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Abstract. We show that, under a condition called minimality, if the Stokes matrix of

a connection with a pole of order two and no ramification gives rise, when added to
its adjoint, to a positive semi-definite Hermitian form, then the associated integrable

twistor structure (or TERP structure, or non-commutative Hodge structure) is pure

and polarized.
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Introduction

It is relatively easy to produce examples of variations of polarized Hodge structures

on the complement A1rC of a finite set C in the complex affine line A1. The simplest

ones consist of variations of type (0, 0), that is, flat holomorphic bundles on A1 r C

with a flat Hermitian metric, together with a flat real (resp. rational, resp. integral)

structure, depending on whether the Hodge structures are real (resp. rational,
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resp. integral). Equivalently, such variations are in one-to-one correspondence

with R- (resp. Q-, resp. Z-) local systems on A1rC whose monodromy representation

takes values in the unitary group (up to conjugation). Other classical variations

arise whenever one is given a projective morphism f : X → A1 on a smooth complex

quasi-projective variety X and C is the set of critical values of f , as Gauss-Manin

systems of f .

Recently, a generalization of the notion of variation of polarized Hodge structures

has been considered under the names of variation of integrable polarized twistor struc-

ture (generalizing complex variations of polarized Hodge structures, cf. [28], [26]),

variations of pure polarized TERP structures (generalizing real variations of polar-

ized Hodge structures, cf. [9, 11, 13]), and variations of non-commutative Hodge

structures (generalizing rational variations of polarized Hodge structures, cf. [20]);

the case with a Z-structure has also been considered in [15].

The interest of such generalizations comes from the following observations.

(1) While variations of polarized Hodge structures degenerate with regular singu-

larities, the previous generalizations may degenerate with irregular singularities, and

thus can extend the scope of the theory. In particular, Fourier-Laplace transformation

can be extended to such objects (cf. [30, 32]) and they form part of the larger family

of wild twistor D-modules (cf. [25] and also [31]).

(2) Mirror symmetry produces such structures in quantum cohomology (cf. [3, 2,

4, 16].

(3) Such structures are expected to occur in non-commutative geometry (cf. [20]

and [17]), and this explains the name chosen by the authors of [20].

(4) These structures are convenient to adapt the techniques of classical Hodge

theory (in particular period mappings) to the local analytic settings attached to iso-

lated singularities of complex hypersurfaces (classifying spaces of Brieskorn lattices,

cf. [8, 9, 10, 11, 12, 14, 13]).

An integrable twistor structure consists of a germ of holomorphic bundle on a disc

with coordinate z (say), equipped with

• a meromorphic connection having a pole of order at most two at the origin and

no other pole,
• a nondegenerate bilinear pairing between the underlying local system on {z 6= 0}

and the pull back by ι : z 7→ −z of its conjugate local system which satisfies a skew-

Hermitian property (we call such a pairing a ι-skew-Hermitian pairing on the local

system).

These data allow one to construct in a natural way (twistor gluing) a holomorphic

vector bundle on P1. When this bundle is trivial, we say (cf. [33]) that the twistor

structure is pure of weight 0. The construction then equips the space of global sections

of this bundle with a nondegenerate Hermitian pairing. If this pairing is positive

definite, we say that the pure twistor structure is polarized. In the following, “pure

and polarized” will usually mean “pure of weight 0” and polarized.
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The Riemann-Hilbert correspondence for meromorphic connections with slope one

(as only positive slope) and no ramification (that we will call below of exponential

type, like in [20], cf. e.g. [32, Lemma 1.5] for the relation with regularity after Laplace

transformation), enriched with such a pairing, allows one to encode the data of the

meromorphic bundle and the pairing in a block-lower triangular matrix Σ (the unipo-

tent Stokes matrix multiplied by the “square root” of the formal monodromy) with

invertible diagonal blocks and a set of exponential factors. It remains to choose,

within the meromorphic bundle, a holomorphic bundle on which the connection has

a pole of order at most two. If the connection is of exponential type, a canonical

holomorphic bundle is provided by the Deligne-Malgrange lattice (with the choice

(0, 1] for the real part of the eigenvalues of the residues, cf. §1.d). Therefore, such a

matrix Σ also determines the Deligne-Malgrange lattice.

Our main result (Theorem 5.9) answers Conjecture 10.2 in [11]: if an arbitrary

set of exponential factors is given and if Σ as above is such that Σ + tΣ is positive

semi-definite and satisfies a property called minimality (cf. Definition 2.10), then the

integrable twistor structure which they determine (with the Deligne-Malgrange lat-

tice) is pure of weight 0 and polarized. In fact, the statement that we give slightly

relaxes this minimality property. Note that if Σ is real (resp. rational), the corre-

sponding integrable twistor structure is then a pure polarized TERP structure in the

sense of [9] (resp. a non-commutative Hodge structure in the sense of [20]).

The question of how to compute as explicitly as possible the ‘new supersymmetric

index’ of Cecotti and Vafa [2] for such a polarized pure twistor structure remains open

(cf. [9, 28, 32, 26] for the definition and some properties in the present setting).

The proof of Theorem 5.9 consists in showing that the integrable twistor struc-

ture determined by Σ is nothing but the twistor structure associated to the Laplace

transform of a regular holonomic module with a flat Hermitian form on its smooth

part. We essentially identify the restriction of this Hermitian form to the fibre at

some general point with the form defined by Σ + tΣ. If it is positive definite, then the

flat bundle has a Hermitian metric, and it follows from [30] that the twistor structure

corresponding to the Fourier-Laplace transform is pure of weight 0 and polarized.

We use the algebraic/analytic version of the Laplace transformation, as it is simpler

to prove the Fourier inversion formula in this setting. A topological version of the

Laplace transformation (homological with Lefschetz thimbles or cohomological like in

[20] and including the Stokes structure) also exists, but we did not find a complete

reference for the corresponding Fourier inversion formula in this purely topological

setting.

1. Polarized pure twistor structure attached to a flat unitary bundle

In this section, we will recall some of the results of [30] in the particular case of a

variation of polarized pure Hodge structure of type (0, 0) (flat unitary bundle). The

consequence of these results, given by Corollary 1.5, will be our main tool for proving

Theorem 5.9.
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1.a. Sesquilinear pairings on C[t]〈∂t〉-modules. Let A1
t be the complex affine

line with coordinate t and let C = {c1, . . . , cr} ⊂ A1
t be a finite set of points. We

denote by C[t]〈∂t〉 the Weyl algebra of the variable t, by DP1 the sheaf of holomor-

phic differential operators on P1, and by DP1(∗∞) its localization at infinity, so that

C[t]〈∂t〉 = Γ(P1,DP1(∗∞)). Recall that the classical Riemann-Hilbert correspondence

gives an equivalence between the following categories (1)–(3), and an extension of it to

D-modules together with a GAGA argument gives the equivalence with (4) and (5):

(1) Locally constant sheaves V of finite dimensional C-vector spaces on A1
t r C

(that we call local systems for short),

(2) holomorphic flat bundles with connection (V,∇) on A1
t r C,

(3) locally free OP1(∗C ∪ {∞})-modules M̃ with regular singular connection,

(4) regular holonomic DP1-modules M with singularities at C ∪ {∞}, which are

minimal extensions at C (i.e., have neither sub nor quotient module supported on C)

and maximal extensions at ∞ (i.e., are DP1(∗∞)-modules),

(5) regular holonomic C[t]〈∂t〉-modules M with singularities at C and which have

neither sub nor quotient modules supported on C.

This correspondence extends to a correspondence with sesquilinear pairing as fol-

lows. Let S ′(A1
t) be the Schwartz space of tempered distributions on A1

t. This is

the space of global sections of the sheaf Dbmod∞t

P1
t

on P1
t of distributions on A1

t which

have moderate growth at infinity (on any open set U of P1
t , its space of sections is

the dual of the space of C∞ functions with compact support on U having rapid de-

cay at infinity; it can be regarded as the quotient of the sheaf of distributions on P1
t

modulo distributions supported at infinity and is also equal to the localized sheaf

OP1(∗∞)⊗OP1
DbP1

t
, according to the division property of distributions by holomor-

phic functions). We will also consider the sheaf DbmodC∪∞t

P1
t

on P1
t of distributions

on A1
t r C having moderate growth at C ∪ {∞t}.

Then, any sesquilinear pairing hB : V ′ ⊗C V ′′ → CA1trC between the local sys-

tems V ′ and V ′′ (where V ′′ denotes the conjugate local system and “sesquilinear”

means that hB is a C-linear morphism) induces in a unique way a sesquilinear pair-

ing h on the minimal extensions taking values in the Schwartz space of tempered

distributions on A1
t and which is linear with respect to the natural C[t]〈∂t〉⊗CC[t]〈∂t〉-

action on both the source and the target. Indeed, it is easy to extend hB as a ∇-flat

sesquilinear pairing h : V ′ ⊗C V
′′ → C∞A1trC

, i.e., which satisfies

h(∇v′, v′′) = ∂h(v′, v′′) and h(v′,∇v′′) = ∂h(v′, v′′)

for all local sections v′, v′′ of V ′, V ′′. Since any local meromorphic basis of M̃ can

be expressed with coefficients having moderate growth in any basis of local horizon-

tal sections (according to the regularity of the connection), the pairing extends as a

sesquilinear pairing between M̃ ′ and the conjugate of M̃ ′′ taking values in the sheaf

of distributions on P1
t having moderate growth at C ∪ {∞t} (sesquilinearity means

DP1
t
(∗∞t)⊗DP1

t
(∗∞t)-linearity). The latter induces such a pairing between the min-

imal extensions M ′,M ′′ with values in DbmodC∪∞t

P1
t

. A local inspection of the values
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of this pairing near the points of C shows that it can be canonically lifted as a pairing

with values in the sheaf on P1
t of distributions on A1

t with moderate growth at infin-

ity. Taking global sections on P1
t gives a sesquilinear pairing h : M ′⊗M ′′ → S ′(A1

t).

Going in the other direction from M to V is easier via the de Rham functor, and we

denote by hDR the corresponding form.

Let h : M ′⊗CM
′′ → S ′(A1

t) be a sesquilinear pairing between holonomic C[t]〈∂t〉-
modules. We can view h as a C[t]〈∂t〉-linear morphismM ′ → HomC[t]〈∂t〉(M

′′,S ′(A1
t)),

where the latter module is equipped with the C[t]〈∂t〉-module structure coming from

that on S ′(A1
t). It is known (but not used now) that HomC[t]〈∂t〉(M

′′,S ′(A1
t))

is also a holonomic C[t]〈∂t〉-module (cf. [27, Cor. II.3.4.2]). We will say that h is

nondegenerate if it induces an isomorphism M ′
∼−→ HomC[t]〈∂t〉(M

′′,S ′(A1
t)). If

M ′ = M ′′, the definition of “Hermitian” is the obvious one.

Similarly, one can define the notion of “nondegenerate” and “Hermitian” at all

steps of the Riemann-Hilbert correspondence above. It is easy to see that if h :

M ′ ⊗C M
′′ → S ′(A1

t) is nondegenerate, then so is hDR : V ′ ⊗ V ′′ → CA1trC (by

sheafifying the morphism M ′ → HomC[t]〈∂t〉(M
′′,S ′(A1

t)) and restricting to A1
t rC).

The converse also holds, but we will not need it in this article (in a special case the

result follows from Lemma 5.6 below).

Let us also notice that, if a C[t]〈∂t〉-module M has regular singularities at C∪{∞}
and is equipped with a nondegenerate sesquilinear pairing h, then M is a mini-

mal extension at its singularity set C if and only if M has no submodule sup-

ported by C (a quotient module supported by C would produce a submodule of

HomC[t]〈∂t〉(M,S ′(A1
t)) 'M supported by C).

Lastly, we remark that if h is Hermitian and nondegenerate on M , it is so on V

(and the connection on V is the holomorphic part of the Chern connection of h), and

then it is positive definite at one fibre of V if and only if it is so at any fibre of V

(because A1
t r C is connected). In such a case, V is a holomorphic vector bundle

on A1
t r C with a flat Hermitian metric h. By the Riemann-Hilbert correspondence

(taking horizontal sections), it corresponds to a locally constant sheaf V of complex

vector spaces on A1
t r C whose monodromy is unitary, that is, whose associated

monodromy representation takes values, up to conjugation, in the unitary group. In

particular the representation is semi-simple and, going back through the Riemann-

Hilbert correspondence, the corresponding C[t]〈∂t〉-module M is semi-simple.

1.b. Laplace transformation and sesquilinear pairings. Let M be a holonomic

C[t]〈∂t〉-module and let N = FM be its Laplace transform with kernel e−tτ : by

definition, FM coincides with M as a C-vector space and the C[τ ]〈∂τ 〉 action is defined

by τ · m = ∂tm, ∂τm = −tm. It is known (cf. e.g. [22, Chap. V]) that Laplace

transformation (also called Fourier transformation in the literature) gives a one-to-one

correspondence between regular holonomic C[t]〈∂t〉-modules and holonomic C[τ ]〈∂τ 〉-
modules with a regular singularity at τ = 0 and an irregular one of exponential type

at infinity, in the following sense. Let us set G = C[τ, τ−1] ⊗C[τ ]
FM and z = τ−1.

This is a free C[τ, τ−1]-module of finite rank equipped with a connection. Then
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Ĝ := C[[z]]⊗C[z] G is a free C((z))-vector space with connection, isomorphic to⊕
c∈C

(E−c/z ⊗ R̂c)

(called the Levelt-Turrittin decomposition), where Rc has a regular connection and

E−c/z := (C[[z]], d− cd(1/z)).

We will denote by A1
t (resp. A1

τ ) the affine line with coordinate t (resp. τ) and by

Ft : S ′(A1
t) −→ S ′(A1

τ )

the Fourier transformation of tempered distributions with kernel etτ−tτ i
2πdt ∧ dt.

Recall that, given a function χ(τ) in the Schwartz space S (A1
τ ) (i.e., χ(τ) C∞,

rapidly decaying as well as all its derivatives when τ →∞), we set ψ = χ(τ)dτ ∧ dτ
and, for T ∈ S ′(A1

t),

〈FtT, ψ(τ)〉 := 〈T, (Fτψ) i
2πdt ∧ dt〉, with (Fτψ)(t) =

∫
A1τ
etτ−tτψ(τ) ∈ S (A1

t).

The Fourier transform Ft is an isomorphism between S ′(A1
t) and S ′(A1

τ ). More-

over, defining similarly Fτ : S ′(A1
τ ) → S ′(A1

t) with the kernel etτ−tτ i
2πdτ ∧ dτ , we

have

F−1
t = F τ

(where F τ has kernel etτ−tτ i
2πdτ ∧dτ). Indeed, it is enough to check the dual relation

for the Fourier transform of functions in the Schwartz classes S (A1
t) and S (A1

τ ). Let

us set t = (x + iy)/
√

2 and τ = (ξ + iη)/
√

2. Let ϕ = χ(x, y)dx ∧ dy with χ in the

Schwartz class on A1
t. If we set s = (u+ iv)/

√
2, the assertion amounts to[ ∫

A1τ
etτ−tτ

(∫
A1t
esτ−sτϕ(u, v)

)
i

2πdτ ∧ dτ
]
i

2πdt ∧ dt = ϕ(x, y),

or equivalently

1

4π2

∫
A1τ
e−i(xη+yξ)

(∫
A1t
ei(uη+vξ)χ(u, v)du ∧ dv

)
dξ ∧ dη = χ(x, y).

Here, A1 is oriented with its complex structure, so that if we denote by du · dv the

Lebesgue measure and |A1| = R2 without orientation, we have
∫
A1t
• du∧dv =

∫
|A1t|

• du·
dv, so our assertion reduces to the standard Fourier inversion formula for functions

in the Schwartz class of R2.

It is well-known that Ft and F τ are linear with respect to the C[t]〈∂t〉 ⊗C C[t]〈∂t〉-
action on S ′(A1

t) and the C[τ ]〈∂τ 〉 ⊗C C[τ ]〈∂τ 〉-action on S ′(A1
τ ) via the correspon-

dence ∂t ↔ τ , t↔ −∂τ defined above.

If h : M ′ ⊗C M
′′ → S ′(A1

t) is a sesquilinear pairing, we define the Fourier trans-

form Fh as the composition Ft ◦h. In order to interpret Fh as a C[τ ]〈∂τ 〉⊗CC[τ ]〈∂τ 〉-
linear morphism, and thus to keep sesquilinearity, we have to use the kernels e−tτ

on M ′ and etτ on M ′′, that is, to regard Fh as a pairing from the Laplace trans-

form N ′ of M ′ and the conjugate of the inverse Laplace transform of M ′′, which is

nothing but ι+N ′′, if we denote by ι the involution τ 7→ −τ . We therefore view Fh as

sesquilinear pairing N ′ ⊗C ι
+N ′′ → S ′(A1

τ ). Note that we recover h as F τFth. We
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will also set h := i
2π
Fh. It is important to notice that h (or Fh) is nondegenerate if

and only if h is so. This follows from the fact that Ft is an isomorphism.

We also remark that, if M ′ = M ′′ = M , h is Hermitian if and only if Fh is

ι-Hermitian. Indeed, ι induces an involution ι∗ : S ′(A1
τ )

∼−→ S ′(A1
τ ) and we have

Ft(T ) = ι∗FtT for T ∈ S ′(A1
t). This is also equivalent to h = i

2π
Fh being ι-skew-

Hermitian (the choice of the sign +i is irrelevant here, it will be justified by the

comparison lemma 5.8).

1.c. A criterion on FM ensuring that M is a minimal extension. Let M be

a regular holonomic C[t]〈∂t〉-module with singularities at C. Let N = FM be its

Laplace transform and set G = C[τ, τ−1]⊗C[τ ] N as above.

Lemma 1.1. Let us assume that

• M is equipped with a nondegenerate sesquilinear pairing h,
• N = FM is a minimal extension at τ = 0 (its regular singularity).

Then M is a minimal extension if and only if G has no rank-one C[τ, τ−1]-submodule

stable by ∇ on which the monodromy is the identity.

Proof. Because of the existence of h, M is a minimal extension if and only if it has no

submodule isomorphic to C[t]〈∂t〉/C[t]〈∂t〉(t − c), with c ∈ C. This is equivalent to

asking that N has no submodule isomorphic to (C[τ ], d − cdτ). On the other hand,

any C[τ, τ−1]-submodule of G stable by ∇ has a regular singularity at the origin and

has exponential type at infinity. If such a module has rank one and if the monodromy

is the identity, it must be equal to (C[τ, τ−1], d − cdτ) for some c ∈ C (in fact some

c ∈ C).

Assume that M is a minimal extension. If we had a submodule (C[τ, τ−1], d− cdτ)

in G, then (C[τ ], d− cdτ) would be a C[τ ]〈∂τ 〉-submodule of G. Since N is a minimal

extension at τ = 0, it is included in G. Since the intersection in G of (C[τ ], d− cdτ)

and N is non-zero (because it is non-zero after localization), and since (C[τ ], d− cdτ)

is a simple C[τ ]〈∂τ 〉-module, (C[τ ], d − cdτ) would be contained in N . By inverse

Laplace transform, M would have a submodule supported on C, a contradiction.

Conversely, assume that G is as in the lemma. Then N does not have any C[τ ]〈∂τ 〉-
submodule isomorphic to (C[τ ], d− cdτ) (otherwise, by localization, it would produce

a (C[τ, τ−1], d − cdτ) in G). By inverse Laplace transform, M has no sub-module

supported on C.

Remark 1.2. In particular, if we assume that 1 is not an eigenvalue of the monodromy

on (G,∇), then the condition of the lemma is fulfilled and M is a minimal extension.

1.d. The Brieskorn lattice of a Deligne lattice. Let M be a regular holonomic

C[t]〈∂t〉-module with singularities at C. Assume that M is a minimal extension at C.

Assume also that the eigenvalues of the local monodromies of the corresponding local

system V have absolute value equal to one (this property holds if V is unitary).

Let us denote by V >−1M the free C[t]-submodule of M satisfying the following two

properties:
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(1) the connection ∇ on M induces a logarithmic connection on V >−1M ,

(2) the eigenvalues of the residues at C (which are real by the assumption on the

local monodromies) belong to (−1, 0].

Because M is assumed to be a minimal extension, it is generated, as a C[t]〈∂t〉-module,

by V >−1M .

The Brieskorn lattice G0 attached to V >−1M is, by definition, the C[τ−1]-

submodule of G generated by the image of V >−1M in G via the localization

morphism M = FM → G.

Each R̂c in the Levelt-Turrittin decomposition of Ĝ has a formal Deligne lat-

tice V >0R̂c which is the unique logarithmic lattice for which the eigenvalues of

the residue of the connection belong to (0, 1], and therefore (according e.g. to [24,

Prop. 2.1]) G has a unique C[z]-lattice DM>0G whose associated formal lattice is⊕
c∈C(E−c/z ⊗ V >0R̂c). We call DM>0G the Deligne-Malgrange lattice of G at ∞.

Lemma 1.3. We have G0 = DM>0G.

Proof. It is known that C[[z]] ⊗C[z] G0 decomposes as
⊕

c∈C(E−c/z ⊗ (V >−1M)µc ),

where (V >−1M)µc is the formal microlocalization of V >−1M at c (cf. [29, Prop. 2.3]).

The identification of (V >−1M)µc with V >0R̂c is then standard.

1.e. Twistor gluing. Let (H ,∇) be a free C{z}-module of finite rank with a mero-

morphic connection having a pole of order 6 2 at z = 0. We will assume that the

connection ∇ on the associated meromorphic bundle H (∗0) = C({z})⊗C{z}H is of

exponential type. Let H ∇ denote the local system of horizontal sections of ∇ on a

small punctured disc ∆∗ centered at z = 0. Assume moreover that we are given a

nondegenerate ι-skew-Hermitian pairing hB : H ∇ ⊗C ι
−1H ∇ → C∆∗ , where ι is the

involution z 7→ −z (the index B is for “Betti”, as such a pairing is often defined in a

topological way). We associate to hB the ι-Hermitian pairing −2πihB.

Using the flat connection ∇, it is possible to extend in a unique way the previous

objects as analogous objects on the complex line A1,an
z . On the circle |z| = 1, the

involution ι coincides with the anti-linear involution σ : z 7→ −1/z, and −2πihB|S1 can

be used to glue H ∨ (dual of H ) with σ∗H , to get a holomorphic bundle H̃ on P1,

that is (as this is compatible with the connection) an integrable twistor structure.

We say that this twistor structure is obtained by twistor gluing of (H ,∇, hB) (cf. [9,

Lemma 2.14], [30, Def. 1.29]). Notice that the degree of H̃ is zero, since it is computed

as −Tr(tRes∇) + Tr(Res∇), which is purely imaginary and has to be an integer.

An example where the resulting twistor structure is pure of weight 0 (i.e., H̃

is trivial) and polarized is obtained as follows (cf. [30]). Let M be a regular holo-

nomic C[t]〈∂t〉-module, which is a minimal extension at its singular set C, and which

is endowed with a Hermitian pairing h with values in S ′(A1
t). Then its Laplace

transform FM is a holonomic C[τ ]〈∂τ 〉-module, with a regular singularity at τ = 0

and an irregular one of exponential type at τ = ∞. The Fourier transformed pair-

ing Fh induces a ι-skew-Hermitian pairing hB = i
2π
Fh on the corresponding local

system FV . On the other hand, we denote by DM>0G the Deligne-Malgrange lattice
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of G = C[τ, τ−1]⊗FM at τ =∞ (which is also the Brieskorn lattice G0 of the Deligne

lattice V >−1M , according to Lemma 1.3). Setting z = τ−1, we can thus apply the

twistor gluing procedure to these data. As a direct consequence of [30, Cor. 3.15]

(using that a flat Hermitian bundle is a variation of complex Hodge structures of type

(0, 0)), we get:

Proposition 1.4. If the pairing h is Hermitian positive definite on (V,∇), then the

integrable twistor structure attached to (DM>0G,∇, Fh = −2πihB) is pure of weight 0

and polarized.

As a consequence of the previous results we obtain:

Corollary 1.5. Let N be a holonomic C[τ ]〈∂τ 〉-module of exponential type at infinity

having a single singularity at 0 in A1
τ , which is regular. Set G = C[τ, τ−1] ⊗C[τ ] N .

Assume that

(1) G has no rank-one C[τ, τ−1]-submodule stable by ∇ on which the monodromy

is the identity,

(2) N is a minimal extension at τ = 0,

(3) N is equipped with a nondegenerate ι-skew-Hermitian pairing h such that ĥ :=

−2πiF τh is positive definite at one fibre c 6∈ C (set of exponential factors of N at

infinity).

Then the triple (DM>0G,∇,−2πih) defines, by twistor gluing, an integrable twistor

structure which is pure of weight 0 and polarized.

Proof. The assumption that N has 0 as its single singularity, which is regular, at

finite distance and has an irregular singularity of exponential type at infinity means

that N = FM for some regular holonomic M (cf. [22, Chap. V] or [32, Lemma 1.5]).

Since h is nondegenerate on N by 1.5(3), so is ĥ on M and, according to Lemma 1.1,

1.5(1) and 1.5(2), M is a minimal extension at its singularity set C. Moreover, ĥ

restricts as a nondegenerate Hermitian form on (V,∇). Being positive definite at

some c /∈ C by 1.5(3), it is positive definite all over A1
t rC, and thus the assumption

of Proposition 1.4 is satisfied by M . Lastly, we have F ĥ = −2πih.

2. Stokes filtration and Stokes data

In this section we recall the notion of Stokes filtration as defined in [5] (cf. also

[21], [1], [22]) in the particular case of Stokes filtrations which are of exponential

type. We make explicit the correspondence to the more classical approach via Stokes

data, and we mainly focus on the behaviour with respect to a sesquilinear pairing

(hence also to duality).

2.a. Stokes filtration. Let k be a field (e.g. Q or C). Let L be a local system

of finite dimensional k-vector spaces on the circle S1 with coordinate eiθ. A Stokes

filtration of L is a family of subsheaves L6c ⊂ L , with c ∈ C, satisfying the following

properties:
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(1) For each θ ∈ R/2πZ, let 6
θ

be the partial order on C which is compatible with

addition and satisfies

c 6
θ

0 ⇐⇒ c = 0 or arg c− θ ∈ (π/2, 3π/2) mod 2π.

We also set c <
θ

0 iff c 6= 0 and c 6
θ

0. One requires that, for each θ, the germs L6c,θ

form an exhaustive increasing filtration of Lθ with respect to 6
θ
.

(2) Because the order 6
θ

is open with respect to θ, the germs L<
θ
c :=∑

c′<
θ
c L6c′,θ glue as a subsheaf L<c of L . One requires that the graded sheaves

grc L := L6c/L<c are locally constant sheaves on S1.

(3) Near any eiθ ∈ S1, one requires that there are local isomorphisms (L ,L•) '
(gr L , (gr L )•), where the Stokes filtration on gr L :=

⊕
c∈C grc L is the natural

one, that is, (gr L )6c,θ =
⊕

c′6
θ
c grc′ L . In particular, grc L = 0 except for c in a

finite set C ⊂ C, called the set of exponential factors of the Stokes filtration (L ,L•).

Remarks 2.1
(1) We simplify here the general definition of a Stokes filtration, as we only deal

with this kind of filtrations. It is called “of exponential type” in [20]. The case

where C = {0} corresponds to a regular singularity in the setting of bundles with

meromorphic connections. One can notice that, as a consequence of the definition,

the set C is not empty except possibly if L = 0; in such a case, it will be convenient

to assume also C 6= ∅, e.g. C = {0}.
(2) For each pair c 6= c′ ∈ C, there are exactly two values of θ mod 2π, say θc,c′

and θ′c,c′ , such that c and c′ are not comparable at θ. We have θ′c,c′ = θc,c′ +π. These

values are called the Stokes directions of the pair (c, c′). For any θ in one component

of R/2πZ r {θc,c′ , θ′c,c′}, we have c <
θ
c′, and the reverse inequality for any θ in the

other component. We denote the images of these intervals in S1 via θ 7→ eiθ by S1
c6c′

and S1
c′6c respectively. If c = c′, we set S1

c6c := S1.

(3) For each pair c, co ∈ C, the inclusion jc6co : S1
c6co ↪→ S1 is open. We will

denote by βc6co the functor jc6co,!j
−1
c6co

, consisting in restricting a sheaf to this open

set and extending the restriction to S1 by 0. The filtration condition (1) above implies

that, for each pair c, co, there is a natural inclusion βc6coL6c ↪→ L6co .

A morphism λ : (L ,L•)→ (L ′,L ′•) of Stokes-filtered local systems is a morphism

of local systems satisfying λ(L6c) ⊂ L ′6c for each c ∈ C.

By a C-good open interval I ⊂ R/2πZ, we mean an open interval containing exactly

one Stokes direction for each pair c 6= c′ in C. Below, we will only use C-good open

intervals which are the image in R/2πZ of an interval (θo − ε, θo + π+ ε), where θo is

not a Stokes direction for any pair c 6= c′ in C and ε > 0 is small enough.

Proposition 2.2
(1) On any C-good open interval I ⊂ R/2πZ, there exists a unique splitting L|I '⊕
c grc L|I compatible with the Stokes filtrations.
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(2) Let λ : (L ,L•)→ (L ′,L ′•) be a morphism of Stokes-filtered local systems with

exponential factors contained in C. Then, for any C-good open interval I ⊂ R/2πZ,

the morphism λ|I is graded with respect to the splittings in (1).

Proof

(1) This is a particular case of [21, §5].

(2) By the first part of the proposition, choosing a splitting of the Stokes filtrations

of L and L ′ on I allows us to decompose λ|I into blocks λij : grci L → grcj L ′.

Each λij is a morphism of local systems. In particular, it vanishes identically if and

only if it vanishes at one point. By assumption, the interval I contains one (and

exactly one) Stokes direction for each pair (ci, cj) with i 6= j, which is a θo such

that ci and cj are not comparable with respect to 6
θo
. Then, for θ on one side of θo,

one has ci <θ
cj and, for θ on the other side, one has the reverse inequality. Since λ is

compatible with the Stokes filtration, this implies that λij (i 6= j) vanishes on some

nonempty subset of I, and therefore all over I.

Remark 2.3. One can regard this splitting result in various ways:

(1) For θ, θ′ = θ + π ∈ I, the filtrations L6•,θ and L6•,θ′ are opposite, if one

identifies the opposite fibres Lθ and Lθ′ by the flat structure along the interval I.

The given splitting is the unique common splitting of these opposite filtrations.

(2) The pieces of the unique splitting of L|I are the constant sheaves Γ(I,L6ci).

Proposition 2.2(1) says that these spaces of sections on I fit together to a direct sum

which generates all sections of L on I.

Proposition 2.4. The category of Stokes-filtered local systems (L ,L•) is abelian.

Proof. Let λ : (L ′,L ′•)→ (L ,L•) be a morphism of Stokes structures. Firstly, Kerλ

and Cokerλ are local systems on S1. Moreover, on any C-good open interval I, λ is

graded, according to 2.2(2). This easily implies that, on each such I, the kernel and

the cokernel of λ : L ′• → L• are Stokes filtrations of Kerλ and Cokerλ respectively,

so that Kerλ and Cokerλ exist as Stokes-filtered local systems, and the morphism of

the co-image to the image of λ is an isomorphism, so the category is abelian.

Let A1
τ be the affine line with coordinate τ . From [5] (cf. also [21], [1], [22]), we

get:

Proposition 2.5. If k = C, there is an equivalence between the category of rational

connections on A1
τ with a regular singularity at τ = 0 and of exponential type at

τ = ∞, and the category of Stokes-filtered local systems (of exponential type) on the

circle at infinity S1
∞ of A1

τ .

Of course, this result gives back the abelianity result of Proposition 2.4 (proved

directly for any field of coefficients).
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2.b. Stokes data. These are linear data which provide a description of a Stokes-

filtered local system. Let C be a non-empty finite subset of C. We say that θo ∈
R/2πZ is generic with respect to C if it is not a Stokes direction (cf. Remark 2.1(2))

for each pair c 6= c′ ∈ C. Once θo generic with respect to C is chosen, there is a

unique numbering of the set C in such a way that c1 <θo
c2 <θo

· · · <
θo
cr. We will set

θ′o = θo + π. Note that the order is exactly reversed at θ′o, so that −C is numbered

as {−c1, . . . ,−cn} by θ′o.

Definition 2.6. Let C be a non-empty finite subset of C and let θo ∈ R/2πZ be generic

with respect to C. The category of Stokes data with exponential factors in C totally

ordered by θo (we also say of type (C, θo)) has objects consisting of two families of

k-vector spaces (Gc,1, Gc,2)c∈C and a diagram of morphisms

(2.6)(∗)
⊕
c∈C

Gc,1

S
**

S′
44

⊕
c∈C

Gc,2

such that, for the numbering C = {c1, . . . , cn} defined by θo,

(1) S = (Sij)i,j=1,...,n is block-upper triangular, i.e., Sij : Gci,1 → Gcj ,2 is zero

unless i 6 j, and Sii is invertible (so dimGci,1 = dimGci,2, and S itself is invertible),

(2) S′ = (S′ij)i,j=1,...,n is block-lower triangular, i.e., S′ij : Gci,1 → Gcj ,2 is zero

unless i > j, and S′ii is invertible (so S′ itself is invertible).

A morphism of Stokes data of type (C, θo) consists of morphisms of k-vector spaces

λc,` : Gc,` → G′c,`, c ∈ C, ` = 1, 2, which are compatible with the corresponding

diagrams (2.6)(∗).

Fixing bases in the spaces Gc,`, c ∈ C, ` = 1, 2, allows one to present Stokes data

by matrices (Σ,Σ′) where Σ = (Σij)i,j=1,...,n (resp. Σ′ = (Σ′ij)i,j=1,...,n) is block-lower

(resp. -upper) triangular and each Σii (resp. Σ′ii) is invertible.

The category of Stokes data of type (C, θo) is clearly abelian. We will now define

a functor (depending on θo) from the category of Stokes-filtered local systems with

exponential factors contained in C to the category of Stokes data of type (C, θo), and

we will show that it is an equivalence. In the next section, we will show that it is

compatible with natural operations on these objects (involution ι, duality, sesquilinear

duality).

Let us also fix two opposite intervals I1 and I2 of length π + 2ε on R/2πZ so that

their intersection I1 ∩ I2 consists of two intervals (θo − ε, θo + ε) and (θ′o − ε, θ′o + ε),

and contains no Stokes direction of pairs c 6= c′ ∈ C.

To a local system L on S1 we attach the following “monodromy data” (they are

quite redundant):

(1) vector spaces L1 = Γ(I1,L ) and L2 = Γ(I2,L ),

(2) vector spaces Lθo = Lθo and Lθ′o = Lθ′o ,
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(3) a diagram of isomorphisms, given by the natural restriction morphisms,

L1

a′1

~~

a1

  

Lθ′o Lθo

L2

a′2

``

a2

>>

This reduces to two possible descriptions:

(a) (L1, L2, Sθo , Sθ′o), with isomorphisms Sθo , Sθ′o : L1
∼−→ L2 and monodromy

T1 : L1
∼−→ L1, where

Sθo = a−1
2 a1, Sθ′o = a′−1

2 a′1, T1 = S−1
θo
Sθ′o .

(b) (Lθo , Lθ′o , S1, S2) with isomorphisms S1, S2 : Lθo
∼−→ Lθ′o and monodromy

Tθo : Lθo
∼−→ Lθo , where

S1 = a′1a
−1
1 , S2 = a′2a

−1
2 , Tθo = S−1

2 S1.

Assume now that (L ,L•) is a Stokes-filtered local system with associated graded

local system G = gr L =
⊕r

i=1 Gci . The filtration L6c,θo induces a filtration on Lθo
and, through a1, a filtration L1,6

θo
• of L1. We have a similar filtration attached to θ′o.

We have splittings (cf. Proposition 2.2(1)):

(L ,L•)|I1 ' (G ,G•)|I1 , (L ,L•)|I2 ' (G ,G•)|I2 ,

giving isomorphisms

(2.7) L1 '
r⊕
i=1

Gci,1, L2 '
r⊕
i=1

Gci,2

compatible with Stokes filtrations (in other words, both filtrations L1,6
θo
• and L1,6

θ′o
•

are opposite in L1, cf. Remark 2.3(1), giving rise to a unique common splitting, and

similarly for L2), and such that Sθo (resp. Sθ′o) is compatible with the filtration at θo
(resp. θ′o) and the graded morphisms are isomorphisms. Taking into account the as-

sumption on the ordering of the cj , this is equivalent to saying that Sθo is block-upper

triangular, Sθ′o is block-lower triangular, and each diagonal block grci Sθo , grci Sθ′o is

an isomorphism. In such a way, we have defined the desired functor (to check the

compatibility with morphisms, use Proposition 2.2(2)). The Stokes data attached to

(L ,L•) are given by the diagram:

(2.8)
r⊕
i=1

Gci,1

Sθo
**

Sθ′o

44

r⊕
i=1

Gci,2

Note also that the monodromy Tci on grci L is given by Tci,1 = (grci Sθo)
−1 grci Sθ′o

(this is of course not obtained from the blocks of T1 = S−1
θo
Sθ′o in general).



14 C. HERTLING & C. SABBAH

As a consequence of the previous discussion we can state the following classical

result (the bijection at the level of Hom follows from Proposition 2.2(2)):

Proposition 2.9. The previous functor is an equivalence between the category of Stokes-

filtered local systems with exponential factors contained in C and the category of Stokes

data of type (C, θo).

Definition 2.10 (minimality property). We say that the Stokes data (2.6)(∗) satisfy the

minimality property if the vector space Kc := {v ∈ Gc,1 | S(v) = S′(v) ∈ Gc,2} is

equal to zero for any c ∈ C.

Remark 2.11. Notice that, if S −S′ is invertible, the minimality property is automat-

ically satisfied. Notice also that Kc is the subspace of Gc,1 consisting of eigenvectors

of T1 (and thus of Tc,1) with eigenvalue 1.

Lemma 2.12. Under the equivalence of Proposition 2.9, the Stokes data attached to

(L ,L•) satisfy the minimality property of Definition 2.10 if and only if (L ,L•)

has no subobject (L ′,L ′•) (in the category of Stokes-filtered local systems) such that

L ′ = kS1 .

Proof. A subobject (L ′,L ′•) of (L ,L•) corresponds to a subdiagram of (2.8) com-

patible with the splittings (2.7). If there exists v 6= 0 in some Kc of Definition 2.10,

we obtain a subdiagram

(2.12)(∗) k · v

Sθo
**

Sθ′o

44
k · (Sθov)

of (2.8) with v ∈ Gc,1 and Sθov = Sθ′ov ∈ Gc,2, and v ∈ L1 satisfies T1v = v.

Therefore it corresponds to (L ′,L ′•) ⊂ (L ,L•) with L ′ = kS1 . The converse is

proved similarly.

Remark 2.13. Definition 2.10 and Lemma 2.12 fit with Lemma 1.1 and with the prop-

erty that M is a minimal extension via Propositions 2.5 and 2.9.

3. Natural operations on Stokes filtrations and Stokes data

3.a. Involution. Let ι be the involution z 7→ −z, which is induced on R/2πZ by

θ 7→ θ′ := θ + π. Given a Stokes-filtered local system (L ,L•), we define ι−1(L ,L•)

in the following way:

• the corresponding local system is ι−1L , so that (ι−1L )θ = Lθ′ ,
• the filtration (ι−1L )• is defined by (ι−1L )6c = ι−1(L6−c), hence (ι−1L )6c,θ =

L6−c,θ′ .
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Note that the filtration defined above is increasing, that is, c′ 6
θ
c ⇐⇒ −c′ 6

θ′−c.
The monodromy data ι−1(L1, L2, Sθo , Sθ′o) of ι−1L are given by (L2, L1, S

−1
θ′o
, S−1
θo

).

The Stokes data of ι−1(L ,L•) are given by

ι−1(2.8)
r⊕
i=1

Gci,2

S−1
θ′o

++

S−1
θo

33

r⊕
i=1

Gci,1.

In other words, ι−1(2.8) defines a functor ι from the category of Stokes data of type

(C, θo) to that of type (−C, θ′o), and the corresponding equivalences of Proposition

2.9 are compatible with ι on both categories.

Let us note that, although the local systems L and ι−1L are isomorphic (since ι is

homotopic to the identity), the Stokes-filtered local systems (L ,L•) and ι−1(L ,L•)

are in general not isomorphic. For example, they are isomorphic if both S and S′ are

block-diagonal, an isomorphism of the corresponding Stokes data being given by the

pair of morphisms (S′−1SS′−1, SS′−1S).

3.b. Duality. Let (L ,L•) be a Stokes-filtered local system. The dual local system

L ∨ comes equipped with a filtration (L ∨)• defined by

(L ∨)6c = (L<−c)
⊥,

where the orthogonality is relative to duality that is, (L<−c)
⊥ consists of local mor-

phisms L → kS1 sending L<−c to 0. Using, in a neighbourhood of eiθ ∈ S1, a local

splitting of L as
⊕

ci∈C grci L compatible with the Stokes filtration, we get a corre-

sponding local splitting L ∨ '
⊕

ci∈C(grci L )∨, and a germ at eiθ of a morphism ϕ

has components ϕi. Then ϕ ∈ (L<−c)
⊥
θ if and only if its components ϕi vanish when-

ever βci<−c grci L 6= 0 somewhere near θ. So the only possible nonzero components ϕi
of ϕ occur when −ci 6θ

c. If we set gr−ci L ∨ := (grci L )∨, this shows that (L ∨)6c
locally splits near eiθ as

⊕
i β−ci6c gr−ci L ∨, defining thus a Stokes filtration satis-

fying grc(L
∨) = (gr−c L )∨ for any c ∈ C. The monodromy data (L1, L2, Sθo , Sθ′o)

∨

are given by (L∨1 , L
∨
2 ,
tS−1
θo
, tS−1

θ′o
), where tS denotes the adjoint by duality of S. The

Stokes data are given by

(2.8)∨
r⊕
i=1

(Gci,1)∨

tS−1
θo

,,

tS−1
θ′o

22

r⊕
i=1

(Gci,2)∨.

Let us define the duality functor from the category of Stokes data of type (C, θo) to

that of type (−C, θo) (we use the reverse numbering of C to get that tS−1
θo

is upper

triangular). Then the equivalence of Proposition 2.9 is compatible with duality.

Let us now compare with Poincaré-Verdier duality of sheaves on S1. For a sheaf F

on S1, we denote by DF = RHomk(F ,kS1 [1]) its Poincaré-Verdier dual and by

D′F = RHomk(F ,kS1) the shifted complex. We clearly have D′L = L ∨.
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Lemma 3.1. For each c ∈ C, the complexes D′(L6c) and D′(L /L6c) are sheaves and

D′(L /L6c) = (L6c)
⊥ = (L ∨)<−c.

The first statement means that H kD′(L6c) = 0 if k 6= 0, and thus D′(L6c) is

quasi-isomorphic to H 0D′(L6c) = Homk(L6c,kS1) and similarly for L /L6c.

Proof. The first assertion is local on S1, so we can assume that L is split with respect

to the Stokes filtration. Near θo ∈ R/2πZ, we therefore only need to consider two

cases:

(1) L6c is a local system on (θo − ε, θo + ε),

(2) L6c = j!L , where L is a local system on (θo − ε, θo) and j : (θo − ε, θo) ↪→
(θo − ε, θo + ε) is the open inclusion.

The first case is clear. For the second one, note that D′j!L = j∗L ∨.

The argument for D′(L /L6c) is similar (but goes in the opposite direction in the

second case). We conclude that we have an exact sequence of sheaves

0 −→ D′(L /L6c) −→ D′L −→ D′(L6c) −→ 0,

hence the last assertion.

3.c. ι-Sesquilinear forms. We assume here that k = C (or that k has an involution,

that we denote by ). Let h : L ⊗ ι−1L → k be linear, where L denotes the

conjugate of L with respect to the involution (in what follows, one can assume that

the involution is the identity and get similar results for ι-bilinear forms). We call h a

ι-sesquilinear form on L . Using the previous monodromy data, giving h amounts to

giving two sesquilinear forms

h12 : L1 ⊗ L2 −→ k, h21 : L2 ⊗ L1 −→ k

such that, considering them as morphisms L2 → L∨1 and L1 → L∨2 , the following

diagrams (by which hθo , hθ′o are defined) commute

(3.2)

L2

h12 //

a′2
��

L∨1

ta−1
1

��

Lθ′o
hθo // L∨θo

L1

h21 //

a′1

OO

L∨2

ta−1
2

OO

L2

h12 //

a2
��

L∨1

ta′−1
1

��

Lθo
hθ′o // L∨θ′o

L1

h21 //

a1

OO

L∨2

ta′−1
2

OO

that is,

(3.3) h21(•, •) = h12(S−1
θo
•, Sθ′o•) = h12(S−1

θ′o
•, Sθo•).

In particular, h21 determines h12. We say that h is nondegenerate if it induces an

isomorphism ι−1L
∼−→ L ∨, that is, if h21 (hence h12) is nondegenerate. We say

that h is ι-skew-Hermitian if ι−1h = −h (with an obvious meaning), that is, if

(3.4) h21(x2, x1) = −h12(x1, x2).
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Remark 3.5 (Various forms of h). It will be useful to read h in the spaces Lθo , L
′
θo

or

only in L1. We will make explicit the formulas between the various forms. We denote

by x1, y1 general elements of L1, x, y of Lθo and x′, y′ of L′θo . Firstly, (3.2) gives

hθo(x, y
′) = h12(a−1

1 x, a′−1
2 y′) = h21(a−1

2 x, a′−1
1 y′),

hθ′o(x
′, y) = h12(a′−1

1 x′, a−1
2 y) = h21(a′−1

2 x′, a−1
1 y).

(3.5)(a)

Let us define hθo
11
, h
θ′o
11

: L1 ⊗ L1 → k by

hθo
11

(x1, y1) = h12(x1, Sθoy1), h
θ′o
11

(x1, y1) = h12(x1, Sθ′oy1).(3.5)(b)

Then

(3.5)(c) h
θ′o
11

(x1, y1) = hθo
11

(x1, T1y1),

and (3.3) is equivalent to

(3.5)(d) hθo
11

(T1x1, T1y1) = hθo
11

(x1, y1) and to h
θ′o
11

(T1x1, T1y1) = h
θ′o
11

(x1, y1).

We also get

(3.5)(e) h
θ′o
11

(x1, y1) = hθo(a1x1, a′1y1) and hθo
11

(x1, y1) = hθ′o(a
′
1x1, a1y1).

Moreover, h is ι-skew-Hermitian iff

(3.5)(f) hθo
11

(y1, x1) = −hθ
′
o

11
(x1, y1).

Remark 3.6 (The form induced on Im can1). Let us set can1 := Id−T1 : L1 → L1. We

have the following relations

hθo
11

(x1, can1 y1) = hθo
11

(x1, y1)− hθo
11

(x1, T1y1)

= hθo
11

(x1, y1)− h
θ′o
11

(x1, y1) after (3.5)(c),
(3.6)(a)

and similarly

(3.6)(b) h
θ′o
11

(can1 x1, y1) = h
θ′o
11

(x1, y1)− hθo
11

(x1, y1) = −hθo
11

(x1, can1 y1).

Let us set F1 = Im can1. Then hθo
11

defines a sesquilinear pairing hθo
11

on F1 by setting,

for u1, v1 ∈ F1 and u1 = can1 x1, v1 = can1 y1 for some x1, y1 ∈ L1:

hθo
11

(u1, v1) := hθo
11

(x1, v1).

This is independent of the choice of x1: if canx1 = 0, we deduce from (3.6)(b)

hθo
11

(x1, v1) = hθo
11

(x1, can1 y1) = −hθ
′
o

11
(can1 x1, y1) = 0.

We also set h
θ′o
11

(u1, v1) := h
θ′o
11

(u1, y1). Then h
θ′o
11

(u1, v1) = −hθo
11

(u1, v1).

If h is nondegenerate, then so is hθo
11

on F1: assume that hθo
11

(u1, v1) = 0 for all

v1 ∈ F1. Then hθo
11

(x1, can1 y1) = 0 for all y1 ∈ L1, and as above this implies that

u1 = can1 x1 = 0 since h
θ′o
11

is nondegenerate on L1.
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Lastly, if h is ι-skew-Hermitian, then hθo
11

is Hermitian on F1: we have

hθo
11

(v1, u1) = hθo
11

(y1, can1 x1) = hθo
11

(y1, x1)− h
θ′o
11

(y1, x1)

= −hθ
′
o

11
(x1, y1) + hθo

11
(x1, y1) after (3.5)(f)

= hθo
11

(u1, v1).

3.d. ι-Sesquilinear forms on Stokes-filtered local systems and Stokes data.

If (L ,L•) is a Stokes-filtered local system, we say that h is compatible with Stokes

filtrations if the induced morphism ι−1L → L ∨ is so. By Proposition 2.2(2), h12

and h21 are block-diagonal. Similarly, given Stokes data ((Gc,1, Gc,2)c∈C , S, S
′) of

type (C, θo), a ι-sesquilinear form on it consists of sesquilinear pairings h
(i)

12
: Gci,1 ⊗

Gci,2 → k (and similarly for h21) which are compatible with the diagram (2.6)(∗) in

a natural way. In other words, the equivalence of Proposition 2.9 is compatible with

ι-sesquilinear forms.

Let us fix c ∈ C such that

(a) grc L = 0 (that is, L<c = L6c).

According to (a), the morphism h : ι−1L → L ∨ induces

hc : ι−1(L 6c) = (ι−1L )6−c −→ (L ∨)6−c = (L6c)
⊥ = (L /L6c)

∨,

that we consider as a pairing

(3.7) hc : (L /L6c)⊗ ι−1(L 6c) −→ kS1

Moreover, if h is nondegenerate, then hc is nondegenerate in the sense that hc induces

an isomorphism

(3.8) ι−1(L 6c)
∼−→ D′(L /L6c) = Homk(L /L6c,kS1) = (L /L6c)

∨.

Remark 3.9 (The form induced onKc). For c ∈ C, let Kc ⊂ Gc,1 be the vector space in-

troduced in Definition 2.10. Together with S or S′, the sesquilinear form h12 produces

a sesquilinear form hKc : Kc ⊗Kc → k by the formula hKc(x1, y1) = h12(x1, S(y1)).

Since S = S′ on Kc, the form hKc is skew-Hermitian, according to (3.3) and (3.4).

We claim that, for co ∈ C, the form hKco is nondegenerate if and only if the Stokes

data (Kco , S(Kco), S, S) enriched with the induced h12 are a direct summand of the

Stokes data ((Gc,1)c∈C , (Gc,2)c∈C , S, S
′) enriched with h12.

Indeed, since h12 is block-diagonal, hKco is nondegenerate if and only if

Kco ∩ S(Kco)
⊥ = {0}, where the orthogonal is taken with respect to h12. No-

tice that S(Kco)
⊥ = (S(Kco)

⊥ ∩ Gco,1) ⊕
⊕

c6=co∈C Gc,1. A similar statement

holds for S(Kco) and K⊥co in
⊕

c∈C Gc,2. Then, if hKco is nondegenerate, we have⊕
c∈C Gc,1 = Kco ⊕ S(Kco)

⊥,
⊕

c∈C Gc,2 = S(Kco) ⊕ K⊥co , and it remains to check

that S and S′ send S(Kco)
⊥ to K⊥co , which follows from (3.3) and (3.4). The converse

is proved similarly.
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We also notice that, if the previous splitting property is satisfied for each c ∈ C,

then

((Gc,1)c∈C , (Gc,2)c∈C , S, S
′, h12)

=
( ⊕
c∈C

(Kc, S(Kc), S, S, h12)
)
⊕ ((G′c,1)c∈C , (G

′
c,2)c∈C , S, S

′, h′
12

),

where the last term satisfies the minimality property of Definition 2.10. Indeed, we

then have K ′c = 0 for any c ∈ C.

3.e. Description at θo, θ
′
o. Let us fix bases of Gci,`, ` = 1, 2, i = 1, . . . , r, in such a

way that the matrix of h
(i)

12
is the identity. If we denote by Σθo ,Σθ′o the matrices of

Sθo , Sθ′o in these bases (recall that Σθo is block-lower triangular and Σθ′o is block-upper

triangular), then the matrix of hθo
11

is Σθo , that of h
θ′o
11

is Σθ′o . Moreover, according to

(3.5)(f), h is ι-skew-Hermitian iff

(3.10) Σθ′o = −tΣθo .

The results of Remark 3.6 can be read in Lθo via a1, a
′
1 : L1

∼−→ Lθo , Lθ′o . We set

canθ′o := S−1
1 − S−1

2 : Lθ′0 → Lθo and F = Im canθ′o ⊂ Lθo . Then hθ′o : Lθ′o ⊗ Lθo → k

induces hθ′o : F ⊗ F → k by setting hθ′o(u, v) = hθ′o(x
′, v) for some (or any) x′ ∈ Lθ′o

such that canθ′o x
′ = u. As above, one checks that if h is nondegenerate (resp. ι-skew-

Hermitian), then hθ′o is nondegenerate (resp. Hermitian) on F .

On the other hand, the vector spaceKc is the intersection of the radical of Σθo+
tΣθo

with Gc,1, and the matrix of hKc is the conjugate of that of S|Kc . If the splitting

property at co considered in Remark 3.9 is satisfied, and if we choose correspondingly

bases of Gco,1 and Gco,2, the diagonal block Σθo,coco is itself block-diagonal with

respect to this splitting, and the block Σθo,Kco is skew-adjoint.

Corollary 3.11. Assume k = R or C. If h is nondegenerate and ι-skew-Hermitian,

and if the Hermitian matrix Σθo + tΣθo is positive semi-definite, then hθ′o is positive

definite on F .

Proof. Since hθ′o is nondegenerate, it is enough to show that hθ′o(u, u) > 0 for all

u ∈ F . Set u = canθ′o x
′ and x1 = a′−1

1 x′. Then

hθ′o(u, u) = hθ′o(x
′, canθ′o x

′) = h12(a′−1
1 x′, a−1

2 (S−1
1 − S−1

2 )x′).

Now,

a−1
2 S−1

1 x′ = a−1
2 S−1

1 a′1x1 = Sθox1 and a−1
2 S−1

2 x′ = a−1
2 S−1

2 a′1x1 = Sθ′ox1,

hence hθ′o(u, u) = h12(x1, (Sθo − Sθ′o)x1). Since h is ι-skew-Hermitian, the matrix

of h12(•, (Sθo − Sθ′o)•) is Σθo + tΣθo after (3.10), which is positive semi-definite by

assumption, hence hθ′o(u, u) > 0.



20 C. HERTLING & C. SABBAH

3.f. Sesquilinear forms on the cohomology. We now fix c ∈ C such that

(a) grc L = 0, and

(b) ci <θo
c for any i (that is, all the ci lie in an open half-plane with boundary

going through c).

Let us first compute the cohomology.

Lemma 3.12. We have Hk(S1,L6c) = 0 if k 6= 1, Hk(S1,L /L6c) = 0 if k 6= 0

and the exact sequence 0 → L6c → L → L /L6c → 0 induces an exact sequence

(defining the morphism can):

0 −→ H0(S1,L ) −→ H0(S1,L /L6c)
can−−−−→ H1(S1,L6c) −→ H1(S1,L ) −→ 0.

Proof. We compute the cohomology with the covering (I1, I2). Then Hk(I1,L6c) = 0

for any k (and similarly for I2): indeed, because of (a), there is a Stokes direction

in I1 for the pair (c, ci) for each i, and according to the splitting given by Proposition

2.2(1), L6c|I1 decomposes as the direct sum of sheaves, each of which is constant on

a proper open interval of I1 and 0 on the complementary set, which is also connected;

the assertion follows from the vanishing of Hk
(0,1)([0, 1),k) for any k. We also have

Hk(I1 ∩ I2,L6c) = 0 for k 6= 0 and H0(I1 ∩ I2,L6c) = Lθo after (b). We conclude

that H1(S1,L6c) = H0(I1 ∩ I2,L6c) = Lθo .

Similarly, Hk(Ij ,L /L6c) = 0 (j = 1, 2) for k 6= 0 follows from the similar

vanishing of Hk([0, 1),k). We also have Hk(I1 ∩ I2,L /L6c) = 0 for k 6= 0 and

H0(I1 ∩ I2,L /L6c) ' Lθ′o . Moreover, the restriction morphisms H0(Ij ,L /L6c)→
H0(I1 ∩ I2,L /L6c) are isomorphisms. Therefore, the Čech complex

H0(I1,L /L6c)⊕H0(I2,L /L6c) −→ H0(I1 ∩ I2,L /L6c)

has cohomology in degree 0 at most.

Proposition 3.13. If c satisfies Assumptions (a) and (b), the natural pairing induced

by hc from (3.7):

(3.13)(∗) hc : H0(S1,L /L6c)⊗H1(S1, ι−1L 6c) −→ H1(S1,k) = k

is nondegenerate and corresponds to hθ′o , via the isomorphisms

H0(S1,L /L6c)
∼−→ H0(I1 ∩ I2,L /L6c) = Lθ′o

H1(S1, ι−1L 6c) = H0(I1 ∩ I2, ι−1L 6c) = Lθo .

Proof. That the pairing hc of (3.13)(∗) is nondegenerate a priori follows from (3.8).

But this can also be obtained from the second part of the corollary, that we now

prove with details. Let us consider the covering (I1, I2) of S1 with θo as in (b)

above. As a consequence, F := L /L6c and G := ι−1L 6c are local systems in some

neighbourhood of I1 ∩ I2. Let us also denote by C the constant sheaf kS1 , and by

j1 : I1 ↪→ S1, j2 : I2 ↪→ S1, j12 : I1 ∩ I2 ↪→ S1 the open inclusions. Given a sheaf F
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on S1, we set Fa = ja,∗j
−1
a F (a = 1, 2, 12), F0 = F1 ⊕ F2, and F1 = F12. We have a

Mayer-Vietoris complex

F0 δ−−→ F1, δ(u1, u2) = u1 − u2.

The following is easy:

Lemma 3.14. Let F be a sheaf on S1. If F is a local system in some neighbourhood of

I1 ∩ I2, then the Mayer-Vietoris complex is a resolution of F on S1.

We will apply this lemma to F ,G ,C . The simple complex s(F •⊗G •) is therefore

a resolution of F ⊗ G . The pairing hc : F ⊗ G → C extends as a morphism of

complexes h̃ : s(F • ⊗ G •)→ C • as follows: we set

h̃0 : F 0 ⊗ G 0 = (F1 ⊕F2)⊗ (G1 ⊕ G2) −→ C 0 = (C1 ⊕ C2)

(u1, u2)⊗ (v1, v2) 7−→ (hc(u1, v1), hc(u2, v2)),

h̃1 : (F 0 ⊗ G 1)⊕ (F 1 ⊗ G 0) −→ C 1([
(u1, u2)⊗ v12

]
,
[
u12 ⊗ (v1, v2)

])
7−→ 1

2

[
hc(u1 + u2, v12) + hc(u12, v1 + v2)

]
,

h̃2 = 0

where we implicitly have extended hc to pairings Fa ⊗ Ga → k, a ∈ {1, 2, 12}.

Lemma 3.15. The resolution s(F • ⊗ G •) of F ⊗ G is Γ(S1, •)-acyclic.

Proof. It is similar to that of Lemma 3.12.

Clearly, C • is also Γ(S1, •)-acyclic. As a consequence (cf. [7, Th. II.4.7.2]), the

morphism hc is expressed by taking H1 of the morphism of complexes

s
(

Γ(S1,F •
)⊗ Γ(S1,G •)

)
−→ Γ

(
S1, s(F • ⊗ G •)

) Γ(S1, h̃)
−−−−−−−→ Γ(S1,C •).

Using that Γ(S1,G 0) = 0, after Lemma 3.12, we regard hc as the composition

Γ(S1,F 0)⊗ Γ(S1,G 1) // Γ(S1,F 0 ⊗ G 1)
h̃1
// Γ(S1,C 1)

��

H0(S1,F )⊗H1(S1,G )

OO

H1(S1,k)

Let (u, u) ∈ H0(S1,F ) ⊂ Γ(S1,F1)⊕Γ(S1,F2) = Lθ′o⊕Lθ′o and let v ∈ H1(S1,G ) =

Γ(I1 ∩ I2,G ) = Lθo . Using the previous formula for h̃1, (u, u)⊗ v is sent to hθ′o(u, v)

in the component kθ′o of Γ(I1 ∩ I2,k) and to 0 in the component kθo . The second

assertion of Proposition 3.13 follows.
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3.g. A Hermitian pairing on the cohomology. We continue to assume that c

satisfies Assumptions (a) and (b) of §3.f. Let us first make explicit the middle mor-

phism in the exact sequence of Lemma 3.12.

Lemma 3.16. Through the natural identifications H0(S1,L /L6c)
∼−→ Lθ′o and

H1(S1,L6c)
∼−→ Lθo , the natural morphism can : H0(S1,L /L6c) → H1(S1,L6c)

is identified with canθ′o = S−1
1 − S−1

2 : Lθ′o → Lθo .

Proof. Applying the snake lemma, we obtain the exact sequence of Lemma 3.12 from

the following exact sequence of (vertical) Mayer-Vietoris complexes which computes

the cohomology of the corresponding sheaves, where the vertical arrows are the dif-

ferences ρ1 − ρ2 of the natural restriction morphisms from I1 or I2 to I1 ∩ I2:

0 // 0 //

��

Γ(I1,L )⊕ Γ(I2,L ) //

��

Γ(I1,L /L6c)⊕ Γ(I2,L /L6c) //

��

0

0 // Γ(I1 ∩ I2,L6c) // Γ(I1 ∩ I2,L ) // Γ(I1 ∩ I2,L /L6c) // 0

Given u ∈ Γ(I1,L /L6c) ' Lθ′o , its lift in Γ(I1,L ) ' Lθo is S−1
1 u. Then (u, u) ∈

Lθ′o ⊕ Lθ′o is lifted as (S−1
1 u, S−1

2 u), and its image in Γ(I1 ∩ I2,L ) ' Lθ′o ⊕ Lθo is

(0, (S−1
1 − S−1

2 )u).

Let Fc = Im can ⊂ H1(S1,L6c). According to Proposition 3.13, Lemma 3.16 and

Remark 3.6, the sesquilinear pairing hc, as defined by (3.13)(∗), induces a sesquilinear

pairing

(3.17) hc : Fc ⊗ F c −→ k

by setting hc(u, v) := hc(x
′, v) for some (or any) x′ ∈ H0(S1,L /L6c) such that

canx′ = u. Moreover, if h is nondegenerate (resp. ι-skew-Hermitian), then hc is

nondegenerate (resp. Hermitian) on Fc. From Corollary 3.11 we get:

Corollary 3.18. Assume k = C and the involution is the conjugation, or k = R or Q
and the involution is the identity. If the invertible matrix Σθo is such that the Hermi-

tian matrix Σθo + tΣθo is positive semi-definite, then hc is positive definite on Fc.

4. Minimal constructible sheaves on P1 with Stokes structure at infinity

In this section, we set X = A1 ∪ S1
∞ (with respect to the setting of §1.b, the

coordinate on A1 should be denoted by τ). The inclusions are denoted by j∞ : A1 ↪→ X

and i∞ : S1
∞ ↪→ X and the projection X → P1 by $.

Let F be a constructible sheaf on A1 with finite singularity set Σ. Its extension

j∞,∗F is a sheaf on X whose restriction to XrΣ (hence also to S1
∞) is a local system.

Definition 4.1. By a Stokes structure at infinity (F ,F•) on F we will mean the data

of a family of subsheaves F6c (c ∈ C) of j∞,∗F such that

(1) for each c ∈ C, j−1
∞ F6c = F ,
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(2) the family L• := i−1
∞ F• of subsheaves of L := i−1

∞ j∞,∗F is a Stokes filtration

of the local system L as in §2.a.

We also say that (F ,F•) is a Stokes-filtered constructible sheaf on A1, meaning that

the Stokes filtration is at infinity.

Recall that a sheaf on X can be defined through its restrictions to A1 and S1
∞ and

gluing data. In such a way, the inclusion L<c ↪→ L6c determines a unique subsheaf

F<c of F6c whose restriction to A1 is F and that to S1
∞ is L<c.

We define in this way a category, for which the morphisms are morphisms of sheaves

λ : F → F ′ such that i−1
∞ j∞,∗λ is a morphism of Stokes-filtered local systems. As a

consequence of Proposition 2.4, this category is abelian.

Lemma 4.2. Let (F ,F•) be a Stokes-filtered constructible sheaf. Then for each c ∈ C
the complex i!∞F6c has cohomology in degree 1 at most and H 1(i!∞F6c) = L /L6c.

A similar assertion holds for F<c.

Proof. We have Rj∞,∗F = j∞,∗F and the distinguished triangle

i−1
∞ F6c −→ i−1

∞ Rj∞,∗F −→ i!∞F6c[1]
+1−−−→

reduces to the exact sequence

0 −→ L6c −→ L −→ L /L6c −→ 0,

showing that i!∞F6c[1] has cohomology in degree 0 at most, this cohomology being

equal to L /L6c.

In the following, we only consider constructible sheaves F for which the singularity

set Σ is reduced to {τ = 0}. We denote by j0 the inclusion A1r{0} ↪→ A1. We say that

F or (F ,F•) is minimal (or middle extension) if F = j0,∗j
−1
0 F (by our assumption,

j−1
0 F is a locally constant sheaf on A1 r {0}).

It should be noted that minimality at τ = 0, as considered here, is a priori not

related to the minimality property of the Stokes filtration at τ =∞, as in Definition

2.10 and Lemma 1.1. At the level of C[t]〈∂t〉 and C[τ ]〈∂τ 〉-modules considered in §1.b,

the latter is related to the property that M is a minimal extension at its singularities

at finite distance, while the former is related to the property that N is a minimal

extension at τ = 0.

Lemma 4.3. Given a Stokes-filtered local system (L ,L•) on S1
∞, there exists a unique

(up to unique isomorphism) minimal Stokes-filtered constructible sheaf (F ,F•) such

that (L ,L•) = (i−1
∞ j∞,∗F , i−1

∞ F•).

Proof. For the existence, let us denote by π : A1 r {0} → S1
∞ the projection (quotient

by R∗+). Set F ∗ = π−1L and F = j0∗F ∗. Then i−1
∞ j∞,∗F = L and the inclusion

L• ↪→ L determines a unique subsheaf F• of j∞,∗F such that i−1
∞ F• = L• and

j−1
∞ F• = F .

Given two such objects (F ,F•) and (F ′,F ′•), the identity morphism L = L

extends in a unique way as an isomorphism F ∗ ' F ′∗ and then as an isomorphism
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j0,∗F ∗ ' j0,∗F ′∗, proving the uniqueness. The uniqueness of the isomorphism in-

ducing the identity L = L is also clear.

Concerning the compatibility, through the equivalence of Lemma 4.3, of the oper-

ations considered in §3, let us notice that compatibility with involution ι is straight-

forward. For the duality, we will check it now. Before doing so, notice that, for each

c ∈ C, we have a natural morphism j∞,!F → F6c which induces, after applying i!∞
and after Lemma 4.2, the surjection L → L /L6c.

Recall that the dualizing complex on X is j∞,!kA1 [2]. If G is a sheaf on X, we

denote by D(G ) = RHom(G , j∞,!kA1 [2]) its Poincaré-Verdier dual, and by D′(G ) =

RHom(G , j∞,!kA1) the shifted complex. As in §3.b, we say that D′(G ) is a sheaf to

mean that the complex D′(G ) has cohomology in degree 0 at most. In such a case,

we identify D′(G ) with the sheaf Hom(G , j∞,!kA1).

Note that, on A1, if F is a minimal constructible sheaf as above, D′F is a sheaf,

which is constructible with singularity at 0 at most, and is minimal. We will denote

it by F∨.

Proposition 4.4 (Duality). The category of minimal Stokes-filtered constructible sheaves

is stable by Poincaré-Verdier duality (up to a shift by 2). More precisely, for each

object (F ,F•),

(1) D′(j∞,!F ), D′(F6c) and D′(F<c) are sheaves for each c ∈ C,

(2) the dual D′(F6c) → D′(j∞,!F ) = j∞,∗F∨ of the natural morphism j∞,!F →
F6c is injective for each c ∈ C, and similarly for F<c,

(3) the family (F∨
6c)c∈C of subsheaves of j∞,∗F∨ defined by F∨

6c = D′(F<−c) is

a Stokes filtration at infinity of F∨, for which F∨
<c = D′(F6−c).

Proof. On A1, the first assertion is equivalent to saying that D′F is a sheaf, and

this has been noticed before the proposition. It is therefore enough to prove that

i−1
∞ D′(j∞,!F ), etc. are sheaves on S1

∞, because i−1
∞ commutes with taking cohomology

sheaves.

It is classical that Dj∞,!F = Rj∞,∗DF , and hence D′j∞,!F = Rj∞,∗D′F =

j∞,∗F∨, so i−1
∞ D′(j∞,!F ) = i−1

∞ j∞,∗F∨ is a sheaf.

For each c ∈ C, we have (cf. [19, Prop. 3.1.13])

i!∞D′(F6c) = RHom(i−1
∞ F6c, i

!
∞j∞,!kA1)

= RHom(i−1
∞ F6c,kS1

∞
[−1]) =: D′(i−1

∞ F6c)[−1]
(4.5)

and by biduality, we have D′(i!∞F6c[1]) = i−1
∞ D′(F6c). Lemmas 3.1 and 4.2 show

that D′(i!∞F6c[1]) = D′(L /L6c) and D′(i−1
∞ F6c) = D′(L6c) are sheaves. The first

property implies then that i−1
∞ D′(F6c) is a sheaf.

Arguing similarly for F<c, we obtain that i−1
∞ D′(F<c) is a sheaf.

The assertion 4.4(2) needs only be checked on S1
∞, and by duality, according to

(4.5), it amounts to proving that H 1(i!∞j∞,!F )→H 1(i!∞F6c) is onto. This follows

from Lemma 4.2 and the paragraph after the proof of Lemma 4.3.

Now, 4.4(3) follows from Lemma 3.1.
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Let h be a ι-sesquilinear form on F , that is, a pairing F ⊗ι−1F → kA1 . It extends

in a unique way as a ι-sesquilinear pairing h : j∞,!F ⊗ ι−1j∞,∗F → j∞,!kA1 and

defines a morphism j∞,!F → D′(j∞,∗F ). Arguing as for (4.5), it induces a morphism

i!∞j∞,!F [1] ' L → D′(i−1
∞ j∞,∗F ) = L ∨, and thus a sesquilinear pairing h∞ :

L ⊗L → kS1
∞

. Arguing as in Proposition 4.4, one checks that if h is nondegenerate,

i.e., F → D′(F ) is an isomorphism, then so is h∞. Conversely, arguing as in Lemma

4.3, one reconstructs h from h∞ and obtains the non-degeneracy of h from that of h∞.

Let us now express in terms of (F ,F•) the compatibility of h∞ with the Stokes

filtration. Extend h as a pairing j∞,∗h : j∞,∗F ⊗ ι−1j∞,∗F → j∞,∗kX . This pairing

induces for each c ∈ C a pairing hc : F<c ⊗ ι−1(F6c)→ j∞,∗kX .

Lemma 4.6. The pairing h∞ is compatible with the Stokes filtration if and only

if, for each c ∈ C, the pairing hc takes values in j∞,!kX . When such is the

case, the induced pairing i!∞F<c[1] ⊗ i−1
∞ ι−1(F6c) → kS1

∞
is identified with

h∞,c : (L /L<c)⊗ ι−1(L 6c)→ kS1
∞

.

Proof. We first note that the pairing i−1
∞ j∞,∗h : L ⊗L → kS1

∞
coincides with h∞

through the natural isomorphisms i−1
∞ j∞,∗F → i!∞j∞,!F [1] and similarly for kX .

The condition on hc is then equivalent to the vanishing of h∞ when restricted to

L<c⊗ι−1(L 6c) for each c, and this is equivalent to the compatibility with the Stokes

filtration. The second part of the lemma follows from (4.5) and Lemma 3.1.

When the condition of the lemma is fulfilled, we say that h is a ι-sesquilinear form

on (F ,F•). We say that it is nondegenerate if it is nondegenerate on F .

Proposition 4.7 (Sesquilinear pairing on cohomology). Let h be a nondegenerate ι-ses-

quilinear form on (F ,F•). Let us choose c ∈ C satisfying the assumptions (a) and (b)

of §3.f, so that in particular F6c = F<c and F∨
6−c = D′(F6c). Then the following

properties hold:

(1) Hk(X,F6c) = 0 for k 6= 1 and, via the natural restriction morphism,

H1(X,F6c) is identified with Fc := Im can ⊂ H1(S1
∞,L6c) (cf. Lemma 3.16).

(2) The sesquilinear pairing hc : F<c⊗kι
−1(F6c)→ j∞,!kA1 induces a sesquilinear

pairing ĥc : H1(X,F6c) ⊗k H1(X,F6c) → k which is identified with hc, defined by

(3.17), via the identification of (1).

In (2), we use the canonical isomorphism H1(X,F6c) ' H1(X, ι−1(F6c)).

Proof of Proposition 4.7(1). Let us fix some notation. We denote by e : Y → X the

real blow-up of the origin in X and we set S1
0 = e−1(0), so that Y = S1 × [0,∞]. We

consider the covering Y = U1 ∪ U2, with Uk = Ik × [0,∞], k = 1, 2, where I1, I2 are

as in §2.b.

We set X∗ = X r {0} = Y ∗ = Y r S1
0 and we denote by j the inclusion X∗ =

Y ∗ ↪→ Y . We also set F ∗6c = F6c|X∗ and we define L ∗ as the pull-back of L by the

projection Y ∗ → S1
∞.

Set G = j∗F ∗6c and G ′ = j!F ∗6c. We have G = Rj∗F ∗6c and F6c = e∗G (distinct

from Re∗G if the monodromy of L admits 1 as an eigenvalue). Let us denote by
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j1 : U1 ↪→ Y the open inclusion, and by G1 the complex Rj1,∗(G|U1
). We similarly

use the notation G2 and G12. It will be convenient to denote by LY the pull-back of

L by the projection Y → S1
∞.

Lemma 4.8. Under Assumptions (a) and (b) of §3.f, the complex G1 is equal to the

sheaf j1,∗(G|U1
). Moreover, Hk(U1,G|U1

) = Hk(Y,G1) = 0 for any k. A similar

assertion holds for G2, and for G12 if k 6= 0. Moreover, Hk(Y,G ) = 0 if k 6= 1 and

H1(Y,G ) = H0(U1 ∩ U2,G ) = H0(Y,G12) ' Lθo .

Proof. By assumption, I1 is the interval (θo − ε, θ′o + ε). For the first assertion, we

need to check that G1 is a sheaf along ∂I1 × [0,∞]. Note that G is a local system

on Y r S1
∞, so the assertion is clear along ∂I1 × [0,∞). Now the assertion is local

near the points (θo − ε,∞) and (θ′o + ε,∞), and we can use a local splitting of the

Stokes filtration to reduce to the case where G is a local system in the neighbourhood

of (θo − ε,∞), which is already treated, or G is the extension by zero of a (constant)

local system on an open set like (θ′o− ε, θ′o+ ε)× (η,∞), with η � 0, via the inclusion

(θ′o−ε, θ′o+ε)×(η,∞) ↪→ (θ′o−ε, θ′o+ε)×(η,∞] (by our assumption on θo and c, this

occurs only at θ′o). We are thus reduced to showing, since the local system is constant

on this neighbourhood, and retracting (θ′o − ε, θ′o + ε)× (η,∞] to {θ′o} × (η,∞], that

H1
{∞}((η,∞],C) = 0, which is clear.

Let us show

(4.9) Hk(U1,G|U1
) = 0 ∀ k.

According to (2.7), we can choose on U1 an isomorphism LY |U1
'
⊕r

i=1 G
(1)
ci ,

where G
(1)
ci are local systems on U1, and the isomorphism is compatible with the

Stokes filtration on I1×{∞}, so we can work independently with each summand G
(1)
ci .

Arguing as for Rj1,∗G|U1
above, we find that each Rj1,∗G

(1)
ci is a sheaf j1,∗G

(1)
ci and

therefore Hk(U1,G
(1)
ci ) = Hk(U1, j1,∗G

(1)
ci ).

Arguing as for G1, we find that j1,∗G
(1)
ci is a (constant) local system on U1 r(

[θi, θ
′
o + ε] × {∞}

)
, for some θi ∈ I1, and is zero on [θi, θ

′
o + ε] × {∞}. Identifying

topologically the closure U1 of U1 with a closed disc D, the cohomology of such a

sheaf is the relative cohomology modulo a closed interval in ∂D of the constant sheaf

on D, so identically 0, hence (4.9). The same result holds for U2, of course.

Let us now compute Hk(U1 ∩ U2,G ). We identify each connected component of

U1 ∩ U2 to a closed disc, and a similar computation shows that Hk(U1 ∩ U2,G ) = 0

for k 6= 0 and Γ(U1 ∩ U2,G ) ' Lθo .

Recall that F6c = e∗G . On the other hand, R1e∗G is a sheaf supported at

the origin on X, whose germ is equal to H1(S1
0 ,LY |S1

0
). Since Re∗G has only two

cohomology sheaves, there is a natural triangle

e∗G −→ Re∗G −→ R1e∗G [−1]
+1−−−→

inducing a long exact sequence in hypercohomology over X. Note that the space

Hk(X,R1e∗G [−1]) = Hk−1(X,R1e∗G ) is equal to 0 if k 6= 1 and to the germ
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(R1e∗G )0 = H1(S1
0 ,LY |S1

0
) if k = 1. On the other hand, Hk(X, e∗G ) = Hk(X, e∗G )

and Hk(X,Re∗G ) = Hk(Y,G ). Moreover, from the previous lemma we get

H2(Y,G ) = 0. We therefore obtain a long exact sequence

(4.10) 0 −→ H1(X,F6c) −→ H1(Y,G ) −→ H1(S1
0 ,LY ) −→ H2(X,F6c) −→ 0,

where the middle map is the restriction morphism to S1
0 . We have a commutative

diagram

H1(Y,G )

��

// H1(Y, j∞,∗j
−1
∞ G )

o
��

∼ // H1(S1
0 ,LY )

H1(S1
∞,L6c) // H1(S1

∞,L )

where the vertical arrows are the restriction to S1
∞, and the lower horizontal line

is the right part of the exact sequence in Lemma 3.12. Moreover, the left vertical

morphism is an isomorphism, according to the computation of Lemma 4.8. As a

consequence, H1(Y,G )→ H1(S1
0 ,LY ) is onto and its kernel H1(X,F6c) is identified

with Fc = Im can via the restriction morphism H1(X,F6c)→ H1(S1
∞,L6c).

Proof of Proposition 4.7(2). We use the commutative diagram

H1(X,F6c)⊗H1(X, ι−1F6c)
ĥc //

��

H2(X, j∞,!kA1)

H1(S1
∞, i

!
∞F6c)⊗H1(S1

∞, i
−1
∞ ι−1F6c)

can

OO

h∞,c
// H1(S1

∞,kS1)

OO

where the vertical morphisms are induced by the restriction or by the natural mor-

phism Ri∞,∗i
!
∞ → Id and we can eliminate ι−1 in the cohomology. The identification

of the lower pairing h∞,c to hc of (3.13)(∗) follows from Lemma 4.2. To conclude, we

use (3.17).

5. Riemann-Hilbert correspondence and sesquilinear pairings

All along this section, we will only consider holonomic C[τ ]〈∂τ 〉-modulesN (where τ

is the coordinate on the affine line A1 = A1
τ ) with a regular singularity at τ = 0 and no

other singularities at finite distance, and of exponential type at τ =∞, meaning that

the Laplace (or inverse Laplace) transform has only regular singularities (cf. e.g. [32,

Lemma 1.5]). For such a holonomic C[τ ]〈∂τ 〉-module N , we will denote by N the

OP1(∗∞)-module with connection associated with N . We will use the notation of §4.

5.a. The Riemann-Hilbert correspondence. Denote by A mod∞
X the sheaf on X

of holomorphic functions on A1 which have moderate growth along S1
∞. This is

naturally a subsheaf of j∞,∗OA1 . It is a $−1OP1(∗∞)-submodule and is stable by

the natural action of $−1DP1 on j∞,∗OA1 . We will also consider the subsheaves

ecτA mod∞
X ⊂ j∞,∗OA1 (c ∈ C), which satisfy similar properties and coincide with OA1

on A1. Given eiθ ∈ S1
∞, the germs satisfy ecτA mod∞

X,θ ⊂ ec′τA mod∞
X,θ as soon as c 6

θ
c′
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(cf. §2.a(1)), since ecτ = ec
′τ · e(c−c′)τ and e(c−c′)τ has moderate growth as well as all

its derivatives near θ.

For each c ∈ C we denote by DR6c(N) the complex

(5.1) (ecτA mod∞
X )⊗OP1 (∗∞) N

∇−−−→ (ecτA mod∞
X )⊗OP1 (∗∞) (Ω1

P1 ⊗N ).

(The complex DR60(N) is also denoted by DRmod∞(N).) We have a natural identi-

fication

(5.2) j−1
∞ DR6c(N) = DRanN.

If we denote by E cτ the C[τ ]〈∂τ 〉-module (C[τ ], ∂τ + c), the termwise multiplication

by e−cτ induces an isomorphism DR6c(N)
∼−→ DRmod∞(E cτ ⊗N).

There is a rapid-decay analogue. Firstly, the subsheaf A rd∞
X ⊂ A mod∞

X consists

of those functions which have rapid decay along S1
∞. Then DR<c(N) is defined by a

complex similar to (5.1) where we replace A mod∞
X with A rd∞

X (the complex DR<0(N)

is also denoted by DRrd∞(N)). We also have e−cτ : DR<c(N)
∼−→ DRrd∞(E cτ ⊗N).

Proposition 5.3. If N as above is a minimal extension at τ = 0, the complexes

DR6c(N) and DR<c(N) have cohomology in degree 0 at most for each c ∈ C, and the

Riemann-Hilbert correspondence

N 7−→ (H 0 DRanN,H 0 DR•(N)) = (F ,F•)

is an equivalence between the full subcategory of the category of holonomic C[τ ]〈∂τ 〉-
modules whose objects are of exponential type at infinity, are minimal extensions with

a regular singularity at 0 and have no other singularity, and the category of minimal

Stokes-filtered constructible sheaves on X (cf. Definition 4.1).

Moreover, under this correspondence, we have

F<c = H 0 DR<c(N) ∀ c ∈ C.

Proof. This is a slight adaptation of the main statement in [5] (cf. also [21, 1, 22]).

5.b. Sesquilinear pairings. Let h : N ′ ⊗C N
′′ → S ′(A1

τ ) be a sesquilinear pairing

between holonomic C[τ ]〈∂τ 〉-modules as considered in the beginning of this section.

Then h induces a morphism of bicomplexes

hDR,0 : DRrd∞τ

X N ′ ⊗C DRmod∞τ

X N ′′ −→ Db
rd∞τ ,(•,•)
X ,

where Db
rd∞τ ,(•,•)
X is the bicomplex of currents on X with rapid decay along S1

∞τ
.

More generally, since for each c ∈ C, the function ecτ−cτ has moderate growth along

∞τ ∈ P1
τ or S1

∞τ
⊂ X as well as all its derivatives, h defines a morphism of complexes

(5.4) hDR,c : DR<c(N
′)⊗C DR6−c(N

′′) −→ Db
rd∞,(•,•)
X

Since the simple complex associated to the double complex Db
rd∞τ ,(•,•)
X is a resolution

of j∞τ ,!CA1τ , by taking H 0 we deduce for each c a pairing

(5.5) hDR,c : F ′<c[1]⊗F ′′6−c[1] −→ j∞,!CA1τ [2]
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where j∞,!CA1τ [2] is the dualizing complex on X. All these pairings hDR,c coincide,

when restricted to A1 and using the identification (5.2), with the pairing

hDR : DRanN ′ ⊗C DRanN ′′ −→ Db
(•,•)
A1 .

In particular, if h : N ⊗C ι
+N → S ′(A1

τ ) is a ι-sesquilinear pairing on N , it induces

a ι-sesquilinear pairing hDR,c : F<c ⊗C ι
−1(F6c)→ j∞,!CA1τ for each c ∈ C.

Lemma 5.6. Let (F ′,F ′•), (F ′′,F ′′• ) be minimal Stokes-filtered constructible sheaves

corresponding to holonomic C[τ ]〈∂τ 〉-modules N ′, N ′′ through the equivalence of

Proposition 5.3. Then any sesquilinear pairing hB between (F ′,F ′•) and (F ′′,F ′′• )

takes the form hDR for a unique sesquilinear pairing h between N ′ and N ′′.

Remark 5.7. The minimality property at 0 is assumed in Proposition 5.3 and Lemma

5.6 for the sake of simplicity. Without this assumption, the proposition would also

hold, but one should first correctly define the category of perverse sheaves on X with

a Stokes filtration at infinity. We will not need such a generalization.

Proof of Lemma 5.6. The equivalence of categories of Proposition 5.3 gives a unique

correspondence between morphisms. We will therefore express the pairings as mor-

phisms.

On the one hand, recall (cf. Proposition 4.4) that (F ′′∨,F ′′∨• ) is a minimal Stokes-

filtered constructible sheaf, as well as its conjugate, so that hB can be regarded as

a morphism from (F ′,F ′•) to the conjugate (F ′′†,F ′′†• ) of (F ′′∨,F ′′∨• ). By the

equivalence of Lemma 4.3 it corresponds in a unique way to a morphism (L ′,L ′•)→
(L ′′†,L ′′†• ). The Stokes data of the latter are obtained by conjugating (2.8)∨.

On the other hand, let us set N ′′† = HomC[τ ]〈∂τ 〉(N
′′,S ′(A1)), that we consider

as a C[τ ]〈∂τ 〉-module through the C[τ ]〈∂τ 〉-module structure of S ′(A1). It is known

that N ′′† is a holonomic C[τ ]〈∂τ 〉-module which belongs to the category considered

in Proposition 5.3. Indeed, this is obtained by sheafifying the construction on P1.

Then, on A1, the result follows from [18], and near ∞ it follows from [27, §II.3].

Now, a sesquilinear pairing h : N ′ ⊗C N
′′ → S ′(A1

τ ) is regarded as a C[τ ]〈∂τ 〉-linear

morphism N ′ → N ′′†.

The lemma reduces then to identifying the Stokes data at infinity of N ′′† to the

conjugate of (2.8)∨ (we will not recall here the classical relationship between Stokes

data at infinity for a meromorphic connection N considered as matrices of the form

Id +rapid decay and the Stokes data considered in §2.b). We will recall in this simple

case a sketch of the proof given in [27, §II.3]. We will work locally near infinity,

with local coordinate z = 1/τ , and denote by N the germ of OP1(∗∞) ⊗C[τ ] N
′′ at

infinity. Setting O = C{z} and D = O〈∂z〉, N is a O[z−1]-module with connection

and a holonomic D-module. We also denote by Dbmod∞ the germ at ∞ of the sheaf

Dbmod∞
P1 already considered in §1.a and we set N† = HomD(N,Dbmod∞).

It will be convenient to work on X near S1
∞. We denote by A mod∞ the germ

along S1
∞ of A mod∞

X and by D̃bmod∞ that of the sheaf on X of distributions having

moderate growth along S1
∞. If $ : X → P1 denotes the projection, we set Ñ =
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A mod∞ ⊗$−1O N. There exists Nel of the form Nel =
⊕r

i=1(E−ciτ ⊗ Ri), where

each Ri has regular singularity, such that Ñ is locally on S1
∞ isomorphic to Ñel. It is

proved in loc. cit. that

• (Nel)† is a germ of meromorphic connection at ∞,

• Ñ† = (Ñ)† := Hom$−1D($−1N, D̃bmod∞), which is also a RHom,

• (Ñ)† is locally isomorphic to (Ñel)† and the Stokes data (i.e., gluing data) needed

to recover (Ñ)† from (Ñel)† are obtained from those corresponding to Ñ in a natural

way, i.e., are inverse transposed conjugate of these. (The point is to prove that these

inverse transposed conjugate Stokes data are indeed Stokes data, i.e., are of the form

Id +rapid decay, while they a priori only have moderate growth.)

This shows that N† corresponds, via Proposition 5.3, to (L †,L †• ).

5.c. Compatibility of the sesquilinear pairing with taking cohomology

Let h : N ⊗C ι
+N → S ′(A1

τ ) be a ι-sesquilinear pairing on N , where N is as

occurring in the equivalence of categories in Proposition 5.3. Let us fix c ∈ C satisfying

(a) and (b) of §3.f.

On the one hand, h defines hDR,c : F6c ⊗C ι−1(F6c) → j∞,!CA1τ (because

F<c = F6c), and then ĥDR,c on H1(X,F6c), according to Proposition 4.7.

On the other hand, let us denote by M = FN the inverse Laplace transform of N ,

which by assumption is a regular holonomic C[t]〈∂t〉-module with singular set con-

tained in C. The complex M
t−c−→M is identified with the algebraic de Rham complex

N
−∂τ−c−→ N , which can be computed analytically as RΓ

(
X,DRmod∞(E cτ ⊗N)

)
, and

we have seen that this complex is isomorphic to RΓ
(
X,DR6c(N)

)
via the multipli-

cation by ecτ termwise. For c 6∈ C, the latter complex has cohomology in degree 1

at most, so the fibre M/(t − c)M is identified with H1(X,F6c). Now, the inverse

Fourier transform F τh is a sesquilinear pairing on the inverse Laplace transform M

of N . We set h = ĥ = −2πiF τh. Restricting it to A1
t r C, it takes values in C∞A1trC

.

Restricting it to the fibre at c also induces a sesquilinear pairing on H1(X,F6c), that

we denote by hDR,c = ĥDR,c. We will give a detailed proof of the following lemma in

the appendix.

Lemma 5.8. We have ĥDR,c = ĥDR,c.

5.d. The main theorem. Let ((Gc,1, Gc,2)c∈C , S, S
′) be Stokes data of type (C, θo)

as in Definition 2.6. Let us fix bases of Gc,`, c ∈ C and ` = 1, 2 and let us denote by

Σ,Σ′ the matrices of S, S′ in these bases. The choice of bases also fixes a sesquilinear

form h12 whose matrix in these bases is the identity. According to the Riemann-

Hilbert correspondence, these data define a meromorphic bundle (H (∗0),∇) on A1,an
z

with connection having a pole at z = 0 only. The connection is of exponential type.

We denote by (H ,∇) the Deligne-Malgrange lattice DM>0(H (∗0),∇).
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If Σ′ = −tΣ, the local system attached to (H (∗0),∇) is equipped with a ι-skew-

Hermitian pairing hB, and we can apply the “twistor gluing procedure” of [9, Lemma

2.14] and [30, Def. 1.25] (cf. §1.e) by using the ι-Hermitian pairing −2πihB.

Theorem 5.9. Let ((Gc,1, Gc,2)c∈C , S, S
′) be Stokes data of type (C, θo). Assume that

there exist bases of Gc,`, c ∈ C and ` = 1, 2 such that the matrices Σ,Σ′ of S, S′

satisfy

Σ′ = −tΣ and Σ + tΣ is positive semi-definite,(5.9)(∗)
∀ c ∈ C, either Kc = 0 or 2πihKc is positive definite on Kc.(5.9)(∗∗)

(cf. Remark 3.9 for hKc .) Then, the twistor structure on P1 obtained from

(H ,∇,−2πihB), (where (H ,∇) is the Deligne-Malgrange lattice defined by Σ)

by the “twistor gluing procedure” is pure of weight 0 and polarized.

Proof. Condition (5.9)(∗∗) implies that hKc is nondegenerate for each c ∈ C. Then,

as we already noticed at the end of Remark 3.9, the Stokes data enriched with the

sesquilinear form h12 split as a direct sum of minimal Stokes data and trivial Stokes

data on each Kc (both enriched with sesquilinear forms). The proof splits correspond-

ingly. The non-trivial part concerns the case of minimal Stokes data (all Kc equal to

zero), that we consider now.

In accordance with the previous part of the article, we will work with the variable

τ = 1/z, so we now denote by (H (∗∞),∇) the meromorphic bundle defined above on

P1
τ r {0}. Let us denote by N(∗0) the Deligne meromorphic extension (with a regular

singularity) at τ = 0 of H (∗∞), by N its minimal extension at τ = 0 and by N the

global sections of N on P1.

As indicated in Lemma 4.6, the pairing hB,∞ on (L ,L•) determined by the Stokes

data and the properties of Σ,Σ′ (cf. §3.e) gives rise in a unique way to a ι-sesquilinear

form hB on (F ,F•) which restricts (in the sense of Proposition 4.4) to hB,∞ on S1
∞,

and, according to Lemma 5.6, to a unique ι-sesquilinear pairing h on N . Let us choose

c ∈ C which satisfies both properties (a) and (b) of §3.f with respect to F ((a) means

that c 6∈ C). Then, after our assumption on Σ,Σ′ and according to Corollary 3.18 and

Proposition 4.7, ĥDR,c is positive definite. Hence, ĥDR,c is so, according to Lemma

5.8. We conclude by applying Corollary 1.5, since F ĥ = −2πih.

Let us now consider the easy case with enriched Stokes data (Kco , S(Kco), S, S, hKco ),

which are isomorphic to enriched Stokes data (Kco ,Kco , Id, Id, hKco ), where hKco is a

nondegenerate skew-Hermitian form on Kco . We will first adapt Proposition 5.3 and

Lemma 5.6 in this case.

Let us set N = (Kco ⊗ C[τ ], d− co Id dτ) and consider some Hermitian form hKco
on Kco . Then we define the ι-Hermitian form h on N by the formula

h(uco ⊗ f(τ), vco ⊗ g(τ)) = hKco (uco , vco)f(τ)g(−τ)ecoτ−coτ .
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The complex DRanN has cohomology in degree 0 only and H 0 DRanN⊂OA1,anτ
⊗N =

Kco ⊗OA1,anτ
is identified with the constant sheaf Kco ⊗C · ecoτ and, with this identi-

fication,

hDR(uco ⊗ ecoτ , vco ⊗ e−coτ ) = hKco (uco , vco).

Setting G = (Kco ⊗ C[τ, τ−1], d − codτ) = (Kco ⊗ C[z, z−1], d + codz/z
2), we have

DM0G = Kco ⊗ C[z] and DM>0G = Kco ⊗ (zC[z]). It is easy to check (cf. [30,

Example 1.33(1)]) that, if hKco is positive definite on Kco , then (DM0G,∇, hDR)

defines, by twistor gluing, an integrable twistor structure which is pure of weight 0

and polarized. It easily follows that (DM>0G,∇,−hDR) defines, by twistor gluing,

an integrable twistor structure which is pure of weight 0 and polarized. Below, we

will not distinguish between hDR and hKco .

In conclusion, starting with the skew-Hermitian form hKco on Kco , if the Hermitian

form hKco := 2πihKco is positive definite, then (DM>0G,∇,−2πihKco ) defines, by

twistor gluing, an integrable twistor structure which is pure of weight 0 and polarized.

Remarks 5.10
(1) This statement was conjectured (and proved in a particular case) in [11,

Conj. 10.2] and was the main motivation for proving Theorem 5.9. As in the particular

case treated in [11, Lemma. 10.1], the main idea is to apply the results of [30].

(2) If Σ is real, the integrable twistor structure that we get is a TERP structure in

the sense of [9]. If Σ is rational, we get a non-commutative Hodge structure, in the

sense of [20].

(3) The simplest example of a complex variation of polarized Hodge structure on

A1 r C is that of a holomorphic vector bundle V with a flat Hermitian metric (the

weight is zero and the Hodge type is (0, 0)). Recall more generally that variations of

polarized Hodge structures on A1 r C correspond exactly to variations of polarized

pure integrable twistor structures which are tame (i.e., have regular singularities) at

the singularities C ∪ {∞}, after [14, Th. 6.2].

Similarly, Theorem 5.9 gives the simplest example of an integrable twistor structure

whose associated variation by rescaling z (cf. [11, §4] and [30, §2.d]) is wild at τ =∞.

It is obtained by Fourier-Laplace transformation from the previous one.

(4) One can conjecture a kind of converse of Theorem 5.9 in the following

way. Given a block lower triangular matrix Σ such that the diagonal blocks Σii
(i = 1, . . . , n) are invertible, then Σ + tΣ is positive semi-definite if, for all pairs

(C, θo) consisting of a subset C ⊂ C with #C = n and θo ∈ R/2πZ generic with

respect to C (cf. §2.b), the corresponding twistor structure considered in Theorem

5.9 is pure and polarized.

Appendix: Proof of Lemma 5.8

We will give a detailed proof of this lemma. A proof of a similar result had only

been sketched for [30, Prop. 1.18]. We will keep the setting of §5.
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A.a. Integral formula for the Fourier transform of a sesquilinear pairing

between D-modules. We start by expressing ĥ (as defined in Corollary 1.5(3)) by

an integral formula.

Let us first recall that the inverse Laplace transform M of N can be obtained as the

algebraic direct image q+(p+N ⊗C[t,τ ] E
tτ ), where p (resp. q) denotes the projection

from A1
τ×A1

t to A1
τ (resp. A1

t) and Etτ = (C[t, τ ], d+τdt+tdτ). Moreover, this formula

can be sheafified and made analytic, giving M = q+(p+N ⊗ E tτ ), where N is as in

the beginning of Section 5, and p, q now denote the projections P1
τ × P1

t → P1
τ or P1

t

in the analytic category (cf. [6, Appendix A] for details). Since we are only interested

in the behaviour on A1
t r C, we will set Y = A1

t r C and denote by p : P1
τ × Y → P1

τ

the projection, and similarly for q. Then M is a DY -module. By assumption on C,

it is OY -locally free. More precisely, if N has the connection ∇, p+N ⊗ E tτ is

p∗N := OP1
τ×Y ⊗p−1OP1τ

p−1N equipped with the connection p∗∇+τdt+tdτ , and M

is the first cohomology of the relative de Rham complex

(A.1) q∗p
∗N

∇+ tdτ−−−−−−−→ q∗(p
∗N ⊗ Ω1

P1
τ×Y/Y )

equipped with the connection induced by dY +τdt, where dY is the differential relative

to Y . Notice that p∗N and p∗N ⊗ Ω1
P1
τ×Y/Y

are q∗-acyclic (cf. loc. cit.). Moreover

this complex has cohomology in degree one at most.

For the sake of simplicity, we will denote the volume form i
2πdτ ∧ dτ (on A1

τ ) by

d volτ , its t-analogue (on Y ) by d volt.

We will use the following lemma:

Lemma A.2. Let ϕ be C∞ on P1
τ × Y , with compact support. Then the function

τ 7→
∫
Y
etτ−tτϕd volt is C∞ on A1

τ , with rapid decay at infinity as well as all its

derivatives.

Proof. By assumption, ϕ induces a C∞ function on A1
τ ×Y such that |t|m ∂ατ ∂

β
τ ∂

γ
t ∂

δ
t
ϕ

is bounded for all α, β, γ, δ,m > 0 (since, in the coordinate τ ′ = 1/τ , we have ∂τϕ =

−τ ′2∂τ ′ϕ and similarly for ∂τ ).

Let us still denote by F tϕ the integral we consider (with some abuse, since ϕ

depends on τ). That F tϕ is C∞ on A1
τ is clear. It is a matter of showing that each

expression
∥∥τaτ b∂cτ∂dτF t(ϕ)

∥∥
L∞

is bounded. We have

τaτ b∂cτ∂
d
τF t(ϕ) = F t

(
(−∂t)a∂bt (t+ ∂τ )c(−t+ ∂τ )dϕ

)
.

Since ψ := (−∂t)a∂bt (t + ∂τ )c(−t + ∂τ )dϕ satisfies the same properties as ϕ does, as

indicated above, it is enough to get a bound for F tψ for such a ψ. Since |etτ−tτ | = 1,

we have, for m such that (1 + |t|2m)−1 is L1 on A1
t,∥∥F tψ∥∥L∞ 6

∥∥(1 + |t|2m)−1
∥∥
L1

∥∥(1 + |t|2m)ψ
∥∥
L∞

< +∞.

Let us still denote by h the sheafified sesquilinear pairing N ⊗C ι
+N → Dbmod∞τ

P1
τ

(where N is as in the beginning of Section 5). We will define a sesquilinear pairing

h′ : (p+N ⊗ E tτ )⊗ ι+p+N ⊗ E tτ −→ DbP1
τ×Y .
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We identify ι+p+N ⊗ E tτ with (p+ι+N )⊗ E−tτ , where ι denotes the involution

τ 7→ −τ either before or after p+. Let n (resp. n′) be a local section of p+N

(resp. p+ι+N ). We can write n =
∑
i φini, n

′ =
∑
j ψjn

′
j (finite sums) where ni

(resp. n′j) are local sections of N (resp. ι+N ) and φi, ψj are local sections of OP1
τ×Y .

Let ϕ be a C∞ form with compact support of maximal degree (namely, degree 4)

on an open subset of P1
τ × Y where n, n′ are defined. By Lemma A.2, the 2-form

τ 7→
∫
Y
etτ−tτφiψjϕ has rapid decay at ∞τ for every i, j, so we can set

(A.3) 〈h′(n, n′), ϕ〉 =
∑
ij

〈
h(ni, n

′
j),
(∫

Y

etτ−tτφiψjϕ
)〉
,

and one checks that this does not depend on the chosen decomposition of n, n′, so

that h′(n, n′) is a section of DbP1
τ×Y .

Integration of currents along P1
τ composed with h′ induces a sesquilinear pairing

q∗(p
∗N ⊗ Ω1

P1
τ×Y/Y )⊗ q∗ι∗(p∗N ⊗ Ω1

P1
τ×Y/Y

) −→ DbY

which becomes a sesquilinear pairing (noticing that ι∗ disappears after q∗ and using

the twisted differentials as in (A.1))

(A.4) q+h
′ : M ⊗M −→ DbY .

(That q+h
′ is well-defined and sesquilinear is checked in a standard way.)

Lemma A.5. We have ĥ = q+h
′.

Proof. Since M is generated byM (inverse Laplace transform ofN), and sinceM = N

as C-vector spaces, it is enough to check the equality for the values at n, n′ ∈ N ,

according to sesquilinearity. Let n, n′ ∈ N and let η be a C∞ 2-form on Y with

compact support. By definition,

〈ĥ(n, n′), η〉 = 〈−2πiF τh(n, n′), η〉 = 〈h(n, n′), (F tη)dτ ∧ dτ〉

where F tη =
∫
Y
etτ−tτη. On the other hand, if we set N [t] = C[t]⊗CN , according to

the identification M = N [t] · dτ/(p∗∇+ tdτ)N [t], we have

〈q+h
′(n, n′), η〉 = 〈h′(ndτ, n′dτ), q∗η〉 =

〈
h(n, n′),

(∫
Y

etτ−tτη
)
dτ ∧ dτ

〉
,

hence the assertion.

A.b. Lifting to P̃1
τ ×Y and restriction to t = c. Let $ : P̃1

τ ×Y → P1
τ ×Y be the

oriented real blow up of∞τ×Y , and let A mod∞τ

P̃1
τ×Y

(resp. A rd∞τ

P̃1
τ×Y

) be the corresponding

sheaf of holomorphic functions which have moderate growth (resp. rapid decay) along

S1
∞τ
× Y .

We will lift the sesquilinear pairing h′ as a sesquilinear pairing

h̃′ :
[
A rd∞τ

P̃1
τ×Y

⊗$−1(p+N ⊗E tτ )
]
⊗
[
A mod∞τ

P̃1
τ×Y

⊗$−1ι+(p+N ⊗ E tτ )
]
−→ Dbrd∞τ

P̃1
τ×Y

.

In order to do so, we use a formula analogous to (A.3), where now each φi is a local

section of A rd∞τ

P̃1
τ×Y

, each ψj is a local section of A mod∞τ

P̃1
τ×Y

, and ϕ has moderate growth
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along S1
∞τ
× Y . Since each term φiψjϕ has then rapid decay along S1

∞τ
× Y , the

formula (A.3) remains meaningful.

We will denote by Dbrd∞τ

P̃1
τ×Y/Y

the subsheaf of Dbrd∞τ

P̃1
τ×Y

consisting of distributions

which are C∞ with respect to t ∈ Y . For such a distribution, the evaluation at

t = c ∈ Y is well defined as a distribution on P̃1
τ with rapid decay at τ =∞.

Recall (cf. after the proof of Lemma A.2) that the sesquilinear pairing h : N ⊗C
ι+N → S ′(A1

τ ) can be sheafified and lifted as above as a sesquilinear pairing

h̃c :
[
A rd∞τ

P̃1
τ

⊗$−1(N ⊗ E cτ )
]
⊗
[
A mod∞τ

P̃1
τ

⊗$−1ι+(N ⊗ E cτ )
]
−→ Dbrd∞τ

P̃1
τ

.

Proposition A.6. The sesquilinear pairing h̃′ takes values in Dbrd∞τ

P̃1
τ×Y/Y

and, for each

c ∈ Y , its evaluation at t = c is equal to h̃c.

Proof. The second part of the statement is clear once we have shown the first part,

that we consider now. Notice first that it is a local statement.

Firstly, on A1
τ×Y the statement is clear, since etτ−tτ h̃′, when expressed on sections

n of N and n′ of ι+N , takes values in distributions annihilated by ∂t and ∂t.

We will thus consider the statement locally near S1
∞τ
× Y and we will show that,

locally near (eiθo , c) ∈ S1
∞τ
× Y , h̃′ takes values in C∞ functions which are infinitely

flat along S1
∞τ
× Y , by analyzing the differential equations satisfied by h̃′(n, n′). By

using the Hukuhara-Turrittin theorem for N at τ =∞ (cf. e.g. [22, Appendix]), we

are reduced to evaluating h̃′ on sections n, n′ which are solutions of

(τ∂τ + ciτ + α)mn = 0, (τ∂τ + cjτ + α′)mn′ = 0, ci, cj ∈ C, α, α′ ∈ C, m� 0.

When restricted to τ 6= ∞τ , h̃(n, n′) := h̃0(n, n′) is a C∞ function and the function

h̃
(
(eciτταn, (ecjττα′n′)

)
is annihilated by (τ∂τ )m and (τ∂τ )m.

Similarly, etτ−tτ h̃′
(
(eciτταn, (ecjττα′n′)

)
is annihilated by (τ∂τ )m, (τ∂τ )m, ∂t

and ∂t. Therefore, this function does not depend on t and has moderate growth in

some neighbourhood of (eiθo , c).

If Re((c − ci)eiθo − (c− cj)eiθo) < 0, then in some neighbourhood of (eiθo , c) we

have Re((t − ci)τ − (t− cj)τ) < 0, and h̃′(n, n′) is a C∞ function with rapid decay

along S1
∞τ
× Y on this neighbourhood, as wanted.

Otherwise, there is an open set of A1
τ × Y containing (eiθo , c) in its closure, on

which Re((t− ci)τ − (t− cj)τ) > 0, hence on which the function h̃′(n, n′) cannot be

extended as a distribution (and even a moderate distribution), unless it is identically

zero. In such a case, the desired statement trivially holds.

A.c. The de Rham complexes. In the neighbourhood of∞τ ×Y , p+N ⊗E tτ is a

meromorphic bundle with connection. Since t varies in Y = A1
trC, this meromorphic

bundle with connection is good, in the sense of [23, §3.2]. It follows, by an extension of

the result in dimension one, proved in [22, Appendix 1] for instance, that the moderate

and rapid decay de Rham complexes DRrd∞τ (p+N ⊗E tτ ) and DRmod∞τ (p+N ⊗E tτ )

have cohomology in degree zero at most in the neighbourhood of ∞τ × Y . On the

other hand, on A1
τ × Y , p+N ⊗ E tτ is isomorphic to p+N , and since DRan N has
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cohomology in degree 0 at most (because N is assumed to be a minimal extension

at τ = 0), so does DRan p+N . Therefore, both complexes DRrd∞τ (p+N ⊗E tτ ) and

DRmod∞τ (p+N ⊗ E tτ ) have cohomology in degree zero at most.

Recall also (cf. Proposition 5.3) that, for each c ∈ Y , the complexes DR<cN and

DR6cN have cohomology in degree 0 at most.

Proposition A.7. For each c ∈ Y , there are functorial morphisms

i−1
c H 0(DRrd∞τ (p+N ⊗ E tτ )) −→H 0(DR<cN)

i−1
c H 0(DRmod∞τ (p+N ⊗ E tτ )) −→H 0(DR6cN)and

which are isomorphisms, where ic : P̃1
τ × {c} ↪→ P̃1

τ × Y denotes the inclusion.

Proof. We will show the proposition in the moderate case, the rapid decay case being

similar. Let us denote by DRmod∞τ

rel the relative de Rham complex (with differential

forms relative to the projection P̃1
τ×Y → Y only). Evaluating the coefficients at t = c

induces a natural morphism of complexes i−1
c DRmod∞τ

rel (p+N ⊗ E tτ ) → DR6cN ,

since the evaluation at t = c of a section of etτA mod∞τ

P̃1
τ×Y

belongs to ecτA mod∞τ

P̃1
τ

.

We have a natural action of ∂t on i−1
c DRmod∞τ

rel (p+N ⊗E tτ ), and the kernel of ∂t
on its H 0 is equal to i−1

c H 0 DRmod∞τ (p+N ⊗ E tτ ), hence we obtain the desired

morphism to H 0(DR6cN). To show that this morphism is an isomorphism is now a

local question on P̃1
τ × Y .

On A1
τ ×Y , the result is clear since p+N ⊗E tτ ' p+N . Near (eiθo , c) ∈ S1

∞τ
×Y ,

we can assume, by functoriality, that N = Nα ⊗ E−ciτ , with ci ∈ C and Nα =

(OP1
τ
(∗∞τ ), d+αdτ/τ). We are reduced to showing that e(t−ci)τ has moderate growth

along S1
∞τ
× Y near (eiθo , c) if and only if e(c−ci)τ has moderate growth along S1

∞τ

near eiθo . This is clear, and also equivalent to the fact that both functions have rapid

decay, since c 6= ci.

From h̃′ we derive h̃′DR, which is a pairing of double complexes

h̃′DR : DRrd∞τ (p+N ⊗ E tτ )⊗DRmod∞τ ι+(p+N ⊗ E tτ ) −→ Db
rd∞τ ,(•,•)

P̃1
τ×Y/Y

.

The de Rham complex of currents which are C∞ with respect to Y and have rapid

decay along S1
∞τ
×Y , which is the simple complex associate to the Dolbeault complex

Db
rd∞τ ,(•,•)

P̃1
τ×Y/Y

, is a resolution of j∞,!CA1τ×Y .

By Proposition A.7, applying the evaluation at t = c to h̃′DR defines a pairing h̃′DR,c

which is nothing but the pairing hDR,c considered in (5.4).

A.d. End of the proof of Lemma 5.8. From Lemma A.5 we deduce that ĥDR,c =

(q+h
′)DR,c. Denoting by q̃ the projection P̃1

τ × Y → Y , we also obtain

ĥDR,c = (q̃+h̃
′)DR,c,

where q̃+ denotes the integration of currents along the fibres of q̃. Integration of

currents of any degree is compatible with the differentials, therefore (q̃+h̃
′)DR,c =
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(q̃+h̃
′
DR)c. On the other hand, evaluation at t = c is compatible with the integration

of currents which are C∞ with respect to Y , so we finally get

ĥDR,c = (q̃+h̃
′
DR,c).

On the other hand, we have seen above that h̃′DR,c is identified with hDR,c, and its

integration q̃+h̃
′
DR,c is nothing but the pairing induced on the cohomology, that is,

ĥDR,c.
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France, Paris, 2004, p. 391–410.

[25] T. Mochizuki – Wild harmonic bundles and wild pure twistor D-modules, Astérisque,
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F–91128 Palaiseau cedex, France • E-mail : sabbah@math.polytechnique.fr
Url : http://www.math.polytechnique.fr/~sabbah

http://arxiv.org/abs/0806.0107
http://arxiv.org/abs/0811.1384
http://arxiv.org/abs/0811.1384
http://arxiv.org/abs/math.AG/9805077
http://arxiv.org/abs/math.AG/0508551
http://arxiv.org/abs/math.AG/0508551
http://arxiv.org/abs/0803.0287
http://arxiv.org/abs/0803.0287
http://arxiv.org/abs/0804.4328
http://arxiv.org/abs/math.AG/9705006

	Introduction
	1. Polarized pure twistor structure attached to a flat unitary bundle
	2. Stokes filtration and Stokes data
	3. Natural operations on Stokes filtrations and Stokes data
	4. Minimal constructible sheaves on P1 with Stokes structure at infinity
	5. Riemann-Hilbert correspondence and sesquilinear pairings
	Appendix: Proof of Lemma 5.8
	References

