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Semicontinuity of the Spectrum at Infinity 

By A. NI~METHI and C. SABBAH 

Abstract. We prove that, for an analytic family of "weakly tame" regular functions 
on an affine manifold, the spectrum at infinity of each function of the family is 
semicontinuous in the sense of Varchenko. 

Introduction 

Let U be an affine manifold and let f : U ~ C be a nonconstant regular function 
with only isolated critical points in U. 

We say that f is cohomologically tame if there exists an extension -f :  X --> C 
of f with X quasiprojective and f proper, such that for any c 6 C, the support of  
the vanishing cycle sheaf of  the function f - c with coefficients in the sheaf j!Qu, 
or equivalently in the complex Rj ,  Qv, does not meet X - U (j  is the inclusion of  
U in X and j! denotes the extension by 0). In particular f is onto. This condition 
is satisfied if and only if j!Qv or equivalently Rj .Qv  is noncharacteristic with 
respect to 7 (see e.g. [10], Prop.-Def. 1.1), i.e., choosing an embedding of ~ into 
F : X ~ C with 9(; smooth, there are no points (x, dF(x)) in the characteristic 
variety (or microsupport, see [5]) Charj!(~v C T*X such that x ~ X - U and 
dF(x) # O. 

We say that f is M-tame ([9]) if for some closed embedding U C C u (i.e. 
for some presentation of  O(U) as a finite type C-algebra) and some a E C N, if 8 
denotes the distance function 8(x) = Ilx - all 2, then for any O > 0 there exists 
R(rl) > 0 such that, for any r > R(r/), the spheres 8(x) = r are transversal to 
f -~(t)  for It1 _< ~. 

M-tameness is a property analogous, in the affine case, to the existence of  the 
Milnor fibration of  hypersurface singularities. It emphasizes the behaviour of  f on 
the affine manifold U. Cohomological tameness is more algebraic and emphasizes 
the behaviour of  f at infinity for some compactification: there is only one "Milnor 
ball", namely U itself. The latter notion is only cohomological (with Q as coeffi- 
cients) but the former is topological. 

It is not clear whether one property is stronger than the other one. It is known 
that for polynomials on C n+l , cohomological tameness with respect to the standard 
projective compactification of  the fibers is equivalent to the so called Malgrange 
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condition ([10]), which in turn implies M-tameness. For instance, tame polynomi- 
als on C n+l in the sense of  Broughton [1] are both M-tame and cohomologically 
tame. Conversely, there exist polynomials which are both M-tame and cohomologi- 
cally tame (with respect to some compactification) but do not satisfy the Malgrange 
condition (i.e. are not cohomologically tame with respect to the standard projective 
compactification): many examples of  such polynomials have been constructed by 
L. P.~UNESCU and A. ZAHARIA. 

In the following we will call weakly tame a function which is either cohomo- 
logically tame or M-tame. Let us mention, as another example of a weakly tame 
function, the function induced on the affine smooth manifold U C C N by a linear 
pencil on ~ N,  the basis L C p ~ - l  of  which is transversal to a Whitney stratification 
of the closure of  U in ~N containing U as a stratum. 

Denote by # ( f )  the sum of the Milnor numbers of  f at its critical points. It can 
be decomposed as # ( f )  = Y~/3cQ v/3 ( f ) ,  where fl ~ v/3(f) denotes the integral 
valued function associated with the spectrum of f at infinity (see [11] for coho- 
mologically tame functions and see below w 1 for M-tame functions). It is known 
that this function satisfies v/3 = 0 for/3 r [0, dim U] (and for 13 r ]0, dim U[ if 

U = C n+l) and I)dimU_/3 = I)/3 (see loc. cit.). For any y 6 Q we put E y ( f )  = 

~/3clz,• v/3 ( f ) .  
Let now (S, 0) be the analytic germ of a smooth curve, let 7r : '/2 --+ S be a 

smooth affine morphism with smooth affine fibres '/2s :=  Jr -1 (s), and let f :  'U 
C be an analytic family of regular functions on '/2s. Assume that f~ : '/2s --+ C is 
weakly tame for any s 6 S. Then one has # ( f0 )  < # ( f s )  (s E S): indeed, let C be 
the critical locus of (f ,  zr) : '/2 --~ C x S; the assumption implies that C is locally 
a complete intersection curve and ( f ,  zr) is quasi-finite on it; thus # ( f0 )  = / z ' ( f 0  
where # '  denotes the sum over the critical points lying on the components C I of  C 
which intersect '/20 (and on which (f ,  Jr) is finite). 

The purpose of this note is to prove an analogue of the semicontinuity of  the 
spectrum of an isolated hypersurface singularity, a theorem proved by VARCHENKO 
[17] and STEENBRINK [15], namely 

Theorem.  Let f : '12 ~ C be an analytic family of  regular functions on ~lls. 
Assume that for any s E S the function fs : 'Us ~ C is weakly tame. Then for any 
y ~ Q w e h a v e  E• < Ez( f s ) .  

Throughout this note we use notation, conventions and results of  [11, 12]. In 
particular, we refer to the appendix of [12] for the convention concerning perverse 
functors. 

The proof is given in w and follows the ideas in [17] and [15]. In [4] a partial 
result for ( . )-polynomials  (defined in [3]) is obtained by a method which reduces to 
the theorem of Varchenko and Steenbrink. 

The first author thanks A. ZAHARIA for helpful discussions and the second au- 
thor thanks J. H. M. STEENBRINK for raising this problem to his attention. 
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1 M-tame functions 

We indicate in this section why the results of [11] for cohomologically tame func- 
tions apply as well to M-tame functions. The main points are Theorems 8.1, 10.1 
and Corollary 11.1 in [11], from which follow all the results in loc. cit. w In the 
following we assume that f is M-tame. 

The main ingredient in the proof of Theorem 8.1 in loc. cit. is the fact that R f ,  
commutes w i t h  ~ f - c  and (Pf-c o n  Qu for any c E C (see loc. cit. Cor. 8.4). In 
the case of M-tame functions this follows from the fact that for any disc D in C, 
there exists R0 > 0 such that for R > R0, putting B(R) = U A {6(x) < R}, the 
restriction morphism R f ,  Q f  ~(D) --+ Rf*QBRnf-~o)  is an isomorphism (which 

follows easily from the definition). Indeed, as the map f �9 BR N f - 1  (D) ~ D is 
proper, one may apply to it the commutation of 7zf_c, 4~f-c with R f , .  

Before proving the coherence of the Brieskorn lattice, let us prove that f+(O~ n) 
has regular holonomic cohomology and that the natural morphism (f+Ou) an 
f+(O~ n) is an isomorphism. 

The coherence of the cohomology of f+  (O~ n) as a ~ n - m o d u l e  is a direct corol- 

lary of [ 14], Cor. 8.1 by taking there for S a point, for Y a disc, f -  1 ( y )  for X, O~ n 
for ~ ,  the function 3 for (p and the constant sheaf Cu for F. Assumptions (i) and 
(ii) of loc. cit. are clearly satisfied and (iii) is the M-tameness condition. Kashi- 
wara's estimate for the characteristic variety shows that the cohomology is indeed 
holonomic. 

Let us quickly recall the regularity of f+(o~n). One has to show that for any 
c E C, if t is a local coordinate centered at c, there exists a C{t}(tOt)-submodule of 
the germ of f+(O~ n) at c, generating it as a C{t}(Ot)-module, and which is finitely 
generated as a C{t}-module. 

Let i f  : U ~ U • C be the inclusion of the graph and let p be the second pro- 
,~)an ' ' N an i f+Oh n as a ~ t : •  jection. Consider acoherent u• generating an 

module. We may now apply the same result with S = Y a disc, X = U • C, 
F = Cx and A,f = N an, ~0 = 3: outside of the critical points of f ,  the characteristic 
variety of N an is the relative conormal space to the map p restricted to the graph 
of f and the tameness condition gives (iii) in loc. cit. It follows that p+,N "an has 
o~n-coherent cohomology. 

A s  if+OaU n is regular holonomic, there exists such a n  N an which is stable by the 

action of tot (see e.g. [8]). The image of ~0(p+jq-an) in 0 an J( ( f+(O U )) will be the 
desired C { t } ( t Ot )- submodule. 

Let now f :  X --+ C be a smooth quasi-projective compactification of f and 
let j :  U ~ X be the inclusion. One has f+Ou = -f+(j+Ov),  ( f+Ou)  an = 
f +(j+Ou) an and f+ (O~)  = f +(Rj ,  Ou) an. The natural morphism f +(j+Ou) an 
--+ f + ( R j ,  Ou) an induces an isomorphism of the corresponding de Rham com- 

plexes as the analytic de Rham functor commutes with f +  and R f ,  (see e.g. [7], 
II.5.5) and because the holonomic ~x-module  j+Ou is regular by the Grothendieck 
comparison theorem. This natural morphism is then an isomorphism according to 
the Riemann-Hilbert correspondence in dimension 1. 
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Let us now prove the coherence of the Brieskorn lattice M0. Remark first that 
as U an is Stein, the object f+O~ n is the complex (ff2~ df),  where 

~k(uan)  is the space of  holomorphic k-forms on U an and d f  is the twisted differ- 
ential dfw = do) - d f  A ogOt. In order to prove the analogue of  [11], Th. 10.1, 
one first shows the o~n-coherence of the image M0 of  ~2 dim U (uan) in 3 r176  n. 
This can be done as in loc. cit. using the coherence for the direct image of relative 
submodules used above. 

Let then M0 be the image of  ~dim U (U) in o~~ We have M0 C F (C, A40)N 

o~~ and the latter term has finite type over C[t], hence so does M0. 
The proof of  the duality Theorem 11.1 of  loc. cit. remains valid in this context. 

[] 

2 Thom-Sebastiani theorem for the spectrum at infinity 

Proposition 1. If  f : U --> C, g : V --+ C are both M-tame (resp. both coho- 
mologically tame)functions on affine manifolds U, V, the Thom-Sebastiani sum 
f ~ g: U • V --~ C is also M-tame (resp. cohomologically tame). 

Remark. Let U = C n+l or U = (C*) n+l. A (Laurent) polynomial f :  U --~ C is 
tame ([1]) if for some compact K C U there exists e > 0 such that II0f(x)ll >_ e 
for x 9~ K. Such functions are cohomologicatly tame. Tameness is easily seen to 
be stable by Thom-Sebastiani sums, so the proposition is clear for tame (Laurent) 
polynomials. 

Prooffor M-tame functions. Let U be embedded in C M as a closed submanifold. 
Recall that f :  U ~ C i s  not M-tame if there exis tsx  ~ ~ ~ M _  U a n d a r e a l  
analytic path x : [0, el--+ X with x(0) = x ~ x(]0, el) C U, lims--,o f (x (s ) )  exists 

in C and such that for any s 6 ]0, e[ one has kerdf(x(s))  C kerd'3(x(s)) if d '  
denotes the holomorphic part of the differential. 

Assume that f , g  are M-tame but not h = f + g .  Choose a path z(s) = 
(x(s), y(s)) as above. Denote 3 the square of the distance function on C M, C N o r  

C m+u. Then 3(x(s)) does not remain bounded: otherwise f (x (s ) )  would remain 

so, as well as g(y(s)) because lim f (x (s ) )  + g(y(s)) exists in C; but y(s) does 

not remain bounded, and along y(s) one has kerdg(x(s)) C kerd'3(y(s)); this 

contradicts the M-tameness of  g. Analogously 3 (y (s)) does not remain bounded. 

Put x(s) = xosC~ + higher order terms and y(s) = yos ~ + higher order terms, 

with x0, Y0 r 0. Then it follows that ~,/3 < 0. Now dh(z(s)) _ dh(z(s)) �9 z'(s) ds 
and the inclusion kerdh(z(s)) C kerd'3(z(s)) shows that there exists )~(s) with 

dh(z(s)) .  ~ = i.(s)Y-~i-zi(s)~i for all ~ tangent to U x V. Choose ~ = z'(s) and 

deduce that dh(z(s)) /.(s) (or IIx0112 s 2~-1 + 13 IlYoll 2 s 2 ~ - l ) +  higher order terms. ds 
By assumption h(x(s)) has a finite limit. The same is then clearly true for 

dh(z(s)) dh(z(s)) Assume for instance that ~ < ft. The order of  ~ is therefore equal 
ds  " 

to ord(L) + 2~ - 1, i.e. to the order of  ~ ,  and this implies that df~s)) has a 

finite limit, as well as f (x(s) ) .  This contradicts the M-tameness of f .  [] 
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Prooffor cohomologically tame functions. Let F :  X ~ ~1 and G : Y --~ ~l be 
compactifications of  f ,  g, such that f (resp. g) is cohomologically tame with respect 
to X :=  F - I ( c )  (resp. Y :=  G-1(C)), and let Z C X x Y x C be the closure of  
{(x, y, w) c U x V x C ] f ( x )  + g(y) = w}. Then the map H :  Z ~ C induced 
by the third projection is a quasi-projective compactification of f �9 g. Let us show 
that f ~ g is cohomologically tame with respect to Z. 

Consider first the restriction of  H to the inverse image of C • C by the projection 
Z ~ X- x Y ~ I? 1 x ~J, namely the map F @ G  �9 X x Y --+ C. Embed 
F :  X --+ C in F r" X r --+ C with X r smooth quasi-projective and X closed in X r, 
and the same for G. Let Y', ~ be the direct image sheaves j! 'Qu, j (Qv  where now 
f :  U ~ X r, V ~ yr denotes the locally closed immersion. 

Cohomological tameness of  f also means that (see [1 l], w if we consider the 

map T* F r : U*T*C ~ T*X r, the set T* U - J  (Char 3 v )  C U*T*C is contained in 
the zero section when restricted to the complement of the critical set Crit f of  f on 
U, where Char Y" denotes the characteristic variety (or microsupport, see e.g. [5]) 
of 3 v.  

From the inclusion Charj!rQuxv C CharY" • Char~  ([5], Prop. 5.4.1) we de- 

duce that the space T*(F  r @ Gr) - l (Char  j (Qu • v) is contained in the zero section 
T~C when restricted to U x V - Cr i t ( f  @ g) = U x V - Crit f • Crit g. 

Remark now that the projection of Z in/?l x ~1 does not cut {oo} x C U C x {~},  
so we may restrict to small discs D, A near oo in p1 and consider H" ZIO• -+ C. 
Put F = 1/~p, G = 1/~p in a local coordinate on D, A, so that ZID• is defined by 
~o(x) + ~p(y) = w~o(x)~p(y). Let us fix w ~ �9 (2. We will choose D small enough 
so that 1 - w~o(x) is invertible for w in a neighbourhood of  w ~ and ~p(x) �9 D. 

Let X ~ X be a resolution of singularities such that .~ - U is a divisor with 
normal crossings and let Z be defined as Z in X x Y x C. The natural map Z ~ Z is 
then proper. Let ~'denote the inclusion U x V ~ Z. It is then ~ o u g h  to show that 
~ 'Qu•  has no vanishing cycles with respect to the function H :  ZID• ~ C at 
any point of Z over ( ~ ,  c~, w ~ �9 D x A x C: indeed, this will imply that J!Qv• 
has no vanishing cycles with respect to H at any point of  Z over (oo, c~, w~ as 
the vanishing cycle functor commutes with the direct image functor by a proper 
morphism. 

If (x ~ yO, w o) is such a point, take coordinates (x, x r, x") on .g near x ~ such 
that ~'(x, x' ,  x rr) = x m, where m is a multi-index, and U is defined by the non 
vanishing of the two sets of  variables x, x'.  Then Z~ID• is locally defined by 
~p(y) = xm/(1 - wxm), so the map H" ZIO• ~ C (projection on the w variable) 
is locally analytically trivial by an isomorphism compatible with the decomposition 
induced by the natural stratification of X and the decomposition V, Y -  V of Y (take 
the new coordinate Yl such that ~'1 ~ = x ~  1/(1 - wxm)). Consequently, ~.(~v• v 

has no vanishing cycles with respect to H at such a point. [] 

Let us now consider the spectrum. Recall that if v', v":  Q --+ 1~ are two integral 
valued functions, we put (v ' *  v")r -- )-~4e+~"=~ v~,v~,,. 
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Proposition 2. Assume that f ,  g, f (9 g are weakly tame. Then the spectrum at 
infinity o f f  (9 g is given by v ( f  ~ g) = v ( f )  * v(g). 

Proof According to [11], Prop. 3.7 and the symmetry of the functions v ( f )  and 
v(g), the relation v ( f  ~ g) = v ( f ) .  v (g) is a consequence of the lemma below. [] 

We use notation of loc. cit.: 

L e m m a  1. Assume that f ,  g, f ~ g are weakly tame. Then the Brieskorn lattices 
satisfy G o ( f  @ g) "~ Go( f )  | Go(g). 

Proof Recall that the complex (f2 "+dim u (U) [0, 0 -  I ]e-f/o, d) has nonzero coho- 
mology in degree 0 at most, as f is weakly tame, and the Gauss-Manin system 
G ( f )  of f is by definition this cohomology space. We clearly have G ( f  ~ g) = 
G ( f )  | G (g), as this is true at the level of complexes. The isomorphism of 
C[0]-modules 

~dimU (u)[O]e-'f/O | ~dimV(v)[O]e-g/O ~) ~dimU• x V)[O]e -(f| 
c[0] 

induces a surjective morphism of C[O]-modules Go(f )  | Go(g) --+ G o ( f  (9 g) 
and, as both terms are C[O]-free of rank # ( f ) # ( g )  (weak tameness of f ,  g, f (9 g), 
this morphism is an isomorphism (recall that Go( f )  denotes the image of ~2 dim u (U) 
[O]e - f /~  in G ( f )  and that it is a free C[0]-module of  rank # ( f ) ,  see [11]). [] 

Let k _> 2 and f : U --+ C be weakly tame. Let cr : C ~ C be the multiplication 
by exp(2izr / k ). Then cr induces an automorphism or*: Go( f  @ z k) ~ G o ( f  @ z k) 
of finite order k and we put Go( f  ~ zk) (e) = ker(cr* - e 2ien/k ld). For # E Q 
we define v#(Go( f  ~ zk) (e)) in an evident way, as well as E•  @ zk) (e)) for 
y E Q. From the lemma we get: 

Corollary 1. ([18]) We have Go( f  �9 z k) k-I ~ zk)(~) : G e = 0 G 0 ( f  . For any fl E Q 
we have 

v/3(Go(f �9 zk) (e)) = v # - u k ( f )  

and for any V E Q we have 

E •  ~3 zk) (~)) = E• 

3 Positivity 

Let f : U --+ C be a weakly tame function. We will consider the sheaves on C 
with fiber at c E C equal to H i (U, f -  1 (c); Q). More precisely, let k : Wf ~ U x C 
be the open embedding complementary to g raph( f )  C U •  and let p :  U x C  --+ C 
be the projection. Let a ~ = Rp.k!PQwr where PQwr = Qwy[dim Wf]. 

L e m m a  2. For c E C we have j#i ~: _ Hi+dimU+l (U, f - I  (c); Q) and this space 
is equal to 0 if i 7~ -1 ,  hence ~ has cohomology in degree -1  only. Moreover 
has perverse cohomology in degree 0 only. 
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Proof Consider the triangle 

R f ,  PQu ~ Rp,k!PQw r > R p ,  pQUxC +1> . 

Use that R f ,  commutes with the base change by {c} ~ C (see [11], Cor. 8.4) and 
that R p ,  does so for the third term and conclude that R p ,  does so for the second 
term to get the first statement. The fibre at c of oTfi,,  "~ is thus equal t o  H i+dimU+l 
(U, f l(c); Q). Arguments analogous to the ones of  [11], Lemma 8.5 give that 
Mi.,~ = 0 for i _> 0 and are constant sheaves for i < - 1 .  Using Leray spectral 
sequence and the fact that H*(U x C, graph(f) ;  Q) = 0 one gets o7"~i ,~" = 0 for i < 
- -  1. In order to get the perversity statement, it is enough to show that for each c 6 C 
the complexes P~t_c ~ and Pfbt_c:K have cohomology in degree 0 only. As U is, 
generically on C, a perverse sheaf (i.e. a locally constant sheaf up to a shift by one), 
the result is true for PO. On the other hand we have Pcbt_c 5~ = Pc~t_cRf, PQu 
and weak tameness implies that this complex has cohomology in degree 0 only (see 
[ 11 ], for .  8.4). [] 

Consider now a family f "  '11 ---> C, with rr '  '1/--+ S a smooth affine morphism 
over a germ of curve S with coordinate s, and denote k : Wf  ~ '/2 • C the comple- 
mentary inclusion of the graph of f .  We still denote Y" = R(p,  yr),k!PQwf which 
is now a complex on C x S. 

L e m m a  3. Assume that fo : ~lo --+ C is weakly tame. Then for m < 0 the variation 
mapping P~sP oT~m 3 z" ~ Pl~tsP oT~m,~" is an isomorphism and for m = 0 we have an 
exact sequence 

0 > PgpsP07~02~" > PlpsPOT~OJ:" > PoT~OPi;~ > 0 

where io denotes the inclusion {0} ~ S. 

Proof Recall that we denote here, for a complex ~, P i -  1 ~ = i -  1 ~ [_  1 ] and P i!~ -= 
i!~[1], where i -1 and i ! are the standard functors of  sheaf theory. As rr" '/2 ~ S 

is smooth, we have pi~ P~  �9 = - = t~-J(0 ) Q ~ •  = ~7r-I (0)  "~'U Plzr}I(o)PQ'[I PQ'[/0 and p'! P 

Pi~l(o)PQ~xC = PQ~oxC, so 

p i !  t .~pc~ . . . .  
�9 ~r-I(O) r~. ~ W r  = Ptrcll(o)k!PQw! = k!Ptrrl-I(o) PQwf = k!PQw! 0 

and PioR( p, zr),k!PQw f = Rp,k!PQw!o is perverse, according to the previous 

lemma. The lemma follows now from the long exact sequence in perverse coho- 
mology associated with the triangle 

p .t +1 Pr > PO.,.:Y ~ lbS~ 

the fact that PoT~m.~ :" = 0 for m > 0 and the fact that PCs and POs commute with 
taking perverse cohomology (see [2]). [] 

Keep notation as above and for c 6 C let ~ .  be the inverse image of  .,r by 
the inclusion {c} x S ~ C x S shifted by - 1 .  Then for c general enough this 
inclusion is noncharacteristic for :F" and PoT~m(,~e) = (Poq~mo~')c. For such a c we 
have -.~c = Rzr, k! P Qz t -  If =,'1 ; the cohomology of  the fibre at s 7~ 0 of this complex 
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is the relative cohomology H ' ( V s ,  fs  1 (C); Q). If f0 is weakly tame, the results of 
p.T 

the previous lemma hold for Uc so that z6~. has cohomology in degree 0 only, this 

cohomology being the relative cohomology H dim Vo (~0, f o l  (c); Q). 

Positivity Lemma. Assume that for  any s ~ S the function f~ : ~ s  --+ C is weakly 
tame. Then for  c E C general enough, ~ .  is a perverse sheaf on S and we have an 

exact sequence o f  vector spaces 

0 > Pq~sJr > P~s2F'c > Pi;5~c > O. 

Proof By noncharacteristic restriction, we may replace Y" with ~,  in the previous 
lemma. As f~ is weakly tame for any s 6 S - {0}, the perverse sheaf p3~ms~, is 
supported at s = 0 for m < 0. Hence P$sP3Cms~c = 0, and by the previous lemma 
we also have PCPsP3r = 0, so p3cm~. = 0 for m < 0 and a~. = PM~ The 
previous lemma then shows that PioSC'c is also perverse and gives the desired exact 
sequence. [] 

4 Proof of the theorem 

Let V be any smooth quasi-projective manifold of pure dimension dim V, let Z 
be a closed subvariety and let F ~ H k ( V ,  Z; C) be the (decreasing) Hodge-Deligne 
filtration on the cohomology spaces of the pair (V, Z). For q 6 N, let 

XDe~(V, Z; q) de.=f Z ( _ I ) i  dim grqt) HdimV- i (v ,  Z; C); 

i 

(DeI(V, Z; S) dm-ef I I ( S  -~- dim V - q)XDel(V,Z;q).  

q 

If Z is a hypersurface of V, we have XDel(V, Z; q) = XDd(V; q) + XDeI(Z; q). 
If (V, Z) comes equipped with an automorphism ~ of finite order k, the Hodge 

filtration on the cohomology splits with respect to the eigenvalues e 2ine/k of o-* and 
r(O. we can define X~ee)l(V, Z; q) and ~Del(V, Z; S) for each g between 0 and k - 1. 

For any R 6 C(S) with zeros and poles in Q (or in ~) and for F 6 Q, put 

i) deg~ R(S): sum of the degrees of the terms (S + fl) in R with/3 6 [7, Y + 1 [; 

ii) deg~ R(S): sum of the degrees of the terms (S +/3) in R with/3 6 ]F, F + 1]. 

If R has only integral poles or zeros, deg~ R(S)  (resp. deg~ R(S))  is the degree 
of S + F (resp. S + F + 1) in R, also denoted degs+ v R (resp. degs+y+l R). 

In the following we use notation of [12], w 

Proposition 3. Let f :  'U --+ C be a one parameter family o f  regular functions on 
a smooth affine pure dimensional family 7r : ~ --+ S, such that each f~ : 'Us ~ C 
is weakly tame. Then we have for  an), F 6 Z, k >_ 2, 0 < • < k - 1 and c c C 
general enough, putting q = dim 'Us - 1 - F, 

(g) , ~  
E y - U k ( L )  - Ev -g /k ( fo )  = ZDel t s x C, (L  G zk) - l (c) ;  q) 

- X(Dee)l('U0 x C, (J]) @ zk) - j  (c); q). 
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�9 ~ b { S P , l , ( G n ( l ~ O z k ) ( e )  S)toOtJs~Z-F-,;a ) Proof Remark first that the left-hand side can be written degi, ~ g ~ : i ~ , ~ i i ~ i ; ~ ]  , - - ~ , - , , , ~ - ,  ~, ~)' 

as follows from the last corollary in w 
Let us show first that, for q = dim Uo - 1 - y, we have 

deg~ ( SPo (Go(L) ;  S) 
\ S P 0 ( G o ( f o ) ;  S ) )  = XDel(~s, f~-I (c); q) -- XOel(~0, f0-1 (C); q). (1) 

If f : U --+ C is a weakly tame regular function on a smooth a n n e  manifold, we 
have ([11], Cor. 13.6) 

SPo(G,  Go; S) = SP4~(Pgtl/tRf, PCu; S) �9 (Del(U; S) (2) 

and taking degrees we get, for y c Q 

]~y(f) = deg~ SP0(G,  Go; S) 

= deg~ SPea(POurRf.PCu; S) + deg~ ~'DeI(U; S) 

= degff SPo(POI/tRf,  PCu; S) + deg~ (Del(U; S). 

Now, from the theory of mixed Hodge modules [13] (or the property of  the limit 
mixed Hodge structure at infinity, as constructed by Steenbrink and Zucker [16]) we 
know that for y 6 Z we have 

degff SP~(P~I/ tRf ,  PCu; S) = degs+ Y (Del(f  - I  (c); S) 

for c general enough�9 Equality (1) follows easily�9 
We may now argue as in [17]: we may apply the previous argument to f ~ z ~ 

which is weakly tame and we need to show that all identifications made to get (2) 
remain true on the e2i'~g/k-eigenspaces. We will indicate the main steps, following 
the proofs in [ 12, 1 1 ]. 

Put g = f @ z ~" V = U x C -+ C and choose a projective compactification 
of V on which g extends as G" ~ -+ I? l and ~ extends as an automorphism 

which commutes with G. So ~ induces an automorphism c~ of Y = G -1 (C) which 
commutes with G and with j : V ~ Y. Using an equivariant version of Hironaka's 
resolution theorem of singularities, we may also assume that ~( - V is a divisor with 
normal crossings�9 

We have a natural isomorphism Q v  -~ cr, Qv .  We deduce from it a lifting 

)v ~ : Rj ,  PQv > ~ ,Rj ,  PQ v in the category Perv(Y) of Q-perverse sheaves on 
Y, which is filtered with respect to the weight filtration WoRj, PQv . 

Let ~r still denote the automorphism ~ x Id of  ~ x / t  I , where ]1 ~ denotes the a n n e  
line with coordinate r (the Fourier plane). We introduced in [12], w functors 

Y'c, .,e-jr : Perv(Y) --+ Perv(~ x ~I ). One verifies that both functors commute with 
(7",�9 

In an analogous way one verifies that ~,  commutes with the nearby and vanishing 
cycles functors Pl/ t l /g  , Pl]r.c,l, Pqo r and the corresponding monodromies. 
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The isomorphism Pq~r o Y'c ~- Pgtl/t of [12], Cor. 1.13 being functorial, we get 
a commutative diagram 

POr2F'GRj.PQv ~ P ~ I / G R j . P Q v  

l' ~) r ,~G ( )~a ) 1 I P ~ I / G ( )~ c~ ) 

PCbrJe'G~.Rj, P ~ v  ~ P ~ I / G C r . R j . P ~ v  

and the proof of [12], Cor. 1.13 shows that the isomorphism P~b r o a~G _~ Pgzl/t is 
compatible with the one expressing the commutation with cr,, because both act on 
different sets of variables. We finally get a commutative diagram of liftings 

PgprJe'GRj, PQv ,-~ P~I/GRj, PQv 

~1 1 ~/c 

cr, P~rJ~'GRj, P~v ~ ~,P~I/GRj, PQv 

and the fact that these liftings are morphisms of mixed Hodge modules can be ob- 
tained by a local computation on ~. As indicated above, this is sufficient to give the 
proposition. [] 

End of  the proof  of  the theorem. Apply the positivity lemma of  w to the family f @  
z k (recall from w that fs  �9 z k is weakly tame for any s 6 S). The surjective 
morphism given by the lemma splits with respect to the eigenspaces of  )~ and is 
strict with respect to the Hodge filtrations as it is induced by a morphism of mixed 
Hodge modules (see [13]). Using once more that the Hodge numbers of  P~s are 
equal to the ones of  the general fibre at s 7~ 0, we get that lor any q ~ Z we have 

Z~Dee)l('//s x C, (fs ~3 zk)- l (e) ;  q) > X(ge)l('~J~o x C, (fo G zk)- l (c) ;  q) 

so the right-hand side in the proposition is > 0. [] 
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