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Abstract. We give an explicit formula (i.e., an explicit expression for the
formal stationary phase formula) for the local Fourier-Laplace transform of a
formal germ of meromorphic connection of one complex variable with a possibly
irregular singularity.

Introduction

We will denote by C((t)) (resp. C({t})) the field C[[t]][t−1] (resp. C{t}[t−1]) of
formal (resp. convergent) Laurent series of the variable t, equipped with its usual
derivation ∂t.

Let M be a finite dimensional C((t))-vector space with a connection ∇. The lo-
cal formal Laplace transform F (0,∞) (also called Fourier transform in the literature)
was introduced in [1, 4] by analogy with the ℓ-adic local Fourier transform consid-
ered in [6]. One way to produce it is to choose a free C[t, t−1]-module M of finite
rank equipped with a connection ∇ having poles at most at t = 0 and t = ∞, with
a regular singularity at infinity, and such that (C((t))⊗C[t,t−1] M , 1⊗∇) = (M,∇).
Considering M as a C[t]⟨∂t⟩-module, its (global) Laplace transform FM is the
same C-vector space equipped with the C[τ ]⟨∂τ ⟩-structure defined by the corre-
spondence τ = ∂t, ∂τ = −t. Tensoring with C[τ, τ−1] gives a C[τ, τ−1]⟨τ∂τ ⟩-module
FM [τ−1], and renaming θ = τ−1 (and setting θ∂θ = −τ∂τ ), we regard FM [τ−1]
as a C[θ, θ−1]⟨θ∂θ⟩-module. Lastly, we define F (0,∞)M as C((θ))⊗C[θ,θ−1]FM [τ−1],
equipped with its natural connection. This does not depend of the choices made.

The previous transform corresponds to using the kernel e−t/θ, and is also de-
noted by F (0,∞)

− . Its inverse transform is denoted by F (∞,0)
+ . There are also pairs

of inverse transforms (F (s,∞)
± , F (∞,s)

∓ ) for any s ∈ C and (F (∞,∞)
± , F (∞,∞)

∓ ). If we
denote by F± the algebraic Laplace transform with kernel e± tτ acting on a C[t]⟨∂t⟩-
module M , the local formal stationary phase formula of [1, 4] relies the formaliza-
tion of the Laplace transform of M at each of its singularities (0, ŝ ∈ C∗, ∞̂) with
the local formal Laplace transforms of M itself at its singularities 0, s ∈ C∗, ∞.
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210 C. SABBAH

Decomposing with respect to slopes at infinity gives the following diagram:

F−

!!

M0

F (0,∞)
−

""

⊕s ̸=0Ms

⊕ F (s,∞)
−

""

M >1
∞

F (∞,∞)
−

""

M =1
∞

⊕ F (∞,bs)
−

""

M <1
∞

F (∞,0)
−

""

M̂ <1
∞

F (∞,0)
+

##

M̂ =1
∞

⊕ F (∞,s)
+

$$

M̂ >1
∞

F (∞,∞)
+

$$

⊕bs ̸=0M̂bs

⊕ F (bs,∞)
+

$$

M̂0

F (0,∞)
+

$$

F+

%%

Starting from a given C((t))-vector space M with connection, the explicit com-
putation of F (0,∞)M (or of the other local transforms) by means of equations can
be cumbersome (see however a simple example in §5.b). In this article, we show
(Theorem 5.1) how to pass explicitly from the Turrittin-Levelt decomposition of M
to that of F (0,∞)M (and similarly for the other local transforms). We note that
such formulas were already mentioned by G.Laumon [6, §2.6.3] and attributed to
B.Malgrange, as a motivation for similar formulas in the ℓ-adic situation. Such
formulas do not seem to be explicitly written (nor proved) in the literature (see [7,
§VIII.1] and the remark below, however). In this article, we provide a geometric
method for the proof.

After some preliminaries fixing notation (§1), we introduce elementary formal
meromorphic connections and give their main properties (§2) and we recall in §3
the refined Turrittin-Levelt decomposition, as obtained in [1]. The results of §4 are
mainly given in this article for a better understanding of the formulas in §5, but are
not directly used in the proof of the main theorem (Theorem 5.1). Lastly, in §5.d,
we give some consequences of the theorem of preservation of the index of rigidity,
proved in [1] following the proof of [5] in the ℓ-adic case.

Remark. After this article was written up, Ricardo Garćıa López pointed out
to me the preprint [3], where a similar calculation for local Fourier transforms is
done in the ℓ-adic case. The formulas we give in §5 are the complex analogues
of that in [3]. Let us also mention the article [2], the results of which where
obtained approximately at the same time as the results of the present article, and
in an independent way. The methods developed in [2] are of a more computational
flavour, while those in the present article emphasize the geometry of the formulas;
we try in particular to explain in a more general context (cf. §4) the reason why
the Legendre transform occurs in the formula for ϕ̂ of Theorem 5.1.

Acknowledgements. The results of this article came out from discussions with
Ricardo Garćıa López on the one hand, and with Céline Roucairol on the other
hand. I thank both of them. I also thank Hélène Esnault for useful conversations
on this subject during Lê’s fest.

1. Preliminaries

1.a. Operations on vector spaces with connection. We work in the
abelian category of C((t))-vector spaces with a connection usually denoted by ∇.
This category has tensor products and duality in a natural way. We simply denote
the action of ∇∂t as ∂t. We usually omit, when there should be no confusion, the
subscript denoting the field when using tensor products. It will be convenient to
denote by 1 the field itself with its connection d.
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AN EXPLICIT STATIONARY PHASE FORMULA 211

Let ρ ∈ uC[[u]] with valuation p ! 1. We regard ρ as a morphism of degree p
from the formal disc with coordinate u to the formal disc with coordinate t through
the correspondence ρ : C[[t]] → C[[u]], t *→ ρ(u).

Let M be a finite dimensional C((t))-vector space equipped with a connection ∇.
The pull-back ρ+M is the vector space ρ∗M = C((u)) ⊗C((t)) M equipped with the
pull-back connection ρ∗∇ defined by ∂u(1 ⊗ m) = ρ′(u) ⊗ ∂tm.

Let N be a C((u))-vector space with connection. The push-forward ρ+N is
defined as follows:
(1.1) the C((t))-vector space ρ∗N is the C-vector space N equipped with the struc-
ture of C((t))-vector space given by f(t) · m := f(ρ(u))m,
(1.2) the action of ∂t is that of ρ′(u)−1∂u.

The projection formula holds:

(1.3) ρ+(N ⊗C((u)) ρ+M) ≃ ρ+N ⊗C((t)) M.

If N∗ denotes HomC((u))(N, C((u))) with its natural connection, we have
ρ+(N∗) ≃ (ρ+N)∗. Therefore we also have the projection formula

ρ+ HomC((u))(N, ρ+M) ≃ HomC((t))(ρ+N, M).

Let ϕ ∈ C((u)). We denote by E ϕ the rank-one vector space C((u)) equipped
with the connection ∇ = d + dϕ, i.e., such that ∇∂u1 = ϕ′. We have E ϕ ≃ E ψ if
and only if ϕ ≡ ψ mod C[[u]].

1.b. Moderate nearby cycles. Let X a smooth complex algebraic variety
and let f : X → A1 be a function on X, defining a reduced divisor D = f−1(0).
Let M be a holonomic left DX -module such that M = OX(∗D) ⊗OX M (we then
say that M is localized away from D). The (moderate) nearby cycles module ψfM
is a holonomic left DX -module supported on D equipped with an automorphism
T : ψfM → ψfM .

Let π : X ′ → X be a proper modification inducing an isomorphism X ′ !
π−1(D) → X ! D and let us set f ′ = f ◦ π, D′ = π−1(D) = f ′−1(0). If M ′ is a
holonomic left DX′-module localized away from D′, we will denote by π0

+M ′ the
holonomic DX-module H 0π+M ′(∗D). As a OX(∗D)-module, it is equal to π∗M ′.

As π is proper, we have (see e.g., [12, 8])

(1.4) ψfπ0
+M ′ ≃ H 0π|D′,+ψf ′M ′, H jπ|D′,+ψf ′M ′ = 0 if j ̸= 0.

Let us assume that X is the affine space A2 with coordinates (x1, x2) and that
f(x1, x2) = xm1

1 xm2
2 = xm with m1 ∈ N and m2 ∈ N∗. Let us set D1 = {x2 = 0}

with coordinate x1 and D = |{xm = 0}|. Let R be a locally free OX(∗D)-module
of finite rank with a flat connection having regular singularitites along D. Then R
is also a regular holonomic DX -module. The DX -module ψfR is supported on D.
Moreover, if m1 ̸= 0, (ψfR)[x−1

1 ] is supported on D1 and is the direct image (in
the sense of left DX -modules) by the inclusion D1 ↪→ A2 of a regular holonomic
DD1-module localized (and smooth) away from {x1 = 0}. We will not distinguish
between both, according to Kashiwara’s equivalence.

Proposition 1.5 (cf. [11, Lemma III.4.5.10]). With the previous setting, for
any λ ∈ C∗,

(1) if n ∈ (N∗)2, ψf (E λ/xn ⊗ R) = 0
(2) if n1 ∈ N∗, ψf (E λ/x

n1
1 ⊗ R) is supported on D1; it is isomorphic to

E λ/x
n1
1 ⊗

(
(ψfR)[x−1

1 ]
)

(with monodromy). "
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212 C. SABBAH

Let us note that 1.5(2) is stated in a weaker way in loc. cit, but the argument
given in the proof gives 1.5(2).

2. Elementary formal meromorphic connections

Let M be a finite dimensional C((t))-vector space equipped with a connection ∇.
The classical Turrittin-Levelt theorem asserts that, after a suitable ramification
ρ : u *→ t = up, the pull-back ρ+M can be decomposed into elementary formal con-
nections E ϕ ⊗ Rϕ, where ϕ ∈ C((u)) and Rϕ has a regular singularity. Moreover,
it is known that M itself can be decomposed according to the slopes of its Newton
polygon (see, e.g., [7]).

In the next section, we refine the decomposition with respect to slopes, in order
to keep as much information as possible from the Turrittin-Levelt decomposition,
by using the elementary formal connections that we define now.

Definition 2.1 (Elementary formal connections). Given ρ ∈ uC[[u]], ϕ ∈ C((u))
and a finite dimensional C((u))-vector space R with regular connection ∇, we define
the associated elementary finite dimensional C((t))-vector space with connection by

El(ρ, ϕ, R) = ρ+(E ϕ ⊗ R).

If p denotes the order of ρ, q the order of the pole of ϕ and r the rank of R,
then

• El(ρ, ϕ, R) has only one slope, which is equal to q/p,
• the irregularity number irr0 El(ρ, ϕ, R) is equal to qr,
• the rank of El(ρ, ϕ, R) is equal to pr.

Up to isomorphism, El(ρ, ϕ, R) only depends on ϕ mod C[[u]]. Standard results
on regular formal meromorphic connections then show that, up to isomorphism,
any elementary vector space El(ρ, ϕ, R) with connection is defined over the field of
convergent series C({t}). Let us also note that giving R is equivalent to giving a
finite dimensional C-vector space equipped with an automorphism T .

Let us first distinguish the isomorphism classes of the elementary finite dimen-
sional C((t))-vector spaces with connection.

Lemma 2.2. Assume that ρ′(0) ̸= 0 (i.e., ρ is an automorphism of the formal
disc). Then El(ρ, ϕ, R) ≃ El(Id, ψ, S) if and only if ψ◦ρ ≡ ϕ mod C[[u]] and S ≃ R.

Proof. Let us denote by λ the reciprocal series of ρ, that is, ρ ◦ λ(t) = t,
λ ◦ ρ(u) = u. We use that, ρ+ = λ+. Then

El(ρ, ϕ, R) = λ+(E ϕ ⊗ R) = E ϕ◦λ ⊗ λ+R ≃ E ϕ◦λ ⊗ R,

hence, tensoring with E −ψ, we find S ≃ E ϕ◦λ−ψ ⊗ R, and the lemma follows
easily. "

Let us come back to the general situation where ρ has degree p ! 1. We
deduce from the previous lemma that any elementary vector space El(ρ, ϕ, R) with
connection is isomorphic to an elementary vector space El([u *→ up], ψ, R) with
connection for a suitable ψ. More precisely, if u *→ λ(u) is a formal automorphism
(i.e., λ′(0) ̸= 0) then

(2.3) El(ρ, ϕ, R) ≃ El(ρ ◦ λ, ϕ ◦ λ, R).

Let us denote by ρ the map u *→ up and by µζ the map u *→ ζu.

312

                                                                                                                    
                                                                                                               



AN EXPLICIT STATIONARY PHASE FORMULA 213

Lemma 2.4. For any ϕ ∈ C((u)), we have

ρ+ρ+E ϕ =
⊕

ζp=1
E ϕ◦µζ .

Proof. We choose a C((u))-basis e of E ϕ and assume for simplicity that ϕ ∈
u−1C[u−1]. Then the family e, ue, . . . , up−1e is a C((t))-basis of ρ+E ϕ. Set ek =
u−k ⊗C((t)) uke. Then the family e = (e0, . . . , ep−1) is a C((u))-basis of ρ+ρ+E ϕ. Let
us decompose uϕ′(u) =

∑p−1
j=0 ujψj(up) with ψj ∈ C[t−1] for any j ! 1 and ψ0 ∈

t−1C[t−1]. Let P denote the permutation matrix defined by e·P = (e1, . . . , ep−1, e0).
Using (1.2), we find that

u∂uek =
p−k−1∑

j=0

ujψjek+j +
p−1∑

j=p−k

ujψjek+j−p,

that is,

u∂ue = e ·
[ p−1∑

j=0

ujψjPj
]
.

The result is obtained by diagonalizing P. "

Remark 2.5. Let us decompose p as a product p = p′d and ρ : u *→ up as
ρd ◦ρ′ correspondingly. Then ρ+

d ρ+E ϕ decomposes as
⊕

k=0,...,d−1 ρ′+E ϕ◦µexp 2πik/p .
Indeed, this is obtained by writing ρ+ρ+E ϕ = ρ′+(ρ+

d ρ+E ϕ) as the double direct
sum of the terms E ϕ◦µexp 2πik/p◦µζ′ , where ζ ′ varies among the p′th roots of the unity
and k varies from 0 to d − 1.

Lemma 2.6. We have El([u *→ up], ϕ, R) ≃ El([u *→ up], ψ, S) if and only if the
following properties are satisfied:

(1) there exists ζ with ζp = 1 and ψ ◦ µζ ≡ ϕ mod C[[u]],
(2) S ≃ R as C((u))-vector spaces with connection.

Proof. For the “if” part, notice that ρ = ρ ◦ µζ . We have µ+
ζ (E ϕ ⊗ R) ≃

E ϕ◦µζ ⊗ R, hence E ϕ ⊗ R ≃ µζ+(E ϕ◦µζ ⊗ R), so ρ+(E ϕ ⊗ R) ≃ ρ+(E ϕ◦µζ ⊗ R).
For the “only if” part, let us choose a finite dimensional C((t))-vector space with

regular connection, that we denote by R1/p, such that ρ+R1/p = R (this amounts
to choose a pth root of an automorphism of a C-vector space). We then have

ρ+(E ϕ ⊗ R) = ρ+(E ϕ ⊗ ρ+R1/p) = ρ+E ϕ ⊗ R1/p,

hence ρ+ρ+(E ϕ ⊗ R) = (ρ+ρ+E ϕ) ⊗ R. If ρ+(E ϕ ⊗ R) ≃ ρ+(E ψ ⊗ S), we can
lift this isomorphism after ρ+. From Lemma 2.4 and the previous computation we
deduce that ρ+ρ+(E ϕ ⊗ R) decomposes as a sum of terms E ϕ◦µη ⊗ Rν , where ν
is the number of ζ’s such that ϕ ◦ µζ ≡ ϕ mod C[[u]], and where η is such that
ηp/ν = 1. It follows that (1) is satisfied and that Rν ≃ Sν . Then R ≃ S (if two
automorphisms T, T ′ of a finite dimensional C-vector space are such that ⊕ν

i=1T is
conjugate to ⊕ν

i=1T
′, then T and T ′ are conjugate: this can be seen by considering

the Jordan normal forms). "

Corollary 2.7. Let El(ρ1, ϕ1, R1) and El(ρ2, ϕ2, R2) be two elementary for-
mal connections with p1 = p2 = p. Then El(ρ1, ϕ1, R1) ≃ El(ρ2, ϕ2, R2) if and only
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214 C. SABBAH

if there exist ζ with ζp = 1 and λ1, λ2 ∈ uC[[u]] satisfying λ′
1(0) ̸= 0 and λ′

2(0) ̸= 0,
such that

ρ1 = ρ2 ◦ λ1, ϕ1 ≡ ϕ2 ◦ λ1 ◦ (λ−1
2 ◦ µζ ◦ λ2) mod C[[u]]. "

Remark 2.8. Let El(ρ, ϕ, R) be an elementary formal connection and assume
that there exists a decomposition ρ = ρ1 ◦ ρ2 such that ϕ = ϕ1 ◦ ρ2. Then

ρ+(E ϕ ⊗ R) = ρ1,+ρ2,+(E ϕ1◦ρ2⊗ R) = ρ1,+(E ϕ1⊗ R1)

where R1 = ρ2,+R has a regular singularity. In other word, El(ρ, ϕ, R) =
El(ρ1, ϕ1, R1). Hence it is always possible to choose the presentation of an ele-
mentary formal connection in a minimal way, such that ϕ cannot be defined on a
ramified sub-covering of ρ. We will the say that ρ is minimal with respect to ϕ.

Determinant. We now give a formula for the determinant of El(ρ, ϕ, R). Recall
that, if M is any finite dimensional C((t))-module with connection, the determinant
detM is equipped with a natural connection and, if A is the matrix of ∇∂t in some
basis of M , then the matrix of ∇∂t acting on detM is Tr A. If the connection on M
is regular, then the connection on detM is completely determined by the residue
of its connection modulo Z.

Proposition 2.9. The determinant of of the elementary C((t))-module with
connection El(ρ, ϕ, R) is isomorphic to E r Tr ϕ ⊗ detR ⊗ (t(p−1)r/2), where p is
the degree of ρ, r is the rank of R, (t(p−1)r/2) is the rank one free C((t))-module
with connection d + [(p − 1)r/2]dt/t, and det R is the rank one C((u))-module detR
where we change the name of the variable u to t.

Proof. As R is a successive extension of rank-one free C((u))-modules with
regular connection, we can reduce to the case R has rank one. We can also assume
that ρ(u) = up. If ϕ ∈ C((u)), we denote by ϕinv its invariant part with respect to
the action of Z/pZ.

If e is a C((u))-basis of the rank-one module E ϕ ⊗ R, then e, ue, . . . , up−1e is a
C((t))-basis of ρ∗(E ϕ ⊗R). If α ∈ C is the residue of (R,∇), then the matrix of the
action of t∂t in this basis is given by

1
p

[
α Id + diag(0, . . . , p − 1) + uϕ′

u ·
]

where the multiplication by uϕ′
u has to be interpreted as an operator on the C((t))-

module C((u)). We note that multiplication by uℓ on C((u)) has trace zero except
when ℓ is a multiple of p. Thus 1

p Tr[uϕ′
u · ] = 1

p Tr([uϕ′
u · ]inv) = t(Tr ϕ)′t. Therefore,

the trace of the matrix of the action of t∂t on the basis e, . . . , up−1e is

α +
p − 1

2
+ t(Tr ϕ)′t. "

Corollary 2.10. If slope El(ρ, ϕ, R) < 1, then detEl(ρ, ϕ, R) has a regular
singularity.

Proof. Indeed, q < p implies Tr ϕ = 0 mod C[[t]]. "
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AN EXPLICIT STATIONARY PHASE FORMULA 215

3. Formal decomposition of a germ of meromorphic connection

Proposition 3.1. Any irreducible finite dimensional C((t))-vector space M with
connection is isomorphic to ρ+(E ϕ ⊗L), where ϕ ∈ u−1C[u−1], ρ : u *→ t = up has
degree p ! 1 and is minimal with respect to ϕ (cf. Remark 2.8), and L is some rank
one C((u))-vector space with regular connection.

Proof. Assume that M is irreducible. According to the classical Turrittin-
Levelt theorem, we can choose ρ : u *→ t = up such that ρ+M decomposes as
⊕ϕ(E ϕ ⊗ Rϕ). We have a natural action of Z/pZ on ρ+M , and M is recovered
as the invariant subspace. Therefore, by irreducibility, there exists ϕ ∈ C((u))
such that ρ+M ≃ ⊕ζp=1(E ϕ◦µζ ⊗ Rϕ◦µζ ) and we can assume that p is minimal,
so that for any ζ ̸= 1 with ζp = 1, we have ϕ ◦ µζ ̸≡ ϕ mod C[[u]]. The Z/pZ-
action induces isomorphisms aζ : Rϕ → Rϕ◦µζ which compose themselves in the
right way. Let us set R = Rϕ and let us choose R1/p as in the proof of Lemma
2.6. Then ρ+M ≃ ρ+(ρ+E ϕ ⊗ R1/p) and, taking the Z/pZ-invariant part, we get
M ≃ ρ+E ϕ ⊗ R1/p. Still by irreducibility, R1/p, hence R, has rank one.

On the other hand, such a ρ+(E ϕ ⊗ L) is irreducible: indeed, ρ+ρ+(E ϕ ⊗ L)
decomposes as the direct sum of rank-one non-isomorphic connections, and has no
non-trivial Z/pZ-invariant submodule. "

Remark 3.2. There is no unique way, in general, to write down an irreducible
meromorphic connection: either we choose the presentation ρ+(E ϕ⊗C((u))L), and L
is uniquely defined up to isomorphism, but ϕ could be changed into ϕ ◦ µζ , or we
choose ρ+(E ϕ)⊗C((t)) L1/p, and L1/p is not uniquely defined. We will call ρ+E ϕ the
exponential irreducibility type of the irreducible meromorphic connection.

Corollary 3.3 (Refined Turrittin-Levelt, cf. [1]). Any finite dimensional
C((t))-vector space M with connection can be written in a unique way as a direct
sum

⊕
El(ρ, ϕ, R), in such a way that each ρ+E ϕ is irreducible and no two ρ+E ϕ

are isomorphic.

Proof. Fix an irreducible C((t))-module I with connection and consider in M
the I-typical component MI defined as the maximal submodule such that all ir-
reducible sub-quotients are isomorphic to I ⊗ L for some rank one regular C((t))-
module with connection L. It will be convenient to choose I as ρ+E ϕ for some
suitable ρ and ϕ as in Proposition 3.1. Then, if I1 ̸≃ I2, there is no non-zero mor-
phism from MI1 to MI2, and we get the decomposition M = ⊕ IMI . On the other
hand, each MI is isomorphic to ρ+(E ϕ ⊗ R) for some regular R. "

Corollary 3.4. Let M be a finite dimensional C((t))-vector space with con-
nection. Then M is isomorphic to an elementary module El(ρ, ϕ, R) if and only if
ρ+M is isomorphic to ρ+ El(ρ, ϕ, R) = (ρ+ρ+E ϕ) ⊗ R. "

Corollary 3.5. Let El(ρ1, ϕ1, R1) and El(ρ2, ϕ2, R2) be two elementary
connections written in a minimal way (cf. Remark 2.8). Then El(ρ1, ϕ1, R1) ≃
El(ρ2, ϕ2, R2) if and only if p1 = p2 and the condition of Corollary 2.7 applies.

Proof. Any irreducible sub-quotient of El(ρ1, ϕ1, R1) takes the form
El(ρ1, ϕ1, L1) where L1 is a rank one sub-quotient of R1. A similar result
holds for El(ρ2, ϕ2, R2). Each such sub-quotient has rank p1 (resp. p2). It follows
that p1 = p2. We can then apply Corollary 2.7. "
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216 C. SABBAH

Remark 3.6 (Extension to D̂-modules). Let us denote by D̂ the ring of differ-
ential operators with coefficients in C[[t]]. Then any given holonomic D̂-module M

can be decomposed as Mreg ⊕ Mirr, where Mreg is a regular holonomic D̂-module
and Mirr is purely irregular. Then Mirr is a C((t))-module with connection (although
Mreg may be not), and has the refined Turrittin-Levelt decomposition of Corollary
3.3, where all ϕ are non-zero in C((u))/C[[u]].

Tensor product. Given two elementary formal connections El([u *→ up1], ϕ1, R1)
and El([v *→ vp2], ϕ2, R2), we set d = gcd(p1, p2), p′1 = p1/d and p′2 = p2/d. We
have the following diagram:

•
ρ̃1

&&

ρ̃2
''

ρ′

((
!!

!!
!!

! •

ρ′2
'' ρ2

))

•

ρ′1
&&

ρ1 **

•

ρd

((
!!

!!
!!

!

•

where the dots represent formal discs, ρ′1(u) = up′
1, ρ̃1(w) = wp′

1, etc. We then set

ρ(w) = wp1p2/d,

ϕ(k) = ϕ1(wp′
2) + ϕ2([e2πikd/p1p2w]p

′
1) (k = 0, . . . , d − 1),

R = ρ̃+
2 R1 ⊗ ρ̃+

1 R2.

(3.7)

Proposition 3.8. With this notation,

El([u *→ up1], ϕ1, R1) ⊗ El([v *→ vp2], ϕ2, R2) ≃
d⊕

k=0
El(ρ, ϕ(k), R).

Proof. As ρ+(R1/p1
1 ⊗ R1/p2

2 ) ≃ ρ̃+
2 R1 ⊗ ρ̃+

1 R2, we are reduced to finding an
isomorphism

ρ1,+E ϕ1⊗ ρ2,+E ϕ2 ≃
d−1⊕
k=0

ρ+E ϕ(k)
.

If d = 1 (so that p′1 = p1 and p′2 = p2), we have

ρ+(ρ1,+E ϕ1⊗ ρ2,+E ϕ2) =
⊕

ζ
p1
1 =1

ζ
p2
2 =1

E ϕ1(ζ1wp2)+ϕ2(ζ2wp1) =
⊕

ζ
p1
1 =1

ζ
p2
2 =1

E ϕ(ζ1ζ2w) =
⊕

ζp1p2=1
E ϕ◦µζ ,

and we get the desired isomorphism by taking the Z/p1p2Z-invariant part.
Otherwise, we have ρ1,+E ϕ1 ⊗ ρ2,+E ϕ2 ≃ ρd,+(ρ′1,+E ϕ1 ⊗ ρ+

d ρ2,+E ϕ2) and,
using Remark 2.5, this is

⊕d−1
k=0 ρd,+(ρ′1,+E ϕ1 ⊗ ρ′2,+E ϕ2◦µexp 2πik/p2). We deduce

then from the d = 1-case that

ρ′1,+E ϕ1⊗ ρ+
d ρ′2,+E ϕ2 ≃

d−1⊕
k=0

ρ′+E ϕ(k)
,

hence the result by applying ρd,+. "
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Remark 3.9. Using the notation (p, q, r) as after Definition 2.1, we get

p = p1p2/ gcd(p1, p2),

q(k) # max{q1p2/ gcd(p1, p2), q2p1/ gcd(p1, p2)},
r = r1r2.

Therefore,

slope El(ρ, ϕ(k), R) # max{slope El(ρ1, ϕ1, R1), slope El(ρ2, ϕ2, R2)},

irr0 El(ρ, ϕ(k), R) # max
{
irr0 El(ρ1, ϕ1, R1) · rkEl(ρ2, ϕ2, R2),

irr0 El(ρ2, ϕ2, R2) · rk El(ρ1, ϕ1, R1)
}
,

rk El(ρ, ϕ(k), R) = rkEl(ρ1, ϕ1, R1) · rk El(ρ2, ϕ2, R2)/ gcd(p1, p2).

Dual. Using that ρ+(N∗) ≃ (ρ+N)∗, we get

(3.10) El(ρ, ϕ, R)∗ ≃ El(ρ,−ϕ, R∗).

Hom. As a consequence of Proposition 3.8 and (3.10) we get:

HomC((t))

(
El([u *→ up1],ϕ1, R1), El([v *→ vp2], ϕ2, R2)

)

≃ El([u *→ up1],−ϕ1, R
∗
1) ⊗ El([v *→ vp2], ϕ2, R2)

≃
d−1⊕
k=0

El([w *→ wp1p2/d], ϕ(k), R)

(3.11)

with

(3.12) ϕ(k)(w) = ϕ2(wp′
1) − ϕ1([e2πikd/p1p2w]p

′
2), R = ρ̃+

2 R∗
1 ⊗ ρ̃+

1 R2.

Applying this formula to EndC((t))(El[u *→ up], ϕ, R) gives

EndC((t))(El([u *→ up], ϕ, R) ≃
⊕

ζp=1
El([u *→ up], ϕ − ϕ ◦ µζ , EndC((u))(R)).

If we assume that p is minimal with respect to ϕ, i.e., ϕ ̸≡ ϕ◦µζ mod C[[u]] if ζ ̸= 1,
then we obtain

EndC((t))

(
El(ρ, ϕ, R)

)
reg

≃ ρ+ EndC((u))(R).

On the other hand, in (3.11), let us assume that pi is minimal with respect
to ϕi (i = 1, 2) and that ρ1,+E ϕ1 ̸≃ ρ2,+E ϕ2. We will then show that

HomC((t))

(
El(ρ1, ϕ1, R1), El(ρ2, ϕ2, R2)

)
reg

= 0.

Indeed, we can assume that ρ1(u) = up1 and ρ2(v) = vp2. Moreover, it is
enough to prove the assertion when R1 = 1 and R2 = 1. In such a case, if
HomC((t))(ρ1,+E ϕ1, ρ2,+E ϕ2)reg ̸= 0, (3.11) would imply that it is isomorphic to a
direct sum of terms ρ+1. In particular, it would contain a horizontal section, in
contradiction with the assumption.

Let now M be a C((t))-vector space with connection, let us denote by⊕
i El(ρi, ϕi, Ri) its refined Turrittin-Levelt decomposition, as in Corollary 3.3

and let us assume that the minimality condition holds for each (ρi, ϕi). We then
conclude:

(3.13) (EndC((t)) M)reg ≃
⊕
i

ρi,+ End(Ri).
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Remark 3.14 (Centralizers). Let R be a regular C((u))-module corresponding
to a vector space with monodromy (ψuR, T ). If ρ ∈ uC[[u]] has valuation equal to
p ! 1, then ρ+R corresponds to (ψuR⊗Cp, ρ+T ), where ρ+T = T 1/p⊗Pp for some
choice of a pth root of T and where Pp is the cyclic permutation matrix on Cp. The
following is easy:

dim Ker(ρ+T − Id) = p dim Ker(T − Id).

Applying this equality to EndC((u))(R) and denoting by Z(T ) the centralizer of T
(= Ker(Ad(T ) − Id)), we obtain

dim Ker(ρ+ Ad(T ) − Id) = p dim Ker(Ad(T ) − Id) = p dim Z(T ).

4. Direct images of exponentially twisted regular D-modules

In this section we explain an improvement, in a particular case, of the main
result of [10]. Let ∆ be a disc centered at the origin in C with coordinate t and let P1

be the projective line with affine chart A1 having coordinate x. We denote by ∞
the point with coordinate x = ∞. Let M be a regular holonomic D∆× P1-module.
In the following, we always assume that M is equal to its localized module along
the divisor [∆ × {∞}] ∪ [{0} × P1] (the adjunction of this second component will
not affect the computation of the irregularity we are interested to compute). Let
t : ∆ × P1 → ∆ be the projection and let E x denotes the free rank-one O∆× P1(∗∞)-
module with connection d+ dx. The main result of [10] gives much information on
the formal irregular part H 0t+(E x ⊗M )irr of H 0t+(E x ⊗M ) at the origin of ∆.
Let us recall the notation of loc. cit.

The singular support of M away from {0}×P1 (i.e., the locus where M is not
locally a vector bundle with flat connection away from {0} × P1) is a germ along
{0}×P1 of a analytic closed analytic set of ∆×P1 of dimension # 1. Therefore, if ∆
is small enough, it is a union of germs, at a finite number of points of {0}× P1, of
possibly singular complex analytic curves (distinct from {0}× P1). We will denote
by S the germ at (0,∞) ∈ ∆×P1 of the singular support of M away from {0}×P1.
Let us denote by y = 1/x the coordinate at ∞ on P1. We first make the following
assumption:

Assumption 4.1. The germ of S at (0,∞) is irreducible.

We fix a Puiseux parametrization of S as t = up, µ(u)y = uq where µ is holo-
morphic and µ(0) ̸= 0. We assume that p is minimal, in the sense that one cannot
find a Puiseux parametrization of S with a smaller p. The inverse image ρ−1S
of S by ρ : (u, y) *→ (up, y) consists of p distinct smooth curves Sζ having equation
ζ−qµ(ζu)y = uq, where ζ varies among the pth roots of the unity. In particular, the
restriction of ρ to any of the curves Sζ is isomorphic to the normalization ν : S̃ → S.

We define α to be the polar part of u−qµ(u), and δ to be its holomorphic
part. If ζ varies among the pth roots of the unity, the functions ζ−qµ(ζu) are thus
pairwise distinct. We will make the more restrictive following assumption, which is
satisfied if (p, q) = 1:

Assumption 4.2. The polar parts α(ζu) are pairwise distinct when ζ varies in
the set of pth roots of the unity.

Let us consider the de Rham complex DR M . Fixing a local equation h of S
at (0,∞), we can define a constructible complex on S by taking the vanishing cycle
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complex φh DR M , whose natural monodromy around h = 0 we forget. Up to a
shift (depending on the convention we took for perverse sheaves and vanishing cycle
functor), the restriction of this complex to S∗ := S!{(0,∞)} is a local system. Let
ν : S̃ → S be the normalization. The previous local system defines thus a vector
bundle R with meromorphic connection having a regular singularity at the origin
of S̃.

Theorem 4.3. If S is irreducible at (0,∞) and if Assumption 4.2 is satisfied,
the formal irregular part H 0t+(E x ⊗ M )irr at the origin of ∆ is isomorphic to
El(t ◦ ν, x ◦ ν, R).

In [10], C.Roucairol obtains a similar result, but the regular part R is not
computed so precisely, as only the characteristic polynomial of the monodromy is
determined, not its Jordan structure. We will show below how the argument of
loc. cit. can be modified to get the more precise result of Theorem 4.3.

Proof. Let us start with the following situation. We consider a regular holo-
nomic D∆× P1-module (localized along [∆×{∞}]∪[{0}×P1] as above) with singular
support consisting, near (0,∞), of a finite family of smooth curves Si having local
equations µi(t)y = tqi , with qi ! 1, µi holomorphic and µi(0) ̸= 0.

!
!

!!
❏
❏

❏
❏
❏❏

y

We denote by αi ∈ t−1C[t−1] the polar part of t−qiµi and by δi its holomor-
phic part. We define the meromorphic bundle with connection Ri on Si by using
the same procedure as above. We thus get a vector space with an automorphism
(ψtRi, Ti).

Let α be any nonzero element of t−1C[t−1] and let q the order of its pole, so
that, if we set µ(t) = tqα(t), we have µ(0) ̸= 0. Let us note that ψt(M ⊗ E x−α) is
supported at (0,∞) (near xo at finite distance, M ⊗ E x−α) ≃ M ⊗ E −α) and the
local V -filtration is easily seen to be constant). Therefore, ψt(M ⊗ E x−α) being
holonomic (see e.g., [8]) and supported on a point, it is equivalent (through Kashi-
wara’s equivalence) to a finite dimensional vector space with an automorphism T .
We can analyze it by working in the y coordinate only. We now characterize this
object:

Proposition 4.4 (Improvement of [10]). In such a situation, let us moreover
assume that the functions αi(t) + δi(0) are pairwise distinct. Then, for any α ∈
t−1C[t−1],

(ψt(M ⊗ E −α+1/y), T ) ≃
⊕

i|αi=α

(ψtRi, Ti).

Proof. Let π1 denote the q-times composition of the blowing up of the inter-
section of the successive strict transforms of the curve µ(t)y = tq with the excep-
tional divisor, starting with the point (0,∞). Computing as in [10], we find that
ψt◦π1π

+
1 (M ⊗ E −α+1/y) is supported at the intersection P1 of the strict transform

of the curve µ(t)y = tq with the exceptional divisor. There is a chart (u, v) such
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that t ◦ π1 = v and y ◦ π1 = uvq. Let us set u1 = 1 − uµ(v), which is a coordinate
centered at P1. In this chart, the strict transform of µi(t)y = tqi has equation
µi(v)u = vqi−q and goes through P1 if and only if qi = q and µi(0) = µ(0). In the
coordinate system (u1, v), the equation of such a curve is u1 = 1 − µ(v)/µi(v). On
the other hand, π+

1 (M ⊗ E −α+1/y) = π+
1 M ⊗ E u1/vq

.
Let π2 denote the q-times composition of the blowing up of the intersection

of the successive strict transforms of u1 = 0 with the exceptional divisor. Let
Elast ≃ P1 be the last created component of the exceptional divisor E. It cuts
E ! Elast at a unique point P . There is a chart with coordinates (w, v) such that
v = 0 is the equation of Elast, w is an affine coordinate on Elast, and P = {w = ∞}.
In this chart, we have u1 ◦ π2 = wvq and v ◦ π2 = v.

The strict transform of a curve u1 = 1 − µ(v)/µi(v) has equation

w = v−q µi(v) − µ(v)
µi(v)

=
(αi(v) + δi(0) − α(v)

µi(v)
+ vνi(v),

with νi holomorphic. It cuts Elast away from P if and only if αi = α, and the
intersection point is located at w = δi(0)/µi(0) = δi(0)/µ(0). As a consequence,
along Elast ! {P}, the pull-back of

⋃
i Si is a normally crossing divisor.

On the other hand, in this chart, we have π+
2 π+

1 (M ⊗ E −α+1/y) =
π+

2 π+
1 (M ) ⊗ E w and ψt[π+

2 π+
1 (M ) ⊗ E w] = ψt[π+

2 π+
1 M ] ⊗ E w.

Let us analyze what happens near P . In the neighbourhood of P , we have
coordinates (v′, w′), where v′ = 0 is the equation of Elast and w′ = 1/w. It may
happen that the strict transform of some Si goes through P . However, we can
find a sequence of blowing-ups over P such that, if we still denote by P the point
at infinity in the strict transform of Elast by this sequence, then none of these
strict transforms goes through P . Let π denote the composition of this sequence
with π1 and π2. In the chart centered at P , we have coordinates (v′′, w′′) such
that v′′ = 0 is the equation of Elast and, on Elast, w′′ = 1/w. Near P , we have
ψt◦ππ+(M ⊗ E −α+1/y) = ψv′′kw′′ℓ(π+M ⊗ E 1/w′′

) with k, ℓ ∈ N. Applying Propo-
sition 1.5(2), we find that ψt◦ππ+(M ⊗ E −α+1/y) =

(
ψt◦ππ+M

)
[w′′−1] ⊗ E 1/w′′

.
Let us denote by N the regular holonomic module ψt◦ππ+M restricted to Elast

and localized at P . We identify Elast with P1 with its affine coordinate w and P
with w = ∞. Then N = Γ(Elast, N ) is a regular holonomic C[w]⟨∂w⟩-module
equipped with an automorphism T (coming with the functor ψt◦π). Summing up,
(ψt(M ⊗ E −α+1/y), T ) is the direct image by the constant map π : Elast → (0,∞)
of N ⊗E w, which can be computed as the cokernel N̂1 of the map ∂w +1 : N → N ,
equipped with the induced automorphism T̂1. Now, Proposition 4.4 is a consequence
of the following lemma:

Lemma 4.5. Let N be a regular holonomic C[w]⟨∂w⟩-module equipped with an
automorphism T . Let N̂1 denote the cokernel of the (injective) map ∂w + 1 :
N → N , equipped with the induced automorphism T̂1. Then we have (N̂1, T̂1) ≃
⊕ c∈C(φw−cN, φw−cT ).

Indeed, if the lemma is proved, we are reduced to computing (φw−cN, φw−cT ).
Because the singular support of π+M has normal crossings along Elast, we have

(φw−cψt◦ππ+M , φw−cT ) = (ψt◦πφw−cπ
+M , Tc) = (ψtRi, Ti)

if c = δi(0). "
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Proof of Lemma 4.5. The lemma is well-known if we forget T (see e.g., [7,
Prop. 1.5, p. 79]). Let us show how to take T into account. We note that T has
a minimal polynomial, so we can decompose N with respect to eigenvalues of T
and we are reduced to the case where T is unipotent. We have then to prove that
T̂1 and ⊕ cφw−cT have the same Jordan normal form. Let M•N denote the mon-
odromy filtration of the nilpotent endomorphism log T . It induces a filtration M•N̂1

and ⊕ cM•φw−cN and, as Coker(∂w + 1) and φw−c are exact functors on regular
holonomic modules, we obtain, by applying the lemma forgetting automorphisms,

∀ k ∈ Z, grMk N̂1 = ĝrMk N1 ≃ ⊕ cφw−c grMk N = ⊕ c grMk φw−cN.

If we prove that M•N̂1 (resp. M•φw−cN) is the monodromy filtration of log T̂1

(resp. log φw−cT ), then log T̂1 and ⊕ c log φw−cT will have the same number of Jor-
dan blocks of any given size, hence will have the same Jordan normal form.

Recall that the monodromy filtration M•(N) of a nilpotent endomorphism N
is characterized by two properties: (1) for any ℓ ∈ Z, N(Mℓ(N)) ⊂ Mℓ−1(N),
and (2) for any ℓ ∈ N, Nℓ induces an isomorphism grM(N)

ℓ
∼−→ grM(N)

−ℓ . Using
the exactness of the functors Coker(∂w + 1) and φw−c, one easily checks that
M•N̂1 (resp. M•φw−cN) satisfies these characteristic properties for log T̂1 (resp. for
log φw−cT ). "

End of the proof of Theorem 4.3. We assume that S is non-empty, otherwise
we know from [10] that H 0t+(E x ⊗ M ) has a regular singularity at t = 0. After
Corollary 3.4, it is enough to compute ρ+H 0t+(E x ⊗ M ) where ρ is defined after
Assumption 4.1. Moreover, a standard argument enables us to apply ρ before
H 0t+. The singular support of ρ+M near (0,∞) is ρ−1S =

⋃
ζp=1 Sζ . We will

use Proposition 4.4 with α = α1. Assumption 4.2 implies that the assumption in
Proposition 4.4 is fulfilled and moreover, S1 is the only component which cuts Elast.
As ρ : S1 → S is the normalization of S, (ψtR1, T1) is identified with (ψtR, T ). "

5. Local Laplace transform

5.a. The local Laplace transform F (0,∞). In this section, we analyze
the formal Laplace transform F (0,∞)

± introduced in [1, 4]. Let us recall that,
given a finite dimensional C((t))-vector space M with connection, its transform
F (0,∞)

± M is a finite dimensional C((θ))-vector space with connection, where θ is
a new variable. The functor F (0,∞)

± morally corresponds to the integral trans-
form

∫
• e± t/θdt. If ι denotes the germ of formal automorphism t *→ −t, we have

F (0,∞)
+ M = F (0,∞)

− ι+M . Let us note that, if R is regular, then ι+R ≃ R.

Theorem 5.1. For any elementary C((t))-vector space El(ρ, ϕ, R) with ir-
regular connection (i.e., such that ϕ ̸∈ C[[u]]), the formal Laplace transform
F (0,∞)

± El(ρ, ϕ, R) is the elementary finite dimensional C((θ))-vector space with
connection El(ρ̂± , ϕ̂, R̂) with (setting Lq = (C((u)), d− q

2
du
u ))

ρ̂± (u) = ∓ ρ′(u)
ϕ′(u)

, ϕ̂(u) = ϕ(u) − ρ(u)
ρ′(u)

ϕ′(u), R̂ ≃ R ⊗ Lq.
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Remark 5.2 (Regular connections). If R is a regular connection, then it is easy
to check that F (0,∞)

± R ≃ R (after replacing the name of the variable t with θ). This
also explains why R̂ does not depend on ± in the formula above.

We will prove the theorem for the transform F (0,∞)
− . The other case is obtained

by setting F (0,∞)
+ = F (0,∞)

− ◦ ι+. In the following, when we forget the index ± , we
implicitly work in the − case.

Remarks 5.3.
(1) Using notation of Remark 2.8, one has ρ̂ = ρ̂1 ◦ ρ2, ϕ̂ = ϕ̂1 ◦ ρ2 and

R̂1 = R1 ⊗ Lq1 = ρ2,+R ⊗ Lq1 = ρ2,+(R ⊗ Lq) = ρ2,+R̂. Therefore, the
formulas above do not depend on whether the presentation of El(ρ, ϕ, R)
is minimal or not and we can also assume that ρ(u) = up.

(2) Let us note that ρ̂ is a ramification of order p̂ = q + p and ϕ̂ has a
pole of order q̂ = q, so the slope of El(ρ̂, ϕ̂, R̂) is q/(q + p) (this is well
known,cf. [7]). We thus have

• slope−1F (0,∞) El(ρ, ϕ, R) = 1 + slope−1 El(ρ, ϕ, R) = 1 + p/q,
• irr0F (0,∞) El(ρ, ϕ, R) = irr0 El(ρ, ϕ, R) = qr,
• rkF (0,∞) El(ρ, ϕ, R) = rk El(ρ, ϕ, R) + irr0 El(ρ, ϕ, R).

If we choose a (q + p)th root u *→ λ(u) of ρ̂(u) and if we denote by
λ−1(u) its reciprocal series, then, according to (2.3), El(ρ̂, ϕ̂, R̂) ≃ El([u *→
uq+p], ϕ̂ ◦ λ−1, R̂).

(3) Let us also note that twisting R by Lq consists in multiplying its mon-
odromy by (−1)q (this was denoted by ⊗(tq/2) in Proposition 2.9).

(4) The inverse functor of F (0,∞)
± is the local Laplace transform F (∞,0)

∓ from
C((θ))-vector spaces with connection having slope < 1 to C((t))-vector
spaces with connection. If σ has degree p and ψ has a pole of order
q < p, we then have

(5.4) F (∞,0)
± El(σ, ψ, S) = El(± σ2ψ′/σ′, ψ + (σ/σ′)ψ′, S ⊗ Lq).

(5) The determinant (over C((θ))) of El(ρ̂, ϕ̂, R̂) is a rank-one regular connec-
tion which is equal to the regular factor of the determinant (over C((t)))
of El(ρ, ϕ, R).

Indeed, since El(ρ̂, ϕ̂, R̂) has slope < 1, the first assertion is a conse-
quence of Corollary 2.10. Now, Proposition 2.9 gives [det El(ρ, ϕ, R)]reg =
det R ⊗ (t(p−1)r/2) and

det El(ρ̂, ϕ̂, R̂) = det R̂ ⊗ (t(p+q−1)br/2) = detR ⊗ (t(p−1)r/2),

as r̂ = r and det R̂ = detR ⊗ (tqbr/2).

Proof of Theorem 5.1. We first choose an algebraic model for El(ρ, ϕ, R),
that is, we assume that ρ(u) = up, ϕ(u) = u−qa(u) where a ∈ C[u] has degree
< q and a(0) ̸= 0; we moreover assume that R is a free C[u, u−1]-module with a
connection having a regular singularity at u = 0 and u = ∞ and no other pole.
We now work algebraically and consider that u is the coordinate of the torus Gm,u

and that θ is also a coordinate of Gm,θ. We wish to compute the direct image of(
C[θ, θ−1] ⊗ R

)
⊗ E ϕ(u)−up/θ by the projection to Gm,θ, and then take its formal

irregular part at θ = 0. Theorem 4.3 suggests us to consider the direct image M
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of R[θ, θ−1] := C[θ, θ−1]⊗R by the morphism π : Gm,θ × Gm,u → Gm,θ × A1
x given

by
π : (θ, u) *−→ (θ, ϕ(u) − up/θ).

This morphism is finite, so M consists of a single cohomology module, and it is
regular holonomic, as R is so. The critical locus of π is defined by θ = pup/uϕ′(u) =
ρ̂(u) and the singular support S∗ of M is the curve parametrized by

Gm,u ∋ u *−→
(
ρ̂(u), ϕ(u)− ρ(u)

ρ′(u)
ϕ′(u)

)
.

The germ A1
u at the origin is a parametrization of the germ at (0,∞) of the closure S

of S∗ through the natural extension of this map to A1
u.

A possible way of proving the theorem, by applying Theorem 4.3 to M , would
be to compute the vanishing cycle module of M along S. Nevertheless, one should
first check that Assumption 4.2 is fulfilled, which is not straightforward. So we will
not apply this theorem, but we will use the same method without taking the direct
image by π. The previous reasoning is now regarded as a heuristic justification of
the formula given in the theorem (at least for ρ̂ and ϕ̂).

We first apply the ramification ρ̂ : η → θ to R[θ, θ−1] ⊗ E ϕ(u)−up/θ and then
take the direct image by the projection to Gm,η. In order to compute the regular
part with respect to the exponential term E bϕ(η), we tensor this direct image by
E −bϕ(η) and then take the moderate nearby cycles ψη of the resulting meromorphic
connection. Arguing as in [10], it is equivalent to tensor with E −bϕ(η) and to take
ψη first, and then to take the direct image by the projection to the point. We are
therefore led to compute ψη

(
E ϕ(u)−bϕ(η)−up/bρ(η) ⊗ R[η, η−1]

)
.

We will use the following notation: ϕ(u) = u−qa(u), uϕ′(u) = u−qb(u) with
b(u) = −qa(u) + ua′(u). We also set a(u) =

∑q−1
k=0 akuk, hence

b(u) =
q−1∑

k=0

(k − q)akuk, a(u) − 1
p
b(u) =

q−1∑

k=0

p + q − k

p
akuk.

By assumption, a0 ̸= 0 and if we set (p, q − k) = dk, then gcd((dk)k|ak ̸=0) = 1. We
have

ϕ(u) − up

ρ̂(η)
− ϕ̂(η) =

1
uqηp+q

(
a(u)ηp+q − up+q b(η)

p
− uqηp(a(η) − 1

pb(η))
)
.

In order to simplify this expression, we blow up the ideal (u, η). Let us consider
the chart with coordinates (v, η) with e : (v, η) *→ (vη, η). The previous expression
becomes

1
vqηq

(
a(vη) − vp+q b(η)

p
− vq(a(η) − 1

pb(η))
)

=:
f(v, η)
vqηq

.

We have to compute ψη(E f(v,η)/vqηq ⊗ e+(R[η, η−1])). This module is supported
on η = 0 by definition. Moreover, according to Proposition 1.5, it is supported
at most on the set defined by f(v, 0) = 0. One can also check that it has no
component supported at v = ∞, by using the same argument in the other chart of
the blowing-up space. The function f can be written as

f(v, η) =
q−1∑

k=0

akηk
(
vk +

q − k

p
vp+q − p + q − k

p
vq

)
.
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It is easy to compute that the polynomial f(v, 0) = a0(1 + q
pvp+q − (1 + q

p )vq) has
exactly d0 = (p, q) double roots, which are the d0th roots of unity, and the other
roots vi are simple. The branches of f(v, η) at the points (vi, 0) are thus smooth
and transversal to η = 0. Moreover, one easily checks that (v − 1)2 divides f(v, η),
so that in some neighbourhood of (1, 0), f(v, η) = (v − 1)2 · unit. Lastly, for any ζ
with ζd0 = 1 and ζ ̸= 1, if we set v′ = v − ζ, the germ of f at (ζ, 0) can be
written as v′2λ(v′, η)+ηℓµ(v′, η), where λ, µ are units and ℓ ∈ [1, q−1]: indeed, the
assumption implies that, for any such ζ, there exists a smallest ℓ ∈ [1, q − 1] such
that aℓ ̸= 0 and ζℓ ̸= 1; we have f(ζ, η) =

∑
k ak(ζk − 1)ηk, so the first nonzero

term in this series is for k = ℓ; similarly, the coefficient of v′ in the expansion of f is∑
k kak(ζk−1)ηk, which is a multiple of ηℓ. The situation is illustrated in Figure 1.

!
vi

kζ = 1

!
ζ
ζd0 = 1
ζ ̸= 1

✘✘✘✿❳❳❳②

kζ ! 2

!

✻ ✻strict transform
of u = 0

strict transform
of η = 0

η = 0
✻

!
1

Figure 1. The branches of curve f(v, η) = 0 near η = 0

In suitable local coordinates (v′, η) centered at the points (vi, 0) or the points
(ζ, 0) with ζd0 = 1, the exponent f(v, η)/vqηq can thus be written as g(v′, η)/ηq,
where

g(v′, η) =

⎧
⎪⎨

⎪⎩

v′ at (vi, 0),
v′2 at (1, 0),
v′2λ(v′, η) + ηℓµ(v′, η) (with ℓ ∈ [1, q − 1]) at (ζ, 0).

Theorem 5.1 is now a consequence of Lemma 5.5 below: we apply the lemma
to S = e+(R[η, η−1]), 5.5(1) to the germ of f at each (vi, 0), 5.5(2) to the germ of f
at (1, 0) and 5.5(3) to the germ of f at at each (ζ, 0) with ζd0 = 1 and ζ ̸= 1. "

Lemma 5.5. Let S be a germ of regular meromorphic connection in coordinates
(v′, η) with pole on η = 0 at most and let q ! 1. Then

(1) ψη(E v′/ηq ⊗ S) = 0.
(2) ψη(E v′2/ηq ⊗ S) is supported at v′ = 0 and its germ is isomorphic to the

germ at v′ = 0 of ψη(S ⊗ Lη,q) with Lη,q ≃ (C[η, η−1], d − q
2

dη
η ).

(3) Let h(v′, η) = v′2λ(v′, η)+ηℓµ(v′, η), where λ, µ are local units and ℓ ∈ N∗.
Let us assume that q ! ℓ + 1. Then ψη(E h(v′,η)/ηq ⊗ S) = 0.

Proof.
(1) As S is an iterated extension of rank-one meromorphic connections, we

can assume that it is isomorphic to C{η}[η−1] with connection d − αdη/η. Then
E v′/ηq ⊗S ≃ C{η}[η−1] with connection d+dv′/η− (α+v′/η)dη/η. The generator
ε = 1 satisfies ε = η∂v′ε, showing that ψη(E v′/ηq ⊗ S) = 0.
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(2) The first part of the assertion is clear. For the second part, we argue by
induction on q. Let us first assume that q ! 3. We blow up the ideal (v′, η). We
get two charts: (v′1, η1) with v′ = v′1η1 and η = η1 and (v′2, η2) with v′ = v′2 and
η = v′2η2.

In the chart (v′2, η2), we find ψv′
2η′

2
(E 1/v′q−2

2 ηq
2⊗ e+S) = 0. In the chart (v′1, η1),

ψη1(E v′2
1 /ηq−2

1 ⊗ e+S) is supported at the origin of the chart, and we conclude by
induction.

If q = 2, we identify (in the same way as we did in the proof of Proposi-
tion 4.4) ψη◦ee+(E v′2/η2 ⊗ S) (with its automorphism T coming with the func-
tor ψη◦e) with the C[v′1]-free module with connection (ψηS, T ) ⊗C E v′2

1 , where
E v′2

1 = (C[v′1], d + 2v′1). It is then enough to show that the direct image by e of
(C[v′1], d + 2v′1) is equal to C, that is, that the morphism ∂v′

1
+ 2v′1 : C[v′1] → C[v′1]

is injective and has a cokernel equal to C. This is easily checked.
Let us end with the case q = 1. We first show that the dimension of the space

ψη(E v′2/η⊗S)0 is equal to that of (ψηS)0 by a computation of Euler characteristics,
as in [10]. In order to do this computation, we first blow up the ideal (v′, η) and
then, in the chart (v′2, η2), we blow up the ideal (v′2, η2). We denote by E2 ≃ P1

the exceptional divisor over v′2 = 0, η2 = 0 and by E1 ≃ P1 the strict transform
of the exceptional divisor obtained after the first blowing-up. After the total blow
up ẽ, the module ψη◦eeẽ+(E v′2/η ⊗ S) is supported on E1 ∪ E2 and e+(E v′2/η ⊗ S)
has regular singularity along E1 ∪E2 except at P2. Figure 2 gives the values of the
function x *→ χ DRψη◦eeẽ+(E v′2/η⊗S)x on each stratum of the natural stratification
of ẽ−1({η = 0}), when rkS = 1 (which is clearly enough), from which one deduces
the desired assertion, as

−1 · χtop(E1 ! {P1}) + 0 · χtop(P1) − 2 · χtop(E2 ! {P1, P2}) + 2 · χtop(P2) = 1.

✻

!
strict transform
of η = 0!

E1

E2 P1 P2

χ = −1

!!✠

χ = 0
!!✒

χ = −2

✻
χ = 2

❅❅■

Figure 2. The Euler characteristic function of DRψη◦eeẽ+(E v′2/η ⊗ S)

Once this computation is done, we prove the result for S = C{η}[η−1]rk S

with connection d + (α Id +N)dη/η, where N is a constant nilpotent matrix. Then
E v′2/η ⊗ S has a basis ε which satisfies

η∂v′ε = 2v′ε and η∂ηε = ε ·
(
(α − v′2/η) Id+N

)
,

from which we deduce, as η∂2
v′ε = (2 + 4v′2/η)ε,

(5.6) η∂ηε = ε ·
(
(α + 1/2) Id+N

)
− 1

4
η∂2

v′ε.

A standard computation of V -filtration now shows that each εi ∈ ε has order α+1/2
with respect to the V -filtration and that the classes of the εi in ψη(E v′2/η ⊗ S)0
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generate this C-vector space. By the dimension count above, they form a basis of
this space. From (5.6) one then gets that

ψη(E v′2/η ⊗ S)0 ≃
(
Crk S , exp 2iπ((α + 1/2) Id+N)

)
,

as was to be proved.
(3) We argue by induction on ℓ ! 1. Let us first assume that ℓ ! 3 (hence q ! 3)

and let us blow up the ideal (v′, η). In the chart (v′1, η1), ψη1e
+(E h(v′,η)/ηq ⊗ S) =

ψη1(E h1(v
′
1,η1)/ηq−2

1 ⊗ e+S) with h1 of the same form as h, but with ℓ replaced by
ℓ − 2, hence the result by induction.

If ℓ = 2, the strict transform of h = 0 cuts the exceptional divisor η1 = 0
transversally at two distinct points. Applying (1) at these points and an easy
argument at the other points (v′1, 0), we obtain ψη1e

+(E h(v′,η)/ηq ⊗ S) = 0. In the
chart (v′2, η2), we are led to compute ψv′

2η2(E unit/v′q−2
2 ηq ⊗ e+S) and, since q ! 3,

we can apply Proposition 1.5 to obtain that the result is 0.
We now assume that ℓ = 1, so q ! 2, and we blow up as above. We find that

ψη◦ee+(E h/ηq ⊗ S) is supported at the origin of the chart (v′2, η′
2), and is equal

to ψv′
2η2(E h2/v′q−1

2 ηq
2 ⊗ e+S), with h2(v′2, η2) = v′2λ(v′2, v′2η2) + η2µ(v′2, v′2η2). If we

blow up the center of this chart, we find that the strict transform of h2 = 0 is
smooth and cuts transversally the exceptional divisor. Applying (1) at this point
and Proposition 1.5(2) at the crossing points of the pull back of the divisor v′2η2 = 0
gives the desired vanishing. "

Remark 5.7 (Extension to D̂-modules, cf. [7]). Let M be a D̂-module
(cf. Remark 3.6). The local Laplace transform F (0,∞)

± is naturally extended to
such objects, in such a way that, if we choose a module N on the Weyl algebra
with regular singularities at 0 and ∞ and no other singularities, and such that
C[[t]] ⊗C{t} N = Mreg, then F (0,∞)

± Mreg is the germ at infinity of the Laplace
transform of N .

It is known that giving Mreg is equivalent to giving a diagram of vector spaces
with automorphisms T

ψtMreg

c
++

φtMreg

v
,,

where (ψtMreg, T ) = (ψtMreg, Id +vc) and (φtMreg, T ) = (φtMreg, Id +cv). Let us
remark that the effect of the involution ι+ is to replace c with −c and v with −v,
so that ι+Mreg ≃ Mreg.

Giving the vector space with automorphism (ψtMreg, T ) is equivalent to giving
a regular C((t))-module with connection: this is C((t)) ⊗C[[t]] Mreg.

On the other hand, the C((θ))-vector space with connection F (0,∞)
± Mreg corre-

sponds to the vector space with automorphism (φtMreg, T ).

5.b. Example of a direct computation. Let us compute directly the local
Laplace transform of E a/tq

for a ∈ C∗ and q ∈ N∗. We can define the corresponding
C[t]⟨∂t⟩-module by the differential equation tqt∂t + qa. The Laplace transform
in the θ-variable (i.e., corresponding to the kernel e−t/θ) is obtained by setting
t = θ2∂θ and ∂t = θ−1. Using that θ2∂θθ−1 = θ∂θ − 1, it has the equation
(θ2∂θ)q(θ∂θ − 1) + qa. The Newton polygon of this operator at θ = 0 has only one
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slope, which is q/(q+1), so a ramification of order q+1 is needed to get an integral
slope. Let us set θ = −ηq+1/qa (hence θ∂θ = (q + 1)−1η∂η). The pull-back by the
ramification η *→ −ηq+1/qa of the previous operator is, up to a constant,

(ηq+1η∂η)q(η∂η − (q + 1)) + (−1)q[q(q + 1)a]q+1

=
q+1∏

k=1

(ηq+1∂η − kηq) + (−1)q[q(q + 1)a]q+1.

We twist the corresponding meromorphic connection with E −λ/ηq
in order to create

a regular part. After twisting, the new operator is obtained from the old one by
replacing ηq+1∂η with ηq+1∂η − qλ, that is,

q+1∏

k=1

(ηq+1∂η − qλ − kηq) + (−1)q[q(q + 1)a]q+1.

We choose λ such that the constant term vanishes, that is, λ = ζ(q + 1)a with
ζq+1 = 1. Let us fix ζ = 1 for instance. The resulting operator can now be divided
by ηq and gets as regular part the following operator:

[−q(q + 1)a]q(q + 1)
[
η∂η − q + 2

2

]
.

In other words, if we denote by Lq the rank-one local system with monodromy
(−1)q, we find that the localized Laplace transform of E a/tq

is El(ρ̂, ϕ̂, Lq), where
ρ̂, ϕ̂ are given by the theorem.

5.c. The local Laplace transforms F (s,∞) and F (∞,∞).
F (s,∞), s ∈ C. The local Laplace transform F (s,∞)

± is defined as E ± s/θ ⊗
F (0,∞)

± . Therefore, the formula for computing F (s,∞)
± El(ρ, ϕ, R) is straightfor-

wardly obtained from that giving F (0,∞)
± El(ρ, ϕ, R):

F (s,∞)
± El(ρ, ϕ, R) ≃ El(ρ̂± , ϕ̂ ± c/(θ ◦ ρ̂), R̂) if ϕ ̸∈ C[[u]],(5.8)

F (s,∞)
± Mreg ≃ El(Id, ± c/θ, F (0,∞)

± Mreg) (Mreg a regular D̂-module).(5.9)

When s ̸= 0, F (s,∞)
± M has slope one for any holonomic D̂-module.

F (∞,∞). The transform F (∞,∞)
± corresponds to the integral transform∫

•e± 1/tθ(−dt/t2). It applies only to C((t))-vector spaces with connection having
slope > 1 and produces a C((θ))-vector spaces with connection having slope > 1.

If we consider an elementary formal connection El(ρ, ϕ, R) with q > p then,
setting now

(5.10) ρ̂± (u) = ± ρ′

ϕ′ρ2
, ϕ̂ = ϕ +

ρ(u)
ρ′(u)

ϕ′(u), R̂ = R ⊗ Lq,

we have F (∞,∞)
± El(ρ, ϕ, R) ≃ El(ρ̂± , ϕ̂, R̂). The proof is similar to that of Theo-

rem 5.1 and we will not repeat it.

Remarks 5.11.
(1) If q > p, we have p̂ = q − p and q̂ = q. Moreover,

• slope−1F (∞,∞) El(ρ, ϕ, R) = 1 − slope−1 El(ρ, ϕ, R) = 1 − p/q,
• irr0F (∞,∞) El(ρ, ϕ, R) = irr0 El(ρ, ϕ, R) = qr,
• rkF (∞,∞) El(ρ, ϕ, R) = irr0 El(ρ, ϕ, R) − rkEl(ρ, ϕ, R) = (q − p)r.

(2) The inverse transform of F (∞,∞)
± is F (∞,∞)

∓ .
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5.d. The use of the index of rigidity. Let X be a smooth projective curve,
let S be a finite set of point and let M (∗S) be a locally free OX(∗S)-module of
rank r with connection ∇. Let M (∗S)min be the minimal extension of M (∗S)
(also called middle extension, or intermediate extension) in the sense of holonomic
DX -modules: M (∗S)min is the smallest DX -submodule N of M (∗S) such that
M (∗S)/N is supported in a finite set. Let us recall the global index formula for
M (∗S)min (the global index formula for M (∗S) is obtained by forgetting the last
sum in the formula below, and one can refer to [7, Th. 4.9(ii), p. 70] for it; the
formula for M (∗S)min is an easy consequence of it):

(5.12) χ(X, DRM (∗S)min)

= rχtop(X ! S) +
∑

s∈S

irrsM (∗S) +
∑

s∈S

dim Ker(Treg,s − Id),

where Treg,s denotes the formal regular monodromy at s, that is, the monodromy
of [ÔX,s ⊗ M (∗S)]reg.

Applying this formula to End(M (∗S)) instead of M (∗S) gives, according to
(3.13) and to the formula in Remark 3.14:

(5.13) χ
(
X, DREnd(M (∗S))min

)

= r2χtop(X ! S) +
∑

s∈S

irrs End(M (∗S)) +
∑

s∈S

∑

i∈I′
s

ps,i dim Z(Ts,i),

where
⊕

i∈I′
s
El(ρs,i, ϕs,i, Rs,i) is the refined Turrittin-Levelt decomposition of

M (∗S) at s, ps,i is the degree of ρs,i, Ts,i is the monodromy of Rs,i and Z(•)
denotes the centralizer of •. We will set I ′s = Is ∪ {reg} with an obvious meaning,
and ρs,reg(t) = t, ϕs,reg = 0. Let us note that (5.13) was yet obtained (in a simpler
case) by A. Paiva [9]. The left-hand term in (5.13) is by definition the index of
rigidity of M (∗S) and is denoted by rig M (∗S) (cf. [5, 1]).

Examples 5.14.
• Assume S = {0,∞}. Then rig M (∗S) = 2 if and only if, for s = 0,∞,

irrs = 0, #I ′s = 1 and dim Z(ρs,+Ts) = 1. This is equivalent to ask that
M (∗S) has rank one.

• (Compare with [1, Cor. 4.9].) Assume M (∗S) has rank one. Then, for any
s ∈ S, irrs = 0, #I ′s = 1 and dim Z(ρs,+Ts) = 1. Therefore, rig M (∗S) =
χtop(P1 ! S) + #S = χtop(P1) = 2.

Let us now assume that X = P1 and that S contains ∞. We then set
Mmin = Γ

(
P1, [M (∗S)min](∗∞)

)
, which is a holonomic module over the Weyl alge-

bra C[t]⟨∂t⟩. Let F± (Mmin) be its Laplace transform with respect to the kernel
e± tτ . This is a holonomic module over the Weyl algebra C[τ ]⟨∂τ ⟩ (cf. the in-
troduction). We denote by Ŝ ⊂ P̂1 the set of its singularities (including ∞̂) on
the τ -line. There exists a unique DbP1-module M̂± , equal to M̂± (∗∞̂), such that
F± (Mmin) = Γ(P̂1, M̂± ). We then consider the associated bundle with connection
M̂± (∗Ŝ). If M is irreducible (or semi-simple), then F± M is so, and both are equal
to their minimal extensions. Let us recall:

Theorem 5.15 ([5, 1]). If M is irreducible, then rig M̂± (∗Ŝ) = rig M (∗S). "
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We will show that this theorem implies, when M is irreducible, a relation
between the dimensions of the centralizers of the formal monodromies corresponding
to the purely irregular parts at the singularities of M .

Let ψ be a finite dimensional vector space equipped with an automorphism ψT
and let us set φ = Im(ψT − Id), equipped with the induced automorphism φT . Then
(cf. e.g., [9, Prop. 2.4.10])

(5.16) dim Z(ψT ) − dim Z(φT ) =
(
dim Ker(ψT − Id)

)2 =: κ2.

Let us take the notation given after (5.13) and let us assume M = Mmin. The
formal stationary phase formula of [1, 4] implies, for the part with slope # 1 at ∞̂,
and setting F = F− for instance:

(5.17) [(FM)(∗Ŝ)]"1
c∞ ≃

⊕
s∈S!{∞}

[
(E −s/θ ⊗ Mφ

s,reg) ⊕
⊕
i∈Is

El(ρ̂s,i, ϕ̂s,i, R̂s,i)
]
,

where Mφ
s,reg corresponds to the monodromy φTs,reg, if ψTs,reg = Ts,reg is defined as

in (5.12) and ρ̂s,i is obtained from the formula in Theorem 5.1 of §5.c for F (s,∞).
Indeed, as explained in the introduction, and according to Theorem 5.1, it remains
to justify the terms E −s/θ⊗Mφ

s,reg and, after a translation to the origin, it is enough
to consider the case where s = 0; in other words, one is lead to compute the formal
Fourier transform at ∞̂ of a regular minimal extension formal D-module; an easy
computation gives the desired formula.

Similarly, with obvious notation,

(5.18) [(FM)(∗Ŝ)]>1
c∞ ≃

⊕

i∈I>1
∞

El(ρ̂∞,i, ϕ̂∞,i, R̂∞,i).

If we denote by Z the last sum in (5.13) and by Ẑ the last sum in the formula
(̂5.13) obtained by applying (5.13) to FM , we find, assuming M = Mmin and
FM = (FM)min, and using (5.16):

Z =
∑

s∈S!{∞}

[
dim Z(Ts,reg) +

∑

i∈Is

ps,i dim Z(Ts,i)
]

+
∑

bs∈bS!{c∞}

[
dim Z(φTbs,reg) +

∑

i∈Ibs

p̂bs,i dim Z(Tbs,i)
]

+
∑

i∈I>1
∞

p∞,i dim Z(T∞,i)

Ẑ =
∑

s∈S!{∞}

[
dim Z(φTs,reg) +

∑

i∈Is

p̂s,i dim Z(Ts,i)
]

+
∑

bs∈bS!{c∞}

[
dim Z(Tbs,reg) +

∑

i∈Ibs

pbs,i dim Z(Tbs,i)
]

+
∑

i∈I>1
∞

p̂∞,i dim Z(T∞,i),

and, setting κs,reg = dim Ker(Ts,reg − Id), using that ps,i − p̂s,i = qs,i = q̂s,i if
s ∈ S ! {∞}, a corresponding equality at ŝ, and p∞,i + p̂∞,i = q∞,i = q̂∞,i,

(5.19) Z − Ẑ =
∑

s∈S!{∞}

[
κ2

s,reg +
∑

i∈Is

qs,i dim Z(Ts,i)
]

−
∑

bs∈bS!{c∞}

[
κ2
bs,reg +

∑

i∈Ibs

qbs,i dim Z(Tbs,i)
]

+
∑

i∈I>1
∞

(2p∞,i − q∞,i) dim Z(T∞,i).
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When M is irreducible, the relation χ− χ̂ = 0 given by Theorem 5.15 leads to
an expression of Z− Ẑ in terms not depending on the formal monodromies, that is,

Z − Ẑ = r2(#S − 2) − r̂2(#Ŝ − 2) −
∑

s∈S

irrs End(M (∗S)) +
∑

bs∈bS

irrbs End(M̂ (∗Ŝ)),

hence the desired relation, by combining with (5.19).

Remark 5.20. On the other hand, if we assume that Is, Ibs and I>1
∞ are all

empty (i.e., M regular at finite distance and having at t = ∞ a formal decomposi-
tion

⊕
bs∈bS!c∞(E bst⊗Mφ

bs,reg)), the previous computation can be used to give a proof
of Theorem 5.15, cf. [9].
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[9] A. Paiva, Systèmes locaux rigides et transformation de Fourier sur la sphère de Rie-
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