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Abstract. Using local cohomology and algebraicD-Modules, we generalize a comparison theo-
rem between relative de Rham cohomology and Dwork cohomology due to N. Katz, P. Monsky,
A. Adolphson and S. Sperber.
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Introduction

Let p : X → S be a smooth affine morphism of smooth complex algebraic
varieties, andf = (f1, . . . , fr) : X → A

r a morphism to the affine spaceAr

with coordinates(y1, . . . , yr). We defineV = X × A
r , F = ∑

j fj (x)yj and
Y = f −1(0)red so that we have a diagram

Y
i−−−→ X

π←−−− V
F−−−→ A

1

�p

S

wherei andπ denote natural morphisms. (More precisely,f is a morphism to
the dual space(Ar )∨ of A

r which is identified withAr , andF is the pull-back
of the canonical bilinear form on(Ar )∨ × A

r by f × id.)
Let E be a locally freeOX-Module of finite rank with an integrable con-

nection∇. We first assume thatY is smooth overS, and letd = codimXY .
Then the restrictioni∗E has the induced connection which is also denoted by
∇. We define the twisted connection∇F on the pull-backπ∗E by ∇F e =
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∇e + dF ⊗ e. Sincep◦i andp◦π are smooth, we have the relative de Rham
cohomologiesRj(p◦i)∗DRY/S(i

∗E,∇), Rk(p◦π)∗DRV/S(π
∗E,∇F ) which are

OS-Modules with the Gauss-Manin connection as defined in [8].
Assume further thatf −1(0) is reduced and is a complete intersection (i.e.,

d = r). Then A. Adolphson and S. Sperber [1] proved the following canonical
isomorphism ofOS-Modules with an integrable connection:

(0.1) Rj (p◦i)∗DRY/S(i
∗E,∇) = Rj+2d(p◦π)∗DRV/S(π

∗E,∇F ).

This is a generalization of results of N. Katz [7] in the caser = 1. (See also [9],
Lemma 2.1.) The isomorphism means that the relative de Rham cohomology
with the Gauss-Manin connection on the left-hand side can be calculated by
the right-hand side which is called theDwork cohomologyassociated withF .
For example, ifX = A

n × S with S = SpecA, p : X → S is the natural
projection, and(E,∇) = (OX, d), then the Dwork cohomology is identified
with the cohomology of the Koszul complex

K(A[x, y]; ∂/∂xj +
∑

i

yi∂fi/∂xj (1≤ j ≤ n), ∂/∂yi + fi (1≤ i ≤ r)),

whereA[x, y] = A[x1, . . . , xn, y1, . . . , yr ] is the affine coordinate ring ofS ×
A

n × A
r .

In this paper, we give a generalization of (0.1) which holds without any
assumption onp : X → S andY (but X andS remain smooth). The reader
would, however, notice soon that (0.1) is useless ifp is proper, because the
restrictions offi to the fibers ofp are constant in this case. SoV = X × A

r

should be replaced by an algebraic vector bundleπ : V → X with rank r,
andf = (f1, . . . , fr) by a sections : X → V ∨ of the dual vector bundle
π∨ : V ∨ → X of V . Thens is naturally identified with a function onV such
that the restriction to each fiber ofV is a linear function, and this function plays
the role ofF . See (2.1). The subspaceY is now defined ass−1(0)red, where 0
denotes the zero section. IfV is trivial (by shrinkingX if necessary), we recover
the previous situation.

Themain idea is to use the formalism of algebraicD-Modules rather than that
of relative deRhamcohomology andGauss-Manin connection.The reason is that
if Y is singular, the restrictioni∗(E,∇) should be replaced withRΓY (E,∇)[d],
but this is useful only if it is defined in the derived category of algebraicDX-
Modules. So it is natural to replace also(E,∇)with a bounded complex of quasi-
coherent leftDX-ModulesM

•. Then the usual pull-backπ∗M• has naturally a
structure of (complex of) quasi-coherent leftDV -Modules. We will denote by
(π∗M•

)F the complex ofDV -Modules with twisted action ofDV as above.
Another merit of usingD-Modules is that we can reduce the assertion to the

casep is the identity due to the compatibility of the direct image functor with
the composition of morphisms.
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0.2. Theorem.We have a canonical isomorphism in the derived category of left
DX-Modules

RΓYM
•[r] = π+((π∗M

•
)F ).

Hereπ+ denotes the direct image of algebraic leftD-Modules (see e.g. [2]).
This gives a generalization of a result of P. Monsky in the caseV = X × A

1

andX = A
n × S (see [9], Lemma 2.1). IfM• = (E,∇) andY is smooth with

codimensiond, thenRΓYM
•[d] = i+(i∗M

•
).

In order to compare Theorem (0.2) with the result of A. Adolphson and
S. Sperber (0.1), we apply the direct image functorp+ to both sides of (0.2),
and use the isomorphism(p◦π)+ = p+π+. However, we need to know that the
cohomology of the direct image of aD-Module under a smooth morphism is
naturally isomorphic to the relative de Rham complex with the Gauss-Manin
connection as defined by Katz-Oda [8].We give in (1.4) a proof of this assertion,
which is apparently widely accepted, but for which no complete proof seems
to exist in the literature. From (0.2) and (1.4) we can deduce the following (see
Remark (2.5)(i)):

0.3. Corollary. The isomorphism (0.1) remains true for any smooth morphism
p and any sections of an algebraic vector bundleπ : V → X such that
Y (= s−1(0)red) is smooth overS.

Note thats−1(0)maybenonreduced, and the codimension ofY maybediffer-
ent from the rank ofV (in particular,Y is not necessarily a complete intersection).
It does not seem easy to prove the assertion under such an assumption without
using the theory ofD-Modules.

We give two proofs of (0.2). The first proof (2.2) reduces the assertion to
a lemma on Fourier transformation (Lemma (2.3)). In the case whereV =
X × A

r , f = (f1, . . . , fr) : X→ (Ar )∨ is an isomorphism, andM• is a quasi-
coherentD-ModuleM, it is well-known to specialists that the Fourier transform
M̂ of M is isomorphic toπ ′+(π∗M)F , whereπ ′ : X × A

r → A
r is the second

projection. So Theorem (0.2) in this case means that the algebraic de Rham
cohomology ofM̂ is isomorphic to the cohomology of the restriction ofM to
the origin ofAr asD-Module (or equivalently asO-Module).

The second proof (2.4) reduces the assertion to a calculation of local coho-
mology, and is used in the proof of (0.4). (The two proofs are both contained in
this paper, because it is not yet shown that the obtained isomorphisms coincide.)

AssumenowX = P
n
S withp : X→ S thenatural projection, andY is ahyper-

surface defined by a homogeneous polynomialF of degreemwith coefficients in
Γ (S,OS). ThenF is identifiedwith a global section ofOX(m) (= OX(V ∨)). Let
(x0, . . . , xn) be the natural coordinate ofAn+1 so thatΓ (An+1,O) = C[x] (:=
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C[x0, . . . , xn]). Let

Ωi(An+1
S /S)(m) =

∑
|I |=i

|ν|+|I |≡0 modm

OSx
νdxI ,

wherexν =∏
i x

νi
i for ν = (ν0, . . . , νn) ∈ Z

n+1 anddxI = dxj1 ∧ · · · ∧ dxji for
I = {j1, . . . , jn}. ThenΩ•

(An+1
S /S)(m) is stable byd + dF∧. We call

Hi(Ω
•
(An+1

S /S)(m), d + dF∧)
the primitive Dwork cohomology sheaf ofF . It has a leftDS-Module structure
such that the action of a vector fieldξ on S is given bym �→ ξm + (ξF )m,
whereξm andξF are defined by using the natural action ofξ onOS .

We define the primitive part of the direct imageHip+RΓYOX of the left
DX-ModuleRΓYOX by

(Hip+RΓYOX)prim = Ker(Hip+RΓYOX → Hip+OX).

Note that the morphism on the right-hand side is surjective fori �= −n and zero
for i = −n. See (3.1).

0.4. Theorem.We have a canonical isomorphism of leftDS-Modules

(Hip+RΓYOX)prim = Hi+n(Ω
•
(An+1

S /S)(m), d + dF∧).

So the left-hand side is calculated by a subcomplex of the Koszul complex
for ∂/∂xi + ∂F/∂xi (0 ≤ i ≤ n). This theorem is closely related with results of
Katz [7]. Note that Theorem (0.4) in the caseS = pt becomes

H̃ i−1(X\Y,C) = Hi
Y (X,C)prim = Hi(Ω

•
(An+1

S /S)(m), d + dF∧),
and follows from [3], becauseX\Y is the quotient ofF−1(1) ⊂ A

n+1 by the
action of the geometricmonodromy automorphism.Theorem (0.4) is also related
with Griffiths’ result [5] in the caseY is smooth overS. See (3.4).

In §1, we review elementary facts from the theory of algebraicD-Modules
[2] together with the relation with differential complexes, and prove the equiv-
alence between the direct image of algebraicD-Modules and the Gauss-Manin
connection of Katz-Oda [8] in the case of smooth morphisms. Then we show
Theorems (0.2) and (0.4) in§2 and§3.

Acknowledgements.Wewould like to thankA.Adolphson andS. Sperber for sending us promptly
their preprint [1]. During the preparation of this paper, the first three authors have benefited from
the financial support by INTAS program 97-1644.
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1. Review on algebraicD-modules
1.1.D-modules.Let X be a smooth complex algebraic variety with dimension
n, andDX the sheaf of linear algebraic differential operators withF the fil-
tration by the order of differential operators. We denote byM(DX)l the cate-
gory of left DX-Modules, and byMqcoh(DX)l the full subcategory consisting
of quasi-coherent leftDX-Modules. We haveC∗(DX)l, K∗(DX)l,D∗(DX)l for
∗ = +,−, b or empty as usual [2], [13].Wedenote byD

∗
qcoh(DX)l the full subcat-

egory ofD∗(DX)l consisting of complexes with quasi-coherent cohomologies.
It is known thatDb

qcoh(DX)l is equivalent to the derived category consisting of
bounded complexes of quasi-coherentDX-Modules. See [2, VI, 2.10].

We have similarlyM(DX)r,D∗(DX)r,D
∗
qcoh(DX)r, etc. for right DX

-Modules. We have the transformation between the left and rightD-Modules
by

(1.1.1) M → ωX ⊗OX
M

for a left DX-ModuleM, whereωX is the dualizing sheaf (i.e.ΩdimX
X ). See

loc. cit.
Note that a leftDX-Module can be viewed as anOX-Module (not necessarily

finitely generated) endowed with an integrable connection. By the theory of
characteristic variety, it is known that a leftDX-Module is locally free of finite
type overOX if and only if it is coherent overOX.

1.2.Differential complexes.LetL,L′ beOX-Modules. Then we have rightDX-
ModulesL⊗OX

DX,L′ ⊗OX
DX, and any morphism

u ∈ HomDX
(L⊗OX

DX,L′ ⊗OX
DX) = HomOX

(L,L′ ⊗OX
DX)

induces aC-linear morphismu′ : L → L′ by taking the composition with the
the projectionL′ ⊗OX

DX → L′ (defined bym⊗ P �→ (P1)m). We see thatu′
is uniquely determined by the commutative diagram

(1.2.1)

L⊗OX
DX

u−−−→ L′ ⊗OX
DX�

�
L

u′−−−→ L′

where the vertical morphisms are as above. The obtained morphism

(1.2.2) HomDX
(L⊗OX

DX,L′ ⊗OX
DX)→ HomC(L,L′)

is injective. See [11, 2.2.2]. Its image is denoted by DiffX(L,L′). It has an
increasing filtrationF with p-th term defined by

FpDiff X(L,L′) = Im(HomOX
(L,L′ ⊗OX

FpDX)→ HomC(L,L′)).
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We can verify thatFpDiff X(L,L′) coincides with the group of differential op-
erators of order≤ p in the sense of Grothendieck [6]. See [12, (1.20.2)]. But
this filtration is not exhaustive in general. (For example,DX → OX (defined
by P �→ P1) has unbounded order if the rightDX-Module structure onDX is
used.)

WedenotebyM(OX,Diff ) the category such that theobjectsareOX-Modules
and the morphisms are given by DiffX(L,L′). It is an additive category.We have
a functor

DR−1X : M(OX,Diff )→ M(DX)r

such that DR−1X (L) = L⊗OX
DX, using the injectivity of (1.2.2).

We can define the category of complexesC(OX,Diff ), and also the category
K(OX,Diff ) whose morphisms are considered up to homotopy as in [13]. (An
object ofC(OX,Diff ) or K(OX,Diff ) is called a differential complex in this
paper.) Then DR−1X is extended to

DR−1X : C(OX,Diff )→ C(DX)r, DR−1X : K(OX,Diff )→ K(DX)r .

We say thatL• ∈ K(OX,Diff ) is D-acyclic if DR−1X (L
•
) is acyclic, and a

morphismu : L• → L′• ofK(OX,Diff ) is aD-quasi-isomorphism if DR−1X (u) is
a quasi-isomorphism. Then by invertingD-quasi-isomorphisms, we getD(OX,

Diff ). (We can verify that aD-quasi-isomorphism is a quasi-isomorphism by
showing that (1.2.6) is a quasi-isomorphism.) Similarly, we can defineC∗(OX,

Diff ),K∗(OX,Diff ),D∗(OX,Diff ) for ∗ = +,−, b as in [13].
For a leftDX-ModuleM, the de Rham complex DRX(M) ∈ Cb(OX,Diff ) is

defined in the usual way (by identifying a leftDX-Module with anOX-Module
endowed with an integrable connection). This gives a functor

DRX : D∗(DX)l → D∗(OX,Diff ).

For a rightDX-ModulesM, we define the de Rham complex DRX(M) ∈
Cb(OX,Diff ) so that thei-th component isM ⊗OX

∧n−iΘX and the differential
is given in the usual way. (Taking a local coordinate system(x1, . . . , xn), it is
isomorphic to the Koszul complex for the operators∂/∂x1, . . . , ∂/∂xn onM.)
This induces a functor

DRX : D∗(DX)r → D∗(OX,Diff ),

so that forM• ∈ C(DX)l we have

(1.2.3) DRX(M
•
) = DRX(ωX ⊗OX

M
•
) in D∗(OX,Diff ),

using the transformation (1.1.1).
We have an equivalence of categories

(1.2.4) DR−1X : D∗(OX,Diff )→ D∗(DX)r
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for ∗ = +,−, b or empty, and a quasi-inverse is given by DRX[dimX]. This
follows from the quasi-isomorphism

(1.2.5) DR−1X DRX(M
•
)[dimX] → M

•

for M• ∈ C(DX)r . See [12, (1.5.2)] and also Remark below. Note that (1.2.5)
implies aD-quasi-isomorphism

(1.2.6) DRXDR
−1
X (L

•
)[dimX] → L

•

for L• ∈ C(OX,Diff ) so that DRX[dimX] gives a quasi-inverse of DR−1X .

Remark.For the proof of (1.2.5) we consider the filtration on DR−1X DRX(M
•
)

induced byF onDX. If we take a local coordinate system(x1, . . . , xn), then the
direct sum of its graded pieces is the Koszul complex

K(M ⊗OX
GrFDX;GrF ∂/∂x1, . . . ,GrF ∂/∂xn)

So (1.2.5) is clear. (Here a differential operator of unbounded order is used.)
Similarly we can show that (1.2.6) is a quasi-isomorphism.

1.3.Direct Images.Letf : X→ Y be amorphism of smooth complex algebraic
varieties. ForM• ∈ D+(DX)r , the direct imagef+M

• ∈ D+(DY )
r is defined by

(1.3.1) f+M
• = Rf∗(M

•⊗LDX
DX→Y ).

HereDX→Y = OX⊗f−1OY
f −1DY , and it has a structure of leftDX-Module and

right f −1DY -Module.
For anOX-ModuleL, we define

DR−1Y (L) = DR−1X (L)⊗DX
DX→Y (= L⊗f−1OY

f −1DY ).

Then forL• ∈ D+(OX,Diff ), we have

(1.3.2) f+DR−1X (L
•
) = Rf∗DR−1Y (L

•
) = DR−1Y Rf∗(L

•
) in D+(DY )

r ,

whereRf∗(L
•
) is defined by taking a resolution of (a representative of)L

• in
C+(OX,Diff ) whose components aref∗-acyclic. The isomorphisms of (1.3.2)
mean that the differential complexes are stable by the sheaf-theoretic direct im-
age, andf+DR−1X = DR−1Y Rf∗.

ForM• ∈ D+(DX)l, the direct imagef+(M
•
) is defined so that

(1.3.3) f+(ωX ⊗OX
M
•
) = ωY ⊗OY

f+(M
•
) in D+(DY )

r .

More explicitly, we have

(1.3.4) f+M
• = Rf∗(DY←X⊗LDX

M
•
).
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HereDY←X is obtained by transforming the left and rightD-Module structures
onDX→Y (by using the transformation of left and rightD-Modules in (1.1.1)).

1.4. Proposition.Let f : X → Y be a smooth morphism of smooth complex
algebraic varieties with relative dimensiond. Then forM• ∈ D+(DX)l, we have
a natural isomorphism of leftDY -Modules:

(1.4.1) Ri+df∗DRX/Y (M
•
) = Hi(f+M

•
),

where the left-hand side has the structure of leftDY -Module by theGauss-Manin
connection [8].

Proof.Recall first the construction of Gauss-Manin connection in [8,§2]. Con-
sider the Leray filtrationG onΩi

X defined by

GpΩi
X = Im(f ∗Ωp

Y ⊗Ω
i−p

X → Ωi
X).

Then GrpGΩi
X = f ∗Ωp

Y ⊗OX
Ω

i−p

X/Y , andΩ
i−p

X/Y is a locally freeOX-Module,
becausef is smooth. This induces a filtrationG on DRX(M

•
) such that

GrpGDRX(M
•
) = f ∗Ωp

Y ⊗OX
DRX/Y (M

•
)[−p],

where thei-th component of DRX/Y (M
j) isΩj

X/Y ⊗OX
Mj . So we get a spectral

sequence

(1.4.2) E
p,q

1 = Ω
p

Y ⊗OY
Rqf∗DRX/Y (M

•
)⇒ Rp+qf∗DRX(M

•
).

This is defined in the category of sheaves onY . However, theE1-complex is de-
fined inC∗(OY ,Diff ), and is isomorphic to DRY (Rqf∗DRX/Y (M

•
)). See loc. cit.

The Gauss-Manin connection onRqf∗DRX/Y (M
•
) is defined asd1 : E0,q

1 →
E
1,q
1 . More generally,d1 : Ep,q

1 → E
p+1,q
1 is given by the connecting morphism

associated with the short exact sequence

0→ Grp+1G DRX(M
•
)→ GpDRX(M

•
)/Gp+2DRX(M

•
)

→ GrpGDRX(M
•
)→ 0.(1.4.3)

The filtrationG induces also a filtrationG on DR−1Y DRX(M
•
) in the notation

of (1.3.2), and DR−1Y commutes with GrG, becauseDY is flat overOY . So we get
a spectral sequence defined in the category of rightDY -Modules:
(1.4.4)

E
p,q

1 = DR−1Y (Ω
p

Y ⊗OY
Rqf∗DRX/Y (M

•
))⇒ Hp+q(DR−1Y Rf∗DRX(M

•
)).

Applying (1.2.1) to theE1-complexes of (1.4.2) and (1.4.4) (and using (1.4.3)),
we see that theE1-complex of (1.4.4) is isomorphic to DR

−1
Y DRY (R

qf∗DRX/Y

(M
•
)). The latter is further quasi-isomorphic to

ωY ⊗OY
(Rqf∗DRX/Y (M

•
))[−m]
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by the quasi-isomorphism (1.2.5) combined with (1.2.3), wherem = dimY .
This implies that the spectral sequence (1.4.4) degenerates atE2, and we get the
isomorphism of rightDY -Modules:

ωY ⊗OY
(Rqf∗DRX/Y (M

•
)) = ωY ⊗OY

Hq−df+(M
•
),

because
Hi(DR−1Y Rf∗DRX(M

•
)) = ωY ⊗OY

Hi−nf+(M
•
)

by (1.2.5), (1.2.3), (1.3.2) and (1.3.3),wheren = dimX. So theassertion follows.

1.5. Pull-backs and local cohomology.Let f : X → Y be a morphism of
smooth complex algebraic varieties. ForM ∈ M(DY )

l, the usual pull-back
f ∗M (:= OX ⊗f−1OY

f −1M) has naturally a leftDX-Module structure by

(1.5.1) f ∗M = DX→Y ⊗f−1DY
f −1M,

whereDX→Y is as in (1.3). So, using a flat resolution, we get the derived functor

(1.5.2) Lf ∗ : D∗(DY )
l → D∗(DX)l

for ∗ = +,−, b or empty. This is compatible withLf ∗ forO-Modules, because
a flatDX-Module is flat overOX. We will use the notationf ∗M• for Lf ∗M• if
f is flat, or more generally, iff is cohomologically noncharacteristic forM• in
the sense that the higher torsion groups ofOX andf −1Mi overf −1OY vanish.

If we identify a leftDY -Module with anOY -Module (not necessarily finitely
generated) endowed with an integrable connection∇, the pull-back ofDY -
Modules corresponds to the pull-back of connections (i.e.,∇ : M → Ω1

Y⊗OY
M

inducesf ∗∇ : f ∗M → Ω1
X ⊗OX

f ∗M).
We define also

(1.5.3) f !M• = Lf ∗M•[dimX − dimY ].
Thisf ! is compatiblewithf ! forO-Modulesup to tensorofωX/Y .Moreprecisely,
if we definef ! for right D-Modules using the transformation of left and right
D-Modules as in (1.1.1), then this is compatible withf ! for O-Modules.

Let i : Z→ X be a closed embedding of smooth complex algebraic varieties.
Then we have

(1.5.4) i+i !M
• = RΓZM

•

for M
• ∈ D+qcoh(DX)l, whereΓZM for a sheafM is the subsheaf consisting

of local sections supported inZ, andRΓZM
• is defined by taking a flasque

resolution. For the proof of (1.5.4), we consider a functorRΓ[Z] defined by

RΓ[Z]M
• = ind limjHomOX

(OX/I
j

Z,M
′•),
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whereIZ is the ideal sheaf ofZ, andM• → M ′• is a quasi-isomorphism such
thatM ′• is a complex of injectiveDX-Modules. See for example [2, VI, 7.9].
Then forM• ∈ D+qcoh(DX), we have a natural isomorphism

(1.5.5) RΓ[Z]M
• ∼→ RΓZM

•

in the derived category. Furthermorei !M• for rightD-Modules is given by

i !M• = RHomOX
(OX/IZ,M

•
).

Indeed, HomOX
(OX/IZ,M) has naturally a structure of rightDZ-Module ifM

is a rightDX-Module. So we get a canonical morphism inD+qcoh(DX)

(1.5.6) i+i !M
• → RΓ[Z]M

•

and it is enough to show that this is an isomorphism. Then we may assume that
M
• is a quasi-coherentDX-ModuleM, and the assertion follows by taking a

resolution ofM such that the components are quasi-coherentDX-Modules, and
are injective objects in the category of quasi-coherentOX-Modules. See [2, VI,
7.13].

1.6. Proposition.Letf : X → Y be a morphism of smooth complex algebraic
varieties, andZ′ a closed subvariety ofY . LetZ = f −1(Z′), and consider a
cartesian diagram

Z
i−−−→ X

j←−−− X\Z�f ′
�f

�f ′′

Z′ i′−−−→ Y
j ′←−−− Y\Z′

where the horizontal morphisms are inclusions and the vertical ones are in-
duced byf . Then forM• ∈ D+qcoh(DX)l, we have a canonical isomorphism in
D+qcoh(DY )

l

(1.6.1) f+RΓZM
• = RΓZ′f+M

•
.

If Z andZ′ are smooth, we have as in [2, VI, 8.4]:

(1.6.2) f ′+i
!M• = i ′!f+M

•
.

Proof.We have a distinguished triangle inD+qcoh(DX)l

→ RΓZM
• → M

• → j+j ∗M
• →,
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becausej+j ∗M
• = Rj∗j ∗M

• by definition. Applying the functorial morphism
RΓZ′f+ → f+ to this triangle, (1.6.1) is reduced to the following two assertions
for M ′• ∈ D+qcoh(DY )

l:

RΓZ′M
′• ∼→ M ′• if suppM ′ ⊂ Z′,

RΓZ′j
′+j ′∗M ′

• = 0,

where M ′• is respectively f+RΓZM
• and f+M

• (because j ′+j ′∗f+M
•

= j ′+f ′′+j ∗M
• = f+j+j ∗M

•
). The first assertion is clear. For the second, it

is enough to apply the functorRΓZ′ to the distinguished triangle

→ RΓZ′M
′• → M ′• → j ′+j

′∗M ′• → .

If Z andZ′ are smooth, (1.6.2) follows from (1.6.1) by the Kashiwara equiv-
alence (see for example [2, VI, 7.13]).

Remark.The above argument is more precise than in [2, VI, 8.4] about the
problem of the ambiguity of mapping cone.

1.7.Twists.LetX be a smooth complex algebraic variety, andF ∈ Γ (X,OX).
ThenOXeF is defined to be the quotient ofDX by the left ideal generated by
ξ − ξ(F ) for vector fieldsξ (whereξ(F ) ∈ OX). As anOX-Module,OXeF is
isomorphic toOX (generated by 1∈ DX). For a leftDX-ModuleM, we define
the twistMF (orM ⊗ eF ) by

MF = M ⊗OX
OXeF .

See also [10]. In terms of integrable connection,MF corresponds to the twist of
connection∇F defined by∇F (m) = ∇m+ dF ⊗m. So we have

(1.7.1) DRX(MF ) = DRX(M,∇ + dF∧).
Let g : Z→ X be a morphism of smooth complex algebraic varieties. Then

we have

(1.7.2) g∗(MF ) = (g∗M)g∗F .

2. Dwork cohomology

2.1.LetX be a smooth complex algebraic variety, andπ : V → X an algebraic
vector bundle of rankr. Let π∨ : V ∨ → X be the dual vector bundle ofV .
We denote byOX(V ∨) the sheaf of sections ofV ∨, and by SymOX

OX(V ∨) the
symmetric algebra overOX. Then

V = SpecX(SymOX
OX(V ∨)).
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So a sections of V ∨ is identified with a functionF onV such that the restriction
to each fiber ofV is a linear function.

We consider a cartesian diagram

(2.1.1)

V
s̃−−−→ V ×X V ∨ π̃∨−−−→ V�π

�π̃

�π

X
s−−−→ V ∨ π∨−−−→ X

Let〈v, v∨〉 ∈ Cdenote thecanonical pairingofv ∈ V, v∨ ∈ V ∨ such thatπ(v) =
π∨(v∨).This givesa functionΦ ∈ Γ (V×XV ∨,O) such thatΦ(v, v∨) = 〈v, v∨〉
for (v, v∨) ∈ V ×X V ∨.

Let (y1, . . . , yr), (y
∨
1 , . . . , y

∨
r ) be locally defined dual coordinate systems

of the vector bundlesV andV ∨. This means that we have dual local bases
(e1, . . . , er), (e

∨
1 , . . . , e

∨
r ) of OX(V ),OX(V ∨) such that

∑
i yi(v)ei(π(v)) = v

for v ∈ V (and similarly forV ∨). Then we haveΦ(v, v∨) = ∑
i yi(v)y

∨
i (v∨)

for (v, v∨) ∈ V ×X V ∨, and

(2.1.2) F = s̃∗Φ.

Indeed,F = ∑
i yifi if s is expressed by(f1, . . . , fr) using the coordinates

(y∨1 , . . . , y∨r ).

2.2.First proof of(0.2). Let ˜̃π : V ×XV ∨ → X denote the natural projection, and
i∨ : X→ V ∨ the zero section.We prove the assertion by showing the following
isomorphisms:

RΓYM
• = s !i∨+M

• = s !π̃+(( ˜̃π∗M•
)Φ)

= π+s̃ !(( ˜̃π∗M•
)Φ) = π+((π∗M

•
)F )[−r].(2.2.1)

The first isomorphism follows from

s !i∨+M
• = π∨+s+s

!i∨+M
• = π∨+RΓs(X)i

∨
+M

• = π∨+i
∨
+RΓYM

• = RΓYM
•
,

using (1.5.4) and (1.6).
As for the last isomorphism of (2.2.1), note thats̃ is noncharacteristic for

( ˜̃π∗M•
)Φ (or equivalently for˜̃π∗M• = (π∨)∗π∗M•

), because it is a section of a
smooth morphismπ∨. So we will writes̃∗ for L s̃∗. See (1.5). Then

(π∗M•
)F = s̃∗(( ˜̃π∗M•

)Φ) = s̃ !(( ˜̃π∗M•
)Φ[r]

by (1.7.2) and by definition (i.e.̃s ! = s̃∗[−r]).
The third isomorphism of (2.2.1) follows from the base changes !π̃+ = π+s̃ !

(see (1.6)). Then it remains to show the second isomorphism of (2.2.1), and the
assertion is reduced to the following.
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2.3. Lemma.i∨+M
• = π̃+(( ˜̃π∗M•

)Φ).

Proof.We may assumeM• is a quasi-coherent leftDX-ModuleM, because the
assertion in this case impliesHi π̃∗(( ˜̃π∗Mj)Φ) = 0 for i �= 0. Note that the
right-hand side is the Fourier transform ofπ∗M, and the assertion is more or
less well-known if the vector bundleV is trivial. Indeed, the right-hand side in
this case is the (shifted) Koszul complex

(2.3.1) K(M[y1, . . . , yr , y
∨
1 , . . . , y

∨
r ]; ∂/∂yi + y∨i (1≤ i ≤ r))[r]

by definition of twist (1.7), where(y1, . . . , yr), (y
∨
1 , . . . , y

∨
r ) are as in (2.1).

In general it is enough to show that the local isomorphisms give a globally
well-defined isomorphism. So the assertion is reduced to

(2.3.2) M = ˜̃π+(( ˜̃π∗M)Φ).

Let Ṽ = V ×X V ∨. By definition,H0 ˜̃π+(( ˜̃π∗M)Φ) is a quotient of̃̃π∗(Ω2r
Ṽ /X

⊗OV
˜̃π∗M)which is isomorphic tõ̃π∗Ω2r

Ṽ /X
⊗OX

M becauseM is quasi-coherent.

ThenΩ2r
Ṽ /X

is globally trivialized by the relative form

dy1 ∧ · · · ∧ dyr ∧ dy∨1 ∧ · · · ∧ dy∨r ,

because this relative form is independent of the choice of the locally defined dual
coordinate systems(y1, . . . , yr), (y

∨
1 , . . . , y

∨
r ) of the vector bundlesV, V ∨. So

H0 ˜̃π+(( ˜̃π∗M)Φ) is globally a quotient of̃̃π∗OṼ ⊗OX
M. Since ˜̃π+(( ˜̃π∗M)Φ) is

locally the (shifted) Koszul complex
(2.3.3)

K(M[y1, . . . , yr,y
∨
1 , . . . , y

∨
r ]; ∂/∂yi + y∨i , ∂/∂y∨i + yi (1≤ i ≤ r))[2r],

we see thatM = 1⊗M ⊂ ˜̃π∗OṼ ⊗OX
M is isomorphic toH0 ˜̃π+(( ˜̃π∗M)Φ), and

this isomorphism is compatible with the action ofDX. So the assertion follows.

2.4.Second proof of(0.2). We first construct a canonical morphism inCb(OX,

Diff ):

(2.4.1) π∗(DRV (π∗M•
),∇ + dF∧)→ DRX(M

•
).

Note that the left-hand side isπ∗(DRV ((π∗M•
)F ) by (1.7.1). Since theMj are

quasi-coherent, we have the projection formula

π∗(Ωi
V ⊗OV

π∗Mj) = (π∗Ωi
V )⊗OX

Mj

The naturalC∗-action on the vector bundleV gives a decomposition

π∗Ωi
V =

⊕
k∈N

(π∗Ωi
V )〈k〉,
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such thatλ∗ω = λkω for λ ∈ C
∗, ω ∈ (π∗Ωi

V )〈k〉. (This is easily verified by
taking a local trivialization ofV .) So we get a decomposition

π∗(Ωi
V ⊗OV

π∗Mj) =
⊕
k∈N

(π∗Ωi
V )〈k〉 ⊗OX

Mj .

The differential∇ preserves the decomposition, anddF∧ preserves it up to a
shift of degree by one because the restriction ofF on each fiber is linear. Since
(π∗Ωi

V )〈0〉 = Ωi
X, DRX(M

•
) is a quotient complex ofπ∗(DRV (π∗M•

),∇ +
dF∧), and we get (2.4.1).

Let j : X\Y → X denote the inclusion morphism. We have a distinguished
triangle

→ RΓYM
• → M

• → Rj∗j ∗M
• →,

whereRΓYM
•
,Rj∗j ∗M

• are defined by using a flasque quasi-coherent resolu-
tion. Applying (2.4.1) to this triangle, it is enough to show the following two
assertions for the proof of (0.2):

(2.4.2) the source of (2.4.1) forRj∗j ∗M
• isD-acyclic,

(2.4.3) (2.4.1) is aD-quasi-isomorphism if SuppM• ⊂ Y .

So we may assume thatM• is a quasi-coherent leftDX-ModuleM.
Since the assertions are local, we may assumeV = X × A

r , and s =
(f1, . . . , fr). Taking DR

−1
X of (2.4.1) and then transforming rightD-Modules to

left D-Modules, (2.4.1) becomes a morphism of complex of leftDX-Modules:

(2.4.4) π∗(DRV/X(π∗M),∇ + dF∧)→ M.

So it is enough to show (2.4.2–3) with (2.4.1) replaced by (2.4.4), andD-acyclic
andD-quasi-isomorphism by acyclic and quasi-isomorphism respectively.

SinceF =∑
i yifi with the notation of (2.1.2), the left-hand side of (2.4.4)

is the Koszul complex

(2.4.5) K(M[y1, . . . , yr ]; ∂/∂yi + fi (1≤ i ≤ r)).

LetUi = {fi �= 0} ⊂ X, andUI = ∩i∈IUi with the natural inclusionjI : UI →
X for I ⊂ {1, . . . , r}. ThenwehaveaCech complexwithi-th component defined
by ⊕

|I |=j+1
(jI )∗j

∗
I M for i ≥ 0, and 0 otherwise.

Since this complex representsRj∗j ∗M, we may replaceRj∗j ∗M
• in (2.4.2) by

(jI )∗j
∗
I M for I ⊂ {1, . . . , r}. By definition, the action offi on (jI )∗j

∗
I M is

bijective for i ∈ I . This implies the bijectivity of the action of∂/∂yi + fi on
(jI )∗j

∗
I M[y1, . . . , yr ] using the increasing filtration onC[y1, . . . , yr ] by degree.
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So we get (2.4.2), because the Koszul complex (2.4.5) is the single complex
associated with ther-ple complex defined by the morphisms∂/∂yi + fi (1 ≤
i ≤ r).

For (2.4.3) we take an increasing exhaustive filtrationG of M such that
G−1M = 0 and GrGi M are annihilated by the reduced ideal sheaf ofY . Then
GrG of (2.4.5) is the Koszul complex

K(GrGM[y1, . . . , yr ]; ∂/∂yi (1≤ i ≤ r)),

and GrG of (2.4.4) is a quasi-isomorphism. So we get (2.4.3). This completes the
second proof of (0.2).

2.5.Remarks.(i) The cohomology sheaf on the right-hand side of (0.2) is called
the generalized Dwork cohomology sheaf. Ifp is smooth of relative dimension
n, we have by (1.4) an isomorphism of leftDY -Modules:

(2.5.1) Hi(p◦π)+((π∗M
•
)F ) = Ri+n+r (p◦π)∗DRV/S((π

∗M•
)F ).

If M
• is a coherentOX-Module with an integrable connection(E,∇), then

(π∗M•
)F is the pull-backπ∗E with the twisted connection∇ + dF∧. If fur-

thermoreY → S is smooth with codimXY = d, thenRΓYM
•[d] = i+i∗(E,∇)

wherei : Y → X denotes the inclusion morphism. So we get

(2.5.2) Hi(p+RΓYM
•[d]) = Ri+n−d(p◦i)∗DRY/S(i

∗(E,∇)).
Then (0.3) follows from (0.2) combined with (2.5.1) and (2.5.2).

(ii) In the caseM• = OX andY is connected, we can show that the isomor-
phisms obtained by the two proofs of (0.2) coincide up to a nonzero constant
multiple using the Riemann-Hilbert correspondence together with the duality.
Indeed, we may assume thatp is the identity, and we have an isomorphism

(2.5.3) Hom(RΓYOX,RΓYOX) = Hom(CY an,CY an) = C,

where the first Hom is taken in the derived category of leftDX-Modules, and the
second Hom in the derived category ofCXan-Modules.

3. Projective hypersurface case

3.1.With the notation of (2.1), assumeX = P
n
S with S a smooth connected

variety, andp : X → S is the natural projection. (For example,S = A
r . Here

we do not have to restrict to an open subvariety ofA
r , becauseY is not assumed

to be smooth overS.)
For an integera, we define a line bundleπ : V (a)→ X by

(3.1.1) V (a) = SpecX(
⊕
k∈N

OX(ak))
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so thatOX(−a) = OX(V (a)) (the sheaf of sections ofV (a)). If a = 1,V (1) is the
tautological line bundle, and is the blow-up ofA

n+1
S at the origin.

We assumeV = V (m). Then a nonzero sections ofOX(m) is identified with a
homogeneous polynomial of degreem with coefficients inOS , which is denoted
also byF . (This is compatiblewith the notationF ∈ Γ (V (m),OV (m)) in (2.1) by
(3.2).)ForM• = OX,wehave theDworkcohomologysheafRi(p◦π)∗(Ω

•
V (m)/S

, d

+dF∧) as in the introduction. It has a structure of leftDS-Module twisted byF
(which is compatible with (2.5.1)). By (2.4) (combined with (2.5.1)), we get a
canonical isomorphism of leftDS-Modules

(3.1.2) Hip+RΓYOX = Ri+n(p◦π)∗(Ω
•
V (m)/S

, d + dF∧).
SinceY is a divisor, we have

RΓYOX[1] = H1RΓYOX = j∗OX\Y /OX,

wherej : X\Y → X denotes the inclusion morphism. Note that a natural
morphism

(3.1.3) Hip+RΓYOX → Hip+OX

is surjective fori �= −n and zero otherwise. Indeed, we have a dense open
subvarietyU of S such that theHip+RΓYOX|U are locally freeOU -Modules of
finite type, and their fibers ats ∈ U are isomorphic toHi+n

Ys
(Xs,C). Thenwemay

replaceS withU , because theHip+OX are simpleDS-Modules (more precisely,
OS or zero). But the natural morphismHi+n(Xs,C) → Hi+n(Xs\Ys,C) is an
isomorphism fori = −n, and zero otherwise.

For the proof of (0.4), we will further simplify the right-hand side of (3.1.2).

3.2. Proposition.We have natural isomorphisms

(3.2.1) Ωi(An+1
S /S)(m) = (p◦π)∗Ωi

V (m)/S

compatible withd, ∧, and the action ofDS .

Proof.This is clear ifm = 1, becauseV (1)→ A
n+1
S is the blow up at the origin.

Form > 1, V (m) is the quotient ofV (1) by the naturalµm-action on each fiber,
whereµm = {λ ∈ C : λm = 1}. So we get the assertion taking the invariant part
by the action ofµm onA

n+1
S .

3.3.Proof of(0.4). By (2.4) applied toM• = OX,we have a canonical morphism
of Cb(OX,Diff )

(3.3.1) π∗(Ω
•
V (m), d + dF∧)→ (Ω

•
X, d).

TakingHip+DR−1X and using the isomorphism (3.1.2), this gives the natural
morphism (3.1.3) by (2.4). Applying DR−1S (see (1.3.2)) and (1.2.5) to (3.3.1),
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and then transforming rightD-Modules to leftD-Modules, we get a morphism
of left p−1DS-Modules

(3.3.2) π∗(Ω
•
V (m)/S

, d + dF∧)→ (Ω
•
X/S, d).

Furthermore, the induced morphism

(3.3.3) Rj (p◦π)∗Ωi
V (m)/S

= Rjp∗(π∗Ωi
V (m)/S

)→ Rjp∗Ωi
X/S

is an isomorphism forj �= 0. Indeed, we have a short exact sequence

0→
⊕
k≥0

Ωi
X/S(km)→ π∗Ωi

V (m)/S
→

⊕
k>0

Ωi−1
X/S(km)→ 0,

which is the direct image of the short exact sequence

0→ π∗Ωi
X/S → Ωi

V (m)/S
→ π∗Ωi−1

X/S ⊗OX
Ω1

V (m)/X
→ 0,

becauseΩ1
V (m)/X

= π∗OX(m). So it is enough to show thatRjp∗Ωi
X/S(km) = 0

for j, k > 0. But this follows from the Bott vanishing (i.e.,Hi(Pn,Ω
j

Pn(k)) =
0 unlessi = 0, n or i = j, k = 0), becauseRnp∗Ωi

X/S(km) is the dual of

R0p∗Ωn−i
X/S(−km) (andR0p∗Ωn−i

X/S = 0 for i �= n).
By (3.3.2), we have a morphism between the spectral sequences in the cate-

gory of leftDS-Modules

(3.3.4) E
i,j

1 = Rj(pπ)∗Ωi
V (m)/S

⇒ Ri+j (pπ)∗(Ω
•
V (m)/S

, d + dF∧),

(3.3.5) E
i,j

1 = Rjp∗Ωi
X/S ⇒ Ri+jp∗(Ω

•
X/S, d),

which are defined by the filtrationσ on both sides of (3.3.2). The second spectral
sequence (3.3.5) is the Hodge-de Rham spectral sequence, andE

i,j

1 = 0 except
for i = j ≤ n so that it degenerates atE1. For (3.3.4) we haveE

i,j

1 = 0 except for
j = 0 or i = j ≤ n by the isomorphism (3.3.3) forj > 0. Furthermore we have
E

i,i
1 = OS (1 ≤ i ≤ n) for both. So the spectral sequence (3.3.4) degenerates

atE2, because the morphism betweenEi,i
r should be surjective for anyr by the

surjectivity of (3.1.3) fori > −n (sinceEp,2i−p
r = 0 for p < i). ThenEi,0

2 of
(3.3.4) is identified with the primitive part(Hi−np+RΓYOX)prim by (3.1.2) and
(3.3.1), and we get the assertion.

3.4.Remarks.(i) If F−1(0) ⊂ X is (reduced and) smooth overS, then byGriffiths
[5], we have an isomorphism

(3.4.1) GrF (R
ip∗Ω

•
Y/S)

prim = Hi+2(Ω•
(An+1

S /S)(m), dF∧),
where GrF is the direct sum of the graded quotients of the Hodge filtration.
Furthermore, the image of a vector fieldξ on S by the Kodaira-Spencer map
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corresponds to the multiplication by−ξF . SinceF−1(0) is smooth,{∂F/∂xi} is
a regular sequence ofC[x], and it is easy to show
(3.4.2) GrGHi(Ω

•
(An+1

S /S)(m), d + dF∧) = Hi(Ω
•
(An+1

S /S)(m), dF∧),
whereG is the filtration by degree ofx1, . . . , xn.

(ii) If S = pt , letU = F−1(1) ⊂ A
n+1. Then we have an isomorphism

(3.4.3) H̃ i(U,C) = Hi+1(Ω•
(An+1), d + dF∧)

by [3]. SinceX\Y is the quotient ofU by the action ofµm which gives also the
local monodromy, we get the isomorphism

(3.4.4) H i
Y (X,C)prim = H̃ i−1(X\Y,C) = Hi(Ω

•
(An+1

S /S)(m), d + dF∧),
where the first isomorphism follows from the long exact sequence associated
with local cohomology. So (0.4) follows in this case.

(iii) Let F̃ = F + xm
n+1, and defineX = P

n = {xn+1 = 0} ⊂ X̃ = P
n+1, and

Y = F−1(0)red⊂ X, Ỹ = F̃−1(0)red⊂ X̃, U = F−1(−1) ⊂ A
n+1,

so thatY = Ỹ ∩X ⊂ X̃ andU = Ỹ\Y . Then we have a long exact sequence
→ Hi

Y (X̃,C)→ Hi

Ỹ
(X̃,C)→ Hi

U(An+1,C)→ .

which gives

→ Hi−2
Y (X,C)→ Hi

Ỹ
(X̃,C)→ Hi−2(U,C)→ .

becauseHi
Y (X̃,C) = Hi−2

Y (X,C) = H2n−i+2(Y ),H i

Ỹ
(X̃,C) = H2n−i+2(Ỹ ),

andHi
U(An+1,C) = Hi−2(U,C). By [3], p. 25-26, this induces short exact

sequences

(3.4.5) 0→ Hi+2
Ỹ

(X̃,C)prim→ H̃ i(U,C)→ Hi+1
Y (X,C)prim→ 0.

Indeed, we have by (3.4.3-4)

H̃ i(U,C) = Hi+1(Ω•
(An+1), d + dF∧),

H i+1
Y (X,C)prim = Hi+1(Ω•

(An+1)(m), d + dF∧),
H i+2

Ỹ
(X̃,C)prim = Hi+2(Ω•

(An+2)(m), d + dF̃∧)
=⊕

0<j<m H i+1(Ω•
(An+1)(j modm), d + dF∧),

whereΩi(An+1)(j modm) = ∑
|I |=i

∑
|ν|+|I |≡j modm CxνdxI . Note that(Ω•

(An+2), d + dF̃∧) is the Koszul complex for∂/∂xi + ∂F̃ /∂xi (0 ≤ i ≤ n+ 1)
so that

(Ω
•
(An+2), d+dF̃∧) = (Ω

•
(An+1), d+dF∧)⊗C(Ω

•
(A1), d+mxm−1

n+1 dxn+1∧).
(More generally, the Thom-Sebastiani type theorem holds for the cohomology
of a general fiber of a polynomial map in general [4]).
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