# MONODROMY AT INFINITY AND FOURIER TRANSFORM II 

by<br>Claude Sabbah

\begin{abstract}
For a regular twistor $\mathscr{D}$-module and for a given function $f$, we compare the nearby cycles at $f=\infty$ and the nearby or vanishing cycles at $\tau=0$ for its partial Fourier-Laplace transform relative to the kernel $e^{-\tau f}$.

## Contents

| Introduction. | 1 |
| :---: | :---: |
| 2. A quick review of polarizable twistor $\mathscr{D}$-modules. | 2 |
| 3. Partial Laplace transform of $\mathscr{R}_{\mathscr{X}}$-modules. | 4 |
| 4. Partial Laplace transform and specialization. | 5 |
| 5. Partial Fourier-Laplace transform of regular twis | 15 |
| References. | 27 |

## 1. Introduction

The regular polarizable twistor $\mathscr{D}$-modules on a complex manifold form a category generalizing that of polarized Hodge $\mathscr{D}$-modules, introduced by M. Saito in [6. This category, together with some of its properties, has been considered in [3]. A potential application is to produce a category playing the role, in complex algebraic geometry, of pure perverse $\ell$-adic sheaves with wild ramification, that is, a category enabling meromorphic connections with irregular singularities together with a notion of weight, compatible with various functors as direct images by projective morphisms or nearby/vanishing cycles.

A way to obtain irregular singularity from a regular $\mathscr{D}$-module is to apply the functor that we call partial Laplace transform.

2000 Mathematics Subject Classification. - Primary 32S40; Secondary 14C30, 34Mxx.
Key words and phrases. - Twistor $\mathscr{D}$-module, Fourier-Laplace transform, specialization.

In [3, Appendix], we have sketched some results concerning the behaviour of regular twistor $\mathscr{D}$-modules with respect to a partial Fourier-Laplace transform. We then have extensively used such results in [2] and 5]. In this article, we give details for the proof of the results which are not proved in [3, Appendix]. The proofs yet appeared in a preprint form in [4, Chap. 8]. As indicated in [3, Appendix], the goal is to analyze the behaviour of polarized regular twistor $\mathscr{D}$-modules under a partial (one-dimensional) Fourier-Laplace transform. We generalize to such objects the main result of [1], comparing, for a given function $f$, the nearby cycles at $f=\infty$ and the nearby or vanishing cycles for the partial Fourier-Laplace transform in the $f$-direction (Theorem 5.1).

A remark concerning the terminology. - We use the term (partial) Laplace transform when we consider the transform for $\mathscr{D}$-modules (or $\mathscr{R}$-modules). The effect of such a transform on a sesquilinear pairing is an ordinary Fourier transform. On a twistor object, consisting of a pair of $\mathscr{R}$-modules and a sesquilinear pairing between them with values in distributions, the corresponding transform is called Fourier-Laplace.

## 2. A quick review of polarizable twistor $\mathscr{D}$-modules

Let us quickly review some basic definitions and results concerning polarizable twistor $\mathscr{D}$-modules. We refer to [3] for details.
2.a. Some notation. - We denote by $\Omega_{0}$ the complex line with coordinate $z$, and by $\mathbf{S}$ the unit circle $|z|=1$. In fact, one could also take for $\Omega_{0}$ any open neighbourhood of the closed unit disc $\mathbf{D}=\left\{z \in \Omega_{0}| | z \mid \leqslant 1\right\}$. For any $z_{o} \in \Omega_{0}$, we put

$$
\begin{aligned}
& -\zeta_{o}=\operatorname{Im} z_{o} \\
& -\ell_{z_{o}}: \mathbb{C} \rightarrow \mathbb{R} \text { the function }\left(\alpha^{\prime}+i \alpha^{\prime \prime}\right) \mapsto \alpha^{\prime}-\left(\operatorname{Im} z_{o}\right) \alpha^{\prime \prime} \\
& -\alpha \star z_{o}=\alpha^{\prime} z_{o}+i \alpha^{\prime \prime}\left(z_{o}^{2}+1\right) / 2
\end{aligned}
$$

(See [3, Chap. 0] for more notation and definitions.)
2.b. The category $\mathscr{R}$ - $\operatorname{Triples}(X)$. - Given a $n$-dimensional complex manifold $X$, we denote by $\mathscr{X}$ the manifold $X \times \Omega_{0}$, by $\mathscr{O}_{\mathscr{X}}$ its structure sheaf, and by $\mathscr{R}_{\mathscr{X}}$ the sheaf of differential operators defined in local coordinates $x_{1}, \ldots, x_{n}$ as $\mathscr{O} \mathscr{X}\left\langle\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right\rangle$, where we put $\partial_{x_{i}}=z \partial_{x_{i}}$.

A module over $\mathscr{O}_{\mathscr{X}}$ or $\mathscr{R}_{\mathscr{X}}$ is said to be strict if it has no $\mathscr{O}_{\Omega_{0}}$-torsion.
The objects of the category $\mathscr{R}$ - $\operatorname{Triples}(X)$ are the triples $\mathscr{T}=\left(\mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime}, C\right)$, where $\mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime}$ are left $\mathscr{R}_{\mathscr{X}}$-modules and $C: \mathscr{M}_{\mid \mathbf{S}}^{\prime} \otimes_{\mathscr{O}_{\mathbf{S}}} \overline{\mathscr{M}_{\mid \mathbf{S}}^{\prime \prime}} \rightarrow \mathfrak{D b}_{X \times \mathbf{S} / \mathbf{S}}$ is a sesquilinear pairing. Here, $\mathscr{O}_{\mathbf{S}}$ means $\mathscr{O}_{\Omega_{0} \mid \mathbf{S}}, \mathfrak{D b}_{X \times \mathbf{S} / \mathbf{S}}$ is the sheaf of distributions on $X \times \mathbf{S}$ which are continuous with respect to $z \in \mathbf{S}$, and the conjugation is taken in the twistor sense ( $c f .[3, \S 1.5 . \mathrm{a}]$ ): it is the usual conjugation functor in the $X$ direction, and is the involution $z \mapsto-z^{-1}$ in the $z$-direction.

The morphisms are pairs $\left(\varphi^{\prime}, \varphi^{\prime \prime}\right)$ of morphisms, contravariant on the "prime" side, and covariant on the "double-prime" side, which satisfy the compatibility relation $C_{1}\left(\varphi^{\prime} m_{2}^{\prime}, \overline{m_{1}^{\prime \prime}}\right)=C_{2}\left(m_{2}^{\prime}, \overline{\varphi^{\prime \prime} m_{1}^{\prime \prime}}\right)$.

For any $k \in \frac{1}{2} \mathbb{Z}$, the Tate twist $(k)$ is defined by $\mathscr{T}(k)=\left(\mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime},(i z)^{-2 k} C\right)$, and the adjoint $\mathscr{T}^{*}$ of $\mathscr{T}$ is $\left(\mathscr{M}^{\prime \prime}, \mathscr{M}^{\prime}, C^{*}\right)$, with $C^{*}\left(m^{\prime \prime}, \overline{m^{\prime}}\right)=\overline{C\left(m^{\prime}, \overline{m^{\prime \prime}}\right)}$

A sesquilinear duality $\mathscr{S}$ of weight $w \in \mathbb{Z}$ on $\mathscr{T}$ is a morphism $\mathscr{S}: \mathscr{T} \rightarrow \mathscr{T}^{*}(-w)$.
There is a natural notion of direct image by a morphism $f$ between smooth complex manifolds, which is denoted by $f_{\dagger}$.
2.c. Specialization along a smooth hypersurface. - We consider the following situation: the manifold $X$ is an open set in the product $\mathbb{C} \times X^{\prime}$ of the complex line with some complex manifold $X^{\prime}$, we regard the coordinate $t$ on $\mathbb{C}$ as a function on $X$, and we put $X_{0}=t^{-1}(0)$. There is a corresponding derivation $\partial_{t}$, and $\mathscr{R}_{\mathscr{X}}$ is equipped with an increasing filtration $V \cdot \mathscr{R}_{\mathscr{X}}$, for which $\mathscr{\partial}_{t}^{k}$ has degree $k, t^{k}$ has degree $-k$ (for any $k \in \mathbb{N}$ ), and any local section of $\mathscr{R}_{\mathscr{X}_{0}}$ has degree 0 .

A coherent left $\mathscr{R}_{\mathscr{X}}$-module $\mathscr{M}$ is said to be strictly specializable along $\mathscr{X}_{0}$ if there exist, near any $\left(x_{o}, z_{o}\right) \in \mathscr{X}$, a finite set $A \subset \mathbb{C}$ and a good $V$-filtration indexed by $\ell_{z_{o}}(A+\mathbb{Z}) \subset \mathbb{R}$, denoted by $V_{\bullet}^{\left(z_{o}\right)} \mathscr{M}$, such that, for any $a \in \ell_{z_{o}}(A+\mathbb{Z})$,

- each graded piece $\operatorname{gr}_{a}^{V^{\left(z_{o}\right)}} \mathscr{M}$ is a strict $\mathscr{R}_{\mathscr{X}_{0} \text {-module; }}$
- on each $\operatorname{gr}_{a}^{V^{\left(z_{o}\right)}} \mathscr{M}$, the operator $\partial_{t} t$ has a minimal polynomial which takes the form

$$
\prod_{\substack{\alpha \in A+\mathbb{Z} \\ \ell_{z_{o}}(\alpha)=a}}[-(s+\alpha \star z)]^{\nu_{\alpha}}
$$

where the integers $\nu_{\alpha}$ only depend on $\alpha \bmod \mathbb{Z}$;

- if we denote by $\psi_{t, \alpha} \mathscr{M}$ the kernel of a sufficiently large power of $\mathrm{\partial}_{t} t+\alpha \star z$
acting on $\operatorname{gr}_{a}^{V^{\left(z_{o}\right)}} \mathscr{M}$, with $a=\ell_{z_{o}}(\alpha)$, then
- $t: \psi_{t, \alpha} \mathscr{M} \rightarrow \psi_{t, \alpha-1} \mathscr{M}$ is onto for $\ell_{z_{o}}(\alpha) \leqslant 0$,
- $\partial_{t}: \psi_{t, \alpha} \mathscr{M} \rightarrow \psi_{t, \alpha+1} \mathscr{M}$ is onto for $\ell_{z_{o}}(\alpha) \geqslant-1$, but $\alpha \neq-1$.

We say that the strictly specializable module $\mathscr{M}$ is regular along $\mathscr{X}_{0}$ if each $V_{a}^{\left(z_{o}\right)} \mathscr{M}$ is $\mathscr{R}_{\mathscr{X} / \mathbb{C} \text {-coherent }}(c f$. [3, §3.1.d]).

Given an object $\mathscr{T}$ of $\mathscr{R}$ - $\operatorname{Triples}(X)$ for which $\mathscr{M}^{\prime}$ and $\mathscr{M}^{\prime \prime}$ are strictly specializable along $\mathscr{X}_{0}$, and any $\alpha \in \mathbb{C}$, the specialization $\psi_{t, \alpha} C$ is defined by

$$
\begin{align*}
& \psi_{t, \alpha} \mathscr{M}_{\mid \mathbf{S}}^{\prime} \otimes_{\mathscr{O}} \overline{\psi_{t, \alpha} \mathscr{M}_{\mid \mathbf{S}}^{\prime \prime}} \xrightarrow{\psi_{t, \alpha} C} \mathfrak{D b}_{X_{0} \times \mathbf{S} / \mathbf{S}}  \tag{2.1}\\
& \quad\left(\left[m^{\prime}\right], \overline{\left[m^{\prime \prime}\right]}\right) \longmapsto\left.\left.\operatorname{Res}_{s=\alpha \star z / z}\langle | t\right|^{2 s} C\left(m^{\prime}, \overline{m^{\prime \prime}}\right), \bullet \wedge \chi(t) \frac{i}{2 \pi} d t \wedge d \bar{t}\right\rangle,
\end{align*}
$$

where $m^{\prime}, m^{\prime \prime}$ are local liftings of $\left[m^{\prime}\right],\left[m^{\prime \prime}\right]$. In such a way, we get an object $\psi_{t, \alpha} \mathscr{T}$ of $\mathscr{R}$ - Triples $\left(X_{0}\right)$.

We also define the objects $\Psi_{t, \alpha} \mathscr{T}$ by starting from the localization of $\mathscr{T}$ along $\mathscr{X}_{0}$ (cf. [3, §3.4]).
2.d. Polarizable twistor $\mathscr{D}$-modules. - Let $w$ be an integer. The category $\mathrm{MT}^{(\mathrm{r})}(X, w)$ of regular twistor $\mathscr{D}$-modules is defined in [3, Def.4.1.2]. It is a full subcategory of $\mathscr{R}$ - Triples $(X)$. Each object of $\operatorname{MT}^{(\mathrm{r})}(X, w)$ is, in particular, strictly specializable along any local analytic hypersurface, as well as all its successive specializations.

The Tate twist by $(-w / 2)$ is an equivalence between $\mathrm{MT}^{(\mathrm{r})}(X, w)$ and $\mathrm{MT}^{(\mathrm{r})}(X, 0)$. If $X$ is reduced to a point, the category $\mathrm{MT}^{(\mathrm{r})}(\mathrm{pt}, 0)$ (the regularity condition is now empty) was defined by C. Simpson in [7] as the category of twistor structures, which is equivalent to the category of trivializable vector bundles on $\mathbb{P}^{1}$, or the category of $\mathbb{C}$-vector spaces.

A polarization of an object of $\operatorname{MT}^{(\mathrm{r})}(X, w)$ is a sesquilinear duality $\mathscr{S}$ of weight $w$ which induces, by any successive specializations ending to a point, and gradation by the successive monodromy filtrations, a polarization of the punctual twistor structures (cf. [3, §4.2]). The subcategory $\mathrm{MT}^{(\mathrm{r})}(X, w)^{(\mathrm{p})}$ consisting of polarizable regular twistor $\mathscr{D}$-modules is semisimple ( $c f$. Prop. 4.2.5 in loc. cit.).

## 3. Partial Laplace transform of $\mathscr{R}_{\mathscr{X}}$-modules

3.a. The setting. - We consider the product $\mathbb{A}^{1} \times \widehat{\mathbb{A}}^{1}$ of two affine lines with coordinates $(t, \tau)$, and the partial compactification $\mathbb{P}^{1} \times \widehat{\mathbb{A}}^{1}$, covered by two affine charts, with respective coordinates $(t, \tau)$ and $\left(t^{\prime}, \tau\right)$, where we put $t^{\prime}=1 / t$. We denote by $\infty$ the divisor $\{t=\infty\}$ in $\mathbb{P}^{1}$, defined by the equation $t^{\prime}=0$, as well as its inverse image in $\mathbb{P}^{1} \times \widehat{\mathbb{A}}^{1}$.

Let $Y$ be a complex manifold. We put $X=Y \times \mathbb{P}^{1}, \widehat{X}=Y \times \widehat{\mathbb{A}}^{1}$ and $Z=Y \times \mathbb{P}^{1} \times \widehat{\mathbb{A}}^{1}$. The manifolds $X$ and $Z$ are equipped with a divisor (still denoted by) $\infty$. We have projections


Let $\mathscr{M}$ be a left $\mathscr{R}_{\mathscr{X}}$-module. We denote by $\widetilde{\mathscr{M}}$ the localized module $\mathscr{R}_{\mathscr{X}}[* \infty] \otimes_{\mathscr{R}_{\mathscr{X}}} \mathscr{M}$. Then $p^{+} \widetilde{\mathscr{M}}$ is a left $\mathscr{R}_{\mathscr{Z}}[* \infty]$-module. We denote by $p^{+} \widetilde{\mathscr{M}} \otimes \mathcal{E}^{-t \tau / z}$ or, for short, by $\mathscr{F} \mathscr{M}$, the $\mathscr{O}_{\mathscr{Z}}[* \infty]$-module $p^{+} \widetilde{\mathscr{M}}$ equipped with the twisted action of $\mathscr{R}_{\mathscr{Z}}$ described by the exponential factor: the $\mathscr{R}_{\mathscr{Y}}$-action is unchanged, and, for any local section $m$ of $\mathscr{M}$,

- in the chart $(t, \tau)$,

$$
\begin{align*}
\partial_{t}\left(m \otimes \mathcal{E}^{-t \tau / z}\right) & =\left[\left(ळ_{t}-\tau\right) m\right] \otimes \mathcal{E}^{-t \tau / z} \\
ð_{\tau}\left(m \otimes \mathcal{E}^{-t \tau / z}\right) & =-t m \otimes \mathcal{E}^{-t \tau / z} \tag{3.2}
\end{align*}
$$

- in the chart $\left(t^{\prime}, \tau\right)$,

$$
\begin{align*}
& \partial_{t^{\prime}}\left(m \otimes \mathcal{E}^{-t \tau / z}\right)=\left[\left(\partial_{t^{\prime}}+\tau / t^{\prime 2}\right) m\right] \otimes \mathcal{E}^{-t \tau / z} \\
& \partial_{\tau}\left(m \otimes \mathcal{E}^{-t \tau / z}\right)=-m / t^{\prime} \otimes \mathcal{E}^{-t \tau / z} \tag{3.3}
\end{align*}
$$

Definition 3.4. - The partial Laplace transform $\widehat{\mathscr{M}}$ of $\mathscr{M}$ is the complex of $\mathscr{R}_{\widehat{\mathscr{X}}}{ }^{-}$ modules

$$
\widehat{p}_{+} \mathscr{\mathscr { H }} \mathscr{M}=\widehat{p}_{+}\left(p^{+} \widetilde{\mathscr{M}} \otimes \mathcal{E}^{-t \tau / z}\right)
$$

Recall (cf. [3, Prop. A.2.7]) that we have:
Proposition 3.5. - Let $\mathscr{M}$ be a coherent $\mathscr{R}_{\mathscr{X}}$-module. Then $\mathscr{\mathscr { M }}$ is $\mathscr{R}_{\mathscr{Z}}$-coherent. If moreover $\mathscr{M}$ is good, then so is $\mathscr{\mathscr { M }}$, and therefore $\widehat{\mathscr{M}}=\widehat{p}_{+} \mathscr{\mathscr { M }}$ is $\mathscr{R}_{\widehat{X}^{-}}$coherent.

Let us also recall the definition of the Fourier transform of a sesquilinear pairing. Assume that $\mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime}$ are good $\mathscr{R}_{\mathscr{X}}$-modules. Let $C: \mathscr{M}_{\mid \mathbf{S}}^{\prime} \otimes_{\mathscr{O}_{\mathbf{S}}} \overline{\mathscr{M}}_{\mid \mathbf{S}}^{\prime \prime} \rightarrow \mathfrak{D b}_{X \times \mathbf{S} / \mathbf{s}}$ be a sesquilinear pairing. We will define a sesquilinear pairing between the corresponding Laplace transforms:

$$
\widehat{C}: \widehat{\mathscr{M}_{\mid \mathbf{S}}^{\prime}} \otimes_{\mathscr{O}_{\mathbf{S}}} \overline{\mathscr{M}_{\mid \mathbf{S}}^{\prime \prime}} \longrightarrow \mathfrak{D}_{\hat{X} \times \mathbf{S} / \mathbf{S}}
$$

Given local sections $m^{\prime}, m^{\prime \prime}$ of $p^{+} \mathscr{M}_{\mid \mathbf{S}}^{\prime}, p^{+} \mathscr{M}_{\mid \mathbf{S}}^{\prime \prime}$, which can be written as $m^{\prime}=$ $\sum_{i} \phi_{i} \otimes m_{i}^{\prime}, m^{\prime \prime}=\sum_{j} \psi_{j} \otimes m_{j}^{\prime \prime}$ with $\phi_{i}, \psi_{j}$ holomorphic functions on $\mathscr{Z}$ and $m_{i}^{\prime}, m_{j}^{\prime \prime}$ local sections of $\mathscr{M}_{\mid \mathbf{S}}^{\prime}, \mathscr{M}_{\mid \mathbf{S}}^{\prime \prime}$, let $\varphi$ be a $C^{\infty}$ relative form of maximal degree on $Z \times \mathbf{S}$ with compact support. We define the sesquilinear pairing ${ }^{\mathscr{F}} C: \mathscr{F}_{\mid \mathbf{S}}^{\prime} \otimes_{\mathscr{S}_{\mathbf{S}}} \overline{\mathscr{F}} \mathbb{M}_{\mathbf{S}}^{\prime \prime} \rightarrow \mathfrak{D b}_{Z \times \mathbf{S} / \mathbf{S}}$ by the following formula:

$$
\left\langle{ }^{\mathscr{F}} C\left(m^{\prime}, \overline{m^{\prime \prime}}\right), \varphi\right\rangle:=\sum_{i, j}\left\langle\widetilde{C}\left(m_{i}^{\prime}, \overline{m_{j}^{\prime \prime}}\right), \int_{p} e^{z \overline{t \tau}-t \tau / z} \phi_{i} \overline{\psi_{j}} \varphi\right\rangle
$$

This is meaningful, as, for any $z \in \mathbf{S}$, the expression $z \overline{t \tau}-t \tau / z$ is purely imaginary, so the integral is a (partial) Fourier transform of a function having compact support with respect to $\tau$, hence defines a function having rapid decay as well as all its derivatives along $t=\infty$; we can apply to it $\widetilde{C}\left(m_{i}^{\prime}, \overline{m_{j}^{\prime \prime}}\right)$, which is a priori a distribution on $Y \times \mathbb{A}^{1} \times \mathbf{S}$, tempered in the $t$-direction and continuous with respect to $z$.

We can now define, using the direct image defined in [3, § 1.6.d],

$$
\widehat{C}=\widehat{p}_{\dagger}^{0 \mathscr{F}} C
$$

## 4. Partial Laplace transform and specialization

Denote by $i_{\infty}$ the inclusion $Y \times\{\infty\} \hookrightarrow X$. We will consider the functors $\psi_{\tau, \alpha}$ and $\psi_{t^{\prime}, \alpha}$, as well as the functors $\Psi_{\tau, \alpha}$ and $\Psi_{t^{\prime}, \alpha}$ of Definition 3.4.3 in [3] We denote by $\mathrm{N}_{\tau}, \mathrm{N}_{t^{\prime}}$ the natural nilpotent endomorphisms on the corresponding nearby cycles modules. We denote by M. (N) the monodromy filtration of the nilpotent endomorphism N and by $\operatorname{gr} \mathrm{N}: \operatorname{gr}_{\bullet}^{\mathrm{M}} \rightarrow \operatorname{gr}_{\bullet-2}^{\mathrm{M}}$ the morphism induced by N . For $\ell \geqslant 0, P \mathrm{gr}_{\ell}^{\mathrm{M}}$ denotes the primitive part $\operatorname{ker}(\operatorname{grN})_{\mid \operatorname{gr}_{\ell}^{\mathrm{M}}}^{\ell+1}$ of $\operatorname{gr}_{\ell}^{\mathrm{M}}$ and $P \mathrm{M}_{\ell}$ the inverse image of $P \operatorname{gr}_{\ell}^{\mathrm{M}}$ by the natural projection $\mathrm{M}_{\ell} \rightarrow \mathrm{gr}_{\ell}^{\mathrm{M}}$. Recall that, in an abelian category, the primitive part $P \operatorname{gr}_{0}^{\mathrm{M}}$ is equal to $\operatorname{ker} \mathrm{N} /(\operatorname{ker} \mathrm{N} \cap \operatorname{Im} \mathrm{N})$. We will also denote by $\widetilde{\mathscr{M}}_{\text {min }}$ the minimal extension of $\widetilde{\mathscr{M}}$ (cf. §3.4.b in loc. cit.).

Given a finite set of points with multiplicities in $\Omega_{0}$, we will consider the corresponding divisor $D$ and the corresponding sheaf $\mathscr{O}_{\Omega_{0}}(-D)$. Given a $\mathscr{R}$-module $\mathscr{N}$, we will put as usual $\mathscr{N}(-D)=\mathscr{O}_{\Omega_{0}}(-D) \otimes_{\mathscr{O}_{\Omega_{0}}} \mathscr{N}$.

Proposition 4.1 (cf. [3, Prop. A.3.1]). - Assume that $\mathscr{M}$ is strictly specializable and regular along $t^{\prime}=0$. Then,
(i) for any $\tau_{o} \neq 0$, the $\mathscr{R}_{\mathscr{X}}$-module $\widetilde{\mathscr{M}} \otimes \mathcal{E}^{-t \tau_{o} / z}$ is $\mathscr{R}_{\mathscr{X}}$-coherent; it is also strictly specializable (but not regular in general) along $t^{\prime}=0$, with a constant $V$-filtration, so that all $\psi_{t^{\prime}, \alpha}\left(\widetilde{\mathscr{M}} \otimes \mathcal{E}^{-t \tau_{o} / z}\right)$ are identically 0 .
Assume moreover that $\mathscr{M}$ is strict. Then,
(ii) the $\mathscr{R}_{\mathscr{Z}}$-module $\mathscr{\mathscr { M }}:=p^{+} \widetilde{\mathscr{M}} \otimes \mathcal{E}^{-t \tau / z}$ is strictly specializable and regular along $\tau=\tau_{o}$ for any $\tau_{o} \in \widehat{\mathbb{A}}^{1}$; it is equal to the minimal extension of its localization along $\tau=0$;
(iii) if $\tau_{o} \neq 0$, the $V$-filtration of $\mathscr{\mathscr { M }}$ along $\tau-\tau_{o}=0$ is given by

$$
V_{k} \mathscr{\mathscr { H }}= \begin{cases}\mathscr{F} \mathscr{M} & \text { if } k \geqslant-1 \\ \left(\tau-\tau_{o}\right)^{-k+1 \mathscr{F}} \mathscr{M} & \text { if } k \leqslant-1\end{cases}
$$

we have

$$
\psi_{\tau-\tau_{o}, \alpha} \mathscr{\mathscr { M }} \mathbb{M}= \begin{cases}0 & \text { if } \alpha \notin-\mathbb{N}-1 \\ \widetilde{\mathscr{M}} \otimes \mathcal{E}^{-t \tau_{o} / z} & \text { if } \alpha \in-\mathbb{N}-1\end{cases}
$$

(iv) If $\tau_{o}=0$, we have:
(a) for any $\alpha \neq-1$ with $\operatorname{Re} \alpha \in[-1,0[$, a functorial isomorphism on some neighbourhood of $\mathbf{D}:=\{|z| \leqslant 1\}$,

$$
\left(\Psi_{\tau, \alpha} \mathscr{\mathscr { M }}_{\mid \mathbf{D}}, \mathrm{N}_{\tau}\right) \xrightarrow{\sim} i_{\infty,+}\left(\psi_{t^{\prime}, \alpha} \widetilde{\mathscr{M}}\left(-D_{\alpha}\right)_{\mid \mathbf{D}}, \mathrm{N}_{t^{\prime}}\right)
$$

where $D_{\alpha}$ is the divisor $1 \cdot i$ if $\alpha^{\prime}=-1$ and $\alpha^{\prime \prime}>0$, the divisor $1 \cdot(-i)$ if $\alpha^{\prime}=-1$ and $\alpha^{\prime \prime}<0$, and the empty divisor otherwise;
(b) for $\alpha=0$, a functorial isomorphism

$$
\left(\psi_{\tau, 0} \mathscr{\mathscr { M }}, \mathrm{~N}_{\tau}\right) \xrightarrow{\sim} i_{\infty,+}\left(\psi_{t^{\prime},-1} \widetilde{\mathscr{M}}, \mathrm{~N}_{t^{\prime}}\right),
$$

(c) for $\alpha=-1$, two functorial exact sequences

$$
\begin{gathered}
0 \longrightarrow i_{\infty,+} \operatorname{ker} \mathrm{N}_{t^{\prime}} \longrightarrow \operatorname{ker} \mathrm{N}_{\tau} \longrightarrow \widetilde{\mathscr{M}}_{\min } \longrightarrow 0 \\
0 \longrightarrow \widetilde{\mathscr{M}}_{\min } \longrightarrow \operatorname{coker} \mathrm{N}_{\tau} \longrightarrow i_{\infty,+} \operatorname{coker} \mathrm{N}_{t^{\prime}} \longrightarrow 0
\end{gathered}
$$

inducing isomorphisms

$$
\begin{aligned}
i_{\infty,+} \operatorname{ker} \mathrm{N}_{t^{\prime}} & \xrightarrow{\sim} \operatorname{ker} \mathrm{N}_{\tau} \cap \operatorname{Im} \mathrm{N}_{\tau} \subset \operatorname{ker} \mathrm{N}_{\tau} \\
\widetilde{\mathscr{M}}_{\min } & \xrightarrow{\sim} \operatorname{ker} \mathrm{N}_{\tau} /\left(\operatorname{ker} \mathrm{N}_{\tau} \cap \operatorname{Im} \mathrm{N}_{\tau}\right) \subset \operatorname{coker} \mathrm{N}_{\tau},
\end{aligned}
$$

such that the natural morphism $\operatorname{ker} \mathrm{N}_{\tau} \rightarrow$ coker $\mathrm{N}_{\tau}$ induces the identity on $\widetilde{\mathscr{M}_{\min }}$.
Proof of 4.1 ii . - Let us first prove the $\mathscr{R}_{\mathscr{C}}$-coherence of $\widetilde{\mathscr{M}} \otimes \mathcal{E}^{-t \tau_{o} / z}$ when $\tau_{o} \neq 0$. As this $\mathscr{R}_{\mathscr{X}}$-module is $\mathscr{R}_{\mathscr{X}}[* \infty]$-coherent by construction, it is enough to prove that it is locally finitely generated over $\mathscr{R}_{\mathscr{X}}$, and the only problem is at $t^{\prime}=0$. We also work locally near $z_{o} \in \Omega_{0}$ and forget the exponent $\left(z_{o}\right)$ in the $V$-filtration along $t^{\prime}=0$. Then, $\widetilde{\mathscr{M}}=\mathscr{O}_{\mathscr{X}}\left[1 / t^{\prime}\right] \otimes_{\mathscr{O}_{\mathscr{C}}} V_{<0} \mathscr{M}$, equipped with its natural $\mathscr{R}_{\mathscr{X}}$-structure. By the regularity assumption, $V_{<0} \mathscr{M}$ is $\mathscr{R}_{\mathscr{X} / \mathbb{A}^{1}}$-coherent, so we can choose finitely many $\mathscr{R}_{\mathscr{X} / \mathbb{A}^{1}}$-generators $m_{i}$ of $V_{<0} \mathscr{M}$.

The regularity assumption implies that, for any $i$,

$$
t^{\prime} \mathrm{D}_{t^{\prime}} m_{i} \in \sum_{j} \mathscr{R}_{\mathscr{X} / \mathbb{A}^{1}} \cdot m_{j} .
$$

In $\widetilde{\mathscr{M}} \otimes \mathcal{E}^{-t \tau_{o} / z}$, using (3.3), this is written as

$$
\begin{equation*}
\left(t^{\prime} \partial_{t^{\prime}}-\tau_{0} / t^{\prime}\right)\left(m_{i} \otimes \mathcal{E}^{-t \tau_{o} / z}\right) \in \sum_{j} \mathscr{R}_{\mathscr{X} / \mathbb{A}^{1}} \cdot\left(m_{j} \otimes \mathcal{E}^{-t \tau_{o} / z}\right) \tag{4.2}
\end{equation*}
$$

and therefore

$$
\left(\tau_{o} / t^{\prime}\right)\left(m_{i} \otimes \mathcal{E}^{-t \tau_{o} / z}\right) \in \sum_{j} V_{0} \mathscr{R}_{\mathscr{X}} \cdot\left(m_{j} \otimes \mathcal{E}^{-t \tau_{o} / z}\right)
$$

It follows that $\widetilde{\mathscr{M}} \otimes \mathcal{E}^{-t \tau_{o} / z}$ is $V_{0} \mathscr{R}_{\mathscr{X}}$-coherent, generated by the $m_{i} \otimes \mathcal{E}^{-t \tau_{o} / z}$. It is then obviously $\mathscr{R}_{\mathscr{X}}$-coherent. The previous relation also implies that $\tau_{o}\left(m_{i} \otimes \mathcal{E}^{-t \tau_{o} / z}\right) \in$ $t^{\prime} \widetilde{\mathscr{M}} \otimes \mathcal{E}^{-t \tau_{o} / z}$. Therefore, the constant $V$-filtration, defined by $V_{a}\left(\widetilde{\mathscr{M}} \otimes \mathcal{E}^{-t \tau_{o} / z}\right)=$ $\widetilde{\mathscr{M}} \otimes \mathcal{E}^{-t \tau_{o} / z}$ for any $a$, is good and has a Bernstein polynomial equal to 1 .

Proof of 4.1 iii) for $\tau_{o} \neq 0$ and 4.1 iiii). - The analogue of Formula 4.2 now reads

$$
\left(t^{\prime} \partial_{t^{\prime}}+\tau ð_{\tau}\right)\left(m_{i} \otimes \mathcal{E}^{-t \tau / z}\right) \in \sum_{j} \mathscr{R}_{\mathscr{X} / \mathbb{A}^{1}} \cdot\left(m_{j} \otimes \mathcal{E}^{-t \tau / z}\right)
$$

Therefore, the $\mathscr{R}_{\mathscr{Z} / \widehat{\mathbb{A}^{1}}}$-module generated by the $m_{j} \otimes \mathcal{E}^{-t \tau / z}$ is $V_{0} \mathscr{R}_{\mathscr{Z}}$-coherent, where $V$ denotes the filtration relative to $\tau-\tau_{o}$. It is even $\mathscr{R}_{\mathscr{Z}}$-coherent if $\tau_{o} \neq 0$, as $\tau$ is a unit near $\tau_{o}$, and this easily gives 4.1,iiii), therefore also 4.1(iii) when $\tau_{o} \neq 0$.

Proof of 4.1 iii) for $\tau_{o}=0$. - Let us now consider the case where $\tau_{o}=0$. Then the previous argument gives the regularity of $\mathscr{T} \mathscr{M}$ along $\tau=0$. We will now show the strict specializability along $\tau=0$. We will work near $z_{o} \in \Omega_{0}$ and forget the exponent $\left(z_{o}\right)$ in the $V$-filtrations relative to $\tau=0$ and to $t^{\prime}=0$.

Away from $t^{\prime}=0$ the result is easy: near $t=t_{o}$, Formula $\sqrt{3.2}$, together with the strictness of $\mathscr{M}$, implies that $\mathscr{\mathscr { M }}$ is strictly noncharacteristic along $\tau=0$, hence $\mathscr{F} \mathscr{M}=V_{-1} \mathscr{\mathscr { F }} \mathscr{M}$ and $\psi_{\tau,-1} \mathscr{\mathscr { M }}=\mathscr{M}(c f .[3, ~ § 3.7])$.

We will now focus on $t^{\prime}=0$. Denote by $V \bullet \mathscr{M}$ the $V$-filtration of $\mathscr{M}$ relative to $t^{\prime}$ and put, for any $a \in[-1,0[$,

$$
V_{a+k} \widetilde{\mathscr{M}}=t^{\prime-k} V_{a} \mathscr{M}\left(=V_{a+k} \mathscr{M} \text { if } k \leqslant 0\right) .
$$

Each $V_{a} \widetilde{\mathscr{M}}$ is a $V_{0} \mathscr{R}_{\mathscr{X}}$-coherent module and, by regularity, is also $\mathscr{R}_{\mathscr{X} / \mathbb{A}^{1} \text {-coherent. }}$. We will now construct the $V$-filtration of $\mathscr{\mathscr { M }}$ along $\tau=0$. For any $a \in \mathbb{R}$, put

$$
U_{a} \mathscr{\mathscr { F }}^{M}=\sum_{p \geqslant 0} \mathscr{\mathrm { d }}_{t^{\prime}}^{p}\left[\left(p^{*} V_{a} \widetilde{\mathscr{M}}\right) \otimes \mathcal{E}^{-t \tau / z}\right]
$$

i.e., $U_{a}$ is the $\mathscr{R}_{\mathscr{Z} / \widehat{\mathbb{A}^{1}}}$-module generated by $\left(p^{*} V_{a} \widetilde{\mathscr{M}}\right) \otimes \mathcal{E}^{-t \tau / z}$ in $\mathscr{\mathscr { M }}$. Notice that, when we restrict to $t^{\prime} \neq 0$, we have for any $a \in \mathbb{R}$,

$$
U_{a \mid t^{\prime} \neq 0}=\mathscr{F}_{\mid t^{\prime} \neq 0}
$$

(iii) (1) Clearly, $U_{\bullet}$ is an increasing filtration of $\mathscr{\mathscr { M }}$ and each $U_{a}$ is $\mathscr{R}_{\mathscr{Z}} / \widehat{\mathbb{A}}^{1}$-coherent for every $a \in \mathbb{R}$.
(iii) (2) $U_{a}$ is stable by $\tau \check{\partial}_{\tau}$ : indeed, for any local section $m$ of $V_{a} \widetilde{\mathscr{M}}$, we have by 3.3):

$$
\begin{aligned}
\left(\tau \partial_{\tau}\right) \partial_{t^{\prime}}^{p}\left(m \otimes \mathcal{E}^{-t \tau / z}\right) & =\partial_{t^{\prime}}^{p}\left(\tau \partial_{\tau}\right)\left(m \otimes \mathcal{E}^{-t \tau / z}\right) \\
& =\partial_{t^{\prime}}^{p}\left[t^{\prime} \partial_{t^{\prime}}\left(m \otimes \mathcal{E}^{-t \tau / z}\right)-\left(t^{\prime} \partial_{t^{\prime}} m\right) \otimes \mathcal{E}^{-t \tau / z}\right] \\
& =\partial_{t^{\prime}}^{p+1}\left(t^{\prime} m \otimes \mathcal{E}^{-t \tau / z}\right)-\partial_{t^{\prime}}^{p}\left[\left(\partial_{t^{\prime}} t^{\prime} m\right) \otimes \mathcal{E}^{-t \tau / z}\right]
\end{aligned}
$$

The first term in the RHS is in $U_{a-1}$ and the second one is in $U_{a}$, as $V_{a} \widetilde{\mathscr{M}}$ is stable by $\partial_{t^{\prime}} t^{\prime}$.
(iii) (3) For any $a \in \mathbb{R}$, we have $U_{a+1}=U_{a}+\partial_{\tau} U_{a}$ : indeed, for $m$ as above, we have

$$
\partial_{\tau} \cdot \partial_{t^{\prime}}^{p}\left(m \otimes \mathcal{E}^{-t \tau / z}\right)=-\partial_{t^{\prime}}^{p}\left(\frac{1}{t^{\prime}} m \otimes \mathcal{E}^{-t \tau / z}\right) \in U_{a+1}
$$

hence $\partial_{\tau} U_{a} \subset U_{a+1}$; applying this equality the in the other way gives the desired equality. This also shows that $\delta_{\tau}: \operatorname{gr}_{a}^{U} \mathscr{\mathscr { M }} \mathscr{M} \rightarrow \operatorname{gr}_{a+1}^{U} \mathscr{\mathscr { M }} \mathscr{M}$ is an isomorphism for any $a \in \mathbb{R}$.
(iii) (4) For any $a \in \mathbb{R}$, we have $\tau U_{a} \subset U_{a-1}$ : indeed, one has, for $m$ as above

$$
\begin{aligned}
\tau\left(m \otimes \mathcal{E}^{-t \tau / z}\right) & =t^{\prime 2} \partial_{t^{\prime}}\left(m \otimes \mathcal{E}^{-t \tau / z}\right)-\left(t^{\prime 2} \partial_{t^{\prime}} m\right) \otimes \mathcal{E}^{-t \tau / z} \\
& =\partial_{t^{\prime}}\left(t^{\prime 2} m \otimes \mathcal{E}^{-t \tau / z}\right)-\left(\check{\partial}_{t^{\prime} t^{\prime 2}} m\right) \otimes \mathcal{E}^{-t \tau / z}
\end{aligned}
$$

the first term of the RHS clearly belongs to $U_{a-2}$ and the second one to $U_{a-1}$.
(iii)(5) Denote by $b_{a}(s)$ the minimal polynomial of $-\partial_{t^{\prime}} t^{\prime}$ on $\operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}}$. Then, for $m$ as above, we have

$$
-\left(\check{\partial}_{t^{\prime}} t^{\prime}+\tau \check{\partial}_{\tau}\right)\left(m \otimes \mathcal{E}^{-t \tau / z}\right)=-\left(\partial_{t^{\prime}} t^{\prime} m\right) \otimes \mathcal{E}^{-t \tau / z}
$$

after (3.3). Therefore, we have $b_{a}\left(-\left[\check{\partial}_{t^{\prime}} t^{\prime}+\tau \check{\partial}_{\tau}\right]\right)\left(m \otimes \mathcal{E}^{-t \tau / z}\right) \in U_{<a}$. Using that $\partial_{t^{\prime}} t^{\prime}\left(m \otimes \mathcal{E}^{-t \tau / z}\right)=\partial_{t^{\prime}}\left(t^{\prime} m \otimes \mathcal{E}^{-t \tau / z}\right) \in U_{a-1}$ by definition, we deduce that $b_{a}\left(-\tau\right.$ ठ$\left._{\tau}\right)\left(m \otimes \mathcal{E}^{-t \tau / z}\right) \in U_{<a}$. Therefore, $b_{a}\left(-\tau\right.$ ð $\left._{\tau}\right) U_{a} \subset U_{<a}$.
(iii) (6) We will now identify $U_{a} / U_{<a}$ with $\operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}}[\eta]:=\mathbb{C}[\eta] \otimes_{\mathbb{C}} \operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}}$, where $\eta$ is a new variable. Notice first that both objects are supported on $\left\{t^{\prime}=0\right\}$. Consider the map

$$
\begin{aligned}
& V_{a} \widetilde{\mathscr{M}}[\eta] \longrightarrow U_{a} \\
& \sum_{p} m_{p} \eta^{p} \longmapsto \sum_{p} \mathscr{\mathrm { d }}_{t^{\prime}}^{p}\left(m_{p} \otimes \mathcal{E}^{-t \tau / z}\right) .
\end{aligned}
$$

Its composition with the natural projection $U_{a} \rightarrow U_{a} / U_{<a}$ induces a surjective mapping $\operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}}[\eta] \rightarrow U_{a} / U_{<a}$. In order to show that it is injective, it is enough to show that, if $\sum_{p} \widetilde{\partial}_{t^{\prime}}^{p}\left(m_{p} \otimes \mathcal{E}^{-t \tau / z}\right)$ belongs to $U_{<a}$, then each $m_{p}$ belongs to $V_{<a} \widetilde{\mathscr{M}}$. For that purpose, it is enough to work with an algebraic version of $U_{a}$, where " $p^{*}$ " means " $\otimes_{\mathbb{C}} \mathbb{C}[\tau]$ ". Notice that, if a local section $\sum_{\ell=0}^{r} \tau^{\ell}\left(n_{\ell} \otimes \mathcal{E}^{-t \tau / z}\right)$ of $\widetilde{\mathscr{M}}[\tau] \otimes \mathcal{E}^{-t \tau / z}$ belongs to $U_{a}$, then the leading coefficient $n_{r}$ is a local section of $V_{a+2 r} \widetilde{\mathscr{M}}$ (by using that $\left.\partial_{t^{\prime}}\left(n \otimes \mathcal{E}^{-t \tau / z}\right)=\left(\check{\partial}_{t^{\prime}} n\right) \otimes \mathcal{E}^{-t \tau / z}-\tau\left(\left(n / t^{\prime 2}\right) \otimes \mathcal{E}^{-t \tau / z}\right)\right)$. Remark then that, using (3.3), $\sum_{p=0}^{q} \partial_{t^{\prime}}^{p}\left(m_{p} \otimes \mathcal{E}^{-t \tau / z}\right)$ is a polynomial of degree $q$ in $\tau$ with leading coefficient $\pm\left(\tau^{q} / t^{\prime 2 q}\right)\left(m_{q} \otimes \mathcal{E}^{-t \tau / z}\right)$. If the sum belongs to $U_{<a}$, this implies that $m_{q} / t^{\prime 2 q} \in V_{<a+2 q} \widetilde{\mathscr{M}}$, i.e., $m_{q} \in V_{<a} \widetilde{\mathscr{M}}$. Therefore, by induction on $q$, all coefficients $m_{p}$ are local sections of $V_{<a} \widetilde{\mathscr{M}}$, as was to be shown.

Let us describe the $\mathscr{R}_{\mathscr{X}}\left[\tau ð_{\tau}\right]$-module structure on $\operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}}[\eta]$ coming from the identification with $U_{a} / U_{<a}$. First, the $\mathscr{R}_{\mathscr{Y}}$-module structure is the natural one on $\operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}}$, naturally extended to $\operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}}[\eta]$. Then one checks that

$$
\begin{gather*}
\partial_{t^{\prime}} \sum_{p} m_{p} \eta^{p}=\eta \sum_{p} m_{p} \eta^{p}, \quad t^{\prime} \sum_{p} m_{p} \eta^{p}=-\searrow_{\eta} \sum_{p} m_{p} \eta^{p},  \tag{4.3}\\
\tau \mathrm{\partial}_{\tau} \sum_{p} m_{p} \eta^{p}=\sum_{p}\left(\check{\partial}_{t}^{\prime} t^{\prime}\right)\left(m_{p}\right) \eta^{p} . \tag{4.4}
\end{gather*}
$$

If we denote by $i_{\infty}$ the inclusion $Y \times\{\infty\} \hookrightarrow X$, the $\mathscr{R}_{\mathscr{X}}$-module $\operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}}[\eta]$ that these formulas define is nothing but $i_{\infty,+} \operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}}$, so we have obtained an isomorphism of $\mathscr{R}_{\mathscr{X}}$-modules:

$$
\begin{equation*}
\left(i_{\infty,+} \operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}}, \partial_{t^{\prime}} t^{\prime}\right) \xrightarrow{\sim}\left(\operatorname{gr}_{a}^{U} \mathscr{\mathscr { M }}, \tau \check{\partial}_{\tau}\right) \tag{4.5}
\end{equation*}
$$

(iii) (7) Consider the filtration $V_{\bullet} \mathscr{\mathscr { F }} \mathcal{M}$ defined for $a \in[-1,0[$ and $k \in \mathbb{Z}$ by

$$
V_{a+k} \mathscr{\mathscr { F }} \mathscr{M}= \begin{cases}U_{a+1+k} & \text { if } k \geqslant 0 \\ \tau^{-k} U_{a+1} & \text { if } k \leqslant 0\end{cases}
$$

This is a $V$-filtration relative to $\tau$ on $\mathscr{\mathscr { H }}$, by (iii)(1), (iii)(2), (iii) (3) and (iii) (4) it good, by the equality in (iil)(3) and because $\tau V_{a}^{\mathscr{F}} \mathscr{M}=V_{a-1} \mathscr{\mathscr { M }}$ for $a<0$ by definition. Notice that, for $a>-1$, we have $\operatorname{gr}_{a}^{V} \mathscr{\mathscr { M }}=\operatorname{gr}_{a+1}^{U} \mathscr{\mathscr { M }} \mathscr{M}$.

For $a>-1$, we can use 4.5 to get a minimal polynomial of the right form for $-\mathrm{\partial}_{\tau} \tau$ acting on $\operatorname{gr}_{a}^{V} \mathscr{\mathscr { M }} \mathbb{M}$ (here is the need for a shift by 1 between $U$ and $V$ ), and strictness follows from 4.5) and the strictness of $\operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}}$, which is by assumption.

It therefore remains to analyze $\operatorname{gr}_{a}^{V} \mathscr{\mathscr { M }}$ for $a \leqslant-1$.
(iii) (8) We will analyze $\operatorname{gr}_{-1}^{V} \mathscr{\mathscr { M }} \mathcal{M}=U_{0} / \tau U_{<1}$ through the following two diagrams of exact sequences, where the non labelled maps are the natural ones:

and


Notice that, in 4.7), $\tau \overbrace{\tau}$ is injective because it is the composition

$$
\begin{equation*}
U_{0} / U_{<0} \xrightarrow{\text { ठ}_{\tau}} U_{1} / U_{<1} \xrightarrow{\tau} U_{0} / \tau U_{<1} \tag{4.8}
\end{equation*}
$$

$\partial_{\tau}$ is an isomorphism ( $c f$. (iii)(3) and $\tau$ is injective, as it acts injectively on $\mathscr{\mathscr { M }} \mathbb{M}$. Recall that $\left(\operatorname{gr}_{0}^{U} \mathscr{\mathscr { K }} \mathscr{M}, \tau \check{\partial}_{\tau}\right)$ is identified, by (iii) (6) with $i_{\infty,+}\left(\operatorname{gr}_{0}^{V} \widetilde{\mathscr{M}}, \partial_{t^{\prime}} t^{\prime}\right)$. Notice also that
$\tau$ ð $_{\tau}$ vanishes on $U_{<0} / \tau U_{<1}$ (resp. on $U_{0} / \tau U_{1}$ ), as $\partial_{\tau} U_{<0} \subset U_{<1}\left(\right.$ resp. $\left.\partial_{\tau} U_{0} \subset U_{1}\right)$. It remains therefore to prove the strictness of $U_{<0} / \tau U_{<1}$ to get the desired properties for $\operatorname{gr}_{-1}^{V} \mathscr{\mathscr { M }} \mathcal{M}$. We denote by $\mathrm{N}_{t^{\prime}}$ the action of $-t^{\prime} \Phi_{t^{\prime}}$ on $\mathrm{gr}_{-1}^{V} \widetilde{\mathscr{M}}$ (by strictness, ker $\mathrm{N}_{t^{\prime}}$ is equal to the kernel of $-t^{\prime} \partial_{t^{\prime}}$ acting on $\left.\psi_{t^{\prime},-1} \widetilde{\mathscr{M}} \subset \mathrm{gr}_{-1}^{V} \widetilde{\mathscr{M}}\right)$. The strictness of $\operatorname{gr}_{-1}^{V} \mathscr{\mathscr { M }} \mathscr{H}$ follows then from the strictness of $i_{\infty,+} \psi_{t^{\prime},-1} \widetilde{\mathscr{M}}$, that of $\widetilde{\mathscr{M}}_{\text {min }}$ (defined in [3, Def. 3.4.7]) and the first two lines of the lemma below, applied to the diagram (4.6.

Lemma 4.9. - We have functorial isomorphisms of $\mathscr{R}_{\mathscr{X}}$-modules:

$$
\begin{gathered}
U_{<0} /\left(U_{<0} \cap \tau U_{1}\right)=U_{<0} /\left(U_{<0} \cap \tau_{\mathscr{\mathscr { M }}}^{\mathscr{M}}\right) \xrightarrow{\sim} \widetilde{\mathscr{M}}_{\text {min }} \\
i_{\infty,+} \operatorname{ker~}_{t^{\prime}} \xrightarrow{\sim}\left(U_{<0} \cap \tau \tau_{\mathscr{F}} \mathscr{M}\right) / \tau U_{<1} \\
i_{\infty,+} \operatorname{coker} \mathrm{N}_{t^{\prime}} \xrightarrow{\sim} U_{0} /\left(\tau U_{1}+U_{<0}\right)
\end{gathered}
$$

Proof. - For $m_{0}, \ldots, m_{p} \in \widetilde{\mathscr{M}}$, we can write

$$
\begin{align*}
& m_{0} \otimes \mathcal{E}^{-t \tau / z}+\partial_{t^{\prime}}\left(m_{1} \otimes \mathcal{E}^{-t \tau / z}\right)+\cdots+\partial_{t^{\prime}}^{p}\left(m_{p} \otimes \mathcal{E}^{-t \tau / z}\right)  \tag{4.10}\\
& \quad=n_{0} \otimes \mathcal{E}^{-t \tau / z}-\tau\left[\left(n_{1} / t^{\prime 2}\right) \otimes \mathcal{E}^{-t \tau / z}+\cdots+\partial_{t^{\prime}}^{p-1}\left(\left(n_{p} / t^{\prime 2}\right) \otimes \mathcal{E}^{-t \tau / z}\right)\right]
\end{align*}
$$

with

$$
\begin{aligned}
n_{p} & =m_{p} & m_{p} & =n_{p} \\
n_{p-1} & =m_{p-1}+\text { Ə}_{t^{\prime}} m_{p} & m_{p-1} & =n_{p-1}-\partial_{t^{\prime}} n_{p}
\end{aligned}
$$

$$
\begin{array}{ll}
n_{1}=m_{1}+\partial_{t^{\prime}} m_{2}+\cdots+\partial_{t^{\prime}}^{p-1} m_{p} & m_{1}=n_{1}-\partial_{t^{\prime}} n_{2}  \tag{4.11}\\
n_{0}=m_{0}+\partial_{t^{\prime}} m_{1}+\cdots+\partial_{t^{\prime}}^{p} m_{p} & m_{0}=n_{0}-\partial_{t^{\prime}} n_{1}
\end{array}
$$

Sending an element to its constant term in its $\tau$ expansion gives an injective morphism $U_{<0} /\left(U_{<0} \cap \tau \mathscr{F} \mathscr{M}\right) \rightarrow \widetilde{\mathscr{M}}$. Formulas 4.10) and 4.11) show that the image of this morphism is the $\mathscr{R}_{\mathscr{X}}$-submodule of $\widetilde{\mathscr{M}}$ generated by $V_{<0} \widetilde{\mathscr{M}}$ : this is by definition the minimal extension of $\widetilde{\mathscr{M}}$ across $t^{\prime}=0$.

Let us show that

$$
\begin{equation*}
U_{<0} \cap \tau U_{1}=U_{<0} \cap \tau \mathscr{\mathscr { H }} \mathcal{M} . \tag{4.12}
\end{equation*}
$$

Consider a local section of $U_{<0} \cap \tau \mathscr{F} \mathcal{M}$, written as in 4.10; it satisfies thus $m_{0}, \ldots, m_{p} \in V_{<0} \widetilde{\mathscr{M}}$ and $n_{0}=0 ;$ then $\partial_{t^{\prime}} n_{1}=-m_{0} \in V_{<0} \widetilde{\mathscr{M}}$. This implies that $n_{1}$ is a local section of $V_{-1} \widetilde{\mathscr{M}}$ : indeed, the condition on $n_{1}$ is equivalent to $t^{\prime} \partial_{t^{\prime}} n_{1} \in V_{<-1} \widetilde{\mathscr{M}}$; use then that, by strictness of $\operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}}, t^{\prime} \partial_{t^{\prime}}$ acts injectively on $\operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}}$ if $a \neq-1$. Therefore, $\left(n_{1} / t^{2}\right) \otimes \mathcal{E}^{-t \tau / z} \in U_{1}$. We can now assume that $n_{1}=0$ and thus $\partial_{t^{\prime}} n_{2} \in V_{<0} \widetilde{\mathscr{M}} \ldots$ hence 4.12 , and the first line of the lemma. Notice moreover that the class of each $n_{j}$ in $\operatorname{gr}_{-1}^{V} \widetilde{\mathscr{M}}$ is in $\operatorname{ker} \mathrm{N}_{t^{\prime}}$.

Let $\eta$ be a new variable. We define a morphism

$$
\operatorname{ker} \mathrm{N}_{t^{\prime}}[\eta] \longrightarrow U_{<0} / \tau U_{<1}
$$

by the rule

$$
\begin{equation*}
\sum_{j \geqslant 1}\left[n_{j}\right] \eta^{j-1} \longmapsto-\tau\left[\left(n_{1} / t^{\prime 2}\right) \otimes \mathcal{E}^{-t \tau / z}+\cdots+\partial_{t^{\prime}}^{p-1}\left(\left(n_{p} / t^{\prime 2}\right) \otimes \mathcal{E}^{-t \tau / z}\right)\right] \tag{4.13}
\end{equation*}
$$

by taking some lifting $n_{j}$ of each $\left[n_{j}\right] \in \operatorname{ker} \mathrm{N}_{t^{\prime}} \subset \operatorname{gr}{ }_{-1}^{V} \widetilde{\mathscr{M}}$ in $V_{-1} \widetilde{\mathscr{M}}$.

- This morphism is well defined: using 4.10, write

$$
-\tau \partial_{t^{\prime}}^{j-1}\left(\left(n_{j} / t^{\prime 2}\right) \otimes \mathcal{E}^{-t \tau / z}\right)=\partial_{t^{\prime}}^{j}\left(n_{j} \otimes \mathcal{E}^{-t \tau / z}\right)-\partial_{t^{\prime}}^{j-1}\left(\left(\partial_{t^{\prime}} n_{j}\right) \otimes \mathcal{E}^{-t \tau / z}\right)
$$

that $\left[n_{j}\right]$ belongs to ker $\mathrm{N}_{t^{\prime}}$ is equivalent to $t^{\prime} \mathrm{\partial}_{t^{\prime}} n_{j} \in V_{\leq-1} \widetilde{\mathscr{M}}$; therefore, both $n_{j}$ and $\check{\partial}_{t^{\prime}} n_{j}$ belong to $V_{<0} \widetilde{\mathscr{M}}$; moreover, if $n_{j} \in V_{<-1} \widetilde{\mathscr{M}}$, so that $n_{j} / t^{\prime 2} \in V_{<1} \widetilde{\mathscr{M}}$, the image is in $\tau U_{<1}$.

- This morphism is injective: as we have seen in (iii)(6), the term between brackets in 4.13) belongs to $U_{<1}$ if and only if each $n_{j} / t^{\prime 2}$ belongs to $V_{<1} \widetilde{\mathscr{M}}$, i.e., each $n_{j}$ is in $V_{<-1} \widetilde{\mathscr{M}}$.
- The image of this morphism is equal to $\left(U_{<0} \cap \tau \mathscr{F} \mathscr{M}\right) / \tau U_{<1}$ : this was shown in the proof of 4.12.
As in (iii) (6), we can identify $\operatorname{ker} \mathrm{N}_{t^{\prime}}[\eta]$ with $i_{\infty,+} \operatorname{ker} \mathrm{N}_{t^{\prime}}$ and the morphism is seen to be $\mathscr{R}_{\mathscr{X}}$-linear.

Let us now consider the third line of the lemma. We identify $U_{0} /\left(\tau U_{1}+U_{<0}\right)$ with the cokernel of $\tau: \operatorname{gr}_{1}^{U} \rightarrow \operatorname{gr}_{0}^{U}$ or, equivalently, to that of $\tau \check{\partial}_{\tau}: \operatorname{gr}_{0}^{U} \rightarrow \operatorname{gr}_{0}^{U}$. By (iii)(6), it is identified with $i_{\infty,+}$ coker $\check{\partial}_{t^{\prime}} t^{\prime}$ acting on $i_{\infty,+} \operatorname{gr}_{0}^{V} \widetilde{\mathscr{M}}$. Use now the isomorphism $t^{\prime}: \operatorname{gr}_{0}^{V} \widetilde{\mathscr{M}} \rightarrow \operatorname{gr}_{-1}^{V} \widetilde{\mathscr{M}}$ to conclude.
(iii) (9) We will now prove that all the $\operatorname{gr}_{a}^{V} \mathscr{\mathscr { M }}$ for $a \leqslant-1$ are strict and have a Bernstein polynomial. In (iii)(8) we have proved this for $a=-1$.

Choose $a<-1$. It follows from the definition of $V_{\bullet} \mathscr{\mathscr { K }} \mathscr{M}$ that

$$
\begin{equation*}
\tau: \operatorname{gr}_{a+1}^{V} \mathscr{\mathscr { M }} \longrightarrow \operatorname{gr}_{a}^{V} \mathscr{\mathscr { H }} \mathbb{M} \tag{4.14}
\end{equation*}
$$

is onto. Therefore, by decreasing induction on $a$ and using (iii)(7), we have a Bernstein relation on each $\operatorname{gr}_{a}^{V} \mathscr{\mathscr { H }} \mathscr{M}$. It remains to prove the strictness of such a module. This is also done by decreasing induction on $a$, as it is now known to be true for any $a \in[-1,0[$. It is enough to show that 4.14] is also injective for any $a<-1$, and it is also enough to show that

$$
\mathrm{\partial}_{\tau} \tau: \operatorname{gr}_{a+1}^{V} \mathscr{\mathscr { M }} \mathscr{M} \operatorname{gr}_{a+1}^{V} \mathscr{F}_{\mathscr{M}} .
$$

is injective. If a section $m$ satisfies $\mathrm{\partial}_{\tau} \tau m=0$ then, according to the Bernstein relation that we previously proved, it also satisfies $\prod(\alpha \star z)^{\nu_{\alpha}} m=0$, where the product is taken on a set of $\alpha \in \mathbb{C}$ with $\ell_{z_{o}}(\alpha)=a+1<0$ and $\nu_{\alpha} \in \mathbb{N}$. Such a set does
not contain 0 and the function $z \mapsto \prod(\alpha \star z)^{\nu_{\alpha}}$ is not identically 0 . By induction, $\operatorname{gr}_{a+1}^{V} \mathscr{\mathscr { H }}$ is strict. Therefore, $m=0$, hence the injectivity.
(iii) (10) By construction, the filtration $V_{\bullet} \mathscr{F} \mathscr{M}$ satisfies moreover that

- $\tau: \operatorname{gr}_{a}^{V} \mathscr{\mathscr { H }} \rightarrow \operatorname{gr}_{a-1}^{V} \mathscr{\mathscr { M }}$ is onto for any $a<0$,
- $\mathrm{d}_{\tau}: \operatorname{gr}_{a}^{V} \mathscr{\mathscr { H }} \rightarrow \operatorname{gr}_{a+1}^{V} \mathscr{\mathscr { M }}$ is onto for any $a \geqslant-1$.

This implies that all the conditions for strict specializability (cf. [3, Def. 3.3.8]) are satisfied, and that moreover the morphism can $_{\tau}$ introduced in [3, Rem. 3.3.6(6)] is onto. Notice also that the morphism $\operatorname{var}_{\tau}$ is injective: indeed, this means that $\tau: \operatorname{gr}_{0}^{V} \mathscr{\mathscr { M }} \rightarrow \operatorname{gr}_{-1}^{V} \mathscr{\mathscr { M }} \mathscr{M}$ is injective, or equivalently that $\tau: U_{1} / U_{<1} \rightarrow U_{0} / \tau U_{<1}$ is injective, which has been seen after 4.8).

In other words, we have shown that $\mathscr{\mathscr { K }}$ is strictly specializable along $\tau=0$ and that it is equal to the minimal extension of its localization along $\tau=0$, as defined in [3, § 3.4.b].

Proof of 4.1 iv. - Now that $\mathscr{\mathscr { M }}$ is known to be strictly specializable along $\tau=0$, the $\mathscr{R}_{\mathscr{X}}$-modules $\psi_{\tau, \alpha} \mathscr{\mathscr { M }}$ (cf. Lemma 3.3.4 in loc. cit.) are defined. We can compare them with $i_{\infty,+} \psi_{t^{\prime}, \alpha} \widetilde{\mathscr{M}}$.
(iv) (1) For any $z_{o} \in \Omega_{0}$, we have a natural morphism, defined locally near $z_{o}$ (putting $a=\ell_{z_{o}}(\alpha)$ )

$$
\begin{equation*}
\psi_{\tau, \alpha} \mathscr{\mathscr { H }}_{\mathscr{M}}^{\longrightarrow} \operatorname{gr}_{a}^{V} \mathscr{\mathscr { H }} \mathscr{M} \longrightarrow \operatorname{gr}_{a+1}^{U} \mathscr{\mathscr { M }} \xrightarrow{\sim} i_{\infty,+} \operatorname{gr}_{a+1}^{V} \widetilde{\mathscr{M}} \xrightarrow[\sim]{i_{\infty,+} t^{\prime}} i_{\infty,+} \operatorname{gr}_{a}^{V} \widetilde{\mathscr{M}} \tag{4.15}
\end{equation*}
$$

which takes values in $i_{\infty,+} \psi_{t^{\prime}, \alpha} \widetilde{\mathscr{M}}$. One verifies that the various morphisms glue together in a well defined morphism $\psi_{\tau, \alpha} \mathscr{F} \mathscr{M} \rightarrow i_{\infty,+} \psi_{t^{\prime}, \alpha} \widetilde{\mathscr{M}}$.

Lemma 4.16. - Near any $z_{o} \in \mathbf{D}$, the natural morphism $\psi_{\tau, \alpha} \mathscr{\mathscr { H }} \mathbb{M} \rightarrow \operatorname{gr}_{a+1}^{U} \mathscr{\mathscr { M }}(a=$ $\left.\ell_{z_{o}}(\alpha)\right)$ is injective for any $\alpha \in \mathbb{C} \backslash\left(-\mathbb{N}^{*}\right)$ and, if $a \geqslant-1, \psi_{\tau, \alpha} \mathscr{\mathscr { H }} \rightarrow i_{\infty,+} \psi_{t^{\prime}, \alpha} \widetilde{\mathscr{M}}$ is an isomorphism near $z_{o}$.

Proof. - If $a>-1$, this has been proved in 4.5). Assume that $a=-1$ (and $\alpha \notin$ $\left.-\mathbb{N}^{*}\right)$. If we decompose the horizontal sequence (4.6) with respect to the eigenvalues of $-\tau ฎ_{\tau}$, we get that, for any $\alpha \neq-1$ with $\ell_{z_{o}}(\alpha)=-1$, the natural morphism

$$
\psi_{\tau, \alpha}{ }_{\alpha}^{\mathscr{M}} \longrightarrow U_{0} / U_{<0}
$$

is an isomorphism onto $\left(U_{0} / U_{<0}\right)_{\alpha+1}$ and, according to 4.5), we have an isomorphism

$$
\psi_{\tau, \alpha} \mathscr{\mathscr { M }} \xrightarrow{\sim} i_{\infty,+} \psi_{t^{\prime}, \alpha+1} \widetilde{\mathscr{M}} \xrightarrow[\sim]{\sim} i_{\infty,+} t^{\prime} i_{\infty,+} \psi_{t^{\prime}, \alpha} \widetilde{\mathscr{M}}
$$

Assume now that $a<-1$. Let $k \geqslant 0$ be such that $b=a+k \in[-1,0[$. We prove the result by induction on $k$, knowing that it is true for $k=0$. By induction, we have
a commutative diagram

showing that the lower horizontal arrow is injective if and only if $\partial_{\tau} \tau$ is injective on $\psi_{\tau, \alpha+1} \mathscr{\mathscr { H }} \mathscr{M}$, which follows from strictness if $(\alpha+1) \star z \not \equiv 0$, that is, if $\alpha \neq-1$.
iv) (2) Proof of 4.1 ivb. When $\alpha=0$, the proof follows from Lemma 4.16
$\operatorname{iv})$ (3) Assume now that $\alpha \neq-1$ satisfies $\operatorname{Re} \alpha \in[-1,0[$. We wish to show that (4.15) induces an isomorphism

$$
\begin{equation*}
\psi_{\tau, \alpha} \mathscr{\mathscr { M }}_{\mid \mathbf{D}} \xrightarrow{\sim} i_{\infty,+} \psi_{t^{\prime}, \alpha} \widetilde{\mathscr{M}}\left(-D_{\alpha}\right)_{\mid \mathbf{D}} \tag{4.17}
\end{equation*}
$$

This is a local question with respect to $z \in \mathbf{D}$.
Clearly, the image of $\psi_{\tau, \alpha} \mathscr{\mathscr { H }} \mathbb{M} \rightarrow \operatorname{gr}_{a+1}^{U} \mathscr{\mathscr { H }} \mathbb{M}$ is contained in $\operatorname{ker}\left[\left(\coprod_{\tau} \tau+\alpha \star z\right)^{N}\right.$ : $\operatorname{gr}_{a+1}^{U} \mathscr{\mathscr { M }} \rightarrow \operatorname{gr}_{a+1}^{U} \mathscr{\mathscr { K }} \mathbb{M}$, for $N \gg 0$ and is equal to this submodule if $a \geqslant-1$.

If $a<-1$ and if $k \geqslant 1$ is such that $a+k \in[-1,0[$, the image is identified with

$$
\operatorname{Im}\left(\tau^{k} \check{\partial}_{\tau}^{k}\right): \operatorname{ker}\left(\check{\partial}_{\tau} \tau+\alpha \star z\right)^{N} \longrightarrow \operatorname{ker}\left(\check{\partial}_{\tau} \tau+\alpha \star z\right)^{N}
$$

and it is identified with the image of the multiplication by $\prod_{j=1}^{k}(\alpha+j) \star z$ on this module. For $j=1, \ldots, k$, the number $\beta=\alpha+j$ satisfies $\operatorname{Re} \beta \geqslant 0, \beta \neq 0$ and $\ell_{z_{o}}(\beta)<0$. Then $\beta \star z=0$ has a solution $z$ in $\mathbf{D}$ iff $\operatorname{Re} \beta=0$, and this solution is $z= \pm i$. This occurs iff $\operatorname{Re} \alpha=-1$ and $j=1$. In conclusion, the image of $\psi_{\tau, \alpha} \mathscr{F}_{\mathscr{M}_{\mid \mathbf{D}}}$ in $i_{\infty,+} \psi_{\tau, \alpha} \widetilde{\mathscr{M}}_{\mathbf{D}}$, is equal to the image of the multiplication by $(\alpha+1) \star z$ on $i_{\infty,+} \psi_{\tau, \alpha} \widetilde{M}_{\mid \mathbf{D}}$. As we assume that $\ell_{z_{o}}(\alpha)<-1$, the divisor of $z \mapsto(\alpha+1) \star z$ coincides, near $z_{o}$, with the divisor $D_{\alpha}$, hence 4.17).
(iv) (4) We now show that there is no difference between $\psi_{\tau, \alpha} \mathscr{\mathscr { M }} \mathbb{M}$ and $\Psi_{\tau, \alpha} \mathscr{\mathscr { H }} \mathscr{M}$ on some neighbourhood of $\mathbf{D}$.

Lemma 4.18. - Assume that $\alpha \neq-1$ and $\alpha^{\prime}:=\operatorname{Re} \alpha \in[-1,0[$. Then the natural inclusion $\psi_{\tau, \alpha} \mathscr{F}_{\mathbf{D}} \hookrightarrow \Psi_{\tau, \alpha} \mathscr{F}_{\mathbf{D}}$ is an isomorphism.

Note that the existence of an inclusion is proved in [3, Lemma 3.4.2(1)].
Proof. - The question is local near points $z \in \mathbf{D}$ such that $\ell_{z}(\alpha) \geqslant 0$, otherwise the result follows from Lemma 3.4.1 in loc. cit. Fix $z_{o}$ such that $\ell_{z_{o}}(\alpha) \geqslant 0$ and let $k \geqslant 1$ be such that $\ell_{z_{o}}(\alpha-k) \in[-1,0[$. We have a commutative diagram

and, as $a:=\ell_{z_{o}}(\alpha)$ and $a-k$ are $\geqslant-1$ and $\alpha \neq-1, \psi_{\tau, \alpha} \mathscr{\mathscr { M }} \mathcal{M}$ (resp. $\psi_{\tau, \alpha-k} \mathscr{F} \mathcal{M}$ ) is contained in $\operatorname{gr}_{a+1}^{U} \mathscr{\mathscr { H }} \mathbb{M}$ (resp. in $\operatorname{gr}_{a+1-k}^{U} \mathscr{\mathscr { H }} \mathbb{M}$ ), using the local filtration $U$ near $z_{o}$. It follows (cf. (iii)(3) that $\partial_{\tau}^{k}: \psi_{\tau, \alpha-k} \mathscr{\mathscr { M }} \rightarrow \psi_{\tau, \alpha} \mathscr{\mathscr { H }}$ is an isomorphism. Therefore, the image of $\psi_{\tau, \alpha} \mathscr{\mathscr { M }}$ in $\Psi_{\tau, \alpha} \mathscr{\mathscr { M }} \mathbb{M}$ is identified with the image of $\partial_{\tau}^{k} \tau^{k}$ acting on $\Psi_{\tau, \alpha} \mathscr{\mathscr { M }}$. Using the nilpotent endomorphism $\mathrm{N}_{\tau}=-\left(\check{\partial}_{\tau} \tau+\alpha \star z\right)$, we write $\check{\partial}_{\tau}^{k} \tau^{k}$ as $(-1)^{k}\left(\mathrm{~N}_{\tau}+\alpha \star z\right) \cdots\left(\mathrm{N}_{\tau}+(\alpha-k+1) \star z\right)$. The proof of the lemma will be complete if we show that none of the $(\alpha-j) \star z_{o}(j=0, \ldots, k-1)$ vanishes (assuming that $\left.z_{o} \in \mathbf{D}\right)$.

Notice that $\beta:=\alpha-j$ satisfies $\beta^{\prime}<0$ and $\beta^{\prime}-\zeta_{o} \beta^{\prime \prime} \geqslant 0$. Assume that $\beta \star z_{o}=0$. By the previous conditions, we must have $\beta^{\prime \prime} \neq 0$ and $z_{o} \neq 0$, and the only possibility for $z_{o}$ is then $z_{o}=i \zeta_{o}$ and $\zeta_{o}=\frac{\beta^{\prime}-\sqrt{\beta^{\prime 2}+\beta^{\prime \prime 2}}}{\beta^{\prime \prime}}$. Now, the condition $\beta^{\prime}<0$ implies $\left|\zeta_{o}\right|>1$, so $z_{o} \notin \mathbf{D}$.
(iv) (5) Proof of 4.1 iva). It follows from 4.17) and Lemma 4.18 that we have a functorial isomorphism

$$
\begin{equation*}
\Psi_{\tau, \alpha} \mathscr{\mathscr { M }}_{\mid \mathbf{D}} \longrightarrow i_{\infty,+} \psi_{\tau, \alpha} \widetilde{\mathscr{M}}\left(-D_{\alpha}\right)_{\mid \mathbf{D}} \tag{4.19}
\end{equation*}
$$

when $\alpha \neq-1$ satisfies $\operatorname{Re} \alpha \in[-1,0[$. This ends the proof of 4.1 iv when $\alpha \neq-1$.
(iv) (6) Proof of 4.1 ivc). Let us now consider the case when $\alpha=-1$. The two exact sequences that we consider are the vertical exact sequences in 4.6) and 4.7), according to Lemma 4.9 .

For the second assertion, notice first that, as the image of $\operatorname{Im} N_{\tau} \cap \operatorname{ker} N_{\tau}$ in $\widetilde{\mathscr{M}}_{\text {min }}$ is supported on $\left\{t^{\prime}=0\right\}$, it is zero by the definition of the minimal extension, hence we have an inclusion $\operatorname{Im} \mathrm{N}_{\tau} \cap \operatorname{ker} \mathrm{N}_{\tau} \subset i_{\infty,+} \operatorname{ker} \mathrm{N}_{t^{\prime}}$. To prove $i_{\infty,+} \operatorname{ker} \mathrm{N}_{t^{\prime}} \subset \operatorname{Im} \mathrm{N}_{\tau}$, remark that the image of $(4.13)$ is in $\tau\left(U_{1} / U_{<1}\right)$, hence in $\tau \psi_{\tau, 0} \mathscr{F} \mathscr{M}$, that is, in $\operatorname{Im} \operatorname{var}_{\tau}$, hence in $\operatorname{Im} \mathrm{N}_{\tau}$.

The last assertion is nothing but the identification $U_{<0} \cap \tau \mathscr{F} \mathscr{M}=U_{<0} \cap \tau U_{1}$ of Lemma 4.9

## 5. Partial Fourier-Laplace transform of regular twistor $\mathscr{D}$-modules

The main result of this article is ( $c f$. [3, Th. A.4.1]):
Theorem 5.1. - Let $(\mathscr{T}, \mathscr{S})=\left(\mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime}, C, \mathscr{S}\right)$ be an object of $\mathrm{MT}^{(\mathrm{r})}(X, w)^{(\mathrm{p})}$. Then, along $\tau=0, \widehat{\mathscr{M}^{\prime}}$ and $\widehat{\mathscr{M}}^{\prime \prime}$ are strictly specializable, regular and $S$-decomposable. Moreover, $\Psi_{\tau, \alpha}(\widehat{\mathscr{T}}, \widehat{\mathscr{S}})$, with $\operatorname{Re} \alpha \in\left[-1,0\left[\right.\right.$, and $\phi_{\tau, 0}(\widehat{\mathscr{T}}, \widehat{\mathscr{S}})$ induce, by grading with respect to the monodromy filtration $\mathrm{M} \cdot\left(\mathrm{N}_{\tau}\right)$, an object of $\operatorname{MLT}^{(\mathrm{r})}(\widehat{X}, w ;-1)^{(\mathrm{p})}$.

Note that the definition of S-decomposability is given in [3, Def. 3.5.1], and that of the category $\mathrm{MLT}^{(\mathrm{r})}$ in §4.1.f of loc. cit. In particular, all conditions of Definition 4.1.2 in loc. cit. are satisfied along the hypersurface $\tau=0$.

This theorem is a generalization of [1, Th. 5.3], without the $\mathbb{Q}$-structure however. In fact, we give a precise comparison with nearby cycles of $(\mathscr{T}, \mathscr{S})$ at $t=\infty$ as in [1, Th. 4.3].

In order to prove Theorem 5.1, we need to extend the results of Proposition 4.1 to objects with sesquilinear pairings.
5.a. "Positive" functions of $z$. - Recall that we denote by $\mathbf{D}$ the disc $|z| \leqslant 1$ and by $\mathbf{S}$ its boundary. Let $\lambda(z)$ be a meromorphic function defined in some neighbourhood of $\mathbf{S}$. If the neighbourhood is sufficiently small, it has zeros and poles at most on $\mathbf{S}$. We say that $\lambda$ is "real" if it satisfies $\bar{\lambda}=\lambda$, where $\bar{\lambda}(z)$ is defined as $c(\lambda(-1 / c(z)))$ and $c$ is the usual complex conjugation. For instance, if $\alpha \in \mathbb{C}$, the function $z \mapsto \alpha \star z / z$ is "real". If $\lambda(z)$ is "real" and if $\psi$ is a meromorphic function on $\mathbb{C}$ which is real (in the usual sense, i.e., $\psi c=c \psi$ ), then $\psi \circ \lambda$ is "real". In particular, for any $\alpha \in \mathbb{C}^{*}$, the function $z \mapsto \Gamma(\alpha \star z / z)$ is "real".

Lemma 5.2. — Let $\lambda(z)$ be a"real" invertible holomorphic function in some neighbourhood of $\mathbf{S}$. Then there exists an invertible holomorphic function $\mu(z)$ in some neighbourhood of $\mathbf{D}$ such that $\lambda= \pm \mu \bar{\mu}$ in some neighbourhood of $\mathbf{S}$. Moreover, such a function $\mu$ is unique up to multiplication by a complex number having modulus equal to 1 .

Definition 5.3. - Let $\lambda$ be as in the lemma. We say that $\lambda$ is "positive" if $\lambda=\mu \bar{\mu}$, with $\mu$ invertible on $\mathbf{D}$, and "negative" if $\lambda=-\mu \bar{\mu}$.

## Remark 5.4 (Positive or negative "real" meromorphic functions)

Assume that $\lambda$ is a nonzero "real" meromorphic function in some neighbourhood of $\mathbf{S}$. Then $\lambda$ can be written as $\prod_{i}\left[\left(z-z_{i}\right) \overline{\left(z-z_{i}\right)}\right]^{m_{i}} \cdot h$ with $z_{i} \in \mathbf{S}, h$ holomorphic invertible near $\mathbf{S}$ and $\bar{h}=h$ : indeed, one shows that, if $z_{o} \in \mathbf{S}$, then $\overline{z-z_{o}}=$ $\left(z+z_{o}\right) \cdot\left(-1 / z_{o} z\right)$; therefore, if $z_{o} \in \mathbf{S}$ is a pole or a zero of $\lambda$ with order $m_{o} \in \mathbb{Z}$, then $-z_{o}$ has the same order, hence the product decomposition of $\lambda$.

It follows from Lemma 5.2 that $\lambda= \pm g \bar{g}$, with $g=\mu \prod_{i}\left(z-z_{i}\right)_{i}^{m}, z_{i} \in \mathbf{S}, m_{i} \in \mathbb{Z}$ and $\mu$ holomorphic invertible on $\mathbf{D}$. This decomposition is not unique, as one may change some $z_{i}$ with $-z_{i}$. The sign is also non uniquely determined, as we have, for any $z_{o} \in \mathbf{S}$,

$$
-1=\left(\frac{z-z_{o}}{z+z_{o}}\right) \cdot \overline{\left(\frac{z-z_{o}}{z+z_{o}}\right)}
$$

Nevertheless, the decomposition and the sign are uniquely defined (up to a multiplicative constant) if we fix a choice of a "square root" of the divisor of $\lambda$ so that no two points in the support of this divisor are opposed, and if we impose that the divisor of $g$ is contained in this "square root". The sign does not depend on the choice of such a "square root". We say that $\lambda$ is "positive" if the sign is + , and "negative" if the sign is - .

Proof of Lemma 5.2. - One can write $\lambda=\nu \cdot \bar{\mu}$ with $\mu$ holomorphic invertible near $\mathbf{D}$ and $\nu$ meromorphic in some neighbourhood of $\mathbf{D}$ and having poles or zeros at 0 at most. The function $c(z)=\nu / \mu=\bar{\nu} / \bar{\mu}$ defines a meromorphic function on $\mathbb{P}^{1}$ with divisor supported by $\{0, \infty\}$. Thus, $c(z)=c \cdot z^{k}$ with $c \in \mathbb{C}$ and $k \in \mathbb{Z}$, so $\lambda=c z^{k} \mu \bar{\mu}$. Moreover, the equality $\bar{\lambda}=\lambda$ implies that $c \in \mathbb{R}$ and $k=0$. Changing notation for $\mu$ gives $\lambda= \pm \mu \bar{\mu}$, with $\mu$ invertible on $\mathbf{D}$.

For uniqueness, assume that $\mu \bar{\mu}= \pm 1$ with $\mu$ holomorphic invertible in some neighbourhood of $\mathbf{D}$. Then $\pm 1 / \bar{\mu}$ is also holomorphic in some neighbourhood of $|z| \geqslant 1$, so $\mu$ extends as a holomorphic function on $\mathbb{P}^{1}$ and thus is constant. This implies that $\mu \bar{\mu}=1$.

Lemma 5.5. - Let $\alpha \in \mathbb{C}$ be such that $\operatorname{Re} \alpha \in[0,1[$ and $\alpha \neq 0$. Then the meromorphic function

$$
\lambda(z)=\frac{\Gamma(\alpha \star z / z)}{\Gamma(1-\alpha \star z / z)}
$$

is "real" and"positive" (it is holomorphic invertible near $\mathbf{S}$ if $\operatorname{Re} \alpha \neq 0$ ).
Proof. - That this function is "real" has yet been remarked. The only possible pole/zero of $\lambda$ on $\mathbf{S}$ is $\pm i$, which occurs if there exists $k \in \mathbb{Z}$ such that $\operatorname{Re} \alpha+k=0$. It is a simple pole (resp. a simple zero) if $k \geqslant 0$ (resp. $k \leqslant-1$ ). As we assume $\operatorname{Re} \alpha \in[0,1[$, the only possibility is when $\operatorname{Re} \alpha=0$, with $k=0$ (hence a pole).

Write $\lambda(z)$ as $\Gamma(\alpha \star z / z)^{2} \cdot(1 / \pi) \sin \pi(\alpha \star z / z)$. It is then equivalent to showing that $(1 / \pi) \sin \pi(\alpha \star z / z)$ is "positive" for $\alpha$ as above.

Write $\alpha=\alpha^{\prime}+i \alpha^{\prime \prime}$. The result is clear if $\alpha^{\prime \prime}=0$, as we then have $\alpha \star z / z=\alpha^{\prime} \in$ $] 0,1\left[\right.$. We thus assume now that $\alpha^{\prime \prime} \neq 0$.

For any $\beta \in \mathbb{C}$ with $\beta^{\prime \prime} \neq 0$, we put $b=\frac{\beta^{\prime}+\sqrt{\beta^{\prime 2}+\beta^{\prime \prime 2}}}{\beta^{\prime \prime}}$ and we can write

$$
\frac{\beta \star z}{z}=\frac{\beta^{\prime \prime} b}{2}\left(1+\frac{i z}{b}\right) \overline{\left(1+\frac{i z}{b}\right)}
$$

If $\alpha$ is as above, we have $n-\alpha^{\prime}, n+\alpha^{\prime}>0$ for any $n \geqslant 1$ and we put for $n \geqslant 0$

$$
b_{n}=-\frac{n-\alpha^{\prime}+\sqrt{\left(n-\alpha^{\prime}\right)^{2}+\alpha^{\prime \prime 2}}}{\alpha^{\prime \prime}}, \quad c_{n}=\frac{n+\alpha^{\prime}+\sqrt{\left(n+\alpha^{\prime}\right)^{2}+\alpha^{\prime \prime 2}}}{\alpha^{\prime \prime}}
$$

For $n \geqslant 1$, we have $\left|b_{n}\right|,\left|c_{n}\right|>1$ and

$$
\begin{aligned}
& \frac{(n-\alpha) \star z}{z}=\frac{n-\alpha^{\prime}+\sqrt{\left(n-\alpha^{\prime}\right)^{2}+\alpha^{\prime \prime 2}}}{2}\left(1+\frac{i z}{b_{n}}\right) \overline{\left(1+\frac{i z}{b_{n}}\right)}, \\
& \frac{(n+\alpha) \star z}{z}=\frac{n+\alpha^{\prime}+\sqrt{\left(n+\alpha^{\prime}\right)^{2}+\alpha^{\prime \prime 2}}}{2}\left(1+\frac{i z}{c_{n}}\right) \overline{\left(1+\frac{i z}{c_{n}}\right)} .
\end{aligned}
$$

The number

$$
c(\alpha)=\prod_{n \geqslant 1} \frac{\left(n-\alpha^{\prime}+\sqrt{\left(n-\alpha^{\prime}\right)^{2}+\alpha^{\prime \prime 2}}\right)\left(n+\alpha^{\prime}+\sqrt{\left(n+\alpha^{\prime}\right)^{2}+\alpha^{\prime \prime 2}}\right)}{4 n^{2}}
$$

is (finite and) positive. On the other hand, as $\frac{1}{b_{n}}+\frac{1}{c_{n}}=-\frac{\alpha^{\prime} \alpha^{\prime \prime}}{n^{2}}+O\left(1 / n^{3}\right)$, the infinite product

$$
\prod_{n \geqslant 1}\left(1+\frac{i z}{b_{n}}\right)\left(1+\frac{i z}{c_{n}}\right)
$$

defines an invertible holomorphic function in some neighbourhood of $\mathbf{D}$. Put

$$
g(z)=\left(\frac{c(\alpha)\left(\alpha^{\prime}+\sqrt{\alpha^{\prime 2}+\alpha^{\prime \prime 2}}\right)}{2}\right)^{1 / 2} \cdot\left(1+\frac{i z}{c_{0}}\right) \prod_{n \geqslant 1}\left(1+\frac{i z}{b_{n}}\right)\left(1+\frac{i z}{c_{n}}\right)
$$

Then we have $(1 / \pi) \sin \pi(\alpha \star z / z)=g(z) \bar{g}(z)$.
If $\mu$ is a meromorphic function on some neighbourhood of $\mathbf{D}$, we denote by $D_{\mu}$ its divisor on $\mathbf{D}$. If $\mathscr{M}$ is a $\mathscr{R}_{\mathscr{X}}$-module, we put $\mathscr{M}\left(D_{\mu}\right)=\mathscr{O}_{\mathscr{X}}\left(D_{\mu}\right) \otimes_{\mathscr{O}}^{\mathscr{X}}$ $\mathscr{M}$ with its natural $\mathscr{R}_{\mathscr{X}}$-structure.

Lemma 5.6. - Let $(\mathscr{T}, \mathscr{S})=\left(\mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime}, C, \mathscr{S}\right)$ be an object of $\operatorname{MT}(X, w)^{(\mathrm{p})}$. Then, for each $\mu$ as above, $\left(\mathscr{M}^{\prime}\left(D_{\mu}\right), \mathscr{M}^{\prime \prime}\left(D_{\mu}\right), \mu \bar{\mu} C, \mathscr{S}\right)$ is an object of $\mathrm{MT}(X, w)^{(\mathrm{p})}$ isomorphic to $(\mathscr{T}, \mathscr{S})$.

Remark 5.7. — We only assume here that $\mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime}$ are defined in some neighbourhood of $\mathbf{D}$, and not necessarily on $\Omega_{0}$. This does not change the category $\operatorname{MT}(X, w)^{(\mathrm{p})}$.

Proof. - The isomorphism is given by $\cdot \mu: \mathscr{M}^{\prime}\left(D_{\mu}\right) \rightarrow \mathscr{M}^{\prime}$ and $\cdot(1 / \mu): \mathscr{M}^{\prime \prime} \rightarrow \mathscr{M}^{\prime \prime}\left(D_{\mu}\right)$.

## 5.b. Exponential twist and specialization of a sesquilinear pairing

We now come back to our original situation of $\S 3 . \mathrm{a}$. Let $\mathscr{T}=\left(\mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime}, C\right)$ be an object of $\mathscr{R}$ - Triples $(X)$. We have defined the object $\mathscr{F} \mathscr{T}=\left(\mathscr{\mathscr { F }} \mathcal{M}^{\prime}, \mathscr{\mathscr { F }} \mathcal{M}^{\prime \prime},{ }^{\mathscr{F}} C\right)$ of $\mathscr{R}$ - $\operatorname{Triples}(Z)$. If we assume that $\mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime}$ are strict and strictly specializable along $t^{\prime}=0$, then $\mathscr{\mathscr { M }} \mathscr{M}^{\prime}, \mathscr{\mathscr { M }} \mathbb{M}^{\prime \prime}$ are strictly specializable along $\tau=0$. Then, for $\operatorname{Re} \alpha \in[-1,0[$, $\Psi_{\tau, \alpha} \mathscr{F} \mathscr{T}$ is defined as in [3, §3.6]. Recall (cf. (3.6.2) in loc. cit.) that we denote by $\mathscr{N}_{\tau}: \Psi_{\tau, \alpha} \mathscr{F} \mathscr{T} \rightarrow \Psi_{\tau, \alpha} \mathscr{F} \mathscr{T}(-1)$ the morphism $\left(-i \mathrm{~N}_{\tau}, i \mathrm{~N}_{\tau}\right)$. If $\alpha=-1$ (more generally if $\alpha$ is real) we have $\Psi_{\tau, \alpha} \mathscr{F} \mathscr{T}=\psi_{\tau, \alpha} \mathscr{F} \mathscr{T}$. We also consider, as in $\S 3.6$.b of loc. cit., the vanishing cycle object $\phi_{\tau, 0} \mathscr{F}^{\mathscr{T}}$.

The purpose of this section is to extend Proposition 4.1 to objects of $\mathscr{R}$ - Triples. It will be convenient to assume, in the following, that $\mathscr{M}^{\prime}=\mathscr{M}_{\min }^{\prime}$ and $\mathscr{M}^{\prime \prime}=\mathscr{M}_{\min }^{\prime \prime}$; with such an assumption, we will not have to define a sesquilinear pairing on the minimal extensions used in Proposition 4.1 iv, as we can use the given $C$.

Proposition 5.8 (cf. [3, Prop. A.4.2]). - For $\mathscr{T}$ as above, we have isomorphisms in $\mathscr{R}$-Triples $(X)$ :

$$
\begin{aligned}
&\left(\Psi_{\tau, \alpha} \mathscr{F} \mathscr{T}, \mathscr{N}_{\tau}\right) \xrightarrow{\sim} i_{\infty,+}\left(\Psi_{t^{\prime}, \alpha} \mathscr{T}, \mathscr{N}_{t^{\prime}}\right), \quad \forall \alpha \neq-1 \text { with } \operatorname{Re} \alpha \in[-1,0[, \\
&\left(\phi_{\tau, 0} \mathscr{F} \mathscr{T}, \mathscr{N}_{\tau}\right) \xrightarrow{\sim} i_{\infty,+}\left(\psi_{t^{\prime},-1} \mathscr{T}, \mathscr{N}_{t^{\prime}}\right),
\end{aligned}
$$

and an exact sequence

$$
0 \longrightarrow i_{\infty,+} \operatorname{ker} \mathscr{N}_{t^{\prime}} \longrightarrow \operatorname{ker} \mathscr{N}_{\tau} \longrightarrow \mathscr{T} \longrightarrow 0
$$

inducing an isomorphism $P \operatorname{gr}_{0}^{\mathrm{M}} \psi_{\tau,-1} \mathscr{F} \mathscr{T} \xrightarrow{\sim} \mathscr{T}$.
Corollary 5.9 (cf. [3, Cor. A.4.3]). - Assume that $\mathscr{T}$ is an object of $\operatorname{MT}^{(\mathrm{r})}(X, w)$ (resp. $(\mathscr{T}, \mathscr{S})$ is an object of $\left.\mathrm{MT}^{(\mathrm{r})}(X, w)^{(\mathrm{p})}\right)$. Then, for any $\alpha \in \mathbb{C}$ with $\operatorname{Re} \alpha \in\left[-1,0\left[,\left(\Psi_{\tau, \alpha} \mathscr{F} \mathscr{T}, \mathscr{N}_{\tau}\right)\right.\right.$ induces by gradation an object of $\operatorname{MLT}^{(\mathrm{r})}(X, w ;-1)$ (resp. an object of $\operatorname{MLT}^{(\mathrm{r})}(X, w ;-1)^{(\mathrm{p})}$ ).

Proof of Corollary 5.9. - Suppose that Proposition 5.8 is proved. Assume first that $\mathscr{T}$ is an object of $\mathrm{MT}^{(\mathrm{r})}(X, w)$. Then, by definition, $i_{\infty,+}\left(\mathrm{gr}^{\mathrm{M}} \Psi_{t^{\prime}, \alpha} \mathscr{T}, \mathrm{gr}_{-2}^{\mathrm{M}} \mathscr{N}_{t^{\prime}}\right)$ is an object of $\operatorname{MLT}^{(\mathrm{r})}(X, w ;-1)$ for any $\alpha$ with $\operatorname{Re} \alpha \in[-1,0[$; therefore, so is $\left(\operatorname{gr}_{\bullet}^{\mathrm{M}} \Psi_{\tau, \alpha} \mathscr{F} \mathscr{T}, \mathrm{gr}_{-2}^{\mathrm{M}} \mathscr{N}_{\tau}\right)$ for any such $\alpha \neq-1$. When $\alpha=-1$, as $\mathscr{H}^{\prime}, \mathscr{F}^{\prime \prime} \mathcal{M}^{\prime \prime}$ are equal to their minimal extension along $\tau=0$ ( $c f$. Proposition 4.1) the morphism

$$
\mathscr{C a n}:\left(\psi_{\tau,-1} \mathscr{F}_{\mathscr{T}}, \mathrm{M}_{\bullet}\left(\mathscr{N}_{\tau}\right)\right) \longrightarrow\left(\phi_{\tau, 0}{ }^{\mathscr{F}} \mathscr{T}(-1 / 2), \mathrm{M}_{\bullet-1}\left(\mathscr{N}_{\tau}\right)\right),
$$

(cf. §3.6.b in loc. cit.) is onto. It is strictly compatible with the monodromy filtrations (cf. [6, Lemme 5.1.12]), and induces an isomorphism $P \operatorname{gr}_{\ell}^{\mathrm{M}} \psi_{\tau,-1} \mathscr{F} \mathscr{T} \xrightarrow{\sim}$ $P \operatorname{gr}_{\ell-1}^{\mathrm{M}} \phi_{\tau, 0} \mathscr{F} \mathscr{T}(-1 / 2)$ for any $\ell \geqslant 1$, hence an isomorphism

$$
P \operatorname{gr}_{\ell}^{\mathrm{M}} \psi_{\tau,-1} \mathscr{F} \mathscr{T} \xrightarrow{\sim} i_{\infty,+} P \operatorname{gr}_{\ell-1}^{\mathrm{M}} \psi_{t^{\prime},-1} \mathscr{T}(-1 / 2) .
$$

By assumption on $\mathscr{T}$, the right-hand term is an object of $\mathrm{MT}^{(\mathrm{r})}(X, w+\ell)$, hence so is the left-hand term. Moreover, $P \operatorname{gr}_{0}^{\mathrm{M}} \psi_{\tau,-1} \mathscr{F} \mathscr{T} \simeq \mathscr{T}$ is in $\mathrm{MT}^{(\mathrm{r})}(X, w)$. This gives the claim when $\alpha=-1$.

In the polarized case, we can reduce to the case where $w=0, \mathscr{M}^{\prime}=\mathscr{M}^{\prime \prime}, \mathscr{S}=$ (Id, Id) and $C^{*}=C$. Then these properties are satisfied by the objects above, and the polarizability on the $\tau$-side follows from the polarizability on the $t^{\prime}$-side.

The proof of the proposition will involve the computation of a Mellin transform with kernel given by a function $I_{\widehat{\chi}}(t, s, z)$. We first analyze this Mellin transform.
The function $I_{\widehat{\chi}}(t, s, z)$. - Let $\widehat{\chi} \in C_{c}^{\infty}\left(\widehat{\mathbb{A}}^{1}, \mathbb{R}\right)$ be such that $\widehat{\chi}(\tau) \equiv 1$ near $\tau=0$. For any $z \in \mathbf{S}, t \in \mathbb{A}^{1}$ and $s \in \mathbb{C}$ such that $\operatorname{Re}(s+1)>0$, put

$$
\begin{equation*}
I_{\widehat{\chi}}(t, s, z)=\int_{\widehat{\mathbb{A}}^{1}} e^{z \bar{\tau}-t \tau / z}|\tau|^{2 s} \widehat{\chi}(\tau) \frac{i}{2 \pi} d \tau \wedge d \bar{\tau} \tag{5.10}
\end{equation*}
$$

We also write $I_{\widehat{\chi}}\left(t^{\prime}, s, z\right)$ when working in the coordinate $t^{\prime}$ on $\mathbb{P}^{1}$. We will use the following coarse properties (they are similar to the properties described for the function $\widehat{I}_{\chi}$ of $\S 3.6 . \mathrm{b}$ of loc. cit.).
(i) Denote by $I_{\widehat{\chi}, k, \ell}(t, s, z)(k, \ell \in \mathbb{Z})$ the function obtained by integrating $|\tau|^{2 s} \tau^{k} \bar{\tau}^{\ell}$. Then, for any $s \in \mathbb{C}$ with $\operatorname{Re}(s+1+(k+\ell) / 2)>0$ and any $z \in \mathbf{S}$, the function $(t, s, z) \rightarrow I_{\widehat{\chi}, k, \ell}(t, s, z)$ is $C^{\infty}$, depends holomorphically on $s$, and satisfies $\lim _{t \rightarrow \infty} I_{\widehat{\chi}, k, \ell}(t, s, z)=0$ locally uniformly with respect to $s, z$.
(ii) We have

$$
\begin{array}{ll}
t I_{\widehat{\chi}, k, \ell}=z(s+k) I_{\widehat{\chi}, k-1, \ell}+z I_{\partial \widehat{\chi} / \partial \tau, k, \ell} & \partial_{t} I_{\widehat{\chi}, k, \ell}=-I_{\widehat{\chi}, k+1, \ell} \\
\bar{t} I_{\widehat{\chi}, k, \ell}=\bar{z}(s+\ell) I_{\widehat{\chi}, k, \ell-1}+\bar{z} I_{\partial \widehat{\chi} / \partial \bar{\tau}, k, \ell} & \bar{\partial}_{t} I_{\widehat{\chi}, k, \ell}=-I_{\widehat{\chi}, k, \ell+1},
\end{array}
$$

where the equalities hold on the common domain of definition (with respect to $s$ ) of the functions involved. Notice that the functions $I_{\partial \widehat{\chi} / \partial \tau, k, \ell}$ and $I_{\partial \widehat{\chi} / \partial \bar{\tau}, k, \ell}$ are $C^{\infty}$ on $\mathbb{P}^{1} \times \mathbb{C} \times \mathbf{S}$, depend holomorphically on $s$, and are infinitely flat at $t=\infty$.

It follows that, for $\operatorname{Re}(s+1)>0$, we have

$$
\begin{align*}
& t \check{\check{~}}_{t} I_{\widehat{\chi}}=-z(s+1) I_{\widehat{\chi}}+z I_{\partial \widehat{\chi} / \partial \tau, 1,0}, \\
& \overline{t \check{\partial}_{t}} I_{\widehat{\chi}}=-\bar{z}(s+1) I_{\widehat{\chi}}+\bar{z} I_{\partial \widehat{\chi} / \partial \bar{\tau}, 0,1} . \tag{5.11}
\end{align*}
$$

(iii) Moreover, for any $p \geqslant 0$, any $s \in \mathbb{C}$ with $\operatorname{Re}(s+1+(k+\ell) / 2)>p$ and any $z \in \mathbf{S}$, all derivatives up to order $p$ of $I_{\widehat{\chi}, k, \ell}\left(t^{\prime}, s, z\right)$ with respect to $t^{\prime}$ tend to 0 when $t^{\prime} \rightarrow 0$, locally uniformly with respect to $s, z$; therefore, $I_{\widehat{\chi}, k, \ell}(t, s, z)$ extends as a function of class $C^{p}$ on $\mathbb{P}^{1} \times\{\operatorname{Re}(s+1+(k+\ell) / 2)>p\} \times \mathbf{S}$, holomorphic with respect to $s$.

Mellin transform with kernel $I_{\widehat{\chi}}(t, s, z)$. - We will work near $z_{o} \in \mathbf{S}$. For any local sections $\mu^{\prime}, \mu^{\prime \prime}$ of $\mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime}$ and any $C^{\infty}$ relative form $\varphi$ of maximal degree on $X \times \mathbf{S}$ with compact support contained in the open set where $\mu^{\prime}, \mu^{\prime \prime}$ are defined, the function

$$
(s, z) \longmapsto\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi I_{\widehat{\chi}}(t, s, z)\right\rangle
$$

is holomorphic with respect to $s$ for $\operatorname{Re} s \gg 0$ (according to (ii)), continuous with respect to $z$. One shows as in Lemma 3.6.6 of loc. cit., using (iii), that it extends as a meromorphic function on the whole complex plane, with poles on sets $s=\alpha \star z / z$.

This result can easily be extended to local sections $\mu^{\prime}, \mu^{\prime \prime}$ of $\widetilde{\mathscr{M}^{\prime}}, \widetilde{\mathscr{M}^{\prime \prime}}$ : indeed, this has to be verified only near $t=\infty$; there exists $p \geqslant 0$ such that, in the neighbourhood of the support of $\varphi, t^{\prime p} \mu^{\prime}, t^{\prime p} \mu^{\prime \prime}$ are local sections of $\mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime}$; apply then the previous argument to the kernel $|t|^{2 p} I_{\widehat{\chi}}(t, s, z)$. In the following, we will write $\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi I_{\widehat{\chi}}(t, s, z)\right\rangle$ instead of $\left.\left.\left\langle C\left(t^{\prime p} \mu^{\prime}, t^{\prime p} \overline{\mu^{\prime \prime}}\right), \varphi\right| t\right|^{2 p} I_{\widehat{\chi}}(t, s, z)\right\rangle$ near $t=\infty$.

Lemma 5.12. - Assume that $\varphi$ is compactly supported on $(X \backslash \infty) \times \mathbf{S}$. Then, for $\mu^{\prime}, \mu^{\prime \prime}$ as above, we have

$$
\operatorname{Res}_{s=-1}\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi I_{\widehat{\chi}}(t, s, z)\right\rangle=\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi\right\rangle .
$$

Proof. - The function $(s+1) I_{\widehat{\chi}}(t, s, z)$ can be extended to the domain $\operatorname{Re}(s+1)>$ $-1 / 2$ as $C^{\infty}$ function of $(t, s, z)$, holomorphic with respect to $s$ : use (iii) with $k=1$, $\ell=0$ to write $(s+1) I_{\widehat{\chi}}(t, s, z)=(t / z) I_{\widehat{\chi}, 1,0}-I_{\partial \widehat{\chi} / \partial \tau, 1,0}$. It is then enough to show that this $C^{\infty}$ function, when restricted to $s=-1$, is identically equal to 1 . It amounts to proving that, for any $t, z, \lim _{\substack{s \rightarrow-1 \\ \operatorname{Re} s>-1}}\left[(s+1) I_{\widehat{\chi}}(t, s, z)\right]=1$. For $\operatorname{Re} s>-1$ we have

$$
\begin{aligned}
& I_{\widehat{\chi}}(t, s, z)=J(t, s, z)+H_{\widehat{\chi}}(t, s, z), \text { with } \\
& \qquad J(t, s, z)=\int_{|\tau| \leqslant 1} e^{-2 i \operatorname{Im} t \tau / z}|\tau|^{2 s} \frac{i}{2 \pi} d \tau \wedge d \bar{\tau}
\end{aligned}
$$

and $H_{\widehat{\chi}}$ extends as a $C^{\infty}$ function on $\mathbb{A}^{1} \times \mathbb{C} \times \mathbf{S}$, holomorphic with respect to $s$. It is therefore enough to work with $J(t, s, z)$ instead of $I_{\widehat{\chi}}$. We now have

$$
\begin{aligned}
J(t, s, z) & =|t|^{-2(s+1)} \int_{|u|<|t|} e^{-2 i \operatorname{Im} u}|u|^{2 s} \frac{i}{2 \pi} d u \wedge d \bar{u} \\
& =\frac{1}{\pi}|t|^{-2(s+1)} \int_{0}^{2 \pi} \int_{0}^{|t|} e^{-2 i \rho \sin \theta} \rho^{2 s+1} d \rho d \theta
\end{aligned}
$$

Now, integrating by part, we get

$$
\int_{0}^{|t|} e^{-2 i \rho \sin \theta} \rho^{2 s+1} d \rho=\frac{|t|^{2 s+2} e^{-2 i|t| \sin \theta}}{2 s+2}+\frac{2 i \sin \theta}{2 s+2} \int_{0}^{|t|} e^{-2 i \rho \sin \theta} \rho^{2 s+2} d \rho,
$$

and the second integral is holomorphic near $s=-1$. Therefore,
$(s+1) J(t, s)=\frac{|t|^{-2(s+1)}}{2 \pi} \int_{0}^{2 \pi}\left[|t|^{2 s+2} e^{-2 i|t| \sin \theta}+2 i \sin \theta \int_{0}^{|t|} e^{-2 i \rho \sin \theta} \rho^{2 s+2} d \rho\right] d \theta$.
Taking $s \rightarrow-1$ gives

$$
\lim _{\substack{s \rightarrow-1 \\ \operatorname{Re} s>-1}}[(s+1) J(t, s)]=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[e^{-2 i|t| \sin \theta}+2 i \sin \theta \int_{0}^{|t|} e^{-2 i \rho \sin \theta} d \rho\right] d \theta
$$

Now,

$$
2 i \sin \theta \int_{0}^{|t|} e^{-2 i \rho \sin \theta} d \rho=-\int_{0}^{|t|} \frac{d}{d \rho}\left(e^{-2 i \rho \sin \theta}\right) d \rho=1-e^{-2 i|t| \sin \theta}
$$

hence $\lim _{\substack{s \rightarrow-1 \\ \operatorname{Re} s>-1}}[(s+1) J(t, s)]=1$.
Remark 5.13. - To simplify notation, we now put

$$
J_{\widehat{\chi}}(t, s, z)=\frac{1}{\Gamma(s+1)} I_{\widehat{\chi}}(t, s, z)
$$

Using (iii) as in the previous lemma, one obtains that there exists a $C^{\infty}$ function on $\mathbb{A}^{1} \times \mathbb{C} \times \mathbf{S}$, holomorphic with respect to $s$, which coincides with $J_{\widehat{\chi}}$ when $\operatorname{Re}(s+1)>0$. This implies that, when the support of $\varphi$ does not contain $\infty$, the meromorphic function $s \mapsto\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi J_{\widehat{\chi}}(t, s, z)\right\rangle$ is entire.

We now work near $\infty$ with the coordinate $t^{\prime}$. Assume that $\mu^{\prime}$ is a local section of $V_{a_{1}+1}^{\left(z_{o}\right)} \widetilde{\mathscr{M}^{\prime}}$ and that $\mu^{\prime \prime}$ is a local section of $V_{a_{2}+1}^{\left(-z_{o}\right)} \widetilde{\mathscr{M}^{\prime \prime}}$. Assume moreover that the class of $\mu^{\prime}$ in $\operatorname{gr}_{a_{1}+1}^{V^{\left(z_{o}\right)}} \widetilde{\mathscr{M}^{\prime}}$ is in $\psi_{t^{\prime}, \alpha_{1}+1} \widetilde{\mathcal{M}^{\prime}}$, and that the class of $\mu^{\prime \prime}$ in $\operatorname{gr}_{a_{2}+1}^{V^{\left(-z_{o}\right)}} \widetilde{\mathscr{M}^{\prime \prime}}$ is in $\psi_{t^{\prime}, \alpha_{2}+1} \widetilde{\mathscr{M}^{\prime \prime}}$. Then one proves as in Lemma 3.6.6 of loc. cit. that $\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi J_{\widehat{\chi}}\left(t^{\prime}, s, z\right)\right\rangle$ has poles on sets $s=\gamma \star z / z$ with $\gamma$ such that $2 \operatorname{Re} \gamma<a_{1}+a_{2}$ or $\gamma=\alpha_{1}=\alpha_{2}$.

Let us then consider the case where $\alpha_{1}=\alpha_{2}:=\alpha$. Then, if $\psi$ has compact support and vanishes along $t^{\prime}=0$, the previous result shows that $\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \psi J_{\widehat{\chi}}\left(t^{\prime}, s, z\right)\right\rangle$ has no pole along $s=\alpha \star z / z$. It follows that $\operatorname{Res}_{s=\alpha \star z / z}\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi J_{\widehat{\chi}}\left(t^{\prime}, s, z\right)\right\rangle$ only depends on the restriction of $\varphi$ to $t^{\prime}=0$; in other words, it is the direct image of a distribution on $t^{\prime}=0$ by the inclusion $i_{\infty}$. We will identify this distribution with $\psi_{t^{\prime}, \alpha+1} C$. We will put

$$
i_{\infty}^{*} \varphi=\frac{\varphi_{\mid \infty}}{\frac{i}{2 \pi} d t^{\prime} \wedge d \overline{t^{\prime}}}
$$

Lemma 5.14. - For any $\alpha \in \mathbb{C}$ with $\operatorname{Re} \alpha \notin \mathbb{N}$, and $\mu^{\prime}, \mu^{\prime \prime}$ lifting local sections [ $\mu^{\prime}$ ], [ $\left.\mu^{\prime \prime}\right]$ of $\psi_{t^{\prime}, \alpha+1} \widetilde{\mathbb{M}^{\prime}}, \psi_{t^{\prime}, \alpha+1} \widetilde{\mathbb{M}^{\prime \prime}}$, we have, when the support of $\varphi$ is contained in the open set where $\mu^{\prime}, \mu^{\prime \prime}$ are defined,

$$
\operatorname{Res}_{s=\alpha \star z / z}\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi J_{\widehat{\chi}}\left(t^{\prime}, s, z\right)\right\rangle=\frac{1}{\Gamma(-\alpha \star z / z)}\left\langle\psi_{t^{\prime}, \alpha+1} C\left(\left[\mu^{\prime}\right], \overline{\left[\mu^{\prime \prime}\right]}\right), i_{\infty}^{*} \varphi\right\rangle .
$$

Proof. - Let $\chi\left(t^{\prime}\right)$ be a $C^{\infty}$ function which has compact support and is $\equiv 1$ near $t^{\prime}=0$. As $\varphi-i_{\infty}^{*} \varphi \wedge \chi\left(t^{\prime}\right) \frac{i}{2 \pi} d t^{\prime} \wedge d \overline{t^{\prime}}$ vanishes along $t^{\prime}=0$, the left-hand term in the lemma is equal to

$$
\begin{equation*}
\operatorname{Res}_{s=\alpha \star z / z}\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), J_{\widehat{\chi}}\left(t^{\prime}, s, z\right) i_{\infty}^{*} \varphi \wedge \chi\left(t^{\prime}\right) \frac{i}{2 \pi} d t^{\prime} \wedge d \overline{t^{\prime}}\right\rangle \tag{5.15}
\end{equation*}
$$

On the other hand, as $\operatorname{Re} \alpha \notin \mathbb{N}$, we have $\alpha \star z / z \notin \mathbb{N}$ for any $z \in \mathbf{S}$, and the function $1 / \Gamma(-s)$ does not vanish when $s=\alpha \star z / z$ for any such $\alpha$ and $z$. Therefore, by definition of $\psi_{t^{\prime}, \alpha+1} C$, the right-hand term is equal to

$$
\begin{equation*}
\left.\left.\operatorname{Res}_{s=\alpha \star z / z} \frac{1}{\Gamma(-s)}\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right),\right| t^{\prime}\right|^{2(s+1)} i_{\infty}^{*} \varphi \wedge \chi\left(t^{\prime}\right) \frac{i}{2 \pi} d t^{\prime} \wedge d \overline{t^{\prime}}\right\rangle \tag{5.16}
\end{equation*}
$$

Put $\widetilde{J}_{\widehat{\chi}}(t, s, z)=|t|^{2(s+1)} J_{\widehat{\chi}}(t, s, z)$. Then, by 5.11) expressed in the coordinate $t^{\prime}$, we have

$$
t^{\prime} \frac{\partial \widetilde{J}_{\widehat{\chi}}}{\partial t^{\prime}}=-\widetilde{J}_{\partial \widehat{\chi} / \partial \tau, 1,0}, \quad \overline{t^{\prime}} \frac{\partial \widetilde{J}_{\widehat{\widehat{\chi}}}}{\partial \bar{t}^{\prime}}=-\widetilde{J}_{\partial \widehat{\chi} / \partial \bar{\tau}, 0,1}
$$

and both functions $\widetilde{J}_{\partial \widehat{\chi} / \partial \tau, 1,0}$ and $\widetilde{J}_{\partial \widehat{\chi} / \partial \bar{\tau}, 0,1}$ extend as $C^{\infty}$ functions, infinitely flat at $t^{\prime}=0$ and holomorphic with respect to $s \in \mathbb{C}$. Put

$$
\widetilde{K}_{\widehat{\chi}}\left(t^{\prime}, s, z\right)=-\int_{0}^{1}\left[\widetilde{J}_{\partial \widehat{\chi} / \partial \tau, 1,0}\left(\lambda t^{\prime}, s, z\right)+\widetilde{J}_{\partial \widehat{\chi} / \partial \bar{\tau}, 0,1}\left(\lambda t^{\prime}, s, z\right)\right] d \lambda .
$$

Then $\widetilde{K}_{\widehat{\chi}}$ is of the same kind. Notice now that, for any $s \in \mathbb{C}$ with $\left.\operatorname{Re}(s+1) \in\right] 0,1 / 4[$ and any $z \in \mathbf{S}$, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(|t|^{2(s+1)} I_{\widehat{\chi}}(t, s, z)\right)=\frac{\Gamma(s+1)}{\Gamma(-s)} \tag{5.17}
\end{equation*}
$$

[Let us sketch the proof of this statement. We assume for instance that $\widehat{\chi} \equiv 1$ when $|\tau| \leqslant 1$. We can replace $I_{\widehat{\chi}}(t, s, z)$ with

$$
\int_{|\tau| \leqslant 1} e^{z \overline{t \bar{\tau}}-t \tau / z}|\tau|^{2 s} \frac{i}{2 \pi} d \tau \wedge d \bar{\tau}
$$

without changing the limit, and we are reduced to computing

$$
\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} e^{-2 i \rho \sin \theta} \rho^{2 s+1} d \rho d \theta
$$

Using the Bessel function $J_{0}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i r \sin \theta} d \theta$, this integral is written as

$$
2 \int_{0}^{\infty} \rho^{2 s+1} J_{0}(2 \rho) d \rho=\frac{1}{2^{2 s+1}} \int_{0}^{\infty} r^{2 s+1} J_{0}(r) d r,
$$

and it is known $(c f .[8, \S 13.24$, p. 391]) that, on the strip $\operatorname{Re}(s+1) \in] 0,1 / 4[$, the latter integral is equal to $2^{2 s+1} \Gamma(s+1) / \Gamma(-s)$.]

On this strip, we can therefore write $\widetilde{J}_{\widehat{\chi}}\left(t^{\prime}, s, z\right)=\widetilde{K}_{\widehat{\chi}}\left(t^{\prime}, s, z\right)+1 / \Gamma(-s)$, by Taylor's formula. For fixed $t^{\prime} \neq 0$ and $z \in \mathbf{S}$, both functions are holomorphic for $\operatorname{Re}(s+1)>0$, hence they coincide when $\operatorname{Re}(s+1)>0$ and we thus have on this domain

$$
J_{\widehat{\chi}}\left(t^{\prime}, s, z\right)=\frac{\left|t^{\prime}\right|^{2(s+1)}}{\Gamma(-s)}+K_{\widehat{\chi}}\left(t^{\prime}, s, z\right)
$$

By the properties of $K_{\widehat{\chi}}$, this implies that the function

$$
s \longmapsto\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), K_{\widehat{\chi}}\left(t^{\prime}, s, z\right) i_{\infty}^{*} \varphi \wedge \chi\left(t^{\prime}\right) \frac{i}{2 \pi} d t^{\prime} \wedge d \overline{t^{\prime}}\right\rangle
$$

is entire for any $z \in \mathbf{S}$. Hence, there exists an entire function of $s$ such that the difference of the meromorphic functions considered in (5.15) and (5.16), when restricted to the half-plane $\operatorname{Re}(s+1)>p$ (with $p$ large enough so that they are holomorphic on the half-plane), coincides with this entire function. This difference is therefore identically equal to this entire function of $s$, and $\sqrt{5.15}$ and $\sqrt{5.16}$ coincide. This proves the lemma.

Proof of Proposition 5.8. We will work near $z_{o} \in \mathbf{S}$. By definition (cf. §2.c), given any local sections $\left[m^{\prime}\right],\left[m^{\prime \prime}\right]$ of $\psi_{\tau, \alpha} \mathscr{\mathscr { F }} \mathbb{M}^{\prime}, \psi_{\tau, \alpha} \mathscr{\mathscr { H }} \mathbb{M}^{\prime \prime}$ and local liftings $m^{\prime}, m^{\prime \prime}$ in $V_{a^{\prime}} \mathscr{F}^{\prime} \mathscr{M}^{\prime}, V_{a^{\prime \prime}} \mathscr{\mathscr { T }} \mathscr{M}^{\prime \prime}$ with $a^{\prime}=\ell_{z_{o}}(\alpha)$ and $a^{\prime \prime}=\ell_{-z_{o}}(\alpha)$, we have, for any $C^{\infty}$ relative form $\varphi$ of maximal degree on $X \times \mathbf{S}$,

$$
\begin{equation*}
\left.\left\langle\psi_{\tau, \alpha} \mathscr{F}^{\mathscr{F}} C\left(\left[m^{\prime}\right], \overline{\left[m^{\prime \prime}\right]}\right), \varphi\right\rangle=\left.\operatorname{Res}_{s=\alpha \star z / z}\left\langle{ }^{\mathscr{F}} C\left(m^{\prime}, \overline{m^{\prime \prime}}\right), \varphi\right| \tau\right|^{2 s} \widehat{\chi}(\tau) \frac{i}{2 \pi} d \tau \wedge d \bar{\tau}\right\rangle, \tag{5.18}
\end{equation*}
$$

where $\widehat{\chi} \equiv 1$ near $\tau=0$. In particular, for sections $m^{\prime}, m^{\prime \prime}$ of the form $\mu^{\prime} \otimes \mathcal{E}^{-t \tau / z}$, $\mu^{\prime \prime} \otimes \mathcal{E}^{-t \tau / z}$ with $\mu^{\prime}, \mu^{\prime \prime}$ local sections of $\widetilde{\mathscr{M}}$, the definition of ${ }^{\mathscr{F}} C$ implies that the right-hand term above can be written as

$$
\begin{equation*}
\operatorname{Res}_{s=\alpha \star z / z}\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi I_{\widehat{\chi}}(t, s, z)\right\rangle . \tag{5.19}
\end{equation*}
$$

[Here, we mean that both functions
$\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi I_{\widehat{\chi}}(t, s, z)\right\rangle \quad$ and $\left.\left.\quad\left\langle{ }^{\mathscr{F}} C\left(\mu^{\prime} \otimes \mathcal{E}^{-t \tau / z}, \overline{\mu^{\prime \prime} \otimes \mathcal{E}^{-t \tau / z}}\right), \varphi\right| \tau\right|^{2 s} \widehat{\chi}(\tau) \frac{i}{2 \pi} d \tau \wedge d \bar{\tau}\right\rangle$, a priori defined for $\operatorname{Re} s \gg 0$, are extended as meromorphic functions of $s$ on the whole complex plane.] Moreover, by $\mathscr{R}_{\mathscr{X}}$-linearity, it is enough to prove Proposition 5.8 for such sections.

Proof of Proposition 5.8 away from $\infty$. - This is the easy part of the proof. We only have to consider $\alpha=-1$ and, for $\varphi$ compactly supported on $(X \backslash \infty) \times \mathbf{S}$, we are reduced to proving that

$$
\operatorname{Res}_{s=-1}\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi I_{\widehat{\chi}}(t, s, z)\right\rangle=\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi\right\rangle,
$$

for local sections $\mu^{\prime}, \mu^{\prime \prime}$ of $\widetilde{\mathscr{M}^{\prime}}, \widetilde{\mathscr{M}^{\prime \prime}}$. This is Lemma 5.12
Proof of Proposition 5.8 near $\infty$ for $\alpha \neq-1,0$. - The question is local on D. We can compute (5.18) by using liftings of $m^{\prime}, m^{\prime \prime}$ in $\operatorname{gr}_{a^{\prime}+1}^{U} \mathscr{F} \mathscr{M}^{\prime}, \operatorname{gr}_{a^{\prime \prime}+1}^{U} \mathscr{\mathscr { K }} \mathcal{M}^{\prime \prime}$, according to 4.15. By $\mathscr{R}$-linearity, we only consider sections $m^{\prime}=t^{\prime-1} \mu^{\prime} \otimes \mathcal{E}^{-t \tau / z}$, $m^{\prime \prime}=t^{\prime-1} \mu^{\prime \prime} \otimes \mathcal{E}^{-t \tau / z}$, where $\mu^{\prime}$ is a local section of $V_{a^{\prime}} \widetilde{\mathscr{M}^{\prime}}$ and $\mu^{\prime \prime}$ of $V_{a^{\prime \prime}} \widetilde{\mathscr{M}^{\prime \prime}}$. According to 5.19 , we have

$$
\left\langle\psi_{\tau, \alpha} \mathscr{F} C\left(\left[m^{\prime}\right], \overline{\left[m^{\prime \prime}\right]}\right), \varphi\right\rangle=\operatorname{Res}_{s=\alpha \star z / z}\left\langle C\left(t^{\prime-1} \mu^{\prime}, \overline{t^{\prime-1} \mu^{\prime \prime}}\right), \varphi I_{\widehat{\chi}}(t, s, z)\right\rangle
$$

and, from Lemma 5.14, this is

$$
\begin{aligned}
& \frac{\Gamma(1+\alpha \star z / z)}{\Gamma(-\alpha \star z / z)}\left\langle\psi_{t^{\prime}, \alpha+1} C\left(\left[t^{\prime-1} \mu^{\prime}\right], \overline{\left[t^{\prime-1} \mu^{\prime \prime}\right]}\right), i_{\infty}^{*} \varphi\right\rangle \\
& \quad=\frac{\Gamma(1+\alpha \star z / z)}{\Gamma(-\alpha \star z / z)}\left\langle\psi_{t^{\prime}, \alpha} C\left(\left[\mu^{\prime}\right], \overline{\left[\mu^{\prime \prime}\right]}\right), i_{\infty}^{*} \varphi\right\rangle .
\end{aligned}
$$

By Lemma 5.5 and its proof, we have $\Gamma(1+\alpha \star z / z) / \Gamma(-\alpha \star z / z)=\mu \bar{\mu}$, with $D_{\mu}=-D_{\alpha}$ (recall that $D_{\alpha}$ was defined in Proposition 4.1 iva), as we assume $\operatorname{Re} \alpha \in[-1,0[$. We then apply Lemma 5.6.

Proof of Proposition 5.8 near $\infty$ for $\alpha=0$. - By the same reduction as above, we consider local sections $m_{0}^{\prime}, m_{0}^{\prime \prime}$ of $V_{0} \mathscr{\mathscr { K }} \mathcal{K}^{\prime}, V_{0} \mathscr{\mathscr { M }} \mathcal{K}^{\prime \prime}$ of the form $m_{0}^{\prime}=\mu_{1}^{\prime} \otimes \mathcal{E}^{-t \tau / z}, m_{0}^{\prime \prime}=$ $\mu_{1}^{\prime \prime} \otimes \mathcal{E}^{-t \tau / z}$, where $\mu_{1}^{\prime}, \mu_{1}^{\prime \prime}$ are local sections of $V_{1} \widetilde{\mathscr{M}^{\prime}}, V_{1} \widetilde{\mathscr{M}^{\prime \prime}}$. We notice ${ }^{(1)}$ that $\partial_{\tau}\left(-t^{\prime} m_{0}^{\prime \prime}\right)=m_{0}^{\prime \prime}$ by (3.3) and, using [3, (3.6.23)] with $m_{-1}^{\prime \prime}=-t^{\prime} m_{0}^{\prime \prime}$ (and replacing there $t$ with $\tau)$, we get

$$
\begin{aligned}
\left\langle\phi_{\tau, 0} \mathscr{F}^{\mathscr{F}} C\left(\left[m_{0}^{\prime}\right], \overline{\left[m_{0}^{\prime \prime}\right]}\right), \varphi\right\rangle & =\left\langle\phi_{\tau, 0}{ }^{\mathscr{F}} C\left(\left[m_{0}^{\prime}\right], \overline{\left[\dot{\partial}_{\tau} m_{-1}^{\prime \prime}\right]}\right), \varphi\right\rangle \\
& =-z^{-1}\left\langle\psi_{\tau,-1} \mathscr{F}^{\mathscr{F}} C\left(\left[\tau m_{0}^{\prime}\right], \overline{\left[m_{-1}^{\prime \prime}\right]}\right), \varphi\right\rangle \\
& \left.=\left.z^{-1} \operatorname{Res}_{s=-1}\left\langle{ }^{\mathscr{F}} C\left(m_{0}^{\prime}, \overline{t^{\prime} m_{0}^{\prime \prime}}\right), \varphi \tau\right| \tau\right|^{2 s} \widehat{\chi}(\tau) \frac{i}{2 \pi} d \tau \wedge d \bar{\tau}\right\rangle \\
& =z^{-1} \operatorname{Res}_{s=-1}\left\langle C\left(\mu_{1}^{\prime}, \overline{\mu_{1}^{\prime \prime}}\right), \varphi \overline{t^{\prime}} I_{\widehat{\chi}, 1,0}\right\rangle,
\end{aligned}
$$

[^0]by definition of ${ }^{\mathscr{F}} C$. Now, by (iii) after (5.10), we have $z^{-1} \overline{t^{\prime}} I_{\widehat{\chi}, 1,0}=(s+1)\left|t^{\prime}\right|^{2} I_{\widehat{\chi}}+$ $\left|t^{\prime}\right|^{2} I_{\partial \widehat{\chi}} / \partial \tau, 1,0$, and the second term will not contribute to the residue, so
\[

$$
\begin{aligned}
\left\langle\phi_{\tau, 0}{ }^{\mathscr{F}} C\left(\left[m_{0}^{\prime}\right], \overline{\left[m_{0}^{\prime \prime}\right]}\right), \varphi\right\rangle & \left.=\left.\operatorname{Res}_{s=-1}\left\langle C\left(\mu_{1}^{\prime}, \overline{\mu_{1}^{\prime \prime}}\right), \varphi(s+1)\right| t^{\prime}\right|^{2} I_{\widehat{\chi}}\right\rangle \\
& =\operatorname{Res}_{s=-1}\left\langle C\left(t^{\prime} \mu_{1}^{\prime}, \overline{t^{\prime} \mu_{1}^{\prime \prime}}\right), \varphi J_{\widehat{\chi}}\right\rangle \quad \text { by } 5.13 \\
& =\left\langle\psi_{t^{\prime}, 0} C\left(t^{\prime} \mu_{1}^{\prime}, \overline{t^{\prime} \mu_{1}^{\prime \prime}}\right), i_{\infty}^{*} \varphi\right\rangle \quad \text { by Lemma } 5.14 \text { with } \alpha=-1 \\
& \left.=\psi_{t^{\prime},-1} C\left(\mu_{-1}^{\prime}, \overline{\mu_{-1}^{\prime \prime}}\right), i_{\infty}^{*} \varphi\right\rangle,
\end{aligned}
$$
\]

if we put $\mu_{-1}=t^{\prime 2} \mu_{1}$.
Proof of Proposition 5.8 near $\infty$ for $\alpha=-1$. - Let us first explain how $\psi_{\tau,-1}{ }^{\mathscr{F}} C$ is defined and how it induces a sesquilinear pairing on $P \operatorname{gr}_{0}^{\mathrm{M}} \psi_{\tau,-1} \mathscr{F}^{\mathcal{M}^{\prime}}, P \operatorname{gr}_{0}^{\mathrm{M}} \psi_{\tau,-1} \mathscr{F}^{\prime \prime}$.

In order to compute $\psi_{\tau,-1} \mathscr{F}^{\mathscr{F}} C$, we lift local sections $\left[m^{\prime}\right]$, $\left[m^{\prime \prime}\right]$ of $\psi_{\tau,-1} \mathscr{F}^{\prime} \mathbb{M}^{\prime}, \psi_{\tau,-1} \mathscr{F}^{\prime} \mathcal{M}^{\prime \prime}$ in $U_{0} \mathscr{F}^{\prime}, U_{0} \mathscr{\mathscr { F }} \mathscr{K}^{\prime \prime}$ and compute (5.18) for $\alpha=-1$. We know, by [3 Lemma 3.6.6], that this is well defined.

To compute the induced form on $P \operatorname{gr}_{0}^{\mathrm{M}}$, we use 4.6 and 4.7) and, arguing as above, we have to consider sections $m^{\prime}, m^{\prime \prime}$ of $U_{<0} \mathscr{F}^{\prime}, U_{<0} \mathscr{F} \mathscr{M}^{\prime \prime}$. We are then reduced to proving that, for local sections $\mu^{\prime}, \mu^{\prime \prime}$ of $V_{<0} \widetilde{\mathscr{M}^{\prime}}, V_{<0} \widetilde{\mathscr{M}}^{\prime \prime}$, we have

$$
\left.\left.\operatorname{Res}_{s=-1} \frac{\Gamma(s+1)}{\Gamma(-s)}\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right),\right| t^{\prime}\right|^{2(s+1)} \varphi\right\rangle=\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi\right\rangle .
$$

By [3, Lemma 3.6.6], the meromorphic function $\left.\left.s \mapsto\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right),\right| t^{\prime}\right|^{2(s+1)} \varphi\right\rangle$ has poles along sets $s+1=\gamma \star z / z$ with $\operatorname{Re} \gamma<0$. For such a $\gamma$ and for $z \in \mathbf{S}$, we cannot have $\gamma \star z / z=0$. Therefore, $\left.\left.s \mapsto\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right),\right| t^{\prime}\right|^{2(s+1)} \varphi\right\rangle$ is holomorphic near $s=-1$ and its value at $s=-1$ is $\left\langle C\left(\mu^{\prime}, \overline{\mu^{\prime \prime}}\right), \varphi\right\rangle$. The assertion follows.
5.c. Proof of Theorem 5.1. - We first reduce to weight 0 , and assume that $w=0$. It is then possible to assume that $(\mathscr{T}, \mathscr{S})=(\mathscr{M}, \mathscr{M}, C$, Id $)$. We may also assume that $\mathscr{M}$ has strict support. Then, in particular, we have $\mathscr{M}=\widetilde{\mathscr{M}}_{\text {min }}$, as defined above.

According to Corollary 5.9 (and to Proposition 5.8 for $\phi_{\tau, 0}$ ), we can apply the arguments given in [3] §6.3] to the direct image by $q$.

Notice that we also get:
Corollary 5.20. - Let $(\mathscr{T}, \mathscr{S})=\left(\mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime}, C, \mathscr{S}\right)$ be an object of $\mathrm{MT}^{(\mathrm{r})}(X, w)^{(\mathrm{p})}$. Then, we have isomorphisms in $\mathscr{R}$ - $\operatorname{Triples}(X)$ :

$$
\begin{aligned}
\left(\Psi_{\tau, \alpha} \widehat{\mathscr{T}}, \mathscr{N}_{\tau}\right) & \xrightarrow{\sim}\left(\Psi_{t^{\prime}, \alpha} \mathscr{T}, \mathscr{N}_{t^{\prime}}\right), \quad \forall \alpha \neq-1 \text { with } \operatorname{Re} \alpha \in[-1,0[, \\
\left(\phi_{\tau, 0} \widehat{\mathscr{T}}, \mathscr{N}_{\tau}\right) & \xrightarrow{\sim}\left(\psi_{t^{\prime},-1} \mathscr{T}, \mathscr{N}_{t^{\prime}}\right) .
\end{aligned}
$$

5.d. A complement in dimension one. - Let first us indicate some shortcut to obtain the S-decomposability of $\widehat{\mathscr{M}}$ when $Y$ is reduced to a point, so that $X=$ $\mathbb{P}^{1}$. First, without any assumption on $Y$, we have exact sequences, according to Proposition 4.1,

$$
\begin{gather*}
0 \longrightarrow \operatorname{ker} \mathrm{~N}_{\tau} \longrightarrow \psi_{\tau,-1} \mathscr{F}_{\mathscr{M}} \xrightarrow{\operatorname{can}_{\tau}} i_{\infty,+} \psi_{t^{\prime},-1} \mathscr{M} \longrightarrow 0  \tag{5.21}\\
0 \longrightarrow i_{\infty,+} \psi_{t^{\prime},-1} \mathscr{M} \xrightarrow{\operatorname{var}_{\tau}} \psi_{\tau,-1} \mathscr{\mathscr { M }} \longrightarrow \mathrm{coker} \mathrm{~N}_{\tau} \longrightarrow 0
\end{gather*}
$$

and

$$
\begin{gather*}
0 \longrightarrow i_{\infty,+} \operatorname{ker} \mathrm{N}_{t^{\prime}} \longrightarrow \operatorname{ker} \mathrm{N}_{\tau} \longrightarrow \mathscr{M} \longrightarrow 0 \\
0 \longrightarrow \mathscr{M} \longrightarrow \operatorname{coker} \mathrm{~N}_{\tau} \longrightarrow i_{\infty,+} \operatorname{coker} \mathrm{N}_{t^{\prime}} \longrightarrow 0 \tag{5.22}
\end{gather*}
$$

It follows that $\mathscr{H}^{1} q_{+} \operatorname{ker} \operatorname{can}_{\tau}=\mathscr{H}^{1} q_{+} \mathscr{M}$ and $\mathscr{H}^{-1} q_{+}$coker var ${ }_{\tau}=\mathscr{H}^{-1} q_{+} \mathscr{M}$. By the first part of the proof, we then have exact sequences

$$
\begin{gathered}
\psi_{\tau,-1} \widehat{\mathscr{M}} \xrightarrow{\operatorname{can}_{\tau}} \psi_{\tau, 0} \widehat{\mathscr{M}}=\psi_{t^{\prime},-1} \mathscr{M} \longrightarrow \mathscr{H}^{1} q_{+} \mathscr{M} \longrightarrow 0 \\
0 \longrightarrow \mathscr{H}^{-1} q_{+} \mathscr{M} \longrightarrow \psi_{t^{\prime},-1} \mathscr{M}=\psi_{\tau, 0} \widehat{\mathscr{M}} \xrightarrow{\operatorname{var}_{\tau}} \psi_{\tau,-1} \widehat{\mathscr{M}}
\end{gathered}
$$

Therefore, if $q_{+} \mathscr{M}$ has cohomology in degree 0 only, $\widehat{\mathscr{M}}$ is a minimal extension along $\tau=0$. Such a situation occurs if $Y$ is reduced to a point, so that $X=\mathbb{P}^{1}$ : indeed, as $(\mathscr{T}, \mathscr{S})$ is an object of $\operatorname{MT}^{(\mathrm{r})}\left(\mathbb{P}^{1}, 0\right)^{(\mathrm{p})}$, we can assume that $\mathscr{T}$ is simple (cf. [3, Prop. 4.2.5]); denote by $M$ the restriction of $\mathscr{M}$ to $z=1$, i.e., $M=\mathscr{M} /(z-1) \mathscr{M}$; by Theorem 5.0.1 of loc. cit., $M$ is an irreducible regular holonomic $\mathscr{D}_{\mathbb{P} 1}$-module;

- if $M$ is not isomorphic to $\mathscr{O}_{\mathbb{P}^{1}}$, then $q_{+} M$ has cohomology in degree 0 only [use duality to reduce to the vanishing of $\mathscr{H}^{-1} q_{+} M$, which is nothing but the space of global sections of the local system attached to $M$ away from its singular points]; by Theorem 6.1 .1 of loc. cit., each cohomology $\mathscr{H}^{j} q_{+} \mathscr{M}$ is strict and its fibre at $z=1$ is $\mathscr{H}^{j} q_{+} M$; therefore, $\mathscr{H}^{j} q_{+} \mathscr{M}=0$ if $j \neq 0$;
- otherwise, $M$ it isomorphic to $\mathscr{O}_{\mathbb{P}^{1}}$ with its usual $\mathscr{D}_{\mathbb{P}^{1}}$ structure, and $\widehat{\mathscr{M}}$ is $\mathscr{O}_{\mathscr{P}^{1}}$ (where $\mathscr{P}^{1}$ denotes $\mathbb{P}^{1} \times \Omega_{0}, c f . \S 2 . b$, so $\widehat{\mathscr{M}}$ is supported on $\tau=0$ and $\psi_{\tau,-1} \widehat{\mathscr{M}}=0 ;$
in conclusion, the S-decomposability of $\widehat{\mathscr{M}}$ along $\tau=0$ is true in both cases.
Corollary 5.20 does not give information on $\psi_{\tau,-1} \mathscr{T}$. We will derive it now in dimension one.

Proposition 5.23. - Let $(\mathscr{T}, \mathscr{S})=\left(\mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime}, C, \mathscr{S}\right)$ be an object of $\mathrm{MT}^{(\mathrm{r})}\left(\mathbb{P}^{1}, w\right)^{(\mathrm{p})}$. Assume that $\mathscr{T}$ is simple and not isomorphic to $\left(\mathscr{O}_{\mathbb{P}^{1}}, \mathscr{O}_{\mathbb{P}^{1}}, C, \mathrm{Id}\right)(-w / 2)$. Then, if $q: \mathbb{P}^{1} \rightarrow$ pt denotes the constant map, the complex $q_{+} \mathscr{T}$ has cohomology in degree 0
only and we have natural isomorphisms

$$
\begin{aligned}
& \operatorname{gr}_{\ell}^{\mathrm{M}} \psi_{\tau,-1}(\widehat{\mathscr{T}}, \widehat{\mathscr{S}}) \xrightarrow[\sim]{\sim} \operatorname{can}_{\tau} \\
& \operatorname{gr}_{\ell-1}^{\mathrm{M}} \phi_{\tau, 0}(\widehat{\mathscr{T}}, \widehat{\mathscr{S}})(-1 / 2) \text { for all } \ell \geqslant 1, \\
& \operatorname{gr}_{\ell}^{\mathrm{M}} \psi_{\tau,-1}\left(\widehat{\mathscr{T}}, \widehat{\mathscr{S})} \stackrel{\operatorname{var}_{\tau}}{\sim} \operatorname{gr}_{\ell+1}^{\mathrm{M}} \phi_{\tau, 0}(\widehat{\mathscr{T}}, \widehat{\mathscr{S})}(1 / 2)\right. \text { for all } \ell \leqslant-1, \\
& P \operatorname{gr}_{0}^{\mathrm{M}} \psi_{\tau,-1}\left(\widehat{\mathscr{T}, \widehat{\mathscr{S}}) \xrightarrow{\sim} \mathscr{H}^{0} q_{+}(\mathscr{T}, \mathscr{S}) .} \begin{array}{l}
\end{array} .\right.
\end{aligned}
$$

(The gluing $C$ for the trivial twistor $\left(\mathscr{O}_{\mathbb{P}^{1}}, \mathscr{O}_{\mathbb{P}^{1}}, C\right.$, Id) is given by $f \otimes \bar{g} \mapsto f \bar{g}$.)
Proof. - We first reduce to weight 0 and take $\mathscr{T}=(\mathscr{M}, \mathscr{M}, C)$ with $\mathscr{S}=(\mathrm{Id}, \mathrm{Id})$. We a priori know by [3] that the morphisms $\operatorname{can}_{\tau}$ and $\operatorname{var}_{\tau}$ in the proposition are morphisms in $\mathrm{MT}^{(\mathrm{r})}\left(\mathbb{P}^{1}, w\right)^{(\mathrm{p})}$, so we only need to show the isomorphism at the level of $\mathscr{M}$. Notice that, by Proposition 4.1 iv), the exact sequences (5.22) induce isomorphisms

$$
\begin{equation*}
P \operatorname{gr}_{0}^{\mathrm{M}} \psi_{\tau,-1} \mathscr{\mathscr { H }} \xrightarrow{\sim} \mathscr{M} \quad \text { and } \quad \mathscr{M} \xrightarrow{\sim} P \operatorname{gr}_{0}^{\mathrm{M}} \psi_{\tau,-1} \mathscr{\mathscr { M }} . \tag{5.24}
\end{equation*}
$$

The first point $\left(\mathscr{H}^{i} q_{+} \mathscr{T}=0\right.$ for $\left.i \neq 0\right)$ is shown in the preliminary remark above under the assumption on $\mathscr{T}$ made in the proposition. Notice also that we have shown, as a consequence, that $\mathscr{H}^{i} q_{+} \operatorname{ker} \mathrm{N}_{\tau}$ and $\mathscr{H}^{i} q_{+}$coker $\mathrm{N}_{\tau}$ also vanish for $i \neq 0$. With the exact sequences (5.21), this implies that

$$
\begin{equation*}
\mathscr{H}^{0} q_{+} \operatorname{ker} \mathrm{N}_{\tau}=\operatorname{ker} \widehat{\mathrm{N}}_{\tau} \quad \text { and } \quad \mathscr{H}^{0} q_{+} \text {coker } \mathrm{N}_{\tau}=\operatorname{coker} \widehat{\mathrm{N}}_{\tau} \tag{5.25}
\end{equation*}
$$

where $\widehat{\mathrm{N}}_{\tau}$ denotes (here, in order to avoid confusion) the nilpotent endomorphism on $\mathscr{H}^{0} q_{+} \psi_{\tau,-1} \mathscr{\mathscr { H }} \mathscr{M}=\psi_{\tau,-1} \widehat{\mathscr{M}}$. We then have exact sequences

$$
\begin{gathered}
0 \longrightarrow \operatorname{ker} \widehat{\mathrm{~N}}_{\tau} \longrightarrow \psi_{\tau,-1} \widehat{\mathscr{M}} \xrightarrow{\operatorname{can}_{\tau}} \psi_{\tau, 0} \widehat{\mathscr{M}} \longrightarrow 0 \\
0 \longrightarrow \psi_{\tau, 0} \widehat{\mathscr{M}} \xrightarrow{\operatorname{var}_{\tau}} \psi_{\tau,-1} \widehat{\mathscr{M}} \longrightarrow \operatorname{coker} \widehat{\mathrm{~N}}_{\tau} \longrightarrow 0
\end{gathered}
$$

As $\operatorname{can}_{\tau}$ and $\operatorname{var}_{\tau}$ are strictly compatible with the monodromy filtration after a shift by 1 (cf. [6, Lemme 5.1.12]), and as ker $\widehat{\mathrm{N}}_{\tau}$ is contained in $\mathrm{M}_{0} \psi_{\tau,-1} \widehat{\mathscr{M}}$, we get the first isomorphism for $\ell \geqslant 1$. Similarly, use that $\mathrm{M}_{-1} \psi_{\tau,-1} \widehat{\mathscr{M}}$ is contained in $\operatorname{Im} \widehat{\mathrm{N}}_{\tau}=$ Im $\operatorname{var}_{\tau}$ to get the second isomorphism for $\ell \leqslant-1$.

To get the third isomorphism, we only have to show that $\mathscr{H}^{0} q_{+}$commutes with taking $P \operatorname{gr}_{0}^{\mathrm{M}}$ because of (5.24). We deduce first from the previous results that we also have $\mathscr{H}^{i} q_{+} \operatorname{Im} \mathrm{N}_{\tau}=0$ for $i \neq 0$ and $\mathscr{H}^{0} q_{+} \operatorname{Im} \mathrm{N}_{\tau}=\operatorname{Im} \widehat{\mathrm{N}}_{\tau}$. Then, the injective morphism

$$
0 \longrightarrow \operatorname{Im} \mathrm{~N}_{\tau} \longrightarrow \operatorname{Im} \mathrm{N}_{\tau}+\operatorname{ker} \mathrm{N}_{\tau}
$$

remains injective after applying $\mathscr{H}^{0} q_{+}$and, as the $\mathscr{H}^{i} q_{+}$vanish for $i \neq 0$, we conclude that the cokernel satisfies

$$
\mathscr{H}^{i} q_{+} P \operatorname{gr}_{0}^{\mathrm{M}} \psi_{\tau,-1} \mathscr{\mathscr { M }} \mathscr{M}=0 \text { for } i \neq 0 \text { and } \mathscr{H}^{0} q_{+} P \operatorname{gr}_{0}^{\mathrm{M}} \psi_{\tau,-1} \mathscr{\mathscr { M }}=P \operatorname{gr}_{0}^{\mathrm{M}} \psi_{\tau,-1} \widehat{\mathscr{M}}
$$

## References

[1] C. Sabbah - "Monodromy at infinity and Fourier transform", Publ. RIMS, Kyoto Univ. 33 (1997), no. 4, p. 643-685.
[2] "Fourier-Laplace transform of irreducible regular differential systems on the Riemann sphere", Russian Math. Surveys 59 (2004), no. 6, p. 1165-1180, II, Moscow Math. J. 9 (2009) n ${ }^{\circ} 4$, p. 885-898.
[3] , Polarizable twistor $\mathscr{D}$-modules, Astérisque, vol. 300, Société Mathématique de France, Paris, 2005.
[4] , "Polarizable twistor $\mathscr{D}$-modules", prépublication, arXiv: math.AG/0503038, vi +226 pages, 2005.
[5] , "Fourier-Laplace transform of a variation of polarized complex Hodge structure", J. reine angew. Math. 621 (2008), p. 123-158, arXiv: math.AG/0508551.
[6] M. Saito - "Modules de Hodge polarisables", Publ. RIMS, Kyoto Univ. 24 (1988), p. 849-995.
[7] C. Simpson - "Mixed twistor structures", Prépublication Université de Toulouse \& arXiv: math.AG/9705006, 1997.
[8] G.N. Watson - A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1922.
C. SABBAH, UMR 7640 du CNRS, Centre de Mathématiques Laurent Schwartz, École polytechnique, F-91128 Palaiseau cedex, France - E-mail : sabbah@math.polytechnique.fr Url : http://www.math.polytechnique.fr/~sabbah


[^0]:    1. I thank the referee for correcting a previous wrong proof and pointing out that, in the formula of [3] Lemma 3.6.33] which was previously used here, the term $|t|^{2 s}$ has to be replaced with $|t|^{2 s}-s$, making the right-hand term in this formula independent of $\chi$.
