then Z# is Rz -coherent. If
moreover M is good, then so is ZH , and therefore M = prTH is K z—coherent. [

Let us also recall the definition of the Fourier transform of a sesquilinear pairing.
Assume that .#', . #" are good Z 4--modules. Let C : ,//ll’s(&ﬁs ///(é — Dbxys/s bea
sesquilinear pairing. We will define a sesquilinear pairing between the corresponding
Laplace transforms:

C: //l\ls ®os ///\/é — ZJE’)?xS/s ‘

Given local sections m/,m” of p*///"s,]ﬁ//{l’é, which can be written as m’ =
> di@mi, m" =37 P @m] with ¢;,1; holomorphic functions on 2 and mj, m/ lo-
cal sections of ‘/S, ///‘/é, let ¢ be a C*° relative form of maximal degree on Z x S with
compact support. We define the sesquilinear pairing ZC : ‘%’s R g %’é — Dbzys/s
by the following formula:

i), i= 3 (Clmiy i), [ 050,
i, p

This is meaningful, as, for any z € S, the expression ztT —t7/2 is purely imaginary, so

the integral is a (partial) Fourier transform of a function having compact support with

respect to 7, hence defines a function having rapid decay as well as all its derivatives

along ¢ = oo; we can apply to it 5(m2,m7;-’), which is a priori a distribution on

Y x Al x S, tempered in the t-direction and continuous with respect to z.

We can now define, using the direct image defined in [3], § 1.6.d],

~

C =pl7C.
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4. Partial Laplace transform and specialization

Denote by i the inclusion ¥ x {0} — X. We will consider the functors ¢ o
and ¢y o, as well as the functors ¥, , and Uy , of Definition 3.4.3 in [3] We denote
by N,, Ny the natural nilpotent endomorphisms on the corresponding nearby cycles
modules. We denote by M, (N) the monodromy filtration of the nilpotent endomor-
phism N and by grN : grM — grM , the morphism induced by N. For ¢ > 0, Pgrg/[

denotes the primitive part ker(gr N)”}ﬁw of gr)® and PM, the inverse image of P gr)!

g
by the natural projection M, — gr%/‘l. ZRecall that, in an abelian category, the prim-
itive part P gr)! is equal to ker N/(ker N N ImN). We will also denote by Moin, the
minimal extension of .# (cf. §3.4.b in loc. cit.).

Given a finite set of points with multiplicities in €y, we will consider the corre-
sponding divisor D and the corresponding sheaf Oq,(—D). Given a %-module A4,

we will put as usual A (—D) = Oq,(—D) @¢,, N

Proposition 4.1 (cf. [3, Prop. A.3.1]). — Assume that # is strictly specializable and
reqular along t' = 0. Then,

(i) for any 7, # 0, the Z 4 -module M RET/ i X g -coherent; it is also strictly
specializable (but not regular in general) along t' = 0, with a constant V -filtration, so
that all wt/,a(j® E~te/2) are identically 0.

Assume moreover that A is strict. Then,

(ii) the Z+-module TH = p+//7® E~t7/% is strictly specializable and regular along
T =17, for any 7, € Al ; it is equal to the minimal extension of its localization along
7T=0;

(iii) if 7, # 0, the V-filtration of Z# along T — 7, = 0 is given by

Vo — TN if k> —1,
(777'0)””1‘?/// if k< —1;
we have
" Ty _ 0 ifag —-N—-1,
e MRENTE ifae —N—1.

(iv) If 7, =0, we have:
(a) for any a # —1 with Rea € [—1,0[, a functorial isomorphism on some
neighbourhood of D := {|z| < 1},

(\IJT7OZ%D7 NT) ;) ioo,+ (¢t/,a%(7Da)|D7 Nt')a
where Dy, is the divisor 1-i if o = —1 and o' > 0, the divisor 1-(—i) if o/ = —1
and o < 0, and the empty divisor otherwise;

(b) for a =0, a functorial isomorphism

(Vr0 7 N, ) =5 i 1 (1M, Ny,
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(¢c) for a = —1, two functorial exact sequences
0 — %o+ ker Ny — ker N, — //Znin —0
00— %A;nin — coker N, — 4o 4 coker Nyy — 0,
inducing isomorphisms
foo,+ ker Ny 5 kerN, NIm N, C ker N,
%in s ker N, /(ker N, NImN,) C coker N,

such that the natural morphism ker N, — coker N induces the identity on /Z/:nin.

Proof of. — Let us first prove the Z 4 -coherence of M @ E1/% when To # 0.
As this Z g--module is Z g [xoo]-coherent by construction, it is enough to prove that
it is locally finitely generated over Z4-, and the only problem is at ¢’ = 0. We also
work locally near z, € Qg and forget the exponent (z,) in the V-filtration along
# = 0. Then, 4 = Oy [1/t'] ®¢, V<o, equipped with its natural Zg -structure.
By the regularity assumption, Voo.# is %4  a-coherent, so we can choose finitely
many % g ja-generators m; of Voo 4 .
The regularity assumption implies that, for any i,

t'dym; € Z%gg/& CMy.

J

In.A4® &~t7o/% using (B.3), this is written as

(4.2) (t/5t’ _ To/t/)(mi ® E—trn/z) c Z%%/N . (mj ® g—t‘f'o/z),
J

and therefore

(ro/t)(mi ® E77/7) € > Vo - (m; @ E717/7).
J
Tt follows that .# ®&~t70/? is Vo & 4--coherent, generated by the m; @&t/ It is then
obviously Z g -coherent. The previous relation also implies that 7,(m; ® gt/ #) e

t'.# © &~t7o/* Therefore, the constant V-filtration, defined by Va(,/Z/v® Etro/2) =
M @ EtT/% for any a, is good and has a Bernstein polynomial equal to 1.

Proof of L. Y(i]) for 7, # 0 and 4.1ffiii). — The analogue of Formula (4.2) now reads
(tlét’ + 7—67—)(77%' & g_tT/Z) S Z%%/Al . (mj ® 8_t7—/z),

J

Therefore, the %g/@—module generated by the m; ® E~t7/% is V)% #-coherent, where
V' denotes the filtration relative to 7 — 7,. It is even Z+-coherent if 7, # 0, as 7 is a
unit near 7,, and this easily gives |4.1iii]), therefore also [4.1|(ii) when 7, # 0.
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Proof of for 7, = 0. — Let us now consider the case where 7, = 0. Then the
previous argument gives the regularity of 74 along 7 = 0. We will now show the
strict specializability along 7 = 0. We will work near z, € 0y and forget the exponent
(20) in the V-filtrations relative to 7 = 0 and to ¢’ = 0.

Away from t' = 0 the result is easy: near t = t,, Formula , together with
the strictness of .#, implies that 7 is strictly noncharacteristic along 7 = 0, hence
W =V_ 7l and Yy Tl = M (cf. [ §3.7)).

We will now focus on ¢’ = 0. Denote by V,.# the V-filtration of .# relative to t’
and put, for any a € [—1,0],

Vswll ="Vl (= Vot if k <0).
Each Va/Z/v is a Vo# a-coherent module and, by regularity, is also % 4-,p1-coherent.
We will now construct the V-filtration of 77 along 7 = 0. For any a € R, put

=" [ Vadl) @ €777,

p=0
i.e., Uy is the %fx/@—module generated by (p*Va//A/) ® &¥7/% in 7. Notice that,
when we restrict to t’ # 0, we have for any a € R,
Uajr0 = 140
(i) (1) Clearly, U, is an increasing filtration of Z# and each U, is Z,, /ma-Ccoherent
for every a € R.

(i) (2) U, is stable by 79,: indeed, for any local section m of Vaa//?: we have by
B3):
(13,)30 (m @ £717/2) = 8%, (13, ) (m @ £~47/%)
=% 1By (m® E71/F) — (YBym) @ €717/
— 5P+1( me e~ tr/z) 6?/ [(5t/t’m) ® E—tr/z].
The first term in the RHS is in U,_; and the second one is in U,, as Va/Z/vis stable
by 6t/tl.
(i) (3) For any a € R, we have U,41 = U, +0,U,: indeed, for m as above, we have
1
3, O (m®Et7) = —3, (?m ® s*”/Z) € Ugy1,

hence 0,U, C Ugy1; applying this equality the in the other way gives the desired
equality. This also shows that 0, : gr¥ TN — grgﬂ Z# is an isomorphism for any
a € R.

(i) (4) For any a € R, we have 7U, C U,_1: indeed, one has, for m as above
T(m @ &E7?) =20, (m @ &7V/F) — (t20,m) ® £717/*
=0y (t?m ® &7V/7) — (Bpt"?m) @ £7V/%,

the first term of the RHS clearly belongs to U,_o and the second one to U,_1.
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(i) (5) Denote by b, (s) the minimal polynomial of —;¢' on gry M. Then, for m
as above, we have

— (@t +70,) (Mm@ ETV/F) = —(Dpt'm) @ £/

after (3.3). Therefore, we have by(—[0yt + 70,])(m @ €~47/%) € U.,. Using
that dyt'(m @ E717/%) = By (t'm ® £~47/%) € U,_; by definition, we deduce that
ba(—70,)(m ® E717/%) € U-,. Therefore, by(—70,)U, C U<q.

(i) (6) We will now identify U, /U<, with gry /Z/v[n] = C[n] ®@c gry M, where 1) is
a new variable. Notice first that both objects are supported on {t’ = 0}. Consider
the map

Vadl [n] — U,
Zmpn” — Zﬁf, (m, ® E47/7).
P P

Its composition with the natural projection U, — U, /U, induces a surjective map-
ping gr’ //7[77] — U, /U<q. In order to show that it is injective, it is enough to show
that, if Zp b (mp ® &~17/%) belongs to U.,, then each m,, belongs to V<a/Z/v. For
that purpose, it is enough to work with an algebraic version of U,, where “p*” means
“@cC[r]”. Notice that, if a local section Y 5_, 7¢(ng ® €717/2) of .M [r] @ €717/% be-
longs to U,, then the leading coefficient n, is a local section of Va+27.j (by using
that 3y (n ® E717/%) = (Opn) @ E7V7/% — 1((n/t'?) ® €717/%)). Remark then that,
using , g=0 b (m, ® 8’”/2) is a polynomial of degree ¢ in 7 with leading
coefficient +(79/t'29)(m, @ £€7*7/#). If the sum belongs to U, this implies that

Mg/t € Vegiogt , ie., my € V<a//?T Therefore, by induction on g, all coefficients
m,, are local sections of V,.#, as was to be shown.

Let us describe the Z4-[70,]-module structure on grY .#[n] coming from the iden-
tification with U, /U~,. First, the Zs-module structure is the natural one on grY .#,
naturally extended to grY .#[n]. Then one checks that

(4.3) Oy Z mpn” =1 Z mpn?, t' Z mypn? = =0, Z mpn?,
P P P P
(4.4) 707 Z mpn” = Z(aétl)(mp)np~
P P

If we denote by i the inclusion Y x {oo} <+ X, the Z9--module grY .#[n] that these
formulas define is nothing but i 4 gr¥ .#, so we have obtained an isomorphism of
X o--modules:

(4.5) (ivos gty M 0ut") =5 (&r¥ 7# ,70,)
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({il)(7) Consider the filtration V,Z# defined for a € [~1,0[ and k € Z by

Ust14r itk >0,

kU1 if k<0.

This is a V-filtration relative to 7 on 7, by m m mm)(_3)| and m It is
good, by the equality inand because 7V, 7# = V,_17# for a < 0 by definition.
Notice that, for a > —1, we have gry 7# = gtV | 74 .

For a > —1, we can use to get a minimal polynomial of the right form for
—0,7 acting on gr¥ Z# (here is the need for a shift by 1 between U and V), and
strictness follows from and the strictness of gr) .#, which is by assumption.

It therefore remains to analyze gr? Z# for a < —1.

(8) We will analyze gr¥, 4 = Uy/TU~; through the following two diagrams of
exact sequences, where the non labelled maps are the natural ones:

0

|

(UcoN7t)/TU

|

P
VaJrk% = { <

(46) O—>U<0/7'U<1—)Uo/TU<14>U0/U<0*>O
U<0/(U<0 n T%)
0
and
0

!

U<Q/(U<0 n TUl)

70, ‘L

(4.7) 0—Up/Uco ——— Uo/TUci ——— Up/TU; ———0

l

Uo /(U1 4+ U<o)

|

0
Notice that, in (4.7)), 70, is injective because it is the composition

3,
(4.8) Uo/Ucoy — Uy /Ut —— Uy /7U1,

0, is an isomorphism (cf. |(i1 )(3) ) and 7 is injective, as it acts injectively on 7. Recall
that (gry 7,79.) is identified, by |(i) (G)L with e 4 (gry A ,0pt'"). Notice also that
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70, vanishes on U.o/7U<1 (resp. on Uy/7Ur), as 8, U9 C U<y (resp. 8,Uy C Uy).
It remains therefore to prove the strictness of U<o/7U<1 to get the desired properties
for gr¥, Z#. We denote by Ny the action of —t'dy on gr¥, ./Z/v(by strictness, ker Ny
is equal to the kernel of —t'dy acting on Q/Jt/,,L//A/C gr¥, /Z/V) The strictness of
gr¥, ZH follows then from the strictness of im7+wt/,,1j/t that of %nin (defined in
[3, Def. 3.4.7]) and the first two lines of the lemma below, applied to the diagram

[5).
Lemma 4.9. — We have functorial isomorphisms of % a -modules:
Uco/(Uco NTUL) = Uco/(Uco NTIH) 5 Msin
o,y kKer Ny =5 (Uco N77H) J7U <1
ioo,+ cOker Ny — Uy /(TUy + U~p).

Proof. — For my,...,m, € M, we can write
(410) mo & (C‘th'r/z —+ 615’ (ml ® EftT/z) + .+ 6f/(mp ® Eftr/z)

=ng @&/ — T[(m/t'Q) ®ETE 4 B (ny/t?) @ g*tf/z)}

with
np = My mp = nNp
Np-1 = mp_1 +0pmy Mp_1 = Np_1 = Ony
(4.11)
ny =m +5t/m2+---+5f,_lmp my =ni — Opng
no =mo + Opmy + -+ + 0hmy, mo = ng — 0pny

Sending an element to its constant term in its 7 expansion gives an injective mor-
phism U.o/(Uco NT7H#) — . Formulas and show that the image of
this morphism is the & g -submodule of M generated by V<0//A/T this is by definition
the minimal extension of .# across t’ = 0.

Let us show that

(412) U<00’7'U1 :U<0ﬂ7'%‘
Consider a local section of Ucy N 774, written as in (4.10); it satisfies thus
mo,...,My € Voo and ng = 0; then dpyn; = —mg € Veo#. This implies

that ny is a local section of V_1.#: indeed, the condition on m; is equivalent to
#'dyn1 € Vo_1.4; use then that, by strictness of gr}{//?7 t'0p acts injectively on
gr’ M ifa # —1. Therefore, (n1/t'?)®&~1"/# € U;. We can now assume that n, = 0
and thus 0yns € V<0/Z{v... hence 7 and the first line of the lemma. Notice
moreover that the class of each n; in gr¥, M is in ker Ny
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Let n be a new variable. We define a morphism

kerNt/ [77] — U<Q/TU<1

by the rule
(413) Yl e —r [/t @ e b T () @ €77
jz1

by taking some lifting n; of each [n;] € ker Ny C gr 1 M inV_ 1///
— This morphism is well defined: using (4 , write

—700 7 (n /) @ £772) = B, (n; ® €717/7) — 47N ((Bmy) @ E717/);

that [n;] belongs to ker Nt/ is equivalent to t'0yn; € V< 1/// therefore, both n;
and Jpn; belong to V<o% moreover, if n; € Vo_ 1\, so that n;/t? e V<1//l
the image is in 7U<;.
— This morphism is injective: as we have seen in the term between
brackets in belongs to U, if and only if each nj/t’2 belongs to V<1/Z/v7
i.e., each n; is in V<_1/Z/V.
— The image of this morphism is equal to (U.q N 774 )/TU~1: this was shown
in the proof of .
As in we can identify ker Ny [n] with i 4 ker Ny and the morphism is seen to
be Z g -linear.

Let us now consider the third line of the lemma. We identify Uy /(7U; + U<g) with
the cokernel of 7 : gr¥ — gr{ or, equivalently, to that of 79, : gr{ — grf. By-
1t is identified with zoo 4 coker Oyt acting on deo + gro . Use now the isomorphism

cery M gr¥, M to conclude. O

(i) (9) We will now prove that all the gr¥ Z# for a < —1 are strict and have a
Bernstein polynomial. In|(ii) (8)[ we have proved this for a = —1.

Choose a < —1. It follows from the definition of V,Z# that
(4.14) Togry W — ol Tn

is onto. Therefore, by decreasing induction on a and using|(iif) (7)} we have a Bernstein
relation on each gr) Z# . Tt remains to prove the strictness of such a module. This
is also done by decreasing induction on a, as it is now known to be true for any

€ [-1,0[. Tt is enough to show that is also injective for any a < —1, and it
is also enough to show that

vV Z vV Z
OrT 1 glgyy M — gro M.

is injective. If a section m satisfies 9, 7m = 0 then, according to the Bernstein relation
that we previously proved, it also satisfies [[(a x z)*»m = 0, where the product is
taken on a set of & € C with ¢, (o) = a+1 < 0 and v, € N. Such a set does
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not contain 0 and the function z — [](a % z)”~ is not identically 0. By induction,
gry 7/ is strict. Therefore, m = 0, hence the injectivity.

(i) (10) By construction, the filtration V, 72 satisfies moreover that
e gtV T — gr¥_ | ZH is onto for any a < 0,
« 0, gty T# — grV . TH is onto for any a > —1.
This implies that all the conditions for strict specializability (cf. [3 Def. 3.3.8]) are
satisfied, and that moreover the morphism can, introduced in [3, Rem. 3.3.6(6)] is
onto. Notice also that the morphism var, is injective: indeed, this means that
T gy T — gr¥, T/ is injective, or equivalently that 7 : Uy /Uy — Up/TU~y
is injective, which has been seen after .
In other words, we have shown that 77 is strictly specializable along 7 = 0 and
that it is equal to the minimal extension of its localization along 7 = 0, as defined in
[3, §3.4.].

Proof of 4.1|fiv]). — Now that Z# is known to be strictly specializable along 7 = 0,
the Z g--modules wT’a‘%// (¢f. Lemma 3.3.4 in loc. cit.) are defined. We can compare

them with o 9y oA .

(iv) (1) For any z, € Qp, we have a natural morphism, defined locally near z,
(putting a = £, (a))

~ — oot —
(4.15) wﬂaf}/// S gr}l/ TH —s graUJrl TN = oo+ gr(‘l/+1 M= oo+ gr}l/ M,

~

which takes values in iooﬂ_q/)t/’a//v. One verifies that the various morphisms glue
together in a well defined morphism ¥, o 77 — ioo 1+t o A .

Lemma 4.16. — Near any z, € D, the natural morphism 77/1T7a‘%// — graU_H N (a0 =
L, (a)) is injective for any o € C~ (=N*) and, if a > —1, ¢r,a‘% = oo+ W o M S
an isomorphism near z,.

Proof. — If a > —1, this has been proved in (4.5). Assume that a = —1 (and « ¢
—N*). If we decompose the horizontal sequence (4.6]) with respect to the eigenvalues
of —79,, we get that, for any o # —1 with ¢, («) = —1, the natural morphism

VraZll — Up)U<o
is an isomorphism onto (Up/U<p)a+1 and, according to (4.5)), we have an isomorphism

Z ~ . - iOO,-‘rt/ . -
'I/JT’Q% — Zooﬂt'l/}t’,ourl% e oo,+1/}t/,a«%~

~

Assume now that a < —1. Let k& > 0 be such that b = a + k € [-1,0[. We prove
the result by induction on k, knowing that it is true for kK = 0. By induction, we have
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a commutative diagram

1/)T,a+1‘% — grg+2 ‘%

le Z%T
1/17,,1?/// e grgJr1 XA

showing that the lower horizontal arrow is injective if and only if 0,7 is injective on
V.12, which follows from strictness if (a4 1)« z # 0, that is, if a # —1. O

(iv)(2) Proof of 4.1f{ivb). When o = 0, the proof follows from Lemma [4.16]

(iv) (3) Assume now that o # —1 satisfies Rea € [—1,0[. We wish to show that
(4.15)) induces an isomorphism
(4'17) wr,a%D — ioo,ert’,at//(_Da)\D-
This is a local question with respect to z € D.

Clearly, the image of ¢, o7 — gt | 74 is contained in ker[(d,7 + a * 2)
gt n — graU+1 Z#), for N > 0 and is equal to this submodule if a > —1.

If a < —1 and if k > 1 is such that a + k € [—1,0[, the image is identified with

Im(770%) : ker (8,7 + ax 2)N — ker(d,7 + ax 2)V,

N .

and it is identified with the image of the multiplication by H?Zl(a + j) * z on this
module. For j = 1,...k, the number 8 = a + j satisfies Re > 0, 8 # 0 and
£, (8) < 0. Then 8 x z = 0 has a solution z in D iff Ref = 0, and this solution
is z = 4i. This occurs iff Reaw = —1 and 7 = 1. In conclusion, the image of
@/)T’Q%D in ioo,+1/177a////\|/D, is equal to the image of the multiplication by (a4 1) x z
on ioo,“/)ﬁa/}/‘v[). As we assume that ¢, (a) < —1, the divisor of z — (a+ 1) x 2z
coincides, near z,, with the divisor D, hence .

([iv) (4) We now show that there is no difference between v, 7% and ¥, ,7# on
some neighbourhood of D.

Lemma 4.18. — Assume that o # —1 and o := Rea € [—1,0[. Then the natural
inclusion ’(/JT,Q‘%D — WT,Q%D 18 an tsomorphism.

Note that the existence of an inclusion is proved in [3, Lemma 3.4.2(1)].

Proof. — The question is local near points z € D such that £,(«) > 0, otherwise the
result follows from Lemma 3.4.1 in loc. cit. Fix z, such that ¢, (o) > 0 and let k > 1
be such that £, (o — k) € [-1,0[. We have a commutative diagram

w‘r,a% C—> \IIT,OL%

- ot

w'r,afk% —_— \Il‘r,afk%
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and, as a := ¢, (a) and a — k are > —1 and a # —1, ¢T,a‘% (resp. wT’a,k%//)
is contained in grg+1 W (resp. in graUH_k t%//), using the local filtration U near z,.
It follows (cf.|(ii)(3)) that 0% : 9, o s 7# — .o 7% is an isomorphism. There-
fore, the image of v, o7 in V. , 7/ is identified with the image of 3%7* acting on

VU, o7/ . Using the nilpotent endomorphism N, = —(3,7 + a * z), we write 0FrF
as (=1)F(N, +axz)--- (N, + (o — k + 1) % 2). The proof of the lemma will be com-
plete if we show that none of the (a — j) x z, (j = 0,...,k — 1) vanishes (assuming
that z, € D).

Notice that 8 := a — j satisfies 8’ < 0 and 8’ — (,8” > 0. Assume that 3* z, = 0.
By the previous conditions, we must have 8" # 0 and z, # 0, and the only possibility
_ BBRrp?

for z, is then z, = i(, and ¢, = 57 . Now, the condition ' < 0 implies
[Co] > 1, s0 2, € D. O

(iv) (5) Proof of [4.1jfival). It follows from (4.17) and Lemma that we have a

functorial isomorphism
(4'19) WT,Q%D — Z.oc>,+w‘r,a'/fiz_l)a)\D
when o # —1 satisfies Rea € [—1,0[. This ends the proof of 4.1{fiv]) when « # —1.

([iv) (6) Proof of [{.1ffivd). Let us now consider the case when o = —1. The two
exact sequences that we consider are the vertical exact sequences in and 7
according to Lemma

For the second assertion, notice first that, as the image of Im N, Nker N in /Z/;in
is supported on {t' = 0}, it is zero by the definition of the minimal extension, hence
we have an inclusion ImN; Nker N C 7o 4 ker Ny, To prove io 4 ker Ny C Im N,
remark that the image of is in 7(U1/U<1), hence in T’(ﬁ-,—’()‘%, that is, in Im var,,
hence in Im N...

The last assertion is nothing but the identification U.o N 724 = Uy N 7U; of
Lemma O

5. Partial Fourier-Laplace transform of regular twistor Z-modules

The main result of this article is (¢f. [8] Th. A.4.1]):

Theorem 5.1. — Let (7,.5) = (M',.4",C,.7) be an object of MT® (X, w)®).
Then, alongT =0, A" and #" are strictly specializable, reqular and S-decomposable.
Moreover, U, (7 ,.7), with Rea € [-1,0], and ¢,0(7,.7) induce, by grading with

respect to the monodromy filtration M,(N;), an object of MLT® ()?,w; —1)®),

Note that the definition of S-decomposability is given in [3| Def. 3.5.1], and that
of the category MLT® in §4.1.f of loc. cit. In particular, all conditions of Definition
4.1.2 in loc. cit. are satisfied along the hypersurface 7 = 0.
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This theorem is a generalization of [I Th. 5.3], without the Q-structure however.
In fact, we give a precise comparison with nearby cycles of (7,.%) at t = oo as in [1],
Th. 4.3].

In order to prove Theorem [5.1] we need to extend the results of Proposition [£.1] to
objects with sesquilinear pairings.

5.a. “Positive” functions of z. — Recall that we denote by D the disc |z| < 1 and
by S its boundary. Let A(z) be a meromorphic function defined in some neighbourhood
of S. If the neighbourhood is sufficiently small, it has zeros and poles at most on S.
We say that A is “real” if it satisfies A = A, where \(z) is defined as ¢(A\(—1/¢(z))) and
¢ is the usual complex conjugation. For instance, if o € C, the function z — ax z/z
is “real”. If A(z) is “real” and if ¢ is a meromorphic function on C which is real (in
the usual sense, i.e., ¢ = ctp), then 1o A is “real”. In particular, for any o € C*, the
function z — T'(a % z/z) is “real”.

Lemma 5.2. — Let \(z) be a “real” invertible holomorphic function in some neigh-
bourhood of S. Then there exists an invertible holomorphic function u(z) in some
neighbourhood of D such that A = @ in some neighbourhood of S. Moreover, such
a function p is unique up to multiplication by a complex number having modulus equal
to 1.

Definition 5.3. — Let X be as in the lemma. We say that A is “positive” if A\ = up,
with p invertible on D, and “negative” if A = —up.

Remark 5.4 (Positive or negative “real” meromorphic functions)

Assume that A is a nonzero “real” meromorphic function in some neighbourhood
of S. Then A can be written as [[,[(z — 2;)(2 — 2;)]™ - h with z; € S, h holomorphic
invertible near S and h = h: indeed, one shows that, if z, € S, then z — 2z, =
(z + 20) - (—1/2,2); therefore, if z, € S is a pole or a zero of A with order m, € Z,
then —z, has the same order, hence the product decomposition of A.

It follows from Lemma that A\ = +¢g, with g = p[[;,(z — 2:)"*, zs €S, m; € Z
and p holomorphic invertible on D. This decomposition is not unique, as one may
change some z; with —z;. The sign is also non uniquely determined, as we have, for

an}/ Zo € S,
(Z_ZO) (Z_ZO)
Z+ZO Z+ZO

Nevertheless, the decomposition and the sign are uniquely defined (up to a multiplica-

tive constant) if we fix a choice of a “square root” of the divisor of A so that no two
points in the support of this divisor are opposed, and if we impose that the divisor
of g is contained in this “square root”. The sign does not depend on the choice of
such a “square root”. We say that A is “positive” if the sign is +, and “negative” if
the sign is —.
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Proof of Lemma (5.2l — One can write A = v - 7 with g holomorphic invertible near
D and v meromorphic in some neighbourhood of D and having poles or zeros at 0
at most. The function ¢(z) = v/u = U/l defines a meromorphic function on P! with
divisor supported by {0,00}. Thus, ¢(z) = ¢-2* with ¢ € C and k € Z, so A = cz* .
Moreover, the equality A = A implies that ¢ € R and k& = 0. Changing notation for p
gives A = £up, with p invertible on D.

For uniqueness, assume that uzr = 41 with p holomorphic invertible in some
neighbourhood of D. Then +1/f is also holomorphic in some neighbourhood of
|z] > 1, so u extends as a holomorphic function on P! and thus is constant. This
implies that ug = 1. O

Lemma5.5. — Let o € C be such that Rea € [0, 1] and o # 0. Then the meromorphic
function
Tax*z/z)
INl—axz/z)
is “real” and “positive” (it is holomorphic invertible near S if Rea # 0).

Az) =

Proof. — That this function is “real” has yet been remarked. The only possible
pole/zero of A on S is +i, which occurs if there exists k € Z such that Rea+ k = 0.
It is a simple pole (resp. a simple zero) if & > 0 (resp. & < —1). As we assume
Rea € [0,1], the only possibility is when Rea = 0, with & = 0 (hence a pole).

Write A(2) as ['(ax 2/2)? - (1/7)sinm(a x 2/z). It is then equivalent to showing
that (1/7)sinm(a* z/z) is “positive” for « as above.

Write o = o + ia”. The result is clear if o/ = 0, as we then have axz/z =o' €
10, 1[. We thus assume now that o’ # 0.
B+ /B2t B2

For any 8 € C with 8 # 0, we put b = and we can write

ﬂ//
B * z ﬂ”b( iz 1z
)

z 2 +b +b
If o is as above, we have n — a’,n + o’ > 0 for any n > 1 and we put for n > 0
n—ao ++/(n—a)?+ao"? n+ao +4/(n+a)?+ao"?
b”:_ " » Cn = 1" .

e @

For n > 1, we have |b,|, |cy| > 1 and

14—

(n—a)xz n—a + (n—a’)2+a”2( iz)(1+iz')

z 2 bn bn
’ 2 "2 PN 7 gaN\
(n—l—a)*z:n—i—a—i— (n+ao)2+a (14_%)(1_’_@).
z 2 Cn, Cn

The number
H n—ad +y/(n—a)+a?)(n+a ++/(n+a)?+a'"?)
4n?

(o) =
n=1
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1 o'o

1
is (finite and) positive. On the other hand, as o + = + O(1/n?), the

[I(0+2)(0+2)
bn Cn
n>=1
defines an invertible holomorphic function in some neighbourhood of D. Put

o(z) = (c(a)(a’+ 2a/2+a’/2)>1/2.(1+g) 1:[1(1+;:> (1+Z—Z).

n

infinite product

=

Then we have (1/7)sinw(ax z/z) = g(2)g(2). O

If 11 is a meromorphic function on some neighbourhood of D, we denote by D,, its
divisor on D. If .# is a Zg-module, we put #(D,) = O9(D,) ®¢, A with its
natural Z 4 -structure.

Lemma 5.6. — Let (7,.) = (M',. 4" ,C,.7) be an object of MT(X,w)®). Then,
for each u as above, (M'(D,,), #"(D,), uiiC,.%) is an object of MT(X,w)® iso-
morphic to (7 ,.7).

Remark 5.7. — We only assume here that .#’, .#" are defined in some neighbourhood
of D, and not necessarily on €. This does not change the category MT(X,w)®).

Proof. — The isomorphism is given by -y : #'(D,,)—.#" and -(1/p) : M"—. 4" (D,,).
O

5.b. Exponential twist and specialization of a sesquilinear pairing

We now come back to our original situation of § Let = (', 4" ,C) be
an object of %- Triples(X). We have defined the object 27 = (Z#',Z#",7C) of
- Triples(Z). If we assume that .#', . #" are strict and strictly specializable along
t' =0, then 74", 7#" are strictly specializable along 7 = 0. Then, for Rea € [~1,0],
VU, 77 is defined as in [3] §3.6]. Recall (cf. (3.6.2) in loc. cit.) that we denote by
N \I/T,agﬂ — \11”19(7(71) the morphism (—iN,,iN.). If « = —1 (more generally
if o is real) we have \Ilr’agzﬂ = 1/)7’,1?3. We also consider, as in § 3.6.b of loc. cit.,
the vanishing cycle object ¢, 7.7 .

The purpose of this section is to extend Proposition to objects of #Z- Triples.
It will be convenient to assume, in the following, that .#’ = .#, and 4" = .#!. ;
with such an assumption, we will not have to define a sesquilinear pairing on the
minimal extensions used in Proposition , as we can use the given C.

Proposition 5.8 (cf. [3, Prop. A.4.2]). — For 7 as above, we have isomorphisms in
- Triples(X):

(Va7 M) it (Vo0 T, N), Vo # —1 with Rea € [-1,0],
(6r07T \ Ne) oo 4 (V1,1 T, N,
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and an exact sequence
0 — doo + ker Ay — ker V7 — T — 0
inducing an isomorphism P gr v, 77 5 T.

Corollary 5.9 (cf. [3, Cor. A43]). — Assume that F is an object of MT®™ (X, w)
(resp. (7,.) is an object of MT® (X, w)®).  Then, for any a € C with
Rea € [-1,0[, (¥, .77, ;) induces by gradation an object of MLT®) (X, w; —1)
(resp. an object of MLT® (X, w; —1)®)),

Proof of Corollary[5.9) — Suppose that Proposition [5.8] is proved. Assume first that
T is an object of MT® (X, w). Then, by definition, ivo+ (8T Wy o T, g™, )
is an object of MLT®™ (X,w;—1) for any o with Rea € [—1,0[; therefore, so is
(gr \IIT,ayﬂ,grl\fgg/VT) for any such o # —1. When a = —1, as 4, 74" are
equal to their minimal extension along 7 = 0 (¢f. Proposition the morphism

Gan: (Y7, 17T Mo (A7) — (¢707T (=1/2), Mo—1(A7)),

(¢f. §3.6.b in loc. cit.) is onto. It is strictly compatible with the monodromy fil-
trations (cf. [6, Lemme 5.1.12]), and induces an isomorphism P gr) ., 77 =
P 6,077 (—1/2) for any £ > 1, hence an isomorphism

Pgr?ﬂ wT’,lyﬂ AN foo,4+ P glr%1 Y, 17 (=1/2).

By assumption on .7, the right-hand term is an object of MT® (X, w +£), hence so
is the left-hand term. Moreover, Pgryl v, 177 ~ 7 is in MT™ (X, w). This gives
the claim when o« = —1.

In the polarized case, we can reduce to the case where w = 0, . #' = . #", ./ =
(Id,1d) and C* = C. Then these properties are satisfied by the objects above, and
the polarizability on the 7-side follows from the polarizability on the t'-side. O

The proof of the proposition will involve the computation of a Mellin transform
with kernel given by a function Iy(t,s, z). We first analyze this Mellin transform.

The function Ig(t,s,z). — Let X € C>(AL,R) be such that X(7) = 1 near 7 = 0.
For any z € S, t € Al and s € C such that Re(s + 1) > 0, put

(5.10) Io(t,s,2) = /A STTIE 1P (7)o dr A dT
Al

We also write I (t, s, z) when working in the coordinate ¢’ on P*. We will use the fol-
lowing coarse properties (they are similar to the properties described for the function
fx of §3.6.b of loc. cit.).

(i) Denote by Ige(t,s,z) (k,£ € Z) the function obtained by integrating
|7|** 7F7¢. Then, for any s € C with Re(s + 1+ (k + £)/2) > 0 and any z € S, the
function (t,s,2) — Igk(t,s,2) is C°°, depends holomorphically on s, and satisfies
im0 I5.1,6(t, 5, 2) = 0 locally uniformly with respect to s, z.
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(ii) We have

tlg ke = 2(s + k) Ig k-1, + 2log /07 k0 Ol o = —Ig ks
g ke =Z(s + O)Ig ko1 + Zlogom k.0 Otlg ke = —Igkes1s

where the equalities hold on the common domain of definition (with respect to s) of
the functions involved. Notice that the functions Isg a7 k¢ and Iog a7 ke are C* on
P! x C x S, depend holomorphically on s, and are infinitely flat at t = co

It follows that, for Re(s + 1) > 0, we have
t6t15<‘ = —Z(S + 1)[52 + ZIBS(‘/(’)T,I,Oa

(5.11) _ _ _
t0ily = —Z(s + 1) I3 + Zlp5/07,0,1-

(iii) Moreover, for any p > 0, any s € C with Re(s+ 1+ (k+¢)/2) > p and any
z € S, all derivatives up to order p of Iy j ¢(t', s, z) with respect to t’ tend to 0 when
t" — 0, locally uniformly with respect to s, z; therefore, Iy (¢, s,2) extends as a
function of class C? on P! x {Re(s+ 1+ (k+/)/2) > p} x S, holomorphic with respect
to s.

Mellin transform with kernel Ig(t, s, z). — We will work near z, € S. For any local
sections u', p’ of A, #" and any C relative form ¢ of maximal degree on X x S
with compact support contained in the open set where p’, u”” are defined, the function

(S, Z) — <C(MI7W)> @Ii(ta S, z)>

is holomorphic with respect to s for Res > 0 (according to ), continuous with
respect to z. One shows as in Lemma 3.6.6 of loc. cit., using (iiil), that it extends as
a meromorphic function on the whole complex plane, Wlth poles on sets s = ax z/z.
This result can easily be extended to local sections ', u” of /// LA indeed,
this has to be verified only near ¢ = oo; there exists p > 0 such that, in the neigh-
bourhood of the support of ¢, tPu’,t'Pu/ are local sections of .#', .#"; apply then
the previous argument to the kernel [t|* I5(t,s,2). In the following, we will write
(C(W, 1), pIz(t, s, 2)) instead of (C(t'Pp/ tPu’), ¢ |t]*? Ig(t, s, z)) near t = oo

Lemma 5.12. — Assume that ¢ is compactly supported on (X \ o0) x S. Then, for
w,p'" as above, we have

Ress— 1 (C(u', 1), pIz(t, 5, 2)) = (C(1', 1), ).

Proof. — The function (s + 1)I3(t, s, z) can be extended to the domain Re(s + 1) >

—1/2 as C* function of (¢, s, z), holomorphic with respect to s: use with k =1,

¢ =0 to write (s + 1)Ig(t,s,2) = (t/2)I51,0 — log/or,1,0- It is then enough to show

that this C*° function, when restricted to s = —1, is identically equal to 1. It amounts

to proving that, for any ¢, z, limRs_>_11 [(s+1)I5(t, s, 2)] = 1. For Res > —1 we have
es>—
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I;(t, s, 2) = J(t,8,2) + Hg(t, s, 2), with

J(t,s,2) = / e~ 2 Imtr/z |1 28 o= dr A dT,
|7)<1

and Hy extends as a C'° function on Al x C x S, holomorphic with respect to s. It
is therefore enough to work with J(¢, s, z) instead of Iy. We now have

J(t,s,z):|t|_2(s+1)/ eI y[* oL gy A da
Jul <]

1 —a(s+1) 2 il —2ipsing 2s+1
—;|t| o, e p dpdb.

Now, integrating by part, we get

25+2 95 i ..
/Itl o ipsing 2541 g, _ |t|*5T% e~ 2iltlsin® N 2isinf /tl (—2ipsing 22 g
0 25+ 2 2s + 2 )

and the second integral is holomorphic near s = —1. Therefore,
| |_2(s+1) T 252 —2ilt] sin 6 i 2ipsin 6 2542
(s+1)J(t,s) = 27/ [|t\ ST e altisin +2isin9/ e 2psmOpes dp}d@.
Y 0 0

Taking s — —1 gives

1 27 i . ‘t‘ o
sl_i>I£11 [(s+1)J(t,s)] = %/0 [6721‘”5”‘0 +2i sinﬂ/o e*mpbmedp} de.

Res>—1

Now,

|| . It ¢ o I
2% Sil’lg/ 6—2Zpbln0 dp — _/ 7(6—2zpsm9)dp =-1— 6—21\t|:>1n0,
0 0

dp
hence lim s——1 [(s+ 1)J(t,s)] = 1. O
Res>—1
Remark 5.13. — To simplify notation, we now put
1
Jg(t, S, Z) = m I)A((t, S, Z)

Using as in the previous lemma, one obtains that there exists a C°° function on
A' xCx S, holomorphic with respect to s, which coincides with J; when Re(s+1) > 0.
This implies that, when the support of ¢ does not contain oo, the meromorphic
function s — (C(u/, W), pJx(t, s, 2)) is entire.

We now work near oo With the coordinate t'. Assume that u’' is a local sec-
tion of V, Zj_)l,/// " and that ,u is a local section of V ZD)% . Assume moreover
that the class of p/ in gral_s_1 ' s in iy, a1+1/// and that the class of p” in
gra2+1a) A" s in 1y a,ﬁl//” Then one proves as in Lemma 3.6.6 of loc. cit. that
<C(/¢ ' )vSOJx (', s,2) > has poles on sets s = yxz/z with v such that 2Rey < a1 +a»
or vy = a1 = .
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Let us then consider the case where oy = ap := «. Then, if ¢ has compact support
and vanishes along ¢’ = 0, the previous result shows that (C(u/, ), ¥ J3(t', s, 2)) has
no pole along s = a % z/z. It follows that Res;—q../. <C(u',ﬁ)7<pJg(t'7s,z)> only
depends on the restriction of ¢ to t' = 0; in other words, it is the direct image of
a distribution on ¢’ = 0 by the inclusion i,,. We will identify this distribution with
Yy a+1C. We will put

= Tl
s-dt’ N dt
Lemma 5.14. — For any o € C withRea € N, and ', " lifting local sections [i'], 1]
of ¢t/7a+1,//77, wt/,a+1j/7’, we have, when the support of ¢ is contained in the open
set where p', u” are defined,
Ress:a*z/z <C(/J'/7 ,UH)’ @Ji(t/7 S, Z)> = m

<wt’,a+1c([ul]7 [N//Dv ’Lio<,0>

Proof. — Let x(t') be a C* function which has compact support and is = 1 near
t'=0. As ¢ — il p A X(t')5=dt’ A dt’ vanishes along t' = 0, the left-hand term in the
lemma, is equal to

(5.15) ReSy—ans /e (COL ), Tt 5, 2)itesp A X () s dt! A d).

On the other hand, as Rea € N, we have axz/z ¢ N for any 2z € S, and the function
1/T'(—s) does not vanish when s = «a x z/z for any such « and z. Therefore, by
definition of ¢y o41C, the right-hand term is equal to

1
5.16 ReSs—anr/z =
( ) eS<— * / F(—S)
Put j;(t, 8,2) = |t|2(s+1)Jg(t, s,z). Then, by (5.11)) expressed in the coordinate ¢,

we have

(G 1), [P i AX(E) gdt! A dE).

oy~ _
8ti< = 7‘]65(\/87',1707 t!

81; = —Jog/o7,0,15
and both functions ja;z/ar,l,o and ja;z/a?,o,l extend as C'*° functions, infinitely flat at
t’ = 0 and holomorphic with respect to s € C. Put

t/

1
K)?(tla S, Z) = - / [JQSZ/BT,l,O()‘tla S, Z) + J@Q/@?,O,l(At/7 S, Z)] .
0

Then Ky is of the same kind. Notice now that, for any s € C with Re(s+1) € ]0,1/4]
and any z € S, we have
I'(s+1)

T(=s)
[Let us sketch the proof of this statement. We assume for instance that ¥ = 1 when
|7| < 1. We can replace I(t, s, z) with

(5.17) lim (|20 It 5,2)) =

_ b
/ T 020 L dr N dT
Irl<1
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without changing the limit, and we are reduced to computing

27
/ / 721p51n0 25+1dp de.

Using the Bessel function Jo(r) = Te~irsinfqy this integral is written as

O

o} 1 o0
2/ PP (2p)dp = / (),
0 0

and it is known (cf. [8, §13.24, p.391]) that, on the strip Re(s + 1) € ]0,1/4][, the
latter integral is equal to 225T'(s +1)/T'(—s).]

On this strip, we can therefore write jg(t’, $,2) = IN(y(t’, s,2z)+1/T(—s), by Taylor’s
formula. For fixed ¢’ # 0 and z € S, both functions are holomorphic for Re(s+1) > 0,
hence they coincide when Re(s + 1) > 0 and we thus have on this domain

| /\2(54’1)

I(=s)

By the properties of Ky, this implies that the function

Jz(t',s,z) = + Kx(t', s, 2).

s (C(W, 1), K (t', s, 2)i% 0 A x(t) 5=dt’ Adt’)

is entire for any z € S. Hence, there exists an entire function of s such that the differ-
ence of the meromorphic functions considered in and , when restricted to
the half-plane Re(s+1) > p (with p large enough so that they are holomorphic on the
half-plane), coincides with this entire function. This difference is therefore identically
equal to this entire function of s, and and coincide. This proves the
lemma. O

Proof of Proposition — We will work near z, € S. By definition (cf. §7
given any local sections [m/], [m"] of ¥, o 7#",1r o 72" and local liftings m/,m” in
Var 2l Vo 70" with o' = £, (a) and a” = (_, (a), we have, for any C™ relative
form ¢ of maximal degree on X x S,

(5.18)  (r.aZC(IM'],[M"]), ©) = Resemanzyz (ZC(m',m7), o |71%° X(7) 5= dr A dT),

where ¥ = 1 near 7 = 0. In particular, for sections m’,m” of the form p/ @ &=t/
p' @ E7t/% with p/, 1 local sections of ., the definition of #C implies that the
right-hand term above can be written as

(5.19) ReSs—quz/2 <C(,u',ﬁ), ol (t, s, z)>
[Here, we mean that both functions
(C,17), 0I5(t,5,2))  and  (FC(W@ETT/Z, u" @ €-17/%), o|7|** R(7) 5= d7 AdT),

a priori defined for Res > 0, are extended as meromorphic functions of s on the
whole complex plane.] Moreover, by Z 4 -linearity, it is enough to prove Proposition
.8l for such sections.
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Proof of Proposition away from co. — This is the easy part of the proof. We only
have to consider & = —1 and, for ¢ compactly supported on (X \ oc0) X S, we are
reduced to proving that

Ress—_1 (C(1/, 1), @Iz (t, s, 2)) = (C(', 1), ),

for local sections p', i/ of /Z/V’, A" This is Lemma O

Proof of Proposition near oo for a # —1,0. — The question is local on D. We
can compute by using liftings of m/,m” in grl i%’,grg,,ﬂ ZH", accord-
ing to (415). By Z-linearity, we only consider sections m’ = 714/ ® e-tr/z
m"” =t @ &717/% where 4/ is a local section of Vil and ' of Vi M. Ac-
cording to , we have

(Vra7C(M], [M"]), @) = ReSg_ausys (CE T 10"), 0I5 (t, 5, 2)),

and, from Lemma this is

Nl4+axz/z) L T
m@ﬁt’ ar1C([ W] [ =1 "), oo‘P>

Tl+axz/z) —

i mwﬂw([u’}, (1), it 0)-

By Lemma and its proof, we have T'(1+axz/z)/T(—axz/z) = pp, with
D, =—-D, (recall that D, was defined in Proposition {.1j{iva)), as we assume

Rea € [—1,0[. We then apply Lemma [5.6] O
Proof of Proposition near oo for a = 0. — By the same reduction as above, we

consider local sections m}, mlj of VoZ#',VoZ#" of the form mj =y} @ E717/% mll =
py @ E7/% where pf, ! are local sections of Vi.Z' Vi.#". We notice that
0, (—t'm{) = m{ by (3.3) and, using [3], (3.6.23)] with m”; = —t'm{ (and replacing
there t with 7), we get

<¢T,OﬂC([m6]7[m76/])7 (P>

<¢T,0§C<[m/0]’ [0,m"]), L:0>

= =27 (Yr 1 7C([rmpl, [m”1]), )

=z ' Res,—_1 (7C(m, t'm] ) o7 |71 X(7) = dr A dT)
= 27" Res,—_1 (C(uy, 1), 0t I510),

1. I thank the referee for correcting a previous wrong proof and pointing out that, in the formula
of [3, Lemma 3.6.33] which was previously used here, the term |¢|>* has to be replaced with |2 — s,
making the right-hand term in this formula independent of x.
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by definition of #C. Now, by after (5.10), we have 2~ '¥'I5 10 = (s + 1)|t/|* 15 +
[t/ |213>?/3771’0, and the second term will not contribute to the residue, so
(¢r,07C([Im], [mg]), @) = Ress=—1 (C(ph, 1), (s + DI *Ig)
= Ress——1 (C(t'uy, '), pJz) by (613
= (Y oC (', ' 1Y), i) by Lemma [5.14] with o = —1
= Yy, —1C(N 11 1)a 0090>

if we put p_1 = t"?pu. O
Proof of Proposition near oo for « = —1. — Let us first explain how 1/)T 17C is
defined and how it mduces a sesquilinear pairing on P gry! v, 74", Pexd v, 70"

In order to compute ¥, _17C, we lift local sections [m'], [m”] of ¢y 17l s _17H"
in UyZ#’,UyZ#" and compute for « = —1. We know, by [3| Lemma 3.6.6],
that this is well defined.

To compute the induced form on P gry!, we use (4.6) and and, arguing as
above, we have to consider sections m/,m” of UcoZ#',U-oZ#" . We are then reduced
to proving that, for local sections p/, y’ of V<0/Z/\7, V<0(/Z/v”, we have

I(s+1)

Res;—_1 W@(u’,ﬁ),lt’l GV Q) = (C' 1), ).

By [3, Lemma 3.6.6], the meromorphic function s — (C(1/, p”'), |t’\2(8+1) ¢) has poles
along sets s + 1 = v« z/z with Rey < 0. For such a v and for z € S, we cannot have
v % z/z = 0. Therefore, s — (C(u/, /"), \t’|2(s+1) ¢) is holomorphic near s = —1 and

its value at s = —1 is <C(,u’, u’ ,<p>. The assertion follows. O

5.c. Proof of Theorem — We first reduce to weight 0, and assume that
w = 0. It is then possible to assume that (7 ,.) = (A, #,C,1d). We may also
assume that .# has strict support. Then, in particular, we have .Z = /Zl;lin, as
defined above.
According to Corollary (and to Proposition for ¢,0), we can apply the
arguments given in [3], § 6.3] to the direct image by g. O
Notice that we also get:

Corollary 5.20. — Let (F,.7) = (M, 4",C,.%) be an object of MT™ (X, w)®).
Then, we have isomorphisms in - Triples(X):

(\I/Tay JV) (\Ift/ 7,%/), Vo # —1 with Rea € [—1,0],
(pr0 T, Ne) =5 (Y, 1T, M. O
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5.d. A complement in dimension one. — Let first us indicate some shortcut
to obtain the S-decomposability of .# when Y is reduced to a point, so that X =
P!. First, without any assumption on Y, we have exact sequences, according to

Proposition [£.1]

can,

0 — ker N, — o 7 oo Ut _1 M — 0,

(5.21) - .
0 — Goo,+ 1,1 M —— Yy 12 — cokerN; — 0,
and
s , )
(5.22) 0 — too,+ kerNy — kerN; — A#Z — 0

0 — A — coker N; — i, 4 coker Ny — 0.

It follows that #'q, ker can, = ¢ q,.# and s#~'q, cokervar, = # " 1q,.#. By
the first part of the proof, we then have exact sequences

Yrsll ~ o M =y y M — A Gl — 0
0— A qptl — by M = 2/17,0////\& 1/)T,—1////\-

Therefore, if ¢ .# has cohomology in degree 0 only, A is a minimal extension along
7 = 0. Such a situation occurs if Y is reduced to a point, so that X = P!: indeed,
as (7,.7) is an object of MT®) (P',0)(P), we can assume that .7 is simple (cf. [3)
Prop. 4.2.5]); denote by M the restriction of A4 to z =1, i.e., M = # /(z—1).4; by
Theorem 5.0.1 of loc. cit., M is an irreducible regular holonomic Zp1-module;
— if M is not isomorphic to Op:, then g1 M has cohomology in degree 0 only
[use duality to reduce to the vanishing of 5#~!q, M, which is nothing but the
space of global sections of the local system attached to M away from its singular
points|; by Theorem 6.1.1 of loc. cit., each cohomology #7q, .# is strict and its
fibre at z = 1 is J#7q, M; therefore, #Iq, .# = 0 if j # 0;
— otherwise, M it isomorphic to Op: with its usual Zp: structure, and M is
O o (v/vllere 21 denotes P! x Qq, cf. §, so M is supported on 7 = 0 and
’(/)73—1% =0;

in conclusion, the S-decomposability of Va along 7 = 0 is true in both cases.

Corollary does not give information on ¥, 7. We will derive it now in
dimension one.

Proposition 5.23. — Let (7,%) = (M, #",C,7) be an object of MT(r)(Pl,w)(p).
Assume that T is simple and not isomorphic to (Op1, Opr,C,1d)(—w/2). Then, if
q : P* — pt denotes the constant map, the complex q..7 has cohomology in degree 0
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only and we have natural isomorphisms

e 1(7,.7) s i)y 60 0( T, F)(~1/2)  forall L1,

e, (T, 9) o) 6, 0( T, 9)(1)2) for all £ < —1,

~

Pery' vr1(7,.7) = #°44(T..5).
(The gluing C for the trivial twistor (Op:, Op1, C,1d) is given by f @ g +— f7.)

Proof. — We first reduce to weight 0 and take . = (A, #,C) with . = (Id,1d).
We a priori know by [3] that the morphisms can, and var, in the proposition are mor-
phisms in MT® (P', w)®), so we only need to show the isomorphism at the level of ..
Notice that, by Proposition , the exact sequences induce isomorphisms

(5.24) PaMoy. 7 =5 0 and M =5 Py, 7.

The first point (#'q,.7 = 0 for i # 0) is shown in the preliminary remark above
under the assumption on & made in the proposition. Notice also that we have shown,
as a consequence, that g, ker N, and #q, coker N, also vanish for i # 0. With
the exact sequences , this implies that

(5.25) A0y ker N, = ker 1/\\17 and ¢, coker N, = coker ﬁT,

where N, denotes (here, in order to avoid confusion) the nilpotent endomorphism on
HOq by 1T = b, 1.4 . We then have exact sequences

0 — ker N, — 1M 2Ty gl — 0,
0— 1/17,0/2;& Wy 1M — coker N, — 0.

As can, and var, are strictly compatible with the monodromy filtration after a shift
by 1 (¢f. [6, Lemme 5.1.12]), and as ker NT is contained in M0¢T,—1//Z we get the
first isomorphism for ¢ > 1. Similarly, use that M,lwﬂ,l/f/{\ is contained in Im NT =
Im var; to get the second isomorphism for ¢ < —1.

To get the third isomorphism, we only have to show that #Y¢, commutes with
taking P gry! because of . We deduce first from the pievious results that we
also have ##%q, ImN, = 0 for i # 0 and s#%g, ImN, = ImN,. Then, the injective
morphism

0 — ImN, — ImN, +ker N,

remains injective after applying /¢, and, as the .7#*q,. vanish for i # 0, we conclude
that the cokernel satisfies

H'iq, Pgr)! 77117,71%// =0 for i # 0 and #q, P gry’ 1/17,,1%// = Pgr wT’,l////\. O
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