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Abstract. We consider the complex analogues of symmetric power moments of cubic expo-
nential sums. These are symmetric powers of the classical Airy differential equation. We show
that their de Rham cohomologies underlie an arithmetic Hodge structure in the sense of
Anderson and we compute their Hodge numbers by means of the irregular Hodge filtration,
which is indexed by rational numbers, on their realizations as exponential mixed Hodge
structures. The main result is that all Hodge numbers are either zero or one.
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1. Introduction

Families of cubic exponential sums attached to the polynomial x3 + zx in x over finite
fields and their symmetric power moments over z (Airy moments) have been considered in
analogy with moments of Kloosterman sums for example, and much is already known about
the corresponding L functions (see [11, 12] and the references therein). For the analogous
moments of Kloosterman sums, a conjecture of Broadhurst and Roberts, concerning the precise
functional equations satisfied by the corresponding global L functions, has been proved in [7]
(except the exact local information at prime 2 when k is even). In such a case, a pure Nori
motive Mk defined over Q is attached to the k-moments. One of the main arguments is to
prove that the associated Galois representation of Mk is potentially automorphic, which relies
on a theorem of Patrikis and Taylor [19], owing to the property proved in [7], that all nonzero
Hodge numbers of Mk are equal to one.

For Airy moments, a strictly similar strategy to understand the Galois theoretic properties
of the corresponding motivic object Mk is not possible, basically because Mk is not a Nori
motive, but an ulterior motive in the sense of Anderson [3]. Nevertheless, Hodge theory can
be developed in this context (arithmetic Hodge structure in the sense of Anderson), with the
caveat that the Hodge numbers hp,q may occur for rational exponents p, q subject to p+q ∈ Z.

A similar notion of Hodge structure, that we call a finite monodromic mixed Hodge structure
as defined in Section 2, has been considered by Scherk and Steenbrink [34] when analyzing
the join of two mixed Hodge structures equipped with an automorphism of finite order. Al-
ready in [36], Steenbrink attached to the mixed Hodge structure on the nearby cycles and
vanishing cycles of a holomorphic function with an isolated singularity, a Hodge polynomial in
Z[t1/m, t−1/m], wherem is the order of the semi-simple part of the monodromy. He conjectured
a behaviour of the Hodge polynomial under Thom-Sebastiani sums as modeled in [34], a con-
jecture which was proved by M. Saito [32] and later received a proof using motivic integration
in [10].

The complex analogue of the Airy k-moment is the k-th symmetric product Symk Ai of
the Airy differential equation Ai on the affine line A1

z, defined by the classical Airy operator
∂2z − z. We regard Ai as a rank-two vector bundle on A1

z with a connection having ∞ as
its only singularity, which is irregular of slope 3/2 and has irregularity number equal to 3.
Therefore, Symk Ai is regarded as a rank (k+1) vector bundle with connection on A1

z having a
singularity at infinity only. Contrary to the case of the Kloosterman connection, the de Rham
cohomology H1

dR(A1,Symk Ai) does not naturally underlie a mixed Hodge structure (again
reflecting the fact that Mk is not classical). However, it is the de Rham fiber of an exponential
mixed Hodge structure with finite monodromy, hence underlies a finite monodromic mixed
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Hodge structure (see Section 5.c). As indicated above, such structures provide an alternative
approach to the arithmetic Hodge structures of Anderson, and they are more closely related
to exponential mixed Hodge structures defined by Kontsevich and Soibelman [15]. As in [7],
we recover the Q-indexed Hodge filtration of this finite monodromic mixed Hodge structure
as the irregular Hodge filtration on the de Rham fiber H1

dR(A1, Symk Ai). The main result
of this article is the computation of the corresponding irregular Hodge numbers, opening the
way to applying the results of Patrikis and Taylor on the arithmetic of the underlying ulterior
motive Mk.

Theorem 1.1. Let k be an integer ⩾ 2 and set k′ = ⌊(k − 1)/2⌋. Then the de Rham cohomol-
ogy H1

dR(A1, Symk Ai) naturally underlies a finite monodromic mixed Hodge structure and the
Hodge numbers hpq = dimgrpF grWp+qH

1
dR(A1,Symk Ai) are all equal to one for the following

(p, q) and vanish otherwise:
• k odd, p+ q = k + 1 and p = 1

3(k + 2i), 1 ⩽ i ⩽ k′ + 1,
• 4 | (k + 2), p+ q = k + 1 and min{p, q} = 1

3(k + 2i), 1 ⩽ i ⩽ k′/2,
• 4 | k and either p + q = k + 1 with min{p, q} = 1

3(k + 2i), 1 ⩽ i ⩽ (k′ − 1)/2, or
p = q = (k + 2)/2.

We are mostly interested in the middle de Rham cohomology, which is by definition the
image im[H1

dR,c(A1,Symk Ai)→ H1
dR(A1,Symk Ai)]. We show (Corollaries 5.14 and 5.21) that,

with respect to the finite monodromic mixed Hodge structure on H1
dR(A1,Symk Ai), it is equal

to the weight (k + 1) subspace:

H1
dR,mid(A1,Symk Ai) =Wk+1H

1
dR(A1,Symk Ai).

As a consequence of Theorem 1.1, the middle de Rham cohomology underlies a finite mon-
odromic pure Hodge structure, and the corresponding Hodge numbers coincide with those of
H1

dR(A1, Symk Ai) if 4 ∤ k, and are obtained by omitting the case p = q = (k + 2)/2 if 4 | k.

Organization of the paper. The approach of the present article is much inspired from that
of [7] on moments of Kloosterman connections. Sections 2–5 consist of a review of known
properties of various tools that we use, together with complementary results in presence of an
action of the group µ̂ = lim←−m

Z/mZ. In Section 5, we emphasize the decomposition of a finite
monodromic exponential mixed Hodge structure (that we call a µ̂-exponential mixed Hodge
structure for short) into its classical and non-classical parts. While the former can be treated
with the same methods as in [7], the latter shows new Hodge-theoretic phenomena.

The main example of such an object is that attached to a regular function on A1
s×V of the

form smg (m ⩾ 2), where g : V → A1 is a regular function on a smooth quasi-projective variety.
The corresponding non-classical µ̂-exponential mixed Hodge structure (Proposition 5.10) can
be expressed by means of the mixed Hodge structure of the covering of V ∖ g−1(0) which is
cyclic of degree m and ramified along g−1(0). While this expression makes clear the ulterior
motivic origin of this finite monodromic mixed Hodge structure, it does not help for computing
Hodge numbers in Theorem 1.1. In order to handle the case of even k in the theorem,
we provide in Section 5.f an expression in terms of additive convolution with Kummer sheaves,
which reduces the computation to a local (monodromic) computation similar to that used for
the classical component modeled on that of [7].
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In Section 6 we provide Hodge-theoretic properties for the moments of the generalized
Airy equation of order n ⩾ 2 (the case n = 2 being our main concern), yielding the finite
monodromic mixed Hodge structure on the de Rham cohomologies of their symmetric powers
Symk Ain, and an estimation of their weights. This is a variant of the techniques used in [7].

Once all these preliminaries are settled, the proof of Theorem 1.1 is achieved in Section 7.
As in loc. cit., we play with two expressions of the de Rham cohomology, one computed in
dimension one like H1(A1, Symk Ai) and the other one using the geometry of the function
s3

∑k
i=1(

1
3x

3
i − xi). The former provides in a simple way a basis of the de Rham cohomology

and an associated filtration which satisfies the conclusion of the theorem, and the latter relates
the computation of Hodge numbers to that of the corresponding irregular Hodge filtration on
a suitable blow-up of Pk+1. While the geometry is simple enough to enable us to conclude
the proof if k is odd by showing that the basis filtration is contained in the irregular Hodge
filtration, we need supplementary arguments to conclude in the case of even k, which occupies
Sections 7.d–7.g. Although the idea is similar to that of [7], we need here to make use of a
Hodge-theoretic inverse stationary phase formula, as we already did in [29], to recover enough
information on the Hodge filtration.

Acknowledgements. We thank Javier Fresán for useful conversations at the beginning of this
project. We thank the referee for useful comments and remarks on the first version of this
article.

2. Finite monodromic mixed Hodge structures

We review and adapt results of [34, p. 661]. Let µ̂ = lim←−m
Z/mZ be the profinite completion

of the abelian group Z. Let Vect(Q) be the category of finite-dimensional Q-vector spaces
and let Vectµ̂(Q) denote the category consisting of a finite-dimensional Q-vector space HQ

together with an action of µ̂ through a finite quotient Z/mZ for some m. Equivalently, by
setting T to be the action of the topological generator 1 ∈ µ̂, an object of Vectµ̂(Q) is a pair
(HQ, T ) consisting of the space HQ together with an automorphism T of finite order. Each
group ring Q[Z/mZ] has the orthogonal decomposition

Q[Z/mZ] = e1Q[Z/mZ]⊕ e̸=1Q[Z/mZ]

where e1 = 1
m

∑
g∈Z/mZ g is the projector into the invariant part and e ̸=1 = 1 − e1, and the

decomposition is compatible with the quotient Z/m′Z→ Z/mZ for m | m′. Correspondingly
for a given object (HQ, T ) of Vectµ̂(Q), there is a canonical decomposition in Vectµ̂(Q)

(HQ, T ) = (HQ,1, Id)⊕ (HQ,̸=1, T ),

where T has no non-trivial invariant in HQ,̸=1. Let µm ⊂ C× be the cyclic subgroup of order
m and µ∗m = µm ∖ {1}. In terms of the eigenvalue decomposition HC =

⊕
ζ∈µm

Hζ where
HC = HQ ⊗C and T = ζ Id on Hζ , one has HQ,1 ⊗C = H1 and HQ, ̸=1 ⊗C =

⊕
ζ∈µ∗

m
Hζ .

Notice that Hζ = H1/ζ under complex conjugation. Finally the category Vectµ̂(Q) is equipped
with its natural tensor structure.

Let MHS be the category of (graded polarizable) mixed Hodge structures (HQ, F
•HC,W•HQ).

We define the category MHS(µ̂) of finite monodromic mixed Hodge structures as the category
consisting of objects of MHS equipped with an action of µ̂ through the quotient Z/mZ for
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some m (equivalently, with an automorphism T of finite order as above). Morphisms are
morphisms of mixed Hodge structures compatible with the group action. In order to express
in a simple way the tensor product in this category, we consider the category MHSµ̂ of
µ̂-mixed Hodge structures. The objects of MHSµ̂ take the form ((HQ, T ), F

•
µ̂HC,W

µ̂
• HQ),

where
• (HQ, T ) is an object of Vectµ̂(Q), so that HQ = HQ,1⊕HQ,̸=1 and HC =

⊕
ζ∈µm

Hζ ;
• F p

µ̂HC =
⊕

ζ F
p
µ̂Hζ is an exhaustive decreasing filtration indexed by p ∈ Q, and for

each ζ = exp(−2πia) with a ∈ (−1, 0]∩Q, the filtration F p
µ̂Hζ jumps at most at Z−a;

• W µ̂
• HQ =W µ̂

• H1 ⊕W µ̂
• H̸=1 is an exhaustive increasing filtration indexed by Z,

satisfying the following property: setting

F pHC =
⊕

ζ∈µm

F p−a
µ̂ Hζ , p ∈ Z,

WℓHQ =W µ̂
ℓ H1 ⊕W µ̂

ℓ+1H̸=1,

(2.1)

we impose that (HQ, F
•HC,W•HQ) is a (graded polarizable) mixed Hodge structure. Mor-

phisms are the natural ones. With the induced automorphism T , the latter becomes an object
of MHS(µ̂).

Lemma 2.2. The natural functor MHSµ̂ → MHS(µ̂) defined by (2.1) is an equivalence of
categories. Any morphism in MHSµ̂ is bi-strict with respect to F •

µ̂,W
µ̂
• .

Proof. Let ((HQ, F
•HC,W•HQ), T ) be an object of MHS(µ̂). We note that the Hodge filtra-

tion is compatible with the eigenvalue decomposition of HC with respect to T , being stable
by T , and a similar property for the weight filtration, so that the correspondence given by

(2.3)
F p
µ̂Hζ = F p+aHC ∩Hζ (ζ = exp(−2πia), a ∈ (−1, 0] ∩Q, p ∈ Z− a),

W µ̂
ℓ HQ,1 =WℓHQ ∩HQ,1, W µ̂

ℓ HQ, ̸=1 =Wℓ−1HQ ∩HQ,̸=1

defines the desired quasi-inverse functor owing to the condition that (2.1) is a mixed Hodge
structure. The last statement follows from the similar one for MHS(µ̂). □

The integers ℓ such that grW
µ̂

ℓ HQ ̸= 0 are called the µ̂-weights of the object of MHSµ̂.

Lemma 2.4 (Hodge symmetry and Hodge decomposition in MHSµ̂). Setting (grW
µ̂

ℓ HC)
p,ℓ−p=

grpFµ̂
grW

µ̂

ℓ HC (p ∈ Q), we have the Hodge decomposition

(2.4 ∗) grW
µ̂
HC ≃

⊕
p,q∈Q
p+q∈Z

(grW
µ̂

p+qHC)
p,q.

Furthermore, via the orthogonal decomposition e1+ e̸=1, each object ((HQ, T ), F
•
µ̂HC,W

µ̂
• HQ)

in MHSµ̂ decomposes canonically as

((HQ, T ), F
•
µ̂HC,W

µ̂
• HQ) = ((HQ, T ), F

•
µ̂HC,W

µ̂
• HQ)1 ⊕ ((HQ, T ), F

•
µ̂HC,W

µ̂
• HQ)̸=1,

where the first term belongs to the category MHS.

Proof. Hodge symmetry on each (grWℓ HQ, F
• grWℓ HC) translates to

dimgrpFµ̂
grW

µ̂

ℓ Hζ = dimgrℓ−p
Fµ̂

grW
µ̂

ℓ H1/ζ , ∀ζ ∈ C∗, p ∈ Q, ℓ ∈ Z.

The proof is then straightforward. □
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Notation 2.5. We denote the corresponding decomposition of MHSµ̂ as

MHSµ̂ = MHS⊕MHSµ̸̂=1,

and the component of an object on MHS is also called its classical component.

Remark 2.6.
(1) (The spectrum) If T has order m, the Hodge polynomial∑

p∈ 1
m
Z

(dim grpFµ̂
HC) · tp

was considered by Steenbrink [36] for the vanishing cycles of an isolated singularity of
a holomorphic function and, in the case of a quasi-homogeneous isolated singularity,
was compared to the Poincaré polynomial attached to the Newton filtration of the
Jacobian quotient of the singularity.

(2) (Relation with Anderson’s arithmetic Hodge structures) Anderson has defined in [3,
§6.1] the notion of arithmetic Hodge structure. We will omit his condition (6.1.5) for
the moment, which is related to the rational structure of the de Rham component of
the arithmetic Hodge structure. Any such structure is the direct sum of pure structures
of some integral weight. Then the notion of pure arithmetic Hodge structure (without
Condition (6.1.5) of loc. cit.) is related to that of a µ̂-pure Hodge structure. Indeed,
assume that a finite-dimensional Q-vector space HQ with the decomposition

H = HQ ⊗C =
⊕

p,q∈Q
p+q=w

Hp,q

is a pure arithmetic Hodge structure of weight w ∈ Z. There exists a minimal finite set
A ⊂ (−1, 0] such that Hp,q ̸= 0 implies p ∈

⋃
a∈A(Z− a). Let us set A∗ = A∩ (−1, 0).

Hodge symmetry implies A∗ = −1 − A∗. For a ∈ A and ζ = exp(−2πia), one can
define Hζ by summing the Hp,q’s with p ∈ Z − a. Let H ̸=1 =

⊕
ζ∈µ∗

m
Hζ . Then, an

arithmetic Hodge structure (without Condition (6.1.5)) is a pure µ̂-Hodge structure if
and only if the decomposition H = H1⊕H̸=1 is defined over Q: indeed, one defines the
automorphism T as being equal to ζ Id on Hζ , and the decomposition being defined
over Q is equivalent to T being defined over Q.

We recall the notation for the tensor product of filtrations (indexed by Q and decreasing,
say) (H ′, G′) and (H ′′, G′′), see [37]:

(G′ ⋆ G′′)n(H ′ ⊗H ′′) =
∑

n1+n2=n

G′n1(H ′)⊗G′′n2(H ′′).

Definition 2.7. The tensor product

((H,T ), F
•
µ̂H,W

µ̂
• H) = ((H ′, T ′), F

•
µ̂H

′,W µ̂
• H

′)⊗ ((H ′′, T ′′), F
•
µ̂H

′′,W µ̂
• H

′′)

is defined as usual by the formulas

(H,T ) = (H ′ ⊗H ′′, T ′ ⊗ T ′′) (action of Z/(m′m′′)Z),

F
•
µ̂H = (Fµ̂H

′ ⋆ Fµ̂H
′′)

•
,

W µ̂
• H = (W µ̂H ′ ⋆ W µ̂H ′′)•.
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Proposition 2.8. The tensor product of two objects of MHSµ̂ is an object of MHSµ̂, making
MHSµ̂, and hence MHS(µ̂), an abelian tensor category. The forgetful functor MHSµ̂ → Vectµ̂

is a tensor functor.

Proof. To check the first assertion, it is enough to check that the two filtrations F and W on
the tensor product deduced from Fµ̂ and W µ̂ correspond to Scherk-Steenbrink’s definition of
the join [34, p. 661], and to use the results therein. We have

(2.9) Hζ =
⊕

ζ′ζ′′=ζ

H ′
ζ′ ⊗H ′′

ζ′′ and W µ̂
kHζ =

⊕
ζ′ζ′′=ζ

∑
i+j=k

(W µ̂
i H

′
ζ′ ⊗W

µ̂
j H

′′
ζ′′),

where the sum over i, j is taken in H ′
ζ′ ⊗H ′′

ζ′′ .
• If ζ = 1, (2.9) reads

WkH1 =
∑

i+j=k

(WiH
′
1 ⊗WjH

′′
1 )⊕

⊕
ζ′ ̸=1

∑
i+j=k−2

(WiH
′
ζ′ ⊗WjH

′′
1/ζ′).

• If ζ ̸= 1, (2.9) reads

Wk−1Hζ =
∑

i+j=k−1

[
(WiH

′
1 ⊗WjH

′′
ζ )⊕ (WiH

′
ζ ⊗WjH

′′
1 )
]
⊕

⊕
ζ′,ζ′′ ̸=1
ζ′ζ′′=ζ

∑
i+j=k−2

WiH
′
ζ′ ⊗WjH

′′
ζ′′ .

Therefore, (2.9) reads
WkH =

⊕
ζ′,ζ′′

∑
i,j

WiH
′
ζ′ ⊗WjH

′′
ζ′′ ,

where the summation is taken over all i, j such that

i+ j =


k if ζ ′ = 1 or ζ ′′ = 1,
k − 2 if ζ ′′ = 1/ζ ′ ̸= 1,
k − 1 if ζ ′ ̸= 1, ζ ′′ ̸= 1, and ζ ′ζ ′′ ̸= 1.

This corresponds to the formula of loc. cit., up to an obvious typo there.1 The proof for F • is
similar: the formula of loc. cit. is

F pHζ =
⊕
ζ′,ζ′′

ζ′ζ′′=ζ

∑
k,ℓ

F kHζ′ ⊗ F ℓHζ′′ ,

where the sum is taken over pairs k, ℓ such that, setting ζ ′ = exp(−2πia′) and ζ ′′ =

exp(−2πia′′) with a′, a′′ ∈ (−1, 0],

p =

{
k + ℓ if a′ + a′′ ∈ (−1, 0],
k + ℓ+ 1 if a′ + a′′ ∈ (−2,−1].

Let us set a ∈ (−1, 0] satisfy{
a′ + a′′ if a′ + a′′ ∈ (−1, 0],
a′ + a′′ + 1 if a′ + a′′ ∈ (−2,−1].

Then we have in any case p− a = (k− a′) + (ℓ− a′′), as wanted. One can also check that the
decomposition (2.4 ∗) behaves well by tensor product. □

1One should replace the condition a = b = 0 with a or b = 0.
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3. Perverse sheaves on the affine line

Notation 3.1. We will often use the following diagram involving the affine line (whose coor-
dinate may take various names):

{0} ↪ i−−→ A1 j←−−↩ Gm.

3.a. k-Perverse sheaves. We equip the affine line A1 (coordinate θ) with its analytic struc-
ture, which we denote by A1an. However, for the sake of simplicity, we simply denote it by A1

θ

or A1 in this section.
We refer to [14, Chap. 2] for details on the next results. Let Vect(k) be the category of

k-vector spaces for some fixed field k, and let Perv(k) be the category of perverse sheaves
on A1 of k-vector spaces. The field k being fixed, we simply write Vect,Perv. The additive
convolution product ⋆ on Perv does not take values in Perv. However, let Perv0 be the full
subcategory of Perv whose objects consist of perverse sheaves with zero global cohomology. It is
equipped with a tensor structure given by ⋆ and there is a natural projector Π : Perv→ Perv0
given by the additive convolution with j!kGm . There is a functorial morphism F → Π(F) in
Perv whose kernel and cokernel are constant perverse sheaves. For a perverse sheaf F on A1

θ,
we denote by pψθF, resp. pϕθF, the space of nearby, resp. vanishing, cycles at θ = 0, equipped
with its monodromy operator. The functor pϕθ decomposes with respect to eigenvalues of the
semi-simple part of the monodromy as pϕθ,1⊕ pϕθ,̸=1 where the second subscripts indicate the
range of the eigenvalues. The two components behave differently when extended to mixed
Hodge modules, and we have pϕθ, ̸=1 =

pψθ, ̸=1.
The topological Fourier (or Laplace) transformations FT±, for which we refer to [17, §VI.2]

and [25, §1.b], transform objects of Perv0 to perverse sheaves on another copy of A1, with
coordinate τ , say, of the form Rj∗L[1] for some local system L on Gmτ . However, the datum
of the perverse sheaf Rj∗L±[1] = FT±(F) is in general not enough to recover F, as Stokes
data for Rj∗L±[1] at infinity on A1

τ are missing in this description. The case of monodromic
perverse sheaves is simpler, as shown by Lemma 3.2 below, where FT is either the + or the −
Fourier transformation, and FT−1 is respectively the − or the + Fourier transformation. For
F1,F2 in Perv0, we have j−1 FT(F1 ⋆ F2)[−1] ≃ L1 ⊗ L2. Taking the fiber at 1 of (FTF)[−1]
is a fiber functor for the Tannakian category Perv0.

3.b. Monodromic perverse sheaves. Let Pervmon
0 be the full subcategory of Perv0 consist-

ing of perverse sheaves F in Perv0 whose shifted restriction j−1F[−1] to Gm is a local system.
It is a tensor subcategory of Perv0. The following is standard.

Lemma 3.2.

(1) The shifted restriction functor j−1(•)[−1] induces an equivalence of categories

Pervmon
0

∼−→ (local systems on Gm),

with j!(•)[1] as a quasi-inverse.
(2) The vanishing cycle functor pϕθ at θ = 0 induces an equivalence between Pervmon

0 and
the category consisting of pairs (V, T ) of a finite-dimensional vector space equipped with
an automorphism. This equivalence respects the tensor structures on both categories.
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(3) The functor j−1 ◦ FT(•)[−1] induces an equivalence

Pervmon
0

∼−→ (local systems on Gm),

with quasi-inverse being given by FT−1 ◦Rj∗(•)[1]. By this equivalence, the additive
convolution product corresponds to the tensor product of local systems.

Proof. Let us only indicate the proof of (2). We can equivalently realize the category of pairs
(V, T ) as the category of local systems L of finite-dimensional k-vector spaces on Gm. Then
we have a diagram of equivalences

Pervmon
0

pϕθ

77

j−1(•)[−1]
// (local systems on Gm)

j!(•)[1]
oo (pairs (V, T )).

∼oo □

One can identify non canonically the fiber at 1 of (FTF)[−1] with the vector space under-
lying pϕθF by the following standard lemma (according to the definition of topological Fourier
transformation).

Lemma 3.3. Let F be a perverse sheaf on the neighbourhood of a closed disc ∆ with no
singularity on ∂∆, and let ∆>0 be the union of the open disc ∆ and a nonempty open interval
in its boundary. Then

∑
dim pϕθ−θiF = dimH1

c(∆
>0,F), where the sum is taken over all

singular points θi of F in ∆. □

Remark 3.4. For an object F of Pervmon
0 , the canonical morphism can : pψθF → pϕθF from

the space of nearby cycles is an isomorphism (because of 3.2(1)), so we can replace pϕθ with
pψθ. However, in order to have compatibility with the tensor structures in 3.2(2), the functor
pϕθ is more convenient.

3.c. Constant perverse sheaves. The full subcategory Pervcst0 of Pervmon
0 consists of objects

of Perv0 that are constant on Gm. These are the perverse sheaves isomorphic to j!kr
Gm

[1] for
some r ⩾ 0. The restricted Fourier transformation j−1 ◦ FT sends j!kr

Gm
[1] to kr

Gm
[1].

Lemma 3.5. The functors

pϕθ =
pϕθ,1 : Perv

cst
0 7−→ Vect and Π ◦ i! : Vect 7−→ Pervcst0

are mutually inverse equivalences of tensor categories. □

3.d. Finite monodromic perverse sheaves. Let Pervµ̂0 denote the full tensor subcategory
of Pervmon

0 consisting of objects F for which there exists a cyclic covering [m] : A1
θm
→ A1

θ of
degree m ⩾ 1, written in coordinates as θm 7→ θ = (θm)m, such that the pullback [m]−1F

is an object of Pervcst0 . An object in Pervµ̂0 is called a finite monodromic perverse sheaf.
By specializing Lemma 3.2, we obtain the following.

Lemma 3.6. The functor
pϕθ : Perv

µ̂
0 7−→ Vectµ̂

is an equivalence of tensor categories.
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Proof. We give details on this proof, as a similar argument will be used for exponential mixed
Hodge structures (see Proposition 5.2). By the equivalence of Lemma 3.2(1), we can replace
Pervµ̂0 with the category of local systems L on Gm with finite monodromy, and by Remark
3.4, the functor to Vectµ̂ is given, on a local system L such that [m]−1L is constant, by
L 7→ (Γ(Gm, [m]−1L), G), where the action of G = Z/mZ is that of the Galois group of the
covering [m] : Gm → Gm.

Conversely, given (V,G) in Vectµ̂ where G = Z/mZ, we define a local system L with
finite monodromy as follows. Let (V, G) be the constant local system on Gm with stalk V

and the induced G-action. The local system [m]∗V is equipped with the induced G-action
and the Galois G-action. Then L is defined as the invariant subsheaf under the action of
{(g−1, g) | g ∈ G}. One checks that both functors are quasi-inverse to each other by using the
property that, given (V,G) as above, and equipping km with the action of G induced by the
cyclic permutation of the standard basis vectors, then if one equips V ⊗ km with its natural
G×G-action, (V,G) is isomorphic to (V ⊗km)inv equipped with the induced G-action, where
inv means invariants under the {(g−1, g) | g ∈ G}-action.

One can then express a quasi-inverse functor of the functor pϕθ of the lemma as follows.
Given (V,G) in Vectµ̂, one first associates with it the object of Pervcst0 with G-action defined
by (Π(i!V ), G), and then the object F of Pervµ̂0 defined as ([m]∗Π(i!V ))inv, with the same
meaning as above for inv. □

Remark 3.7. Let [m] : A1
θm
→ A1 be as above. If F = j!L[1] belongs to Pervmon

0 (A1), then

[m]−1F = [m]−1j!L[1] = jm!([m]−1L)[1]

also belongs to Pervmon
0 (A1

θm
). For an object F in Pervµ̂0 such that [m]−1F belongs to Pervcst0 ,

we can identify pϕθF with the vector space pϕθm,1[m]−1F. The monodromy on the latter space
is the identity, but one recovers the action of the monodromy on pϕθF by means of the action
of the group of the covering. The drawback with the functor F 7→ pϕθm,1([m]−1F) is that it
is a priori not compatible with the tensor structures. On the other hand, the drawback with
the functor pϕθ of Lemma 3.6 is seen when extending it to mixed Hodge modules. Namely,
the part pϕθ, ̸=1 shifts the weights and makes pϕθ not compatible with tensor product when
considering weights. This is the reason for the definition of Section 2.

4. Exponential mixed Hodge structures

In this section, we recall the construction due to Kontsevich and Soibelman [15, §4] of
the exponential mixed Hodge structures H•

c(U, f) and H•(U, f) attached to a regular function
f : U → A1 on a smooth quasi-projective variety U . We emphasize the weight properties in
Proposition 4.7, together with the pure part H•

mid(U, f).

4.a. A review of exponential mixed Hodge structures. By the Riemann-Hilbert corre-
spondence, the definitions of Perv0 and of the functor Π can be translated to regular holonomic
DA1-modules, and, according to [15, §4] both can be lifted in a compatible way to the cat-
egory MHM(A1

θ) of mixed Hodge modules on A1
θ. This gives rise to the category EMHS of

exponential mixed Hodge structures, which is a full subcategory of MHM(A1
θ), and there is

a projector Π : MHM(A1
θ) → EMHS, which is an exact functor, together with a functo-

rial morphism NH → Π(NH) in MHM(A1
θ) whose kernel and cokernel are constant mixed
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Hodge modules. Each object of EMHS has a perverse realization in Perv0 and the projector
Π : MHM(A1

θ) → EMHS realizes as Π : Perv → Perv0 of Section 3. Each object of EMHS is
equipped with a weight filtration in EMHS, defined from that in MHM(A1

θ) by the formula

W EMHS
ℓ Π(N) = Π(WℓN)

for any mixed Hodge module NH on A1
θ. The category EMHS is equipped with a tensor

product, induced by the additive convolution on A1
θ. This product is strictly compatible with

the weight filtration W EMHS
• . (See loc. cit., or [7, §A.3] for more details.)

The unit in EMHS is Π ◦ Hi!(Q
H), which is pure of weight zero as an object of EMHS. Note

that, since p
QH

Gm,θ
:= QH

Gm,θ
[1] corresponds to the constant variation of Hodge structure of

weight zero on Gm,θ, it has weight one as an object of MHM(Gm,θ) and therefore Π◦Hi!(Q
H) =

Hj!
p
QH

Gm,θ
is mixed of weights ⩽ 1 in MHM(A1

θ).
Let NH be an object of MHM(A1

θ) such that its underlying DA1θ
-module N has semi-simple

monodromy at the origin. The mixed Hodge structure Hϕθ(N
H), as defined by Saito [30, 31],

has a weight filtrationW• and a Hodge filtration F • obtained from that ofNH as follows (for the
weight filtration, we use that the monodromy is semi-simple). We recall that both ϕθ,1N and
ψθ, ̸=1N are obtained by grading N with respect to its Kashiwara-Malgrange filtration, so that
it is meaningful to speak of a filtration (weight or Hodge) on these vector spaces induced by
a filtration (weight or Hodge) on N .

• F •ψθ, ̸=1N is induced by F •N and W•(ψθ, ̸=1N) = ψθ,̸=1(W•+1N) = ψθ, ̸=1(W•[−1]N),
• F •ϕθ,1N is induced by F •−1N = F •[−1]N and W•(ϕθ,1N) = ϕθ,1(W•N).

Remark 4.1. Even if NH = Π(NH) belongs to EMHS, the weight filtrations W•N and
W EMHS

• N may differ, as already seen for Hj!
p
QH

Gm,θ
. However, they induce the same filtra-

tion on ϕθ,1N and ψθ, ̸=1N . Indeed, for any ℓ, the kernel and cokernel of the natural morphism
WℓN → W EMHS

ℓ N are constant on A1
θ, hence their vanishing cycle space pϕθ = pϕθ,1 ⊕ pψθ, ̸=1

is zero. Therefore, in the definition above, we can replace W• with W EMHS
• and we regard Hϕθ

as a functor EMHS 7→ MHS.

4.b. Weight and irregular Hodge filtrations on the de Rham fiber. We recall here
the general framework, for which we refer e.g. to [29, Chap. 3]. We denote by θ̂ the variable
which is Fourier dual to θ. Let NH be a mixed Hodge module on A1

θ, with (N,F •N,W•N) as
the underlying bifiltered C[θ]⟨∂θ⟩-module and (F,W•F) as the underlying filtered Q-perverse
sheaf.

Weight filtration. Fourier transformation sends these data to a filtered C[θ̂]⟨∂
θ̂
⟩-module

(FTθN,W• FTθN), with W• FTθN := FTW•N , corresponding, via the de Rham functor, to
the filtered perverse sheaf (FTθ F,W• FTF) on A1an

θ̂
already considered in Section 3. Restrict-

ing FTθN , resp. FTθ F, to θ̂ = 1 yields the de Rham fiber H1
dR(A1

θ, N ⊗ Eθ), resp. the Betti
fiber (FTθ F)1, which is a finite-dimensional vector space over C resp. Q. Moreover, additive
convolution ⋆ on C[θ]⟨∂θ⟩-modules induces tensor product of de Rham fibers. By exactness
of the de Rham fiber functor, which follows from exactness of FTθ and the C[θ̂, θ̂−1]-freeness
of j+ FTθN , the natural morphism

H1
dR(A1

θ,W•N ⊗ Eθ) −→ H1
dR(A1

θ, N ⊗ Eθ)



12 C. SABBAH AND J.-D. YU

is injective and its image is a filtration W•H
1
dR(A1

θ, N ⊗Eθ). Moreover, W•N
H and W EMHS

• NH

have the same de Rham resp. Betti image (same argument as for pϕθ in Remark 4.1). We thus
have a tensor product behavior of the W -filtration analogous to that occurring in Defini-
tion 2.7:

W•H
1
dR(A1

θ, (N
′ ⋆ N ′′)⊗ Eθ) ≃W•H

1
dR(A1

θ, N
′ ⊗ Eθ)⊗W•H

1
dR(A1

θ, N
′′ ⊗ Eθ).

Irregular Hodge filtration. On the other hand, the Hodge filtration F •N gives rise to the
Deligne filtration F •

Del(N ⊗Eθ) (see [26, §6]), which is indexed by Z−A for some finite subset
A ⊂ [0, 1) ∩Q. The natural morphism

H1
(
A1
θ, F

•
DelDR(N ⊗ Eθ)

)
−→ H1

dR(A1
θ, N ⊗ Eθ)

is injective (see loc. cit.). Its image is denoted by F •
irrH

1
dR(A1

θ, N ⊗ Eθ). The filtration
F •
irrH

1
dR(A1

θ, N ⊗Eθ) behaves like in Definition 2.7 by additive convolution (see [27, Th. 3.39]).

Proposition 4.2 ([7, Prop. A.10]). The functor NH 7→
(
H1

dR(A1
θ, N ⊗ Eθ), F •

irr,W•) from
MHM(A1

θ) to bifiltered vector spaces factors through Πθ and any morphism in MHM(A1
θ) (or in

EMHS) yields a strictly bifiltered morphism. □

4.c. Object of EMHS associated with a regular function. We start by considering a geo-
metric situation, that we will reduce to a question on mixed Hodge modules on A1 by taking
a suitable pushforward. We recall the notation of [7, §A.5].

Let f : U → A1
θ be a regular function on a smooth complex quasi-projective variety U

of dimension d + 1 and let p
QH

U denote the constant pure Hodge module of rank one and
weight d+ 1 on U , with associated DU -module (OU ,d) and associated perverse sheaf p

QU =

QUan [d+ 1]. For each r ∈ Z, we consider the mixed Hodge modules in MHM(A1
θ)

(
p
QH

U )
r
∗ := H r−d−1

Hf∗
p
QH

U , (
p
QH

U )
r
! := H r−d−1

Hf!
p
QH

U .

They define objects

(4.3) Hr(U, f) = Πθ((
p
QH

U )
r
∗) and Hr

c(U, f) = Πθ((
p
QH

U )
r
! )

of EMHS, and we set

Hr
mid(U, f) = im[Hr

c(U, f)→ Hr(U, f)] = im
[
Πθ((

p
QH

U )
r
! )→ Πθ((

p
QH

U )
r
∗)
]
.

More generally, let NH
U be a mixed Hodge module on U . We define similarly

(4.4) (NH
U )

r
∗ := H r−d−1

Hf∗N
H
U , (NH

U )
r
! := H r−d−1

Hf!N
H
U ,

and

(4.5) Hr(U,NH
U , f) = Πθ((N

H
U )

r
∗) and Hr

c(U,N
H
U , f)c = Πθ((N

H
U )

r
! ).

Then we set

Hr
mid(U,N

H
U , f) = im[Hr

c(U, f)→ Hr(U,NH
U , f)] = im

[
Πθ((N

H
U )

r
! )→ Πθ((N

H
U )

r
∗)
]
.

Remark 4.6. By definition, the de Rham fiber Hr
dR,c(U,N

H
U , f), resp. Hr

dR(U,N
H
U , f), is equal

to H1
dR,c(A1

θ, (NU )
r
! ⊗ Eθ), resp. H1

dR(A1
θ, (NU )

r
∗ ⊗ Eθ), and Hr

dR,mid(U,N
H
U , f) is the image of

the former to the latter. Under the isomorphism

Hr
dR,?(U,N

H
U , f) ≃ Hr

dR,?(U,NU ⊗ Ef ) (? = ∅, c,mid),
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the irregular Hodge filtration on the de Rham fiber of Hr
?(U,N

H
U , f) ∈ EMHS is identified

with the irregular Hodge filtration F •
irrH

r
dR,?(U,NU ⊗Ef ) of the right-hand side, computed by

means of a compactification of f as a map U → P1, and the structure morphism of U (see [28,
Th. 1.3(4)] and [7, (A.16) & (A.17)]).

The following weight properties are obtained in a way similar to that of [7, Prop. A.19].

Proposition 4.7. Assume that NH
U is pure of weight w + 1. Then the exponential mixed

Hodge structure Hd+1
c (U,NH

U , f) is mixed of weights ⩽ w + 1, Hd+1(U,NH
U , f) is mixed of

weights ⩾ w + 1, and Hd+1
mid (U,N

H
U , f) is pure of weight w + 1. Moreover, if NH

U is self-dual,
i.e., DNH

U (−w − 1) ≃ NH
U , the following properties are equivalent:

(1) the natural morphism grWw+1H
d+1
c (U,NH

U , f) → grWw+1H
d+1(U,NH

U , f) is an isomor-
phism,

(2) the equality Hd+1
mid (U,N

H
U , f) =Ww+1H

d+1(U,NH
U , f) holds. □

5. Finite monodromic exponential mixed Hodge structures

This section continues Section 4 in the case where U takes the form A1
s × V and f = smg

for some m ⩾ 1 and some regular function g : V → A1. We first define the category EMHSµ̂ of
finite monodromic exponential mixed Hodge structure. Then, in this particular case, H•

?(U, f)

(? = c,∅,mid) is an object of EMHSµ̂. We make explicit in geometric terms its classical and
non-classical components (Proposition 5.10). The case where g is moreover assumed to be
tame is considered in Section 5.e, where the main objective is to provide tools for computing
the irregular Hodge filtration on the corresponding de Rham cohomologies: for the classical
component, Corollary 5.21 enables us to directly use results of [7, App.], while for the non-
classical component, the main tool is provided by Corollary 5.28.

5.a. Constant exponential mixed Hodge structures. Let EMHScst be the full subcat-
egory of EMHS consisting of objects whose associated Q-perverse sheaf belongs to Pervcst0 .
Since constant mixed Hodge modules on Gm are exactly those mixed Hodge modules whose
associated perverse sheaf is constant (see [37, Th. 4.20]), we can as well define EMHScst as the
full subcategory of EMHS consisting of objects whose restriction to Gm is a constant mixed
Hodge module.

Lemma 5.1. The functors

Hϕθ,1 : EMHScst 7−→ MHS and Π ◦ Hi! : MHS 7−→ EMHScst

are mutually quasi-inverse equivalences of tensor categories strictly compatible with weight
filtrations.

Proof. It follows from Lemma 3.5 that EMHScst is the essential image of Π◦ Hi!. The remaining
statements were already observed in [7, Lem. A.12]. □

5.b. The pure Hodge module EH
m. Before introducing the category EMHSµ̂, let us con-

sider an example. We keep the notation of Section 3.d. Let m be an integer ⩾ 2 and let
[m] : A1

θm
→ A1

θ denote the cyclic ramification of order m defined by θm 7→ θ = θmm. Let
p
QH

A1θm
be the pure Hodge module of weight 1 on A1

θm
(equivalently, the constant polarized
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variation of Hodge structure of weight 0 on A1
θm

). The pushforward H[m]∗
p
QH

A1θm
decomposes

as the direct sum
H[m]∗

p
QH

A1θm
=

p
QH

A1θ
⊕ EH

m

of two pure Hodge modules of weight 1 on A1. We have EH
m = Hj∗ Hj

∗EH
m. Moreover, the

underlying D-module j∗Em is OGm-free of rankm−1. The Hodge filtration satisfies grpF Em = 0

for p ̸= 0. The Q-local system [m]∗QA1θm
decomposes as QA1θ

⊕ Em. We identify the space
of multi-valued global sections of Em with the hyperplane of Qm = [m]∗QA1θm

|{1} defined by
“sum of entries equal to zero”, on which the monodromy θ 7→ e2πiθ acts as the automorphism
induced by the cyclic permutation of the basis vectors of Qm.

Since no eigenvalue of the monodromy on Em is equal to 1, the natural morphisms

Hj! Hj
∗EH

m −→ Hj!∗ Hj
∗EH

m −→ Hj∗ Hj
∗EH

m

are isomorphisms. Lastly, the space of nearby cycles Hψθ, ̸=1EH
m is a pure Hodge structure of

rank m− 1 and of weight 0, with grpF Hψθ, ̸=1EH
m = 0 if p ̸= 0.

The pure Hodge module EH
m decomposes as a direct sum of pure complex Hodge modulesKH

ζ

of rank one, indexed by the m-th roots of unity ζ distinct from 1, where the monodromy acts
by multiplication by ζ.

On the other hand, we regard EH
m as Π(H[m]∗

p
QH

A1θm
) since Π(

p
QH

A1θ
) = 0, and this object is

exponentially pure of weight one.

5.c. Finite monodromic exponential mixed Hodge structures. We denote by EMHSµ̂

the full subcategory of EMHS consisting of objects NH such that Π
(
H[m]∗NH

)
belongs to

EMHScst for some finite ramified cyclic covering [m] : A1
θm
→ A1

θ. Equivalently, the pullback
by [m] : Gm,θm → Gm,θ of the flat bundle j∗N is constant on Gm,θm .

On EMHSµ̂, the functor Hψθ, ̸=1 takes values in MHS(µ̂) by its very definition (see [31]),
where the notation MHS(µ̂) is explained in Section 2. Composing Hψθ, ̸=1 with the equivalence
defined by (2.3) gives rise to a functor

Hψ
µ̂
θ, ̸=1 : EMHSµ̂ −→ MHSµ̸̂=1 .

For example, for m ⩾ 2, EH
m has pure (exponential) weight one and Hψ

µ̂
θ,̸=1E

H
m has also pure

µ̂-weight equal to one.
The vanishing cycle functor Hϕθ,1 is not affected by this modification in the presence of the

µ̂-action, and the sum of both is denoted by Hϕ
µ̂
θ .

Proposition 5.2. The functor

Hϕ
µ̂
θ = (Hϕθ,1 ⊕ Hψ

µ̂
θ, ̸=1) : EMHSµ̂ 7−→ MHSµ̂

is an equivalence of tensor categories which is strictly compatible with weights.

As a consequence, there is a decomposition EMHSµ̂ = EMHScst⊕EMHSµ̸̂=1 corresponding
to the decomposition of Notation 2.5.

Definition 5.3 (Classical component). For an object NH of EMHSµ̂, its classical component
NH

cl ∈ EMHScst corresponds to the mixed Hodge structure Hϕθ,1N
H. It is a direct summand

of NH in EMHSµ̂.
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Proof of Proposition 5.2. We mimic the definition in the proof of Lemma 3.6 to construct a
quasi-inverse functor. Let (V H, G) be an object of MHS(µ̂), with G = Z/mZ. We associate
with it the object (

H[m]∗(Π(Hi!V
H))

)inv
,

where inv means the invariant submodule with respect to the action of G−1 ×G′. The proof
of the equivalence property is then similar to that of loc. cit. That Hϕ

µ̂
θ is compatible with the

tensor product of each category is similar to [34, Th. (8.11)],2 and can also be deduced from
the more general result [18, Th. 1.2]. □

Remark 5.4. For an object NH of EMHSµ̸̂=1 (i.e., having a classical component equal to zero),
we have W EMHS

• NH = W•N
H since the underlying C[θ]⟨∂θ⟩-module N does not have any

constant sub-quotient. Together with Remark 4.1, we conclude that the same property holds
for objects of EMHSµ̂. From Propositions 2.8 and 5.2 we conclude that the weight filtration
satisfies

Wℓ(N
′H ⋆ N ′′H) =

∑
i

WiN
′H ⋆ Wℓ−iN

′′H, N ′H, N ′′H ∈ EMHSµ̂ .

In particular, if N ′H, N ′′H are pure of respective weights w′, w′′, then their convolution product
is pure of weight w′ + w′′.

Proposition 5.5. Let NH be an object of EMHSµ̂ and let
(
ϕµ̂θ (N), F •

µ̂,W
µ̂
•

)
denote the bifiltered

vector space underlying the associated µ̂-mixed Hodge structure Hϕ
µ̂
θ (N

H). Then there exists a
functorial bifiltered isomorphism(

ϕµ̂θ (N), F
•
µ̂,W

µ̂
•

)
≃

(
H1

dR(A1
θ, N ⊗ Eθ), F

•
irr,W•

)
compatible with tensor products.

Proof. Compatibility with tensor products follows from Propositions 4.2 and 5.2. In order to
prove the existence of a bifiltered isomorphism, we can decompose NH as NH

cl⊕NH
̸=1. The case

of NH
cl has been explained in [7, Prop. B.5]. We only consider the case of NH

̸=1. By grading with
respect to W•, we can assume it is pure and we are left with comparing the Hodge filtrations.
We apply the results explained in [29, §5]. Since the monodromy of N̸=1 around θ = 0 does
not have eigenvalue one, and since N̸=1 is monodromic, the same property holds at θ = ∞,
and Formula (7) in loc. cit. shows that, for α ∈ (0, 1) and ζ ′ = exp(−2πiα), we have

dimgrp+α
Firr

H1
dR(A1

θ, N ⊗ Eθ) = dimgrpF ψ1/θ,ζ′N.

Let us set ζ = ζ ′−1 = exp(−2πia) with a = −α ∈ (−1, 0). Since NH
̸=1 is monodromic, we have

dimgrpF ψ1/θ,ζ′N = dimgrpF ψθ,ζN,

according to the computation of [33, Th. 2.2]. The right-hand side equals dimgrp−a
Fµ̂

ψθ,ζN ,

according to (2.1), that is, dimgrp+α
Fµ̂

ψθ,ζN , as was to be proved. □

2We can apply loc. cit. since the monodromy is finite, hence semi-simple, see [4, Rem. 6.6(ii)].



16 C. SABBAH AND J.-D. YU

Remark 5.6 (Hodge symmetry in EMHSµ̂). According to Remark 2.4 and Proposition 5.5,
we have, for NH ∈ EMHSµ̂,

grW H1
dR(A1

θ, N ⊗ Eθ) ≃
⊕

p,q∈Q
p+q∈Z

[grW H1
dR(A1

θ, N ⊗ Eθ)]p,q,

dim[grW H1
dR(A1

θ, N ⊗ Eθ)]p,q = dim[grW H1
dR(A1

θ, N ⊗ Eθ)]q,p, p, q ∈ Q, p+ q ∈ Z.

5.d. Object of EMHSµ̂ associated with the function smg. In this section, we assume
U = A1

s × V with dimV = d and f = smg for some regular function g : V → A1
τ and some

m ⩾ 1. We furthermore assume that NH
U =

p
QH

A1s
⊠MH

V for some mixed Hodge module MH
V

on V . We prove a property analogous to that of [7, Th.A.24].

Proposition 5.7. Under these assumptions, for ? = ∅, c,mid and for every r, the exponential
mixed Hodge structure Hr

?(U,N
H
U , s

mg) as defined by (4.5) is an object of EMHSµ̂.

Proof. It is a matter of proving that (NH
U )

r
∗ and (NH

U )
r
! of (4.4), when restricted to Gm,θ,

have no singular point and have finite monodromy. By factoring f as (smτ) ◦ (Id×g) and
taking first pushforward by Id×g, we are reduced to the case where V = A1

τ , g = Id and we
replace NH

U with a mixed Hodge module NH =
p
QH

A1s
⊠MH for some mixed Hodge module MH

on A1
τ . In such a way, we are reduced to proving that the underlying DA1θ

-modules N r
∗ and

N r
! have no singular point and finite monodromy on Gm,θ. A duality argument also shows

that it is enough to consider N r
∗ . Moreover, by factoring through s 7→ t = sm, we are reduced

to considering the pushforward by f = tτ of Kζ ⊠M , where Kζ is the rank-one C[t]⟨∂t⟩-
module corresponding to the Kummer sheaf with eigenvalue ζ satisfying ζm = 1, and M is
any regular holonomic C[t]⟨∂t⟩-module on A1

τ . Note that, if M is supported at τ = 0, the
pushforward is supported at θ = 0 and the assertion is trivially satisfied. We can thus assume
that M = j+j

+M .
If ζ = 1, so that Kζ = OA1t , the assertion has been obtained in the proof of [7, Th.A.24(1)].

If ζ ̸= 1, we are reduced to proving that the multiplicative convolution of j+Kζ with j+M has
no singular point on Gm,θ and has finite monodromy. We identify Gm,t×Gm,τ with Gm,θ×Gm,τ

by the change of variable θ = tτ , so that the map f is the first projection. Then j+Kζ ⊠ j+M
is identified with j+Kζ ⊠ (j+K∨

ζ ⊗ j+M) and its r-th pushforward by the first projection is
equal to (Kζ)

dr , with dr = dimHr
dR(Gm,τ , j

+K∨
ζ ⊗ j+M). □

Remark 5.8. If one replaces A1
s with Gm,s in Proposition 5.7, i.e., U = Gm,s × V ,

then, by [7, Th. A.24(2)] for ζ = 1 and the same argument for ζ ̸= 1, one obtains that
Hj

?(Gm,s × V,NH
U , f) belongs to EMHSµ̂.

According to the decomposition EMHSµ̂ = EMHScst⊕EMHSµ̸̂=1, we have a decomposition,
for ? = ∅, c,mid and for every r ∈ N,

Hr
?(U,N

H
U , s

mg) = Hr
?(U,N

H
U , s

mg)cl ⊕Hr
?(U,N

H
U , s

mg)̸=1.

We will make more explicit the terms of this decomposition. We start with a preliminary
result. We set (there should be no confusion with Notation 3.1)

A = g−1(0), i : A ↪−→ V and j : V ∗ = V ∖ A ↪−→ V

and we denote similarly the corresponding inclusions from D := A1
s ×A to U = A1

s × V .
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Lemma 5.9. Assume that MV is supported on A . Then, for all r,

Hr
?(U,N

H
U , s

mg) = Hr
?(U,N

H
U , s

mg)cl ≃ Hr
?(A1

t × V,
p
QA1t ⊠MH

V ) in MHS ≃ EMHScst .

In particular, these objects are independent of m.

Proof. The assumption implies thatMH
V = Hi∗M

H
A for some objectMH

A of MHM(A ), according
to the equivalence [31, (4.2.4)]. Then, denoting by a the structure morphism, we have, for
? = ∗, !,

Hf?N
H
U ≃ Hf? Hi∗(

p
QH

A1s
⊠MH

A ) ≃ HaA1t×A ,?(
p
QH

A1t
⊠MH

A ) ≃ HaA1t×V,?(
p
QH

A1t
⊠MH

V ),

in MHM(A1
θ), and the result follows. □

In order to handle the general case, let us define V ∗
m so as to make Cartesian the following

diagram:

V ∗
m

gm
��

[m]V
// V ∗

g
��

Gm,σ

[m]
// Gm,τ

where the lower horizontal arrow is defined by [m](σ) = σm. Then [m]V : V ∗
m → V ∗ is a cover-

ing and V ∗
m is smooth. Let us set MH

V ∗ = Hj
∗MH

V and let MH
V ∗
m

denote the pullback H[m]∗VM
H
V ∗ .

We recover MH
V ∗ as the µm-invariant subobject MH

V ∗ = (H[m]V ∗M
H
V ∗
m
)µm in MHM(V ∗).

Proposition 5.10. With the above notation and assumptions, for ? = ∅, c,mid and every r,
we have the identifications

(5.10 ∗) Hr
?(U,NU , s

mg) ̸=1 ≃
[
H1(A1, [m])⊗Hr−1

? (V ∗
m,M

H
V ∗
m
)
]µm

∈ EMHSµ̸̂=1,

where µm acts diagonally. If moreover MV has no submodule, resp. quotient, supported on A ,
then

(5.10 ∗∗)

{
Hr(U,NU , s

mg)cl ≃ Hr−1
(
U,H 1(Hi∗ Hi

!NH
U )

)
,

resp. Hr
c(U,NU , s

mg)cl ≃ Hr+1
c

(
U,H −1(Hi∗ Hi

∗NH
U )

)
,

in MHS ≃ EMHScst,

and so

(5.10 ∗∗∗) Hr
?(U,NU , s

mg)cl ≃ Hr
?(U,NU , sg),

which is independent of m.

Proof. By definition, for x′∈V ∗
m, we have gm(x′)m=g([m]V (x

′)). We consider the isomorphism

φ : A1
s′ × V ∗

m
∼−→ A1

s × V ∗
m, (s′, x′) 7−→ (s′/gm(x′), x′).

Let us set fm = f ◦ (Id×[m]V ) : A1
s × V ∗

m → A1. We have

fm(s, x′) = sm · g([m]V (x
′)) = (s · gm(x′))m and fm ◦ φ(s′, x′) = s′m.
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As a consequence, we find in MHM(A1
θ), for each r:

H r−d−1
Hf∗(

p
QH

A1s
⊠ j∗M

H
V ∗) ≃

[
H r−d−1

(
Hfm∗(

p
QH

A1s
⊠MH

V ∗
m
)
)]µm

≃
[
H r−d−1

(
H(fm ◦ φ)∗(

p
QH

A1
s′
⊠MH

V ∗
m
)
)]µm

≃
[
H r−d−1

(
H(s

′m)∗(
p
QH

A1
s′
⊠MH

V ∗
m
)
)]µm

≃
[
H r−d−1

(
H(s

′m)∗(
p
QH

A1
s′
)⊗ am∗(HM

H
V ∗
m
)
)]µm

,

where am is the structure morphism of V ∗
m. Note that, on the first line, the action of µm is

due to the ramification [m]V only while, on the next lines, owing to φ, the action is due to the
ramification (s′, x′) 7→ (s′m, [m]V (x

′)). Since H(s
′m)∗(

p
QH

A1
s′
) = H 0

H(s
′m)∗(

p
QH

A1
s′
), we deduce

H r−d−1
Hf∗(

p
QH

A1s
⊠ j∗M

H
V ∗) ≃

[
H 0

H(s
′m)∗(

p
QH

A1
s′
)⊗Hr−1(V ∗

m,M
H
V ∗
m
)
]µm

.

After applying Πθ, since Πθ

(
H 0

H(s
′m)∗(

p
QH

A1
s′
)
)
=H1(A1, [m])=H1(A1, [m])̸=1, we obtain that

(5.11)
Hr

(
U, (

p
QH

A1s
⊠ j∗M

H
V ∗), smg

)
= Hr

(
U, (

p
QH

A1s
⊠ j∗M

H
V ∗), smg

)
̸=1

≃
[
H1(A1, [m])⊗Hr−1(V ∗

m,M
H
V ∗
m
)
]µm

.

Arguing similarly with Hj!M
H
V ∗ , we find

(5.12)
Hr

(
U, (

p
QH

A1s
⊠ j!M

H
V ∗), smg

)
= Hr

(
U, (

p
QH

A1s
⊠ j!M

H
V ∗), smg

)
̸=1

≃
[
H1(A1, [m])⊗Hr−1

c (V ∗
m,M

H
V ∗
m
)
]µm

.

Owing to the exact sequences in MHM(V ):

0 −→H 0(Hi∗ Hi
!MH

V ) −→MH
V −→ Hj∗M

H
V ∗ −→H 1(Hi∗ Hi

!MH
V ) −→ 0,

0 −→H −1(Hi∗ Hi
∗MH

V ) −→ Hj!M
H
V ∗ −→MH

V −→H 0(Hi∗ Hi
∗MH

V ) −→ 0,

(5.10 ∗) follows from Lemma 5.9 together with (5.11) resp. (5.12).
The assumption of the second part of the proposition implies that the above exact sequences

are respectively short exact sequences, and we obtain (5.10 ∗∗) according to Lemma 5.9 and
to the first equality in (5.11) resp. (5.12). The last statement (5.10 ∗∗∗) only expresses the
independence of m in the right-hand side of (5.10 ∗∗). □

Assume for example that MH
V =

p
QH

V , so that NU =
p
QH

U . Since D(
p
QH

U ) ≃
p
QH

U (d + 1)

and DHi∗ Hi
∗ ≃ Hi∗ Hi

!D, we obtain the identification in MHS:

Hr(U, smg)cl ≃ H2d+2−r
c (U, Hi∗ Hi

∗QH
U )

∨(−d− 1) = (H2d+2−r
c (D,Q))∨(−d− 1).

Let MHM(Q(e2πi/m)) be the category of Q(e2πi/m)-mixed Hodge modules, that is, where
we extend the coefficients of the perverse sheaf components to the field Q(e2πi/m). Let
EMHSµ̂(Q(e2πi/m)) be the corresponding category of Q(e2πi/m)-exponential mixed Hodge
structures. In EMHSµ̂(Q(e2πi/m)), we can decompose EH

m into rank-one objects (Kummer
sheaves):

EH
m ≃

⊕
ζ∈µm∖{1}

KH
ζ .
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Then we obtain an identification in EMHSµ̂(Q(e2πi/m)):

(5.13) Hr
?(U, s

mg) ̸=1 ≃
⊕

ζ∈µm∖{1}

(
KH

ζ,θ ⊗Hr−1
?

(
V ∗, Hg

∗KH

ζ−1,τ

))
.

Corollary 5.14. For any m ⩾ 1, we have, in EMHSµ̸̂=1 ≃ MHSµ̸̂=1,

Hd+1
mid (U, s

mg)̸=1 =Wd+1H
d+1(U, smg)̸=1.

Proof. By using Formula (5.10 ∗) with MH
V =

p
QH

V which has pure weight d, the assertion
reduces to

Hd
mid(V

∗
m,Q) =WdH

d(V ∗
m,Q),

which amounts to the property that grWd Hd
c(V

∗
m,Q) → grWd Hd(V ∗

m,Q) is bijective. Let X
be a good compactification of V ∗

m. Since the mixed Hodge structure Hd(V ∗
m,Q) has weights

⩾ d and WdH
d(V ∗

m,Q) = im[Hd(X,Q) → Hd(V ∗
m,Q)] (see [20, Prop. 4.20]), it follows that

Hd(X,Q) → grWd Hd(V ∗
m,Q) is an isomorphism. Dually, grWd Hd

c(V
∗
m,Q) → Hd(X,Q) is an

isomorphism. Since the canonical map Hd
c(V

∗
m,Q) → Hd(V ∗

m,Q) factors through Hd(X,Q),
the assertion follows. □

5.e. The case of a tame function g. In order to extend Corollary 5.14 to EMHScst

(see Corollary 5.21), we assume that V is the affine space Ad (so that U = Ad+1) and
that g is a cohomologically tame function on V in the sense of [22] (e.g. g is a convenient
non-degenerate polynomial in the sense of Kouchnirenko [16]).

On the one hand, a consequence of the assumption that V = Ad is that, if d ⩾ 2, when
considering the exact sequences in EMHSµ̂ (equivalently, in MHSµ̂) with middle commutative
square (see [7, Ex. A.20])

(5.15)

Hd+1
c (Ad) Hd+1

c (Ad+1, smg)oo

��

Hd+1
c (Gm,s × Ad, smg)

(∗)
oo

��

Hd
c(Ad)oo

Hd−1(Ad)(−1) // Hd+1(Ad+1, smg)
(∗)
// Hd+1(Gm,s × Ad, smg) // Hd(Ad)(−1).

the maps (∗) are isomorphisms. We can thus regard Hd+1
mid (A

d+1, smg) as the image of the right
vertical arrow.

On the other hand, the tameness assumption implies that the cohomology modules H rg†OV

and H rg+OV are constant DA1τ -modules for r ̸= 0, as well as the kernel and cokernel of the
natural morphism H 0g†OV →H 0g+OV (see [22]).

We consider the pushforward mixed Hodge modules H 0
Hg!

p
QH

Ad and H 0
Hg∗

p
QH

Ad . We thus
have

Πτ (H
0
Hg!

p
QH

Ad)
∼−→ Πτ (H

0
Hg∗

p
QH

Ad).

Let us set H 0
Hg!∗

p
QH

Ad = im
[
H 0

Hg!
p
QH

Ad → H 0
Hg∗

p
QH

Ad
]

in MHM(A1
τ ). Since H 0

Hg!
p
QH

Ad
has weights ⩽ d and H 0

Hg∗
p
QH

Ad has weights ⩾ d, we conclude that H 0
Hg!∗

p
QH

Ad is pure of
weight d. Furthermore, from the above isomorphism, we deduce that

Πτ (H
0
Hg!∗

p
QH

Ad) = Πτ (H
0
Hg∗

p
QH

Ad).
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We set

(5.16) MH = im
[
H 0

Hg!∗
p
QH

Ad → Πτ (H
0
Hg∗

p
QH

Ad)
]
.

This is a pure Hodge module on A1
τ of weight d with no nonzero constant submodule. Fur-

thermore, Πτ (M
H) = Πτ (H 0

Hg∗
p
QH

Ad).

Proposition 5.17. Under the previous assumptions and if d ⩾ 2, there are isomorphisms for
? = ∅, c,mid,

Hd+1
? (Ad+1, smg)cl ≃ H2

?(Gm,t × A1
τ ,

p
QH

Gm,t
⊠MH, tτ),

Hd+1
? (Ad+1, smg)̸=1 ≃ H2

?(Gm,t × A1
τ , Hj

∗EH
m,t ⊠MH, tτ).

Lemma 5.18. Let M be a constant holonomic DA1τ -module. Then, for any r ∈ Z and m ⩾ 1,

Hr
dR,?(Gm,s × A1

τ ,OGm,s ⊠M, smτ) = 0 for ? = ∅, c,mid.

Proof. Let us first consider the classical component Hr
dR(Gm,t × A1

τ ,OGm,t ⊠ M, tτ). Recall
that, for a holonomic DA1τ -module M, we have

Hr
dR,?(Gm,t × A1

τ ,OGm,t ⊠M, tτ) ≃ Hr−1
dR,?(Gm,t, j

+ FTτ (M)) ∀r, ? = c,∅.

Furthermore, if M is constant, then Hr
dR,c and Hr

dR vanish for all r since FTτ M is supported
at the origin.

For the non-classical component, we can assume m ⩾ 2. By taking pushforward by s 7→
t = sm, we have an identification

Hr
dR,?(Gm,s × A1

τ ,OGm,s ⊠M, smτ) ̸=1 ≃ Hr
dR,?(Gm,t × A1

τ , j
+Em,t ⊠M, tτ)

≃ Hr−1
dR,?(Gm,t, j

+Em,t ⊗ j+ FTτ (M)),

and these cohomologies vanish if M is constant. □

Proof of Proposition 5.17. According to the isomorphisms (∗) in (5.15), we may replace
Hd+1

? (Ad+1, smg) with Hd+1
? (Gm,s ×Ad, smg). Then, applying the pushforward by g, the com-

plexes Hg!
p
QH

Ad and Hg∗
p
QH

Ad reduce to the single mixed Hodge module MH up to complexes in
Db(MHM(A1

τ )) having constant Hodge modules as cohomologies. Therefore, by Lemma 5.18,
the hypercohomologies of these complexes reduce to H2

?(Gm,s × A1
τ ,

p
QH

Gm,s
⊠ MH, smτ).

By applying then the pushforward by s 7→ t = sm we obtain the desired isomorphisms. □

Let us focus on the classical component and set NH =
p
QH

A1t
⊠ MH, so that Hj

∗NH =
p
QH

Gm,t
⊠ MH. The following lemma is mainly [7, Cor. A.31] plus an argument developed

within the proof of [7, Th. 3.2]. We give details for the sake of completeness.

Proposition 5.19 ([7]). Assume that MH is a pure object of MHM(A1
τ ) of weight w. Then

H2
mid(Gm,t × A1

τ , Hj
∗NH, tτ) =Ww+1H

2(Gm,t × A1
τ , Hj

∗NH, tτ).

Proof. Since MH is pure, it can be decomposed as the direct sum MH
0 ⊕MH

cst ⊕MH
1 , where

MH
0 is supported at τ = 0, MH

cst is constant, and MH
1 is such that M1 has no submodule nor

quotient module supported at τ = 0 or equal to a constant module. We can thus consider
separately MH

0 , MH
cst and MH

1 , the case of MH
cst being solved trivially since both terms in the

lemma are zero in that case, according to Lemma 5.18.
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Let us consider a diagram similar to (5.15):

H2
c(A1

τ ,M
H) H2

c(A2, NH, tτ)oo

��

H2
c(Gm,t × A1

τ , Hj
∗NH, tτ)oo

��

H1
c(A1

τ ,M
H)oo

H0(A1
τ ,M

H) // H2(A2, NH, tτ) // H2(Gm,t × A1
τ , Hj

∗NH, tτ) // H1(A1
τ ,M

H)(−1)

The upper and lower leftmost terms are zero for MH = MH
0 or MH

1 , the upper, resp. lower,
middle terms have weight ⩽ w+1, resp. ⩾ w+1 (Proposition 4.7), the upper rightmost term
has weights ⩽ w and the lower rightmost term has weights ⩾ w + 2. In these cases, the
assertion of the lemma is thus equivalent to the similar one on A1

t:

(5.20) H2
mid(A1

t × A1
τ , N

H, tτ) =Ww+1H
2(A1

t × A1
τ , N

H, tτ).

The case MH = MH
0 . Denoting by i the inclusion A1

t × {0} ↪→ A1
t × A1

τ , there exists a pure
Hodge structure V H of weight w such that NH = Hi∗(

p
QH

A1t
⊗ V H). With the notation of (4.4)

(with d = 1 here), we find that (NH)j∗ = 0 for j ̸= 1, hence H2(A2, NH, tτ) = 0 in that case, so
that both terms are zero in (5.20).

The case MH = MH
1 . It has been treated in the proof of [7, Th. 3.2]. Let us just sketch it.

It follows from [7, Cor. A.31(1)] that H2(A1
t × A1

τ , N
H, tτ) is isomorphic to the mixed Hodge

structure
coker[N: ψτ,1M

H → ψτ,1M
H(−1)].

Purity of the mixed Hodge structure H2
mid(A1

t × A1
τ , N

H, tτ) and inclusion in the subspace
Ww+1H

2(A1
t × A1

τ , N
H, tτ) are clear from the weight estimates of Proposition 4.7. We are

reduced to proving equality of the dimensions of the de Rham fibers, that is,

dimH1
dR,mid(A1

t,FTτ M) = dimWw+1H
1
dR(A1

t,FTτ M).

This is obtained in loc. cit. by proving the equality

dimH1
dR,mid(A1

t,FTτ M) = dimP0,

where P0 is the primitive part of weight w − 1 in grW ψτ,1M
H. □

From Propositions 5.17 and 5.19 we deduce immediately:

Corollary 5.21. Under the previous assumptions on g and if d ⩾ 2, we have in EMHScst ≃
MHS:

Hd+1
mid (A

d+1, smg)cl =Wd+1H
d+1(Ad+1, smg)cl,

that is, according to (5.10 ∗∗∗),

Hd+1
mid (A

d+1, tg) =Wd+1H
d+1(Ad+1, tg). □

5.f. Computation of the non-classical part by additive convolution. We keep the set-
ting of Section 5.e. We revisit (5.13) from the point of view of additive convolution. We con-
sider EH

m,t as a pure Hodge module of weight 1 on A1
t. Regarded as a complex Hodge module

by extending the scalars, EH
m,t is the direct sum of Kummer Hodge modules KH

ζ,t (ζm = 1,
ζ ̸= 1), which are pure complex Hodge modules of weight 1 on A1

t and Hodge filtration jumping
at 0 only. We continue using Notation 3.1 for A1 with various coordinates.
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A review of additive and middle additive convolutions. We refer to [6, §1.1] for the following
results. Let M be a holonomic module on A1

τ . We consider the sum map

A1
τ × A1

τ
sum−−−−→ A1

u

(τ1, τ2) 7−−−−→ u = τ1 + τ2,

and define the additive convolutions Em,τ ⋆! M and Em,τ ⋆ M as the respective pushforwards
sum†(Em,τ ⊠M) and sum+(Em,τ ⊠M). These objects of Db(DA1) have cohomology in degree
zero only, and the image of the natural morphism Em,τ ⋆! M → Em,τ ⋆ M is denoted by
Em,τ ⋆mid M . We have

(5.22) FT(Em,τ ⋆M) ≃ j+j+ FT(Em,τ ⋆M) and FT(Em,τ ⋆midM) ≃ j†+j+ FT(Em,τ ⋆M).

In particular, Em,τ ⋆ M does not have any nontrivial constant submodule.

Weight properties of additive convolutions. We assume that MH is a pure Hodge module of
weight w on A1

τ . Then the various convolutions EH
m,τ ⋆? M

H (? =!,∅,mid) are mixed Hodge
modules.

Lemma 5.23. The mixed Hodge module EH
m,τ ⋆ M

H has weights ⩾ w + 1, and we have

EH
m,τ ⋆mid M

H =Ww+1(EH
m,τ ⋆ M

H).

Proof. Since EH
m,τ ⊠ MH is pure of weight w + 1, it follows that EH

m,τ ⋆! M
H has weights

⩽ w+1, EH
m,τ ⋆M

H has weights ⩾ w+1, and so EH
m,τ ⋆midM

H is pure of weight w+1. From
(5.22) one sees that the quotient Em,τ ⋆ M/Em,τ ⋆mid M is constant, hence so is the quotient
Ww+1Em,τ ⋆M/Em,τ ⋆midM , which underlies a pure Hodge module of weight w+ 1, hence is
a direct summand of Ww+1(Em,τ ⋆ M). Since Em,τ ⋆M does not have any nontrivial constant
submodule, the last assertion follows. □

Lemma 5.24. The mixed Hodge structure H 0
Hi

!(EH
m,τ ⋆ M

H) has weights ⩾ w + 1 and

Ww+1

[
H 0

Hi
!(EH

m,τ ⋆ M
H)
]
≃ P0 ψτ,1(EH

m,τ ⋆mid M
H)(−1).

Proof. Since Hi
! increases weights, it follows that

Ww+1[H
0
Hi

!(EH
m,τ ⋆ M

H)] ≃Ww+1[H
0
Hi

!(EH
m,τ ⋆mid M

H)].

Recall that H 0
Hi

! can be computed as coker[Nτ : ψτ,1 → ψτ,1(−1)] on pure Hodge modules
(see e.g. [7, Ex. A.2]) and that the graded component grWw+1+ℓ (ℓ ⩾ 0) is isomorphic to the
primitive part Pℓ(−1). The conclusion follows. □

A comparison result. Let MH be a mixed Hodge module on A1
τ . We aim at computing the

irregular Hodge filtration associated with the object of EMHSµ̂ defined as

(5.25) H2(A1
t × A1

τ ,EH
m,t ⊠MH, tτ) = H2(Gm,t × A1

τ , Hj
∗EH

m,t ⊠MH, tτ).

Since we are only interested in the Hodge filtration, we work in the context of complex Hodge
modules and we consider the objects H2(Gm,t×A1

τ , Hj
∗KH

ζ,t⊠M
H, tτ) with ζm = 1 and ζ ̸= 1.
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Proposition 5.26. Let MH be a mixed Hodge module on A1
τ . Then, for ε ∈ {1, . . . ,m − 1}

and ζ = exp(−2πiε/m), we have

(5.26 ∗) dimgr
p−ε/m
Firr

Hr
dR(A1

t × A1
τ ,K

H
ζ,t ⊠MH, tτ) = dimgrpF

[
H r−2

Hi
!(KH

ζ−1,τ ⋆ M
H)
]
,

and both terms are zero for r ̸= 1, 2.

The above formula is stated in the setting of complex Hodge modules in order to make
precise the shift by −ε/m. Once this shift is understood, the proof takes place within the
category of mixed Hodge modules and yields the formula for the dimension of the Hodge
filtration of (5.25).

Proof. We first explain the identification of the underlying de Rham cohomology spaces. If M
is supported at the origin, i.e., M = i+V , we have

Hr
dR(Gm,t × A1

τ , j
+Kζ,t ⊠ i+V, tτ) ≃ Hr−1

dR (Gm,t, j
+Kζ,t ⊗C V ),

which is zero for all r since ζ ̸= 1. We can thus assume that M = j+j
+M , so that

Hr
dR(Gm,t × A1

τ , j
+Kζ,t ⊠MH, tτ) ≃ Hr

dR(Gm,t ×Gm,τ , j
+Kζ,t ⊠ j+M, tτ)

≃ ϕθ
[
H r−2(tτ)+(j

+Kζ,t ⊠ j+M)
]

(Lemma 3.6).

On the one hand, we have seen that H r−2(tτ)+(j
+Kζ,t ⊠ j+M) is a vector bundle with con-

nection having monodromy equal to ζ Id and fiber isomorphic to Hr−1
dR (Gm, j

+Kζ−1 ⊗ j+M),
where Gm is regarded as the torus {tτ = 1} (end of proof of Proposition 5.7). Therefore,

dimHr
dR(Gm,t ×Gm,τ , j

+Kζ,t ⊠ j+M, tτ) = dimϕθ
[
H r−2(tτ)+(j

+Kζ,t ⊠ j+M)
]

= dimψθ

[
H r−2(tτ)+(j

+Kζ,t ⊠ j+M)
]

= rkH r−2(tτ)+(j
+Kζ,t ⊠ j+M)

= dimHr−1
dR (Gm, j

+Kζ−1 ⊗ j+M).

It follows that the left-hand side can be nonzero only if r = 1, 2.
On the other hand, let δ be the diagonal embedding A1

τ ↪→ A1
τ × A1

τ , let ι denote the
involution τ 7→ −τ on the first factor and set γ = ι ◦ δ : τ 7→ (−τ, τ). Note that ι+Kζ−1,τ ≃
Kζ−1,τ . The base change formula [5, VI, 8.4] in the present setting reads

i+ sum+(Kζ−1,τ ⊠M) ≃ a+
(
γ+(Kζ−1,τ ⊠M)

)
≃ a+

(
δ+(Kζ−1,τ ⊠M)

)
,

where a is the structure morphism. By definition, the OA1-module underlying δ+(Kζ−1,τ ⊠M)

is Kζ−1,τ ⊗L
OA1

M . Since the OA1-module underlying Kζ−1,τ is OA1(∗0), it is OA1-flat, from
which we deduce that

(5.27) δ+(Kζ−1,τ ⊠M) ≃ Kζ−1,τ ⊗OA1
M ≃ j+(j+Kζ−1,τ ⊗ j+M),

and so
H r−2

[
i+ sum+(Kζ−1,τ ⊠M)

]
≃ Hr−1

dR (Gm, j
+Kζ−1 ⊗ j+M).

We conclude that

dimHr
dR(A1

t × A1
τ ,Kζ,t ⊠M, tτ) = dimH r−2

[
i+(Kζ−1 ⋆ M)

]
, r = 1, 2.
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Let us now extend the previous computation by taking into account the Hodge filtrations.
For the left-hand side of (5.26 ∗), we have

dimgr
p−ε/m
Firr

Hr
dR(Gm,t ×Gm,τ , j

+Kζ,t ⊠ j+M, tτ)

= dimgr
p−ε/m
Fµ̂

ψµ̂
θ,̸=1

[
H r−2(tτ)+(j

+Kζ,t ⊠ j+M)
]

(Proposition 5.5)

= dimgrpF ψθ, ̸=1

[
H r−2(tτ)+(j

+Kζ,t ⊠ j+M)
]

(see (2.1))

= dimgrpF ψθ

[
H r−2(tτ)+(j

+Kζ,t ⊠ j+M)
]

(because ζ ̸= 1)

= rk grpF H r−2(tτ)+(j
+Kζ,t ⊠ j+M),

by using that, for a mixed Hodge module NH on A1
θ, we have dimgrpF ψθN

H = rk grpF NH.
We can compute the rank by restricting by the inclusion i1 : {θ = 1} ↪→ Gm. Let δ′ denote
the diagonal embedding Gm ↪→ Gm × Gm and let inv denote the involution t 7→ 1/t of Gm.
Then inv ◦ δ′ is the inclusion γ′ : {tτ = 1} ↪→ Gm × Gm. We note that Hinv

!KH
ζ,t ≃ KH

ζ−1,t.
Therefore, denoting by a′ the structure morphism of {tτ = 1}, we have

Hi
!
1

[
H(tτ)∗(Hj

∗KH
ζ,t ⊠ Hj

∗MH)
]
≃ Ha

′
∗
[
Hγ

′!(Hj
∗KH

ζ,t ⊠ Hj
∗MH)

]
(see [31, (4.4.3)])

≃ Ha
′
∗
[
Hδ

′!(Hj
∗KH

ζ−1,t ⊠ Hj
∗MH)

]
.

Thus, the left-hand side of (5.26 ∗) is given by dimgrpF H r−2
Ha

′
∗
[
Hδ

′!(Hj
∗KH

ζ−1,t ⊠ Hj
∗MH)

]
.

For the right-hand side of (5.26 ∗), taking the notation as above and noting that Hι
!KH

ζ−1,τ ≃
KH

ζ−1,τ , we obtain

Hi
!
[
Hsum∗(K

H

ζ−1,τ ⊠MH)
]
≃ Ha∗

[
Hδ

!(KH

ζ−1,τ ⊠MH)
]
.

It remains to be checked that the natural morphism

Hδ
!(KH

ζ−1,τ ⊠MH) −→ Hj∗ Hδ
′!(Hj

∗KH

ζ−1,τ ⊠ Hj
∗MH)

is an isomorphism. It is enough to check that the morphism of the underlying D-modules is
an isomorphism, a property which is provided by (5.27). □

Corollary 5.28. For MH defined by (5.16), for ε ∈ {1, . . . ,m − 1} and ζ = exp(−2πiε/m),
we have, for each p ∈ Z,

dimgr
p−ε/m
F Hd+1(Ad+1, smg) ̸=1 = dimgrpF

[
H 0

Hi
!(KH

ζ−1,τ ⋆ M
H),

]
dimgr

p−ε/m
F Hd+1

mid (A
d+1, smg) ̸=1 = dimgrpF

[
P0 ψτ,1(K

H

ζ−1,τ ⋆mid M
H)(−1)

]
.

Proof. The first equality is obtained by applying Proposition 5.26 to MH together with Propo-
sition 5.17. For the second one, we apply Lemma 5.24. □

6. The generalized Airy connection and its symmetric powers

6.a. The generalized Airy differential equation Ain. Let n ⩾ 2 be an integer. The Airy
differential operator of order n on A1

z is defined as

∂nz − z

and the corresponding C[z]⟨∂z⟩-module is denoted by Ain = C[z]⟨∂z⟩/C[z]⟨∂z⟩ · (∂nz − z).
The classical Airy equation corresponds to n = 2 and the corresponding C[z]⟨∂z⟩-module is
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simply denoted by Ai. Let us set Exn+1/(n+1) = C[x]⟨∂x⟩/(∂x+xn) considered as a holonomic
D-module on the affine line A1

x.

Lemma 6.1. The C[z]⟨∂z⟩-module Ain is the (negative) Fourier transform of Exn+1/(n+1). In
other words, Ain can be obtained by means of the diagram

A1
x × A1

z

f}} π !!

A1 A1
z

f(x, z) = 1
n+1 x

n+1 − zx,

as
Ain = H 0π+E

f

≃ coker
[
C[x, z]

(∂x + (xn − z))⊗ dx
−−−−−−−−−−−−−−−−−→ C[x, z]⊗ dx

](6.1 ∗)

with ∂z([xℓ]⊗ dx) = −[xℓ+1]⊗ dx.

Proof. The negative Fourier transformation is induced by the isomorphism C[x]⟨∂x⟩ →
C[z]⟨∂z⟩ defined by x 7→ ∂z, ∂x 7→ −z. That it can be obtained by (6.1 ∗) is proved in [17,
App. 2, §1]. □

The C[z]⟨∂z⟩-module Ain is a free C[z]-module of rank n, with a connection ∇ having
singularity at ∞ only. Being the Fourier transform of a C[x]⟨∂x⟩-module of rank one, thus
irreducible, Ain is also irreducible. Furthermore, the sheaf of horizontal sections Ai∇n is the
constant sheaf of rank n on A1an

z . The differential Galois group of Ain is (see [13, Th. 4.2.7])

(6.2)

{
SLn(C) if n is odd,
Spn(C) if n is even.

It follows that, for n even, Ain is isomorphic to its dual module. More precisely, we have the
following behaviour with respect to duality. We denote by Ai∨n the dual C[z]⟨∂z⟩-module. It is
isomorphic to C[z]⟨∂z⟩/((−∂z)n − z).

Let us denote by ιn : A1 → A1 the isomorphism

(6.3) ιn :

{
z 7−→ exp(πi/(n+ 1)) · z if n is odd,
z 7−→ z if n is even.

Lemma 6.4. We have Ai∨n ≃ ι+nAin.

Proof. If n is even, we have (−∂z)n − z = ∂nz − z. If n is odd, Ai∨n is defined by the operator
∂nz + z, while ι+nAin is defined by the operator

exp(−nπi/(n+ 1))∂nz − exp(πi/(n+ 1))z = exp(−nπi/(n+ 1))(∂nz + z). □

The formal stationary phase formula for the local Fourier transform F∞,∞
− (see [24, §5.c])

applied to Exn+1/(n+1) shows the following, setting w = 1/z and Âin = C((w))⊗Ain:

• The formal connection Âin is isomorphic to the elementary formal connection

(6.5) [n]+
(
E−ntn+1/(n+1) ⊗ L(−1)n+1

)
≃

(
[n]+E

−ntn+1/(n+1)
)
⊗ Lin ,

where
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– [n] is the finite morphism t 7→ z = tn,
– L(−1)n+1 is the rank-one formal regular connection (C((t−1)),d + (n+1)

2 dt/t),
corresponding to the rank-one local system on the punctured disc with mon-
odromy (−1)n+1,

– we set in = exp−πi(n + 1)/n (so that i2 = i) and Lin is the rank-one formal
regular connection (C((w)), d+ (n+1)

2n dw/w), corresponding to the rank-one local
system on the punctured disc with monodromy in.

The isomorphism (6.5) is not canonical, as we can replace in with any n-th root of
(−1)n+1 and obtain another isomorphism.

• The irregularity at infinity of Ain is equal to n+ 1; its (pure) slope is (n+ 1)/n.

6.b. Symmetric powers of Ain. We now consider Symk Ain. The preliminary analysis of
this object can be done as in [7, §2.1] for the symmetric powers of the Kloosterman connection.
Let us set P(n, k) = {a ∈ Zn

⩾0 |
∑n

i=1 ai = k}. Then Symk Ain has rank #P(n, k) =
(
n−1+k

k

)
and has an irregular singularity at ∞ only.

Lemma 6.6 (Irreducibility). The C[z]⟨∂z⟩-module Symk Ain is irreducible.

Proof. Since the differential Galois group G ⊂ GLn(C) of Ain equals SLn(C) or Spn(C) and
any symmetric power of the standard representation of such G is irreducible, one obtains that
Symk Ain is irreducible. □

Set ζn = exp(2πi/n) and

S(n, k) =
{
a ∈ P(n, k) |

∑n
i=1 aiζ

i
n = 0

}
, Sn,k = #S(n, k),

irr(n, k) =
n+ 1

n
·#(P(n, k)∖ S(n, k)) =

n+ 1

n

[(
n− 1 + k

k

)
− Sn,k

]
.

Lemma 6.7. We have

Symk Âin ≃ (CSn,k ⊗ L⊗k
in

)⊕
[ ⊕
a∈P(n,k)∖S(n,k)

E−n(
∑

aiζ
i
n)t

n+1/(n+1)
]µn

⊗ L⊗k
in
.

Furthermore, irr∞(Symk Âin) = irr(n, k).

Proof. We have Symk Âin ≃ Symk([n]+E
−ntn+1/(n+1)) ⊗ L⊗k

in
, and Symk([n]+E

−ntn+1/(n+1))

is the µn-invariant submodule (where the action is given by t 7→ exp(2πi/n)t) of

[n]+ Symk([n]+E
−ntn+1/(n+1)) ≃ Symk([n]+[n]+E

−ntn+1/(n+1))

= Symk
(⊕n

i=1E
−nζint

n+1/(n+1)
)
.

The latter C((t−1))-module with connection decomposes as⊕
a∈P(n,k)

E−n(
∑

aiζ
i
n)t

n+1/(n+1).

The result is obtained by taking the µn-invariant submodule. □

Example 6.8 (The case of n = 2). In the case of Ai = Ai2, Symk Ai has rank k + 1 and we
find:

Symk Âi ≃


⊕(k−1)/2

j=0 ([2]+E
2(2j−k)t3/3)⊗ L⊗k

i if k is odd,

L⊗k
i ⊕

⊕k/2−1
j=0

(
([2]+E

2(2j−k)t3/3)⊗ L⊗k
i

)
if k is even.



HODGE PROPERTIES OF AIRY MOMENTS 27

In particular, irr∞(Symk Ai) = 3 ⌊(k + 1)/2⌋ and, if k is odd, Symk Âi is purely irregular.

Corollary 6.9. One has

dimH1
dR,?(A1, Symk Ain) =

1

n

(
k + n− 1

k

)
− n+ 1

n
Sn,k for ? = ∅, c,

dimH1
dR,mid(A1, Symk Ain) = dimH1

dR(A1, Symk Ain)−

{
δnZ(k)Sn,k, n odd,
δ2nZ(k)Sn,k, n even.

Proof. The analogue of the Grothendieck-Ogg-Shafarevich formula and Lemma 6.7 give

χdR(A1,Symk Ain) = rk Symk Ain − irr(n, k).

By irreducibility of Symk Ain and affinity of A1, the left-hand side is −dimH1
dR(A1, Symk Ain).

This yields the first equality for ? = ∅. A duality argument gives the case ? = c. The regular
part of Symk Ain at infinity has rank S(n, k) and monodromy ikn Id = exp(−k(n+ 1)πi/n) Id.
We thus have

dimH1
dR,mid(A1, Symk Ain) =

{
dimH1(A1, Symk Ain) if k(n+ 1)/n /∈ 2Z,

dimH1(A1, Symk Ain)− S(n, k) if k(n+ 1)/n ∈ 2Z,

which yields the second equality. □

Let fk : A1
z × Ak

x → A1 be defined by

fk(z, x1, . . . , xk) =

k∑
i=1

( 1
n+1 x

n+1
i − zxi)

and let πk : A1
z ×Ak

x → A1
z denote the projection. The symmetric group Sk acts as automor-

phisms on fk and πk by permuting the variables xi.

Proposition 6.10. We have

Ai⊗k
n ≃ πk+Efk and Symk Ain ≃ (πk+E

fk)Sk,χ,

where the latter term is the isotypic component of πk+Efk under the action of Sk with respect
to the sign character χ on Sk.

Sketch. The second identification follows from the first one. We write

Ai⊗k
n =

k⊗
FT−(E

xn+1/(n+1)),

which we interpret as the Fourier transform FT− of the k-fold additive convolution product
of Exn+1/(n+1) with itself. We note that FT−(E

xn+1/(n+1)) and its dual are OA1z -flat, which
makes the computation of the iterated convolution easy (Exn+1/(n+1) belongs to the category P

of Katz [14]). The iterated convolution can also be computed as the pushforward by the sum
map (x1, . . . , xk) 7→ x1 + · · · + xk of E

∑
ix

n+1
i /(n+1). Then the Fourier transform FT− of this

convolution can be expressed as πk+Efk . In particular, πk+Efk = H 0πk+E
fk . □

Corollary 6.11. For ? = ∅, c, the de Rham cohomologies Hr
dR,?(A1, Symk Ain) vanish for

r ̸= 1 and we have

(6.11 ∗) H1
dR,?(A1, Symk Ain) ≃ Hk+1

dR,?(A
k+1, Efk)Sk,χ.
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Proof. The first assertion for Hr(A1,Symk Ain) follows from the irreducibility of Symk Ain and
Hr(A1,Symk Ain) = 0 for r ⩾ 2 as A1 is affine. Furthermore, Poincaré duality for DA1-modules
implies (see (6.3) for ιn)

Hr
dR,c(A1, Symk Ain) ≃ H2−r

dR (A1, Symk Ai∨n)
∨

≃ H2−r
dR (A1, ι+n Symk Ain)

∨ ≃ H2−r
dR (A1,Symk Ain)

∨,

hence the first assertion holds for Hr
dR,c(A1, Symk Ain).

The case ? = ∅ in (6.11 ∗) is a consequence of the proposition and of the isomorphism
aA1+ ◦ πk+ ≃ aAk+1+, if a denotes the structure morphism. For the case ? = c, we argue
by duality, using the isomorphism above for the left-hand side. For the right-hand side,
we note that Hk+1

dR,c(A
k+1, Efk) is dual to Hk+1

dR (Ak+1, E−fk), and the latter space is isomorphic
to Hk+1

dR (Ak+1, Efk) as is seen by using the change of variables (compatible with the action
of Sk)

(6.12)

{
xi 7−→ −xi, z 7−→ z if n is even,
xi 7−→ exp(πi/(n+ 1))xi, z 7−→ exp(−πi/(n+ 1))z if n is odd,

which changes fk to −fk. □

6.c. The µ̂-exponential mixed Hodge structure on the de Rham cohomology of
Symk Ain and Symk Ãin

In order to apply the results of Section 5 to Symk Ain, we first consider a ramification of
order n on the base affine line. Consider the n-fold ramified cover [n] : A1

s → A1
z given by

s 7→ z = sn. Let π̃ : A1
s × A1

x → A1
s denote the first projection and let

f̃ =
1

n+ 1
xn+1 − snx

equipped with the µn action on the variable s. We define

Ãin = H 0π̃+E
f̃ ≃ π̃+E f̃ ≃ [n]+Ain,

where the last isomorphism is compatible with the µn actions. Then Ãin is smooth on A1
s and

its formal model at infinity is the pullback by [n] of (6.5), and we have

Ain = ([n]+Ãin)
µn .

Setting

f̃k =
k∑

i=1

( 1

n+ 1
xn+1
i − snxi

)
,

we obtain similarly

Ãi⊗k
n ≃ π̃k+E f̃k , Symk Ãin≃(π̃k+E

f̃k)Sk,χ, Symk Ain≃(Symk Ãin)
µn≃(πk+E

f̃k)µn×Sk,χ.

Corollary 6.13. For ? = ∅, c, the de Rham cohomologies Hr
dR,?(A1,Symk Ãin) and

Hr
dR,?(Gm, j

+ Symk Ãin) vanish for r ̸= 1 and we have

H1
dR,?(A1,Symk Ãin) ≃ Hk+1

dR,?(A
k+1, E f̃k)Sk,χ,

H1
dR,?(Gm, j

+ Symk Ãin) ≃ Hk+1
dR,?(Gm × Ak, E f̃k)Sk,χ.
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Proof. We first claim that Symk Ãin does not have any non trivial constant submodule: other-
wise its pushforward by [n] would give rise, by taking µn-invariants, to a non trivial constant
submodule of Symk Ain, a contradiction. Then we can argue as in the proof of Corollary 6.11.

□

As a consequence, we obtain:

H1
dR,?(A1, Symk Ain) ≃ Hk+1

dR,?(A
k+1, E f̃k)µn×Sk,χ.

The isomorphisms (6.11 ∗) together with (4.3) lead us to define, for ? = ∅, c,mid, the
exponential mixed Hodge structures H1

?(A1,Ai⊗k
n ) and H1

?(A1, Ãi⊗k
n ) as

(6.14) H1
?(A1,Ai⊗k

n ) := Hk+1
? (Ak+1, fk), H1

?(A1, Ãi⊗k
n ) := Hk+1

? (Ak+1, f̃k)

and then the exponential mixed Hodge structures H1
?(A1, Symk Ain) and H1

?(A1,Symk Ãin) as

(6.15) H1
?(A1,Symk Ain) := H1

?(A1,Ai⊗k
n )Sk,χ, H1

?(A1, Symk Ãin) := H1
?(A1, Ãi⊗k

n )Sk,χ,

so that

(6.16) H1
?(A1, Symk Ain) ≃ H1

?(A1, Symk Ãin)
µn .

We can similarly define H1
?(Gm, j

+ Symk Ãin) in EMHS by replacing Ak+1 with Gm×Ak. Recall
that H1

mid is defined as the image in EMHS of H1
c → H1.

Theorem 6.17. The exponential mixed Hodge structures

H1(A1,Symk Ain), H1
c(A1, Symk Ain), and H1

mid(A1,Symk Ain)

are µ̂-exponential mixed Hodge structures of weights ⩾ k+1, ⩽ k+1, and k+1 respectively, and
the natural morphisms between them are morphisms of µ̂-exponential mixed Hodge structures.

Moreover, the induced morphism

grWk+1H
1
c(A1,Symk Ain) −→ grWk+1H

1(A1,Symk Ain)

is an isomorphism, and H1
mid(A1, Symk Ain) is equal to its image. This µ̂-exponential pure

Hodge structure of weight k + 1 is equipped with a (−1)k+1-symmetric pairing

H1
mid(A1,Symk Ain)⊗H1

mid(A1, Symk Ain) −→ Q(−k − 1).

Similar properties hold for Symk Ãin.

Proof. The first statement (weight estimates) follows from Proposition 4.7. For the second
statement, we first prove the results for Symk Ãin by applying Corollaries 5.14 and 5.21 as
follows. For ? = ∅, c,mid, we note that

Hr
?(Ak, 1

n+1

∑k
i=1 x

n+1
i ) =

{
H1(A1, 1

n+1 x
n+1)⊗k if r = k,

0 otherwise,

by the argument used in [7, Ex.A.22]. Furthermore, the exponential mixed Hodge structure
H1(A1, 1

n+1 x
n+1) is pure of weight 1 and of rank n according to Section 5.b, and belongs to
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EMHSµ̂. On the other hand, arguing in a way similar to [7, Ex.A.20], we have the short exact
sequences in EMHS with a commutative square

(6.18)

0 Hk+1
c (Ak+1, f̃k)oo

��

Hk+1
c (Gm × Ak, f̃k)oo

��

Hk
c (Ak, 1

n+1

∑k
i=1 x

n+1
i )oo 0oo

0 // Hk+1(Ak+1, f̃k) // Hk+1(Gm × Ak, f̃k) // Hk(Ak, 1
n+1

∑k
i=1 x

n+1
i )(−1) // 0

and thus isomorphisms for ? = ∅, c:

grWk+1H
k+1
? (Ak+1, f̃k) ≃ grWk+1H

k+1
? (Gm × Ak, f̃k),

since the upper resp. lower rightmost non-trivial term in the diagram is pure of weight k
resp. k + 2. Furthermore,

Hk+1
mid (A

k+1, f̃k) ≃ Hk+1
mid (Gm × Ak, f̃k).

Let us also set
g(y) =

1

n+ 1
yn+1 − y,

and consider the convenient non-degenerate polynomial

gk(y1, . . . , yk) =
k∑

i=1

g(yi).

Under the change of variables xi = syi on Gm × Ak, and arguing as for (5.15) one has, for
? = ∅, c,mid,

Hk+1
? (Gm × Ak, f̃k) = Hk+1

? (Gm × Ak, sn+1gk),

and a similar equality between the χ-isotypical components with respect to the action of Sk

permuting y1, . . . , yk. We can thus apply Corollaries 5.14 and 5.21 to obtain the second point
for Symk Ãin.

Lastly, the pairing in the case of Symk Ãin is obtained from the pairing

Hk+1
c (Ak+1, f̃k)⊗Hk+1(Ak+1,−f̃k) −→ Q(−k − 1)

together with a change of variables similar to (6.12), and passing to the χ-isotypical compo-
nent.

In order to deduce the results for Symk Ain, one uses (6.16) for ? = ∅, c,mid. □

Corollary 6.19. We have the following identifications in EMHSµ̂:

H1(Gm, j
+ Symk Ãin) ≃ Hk+1(Ak+1, sn+1gk)

Sk,χ,

H1
mid(A1,Symk Ãin) ≃ Hk+1

mid (A
k+1, sn+1gk)

Sk,χ =Wk+1H
k+1(Ak+1, sn+1gk)

Sk,χ.

Proof. Notice that the localization sequences analogous to (5.15) (along s = 0) yield, for k ⩾ 2,
the canonical isomorphisms

Hk+1(Ak+1, sn+1gk)
∼−→ Hk+1(Gm × Ak, sn+1gk),

Hk+1
c (Gm × Ak, sn+1gk)

∼−→ Hk+1
c (Ak+1, sn+1gk).
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From Corollaries 5.14 and 5.21 we have canonical identifications

Hk+1
mid (A

k+1, sn+1gk)
∼−→Wk+1H

k+1(Ak+1, sn+1gk).

The desired identifications are obtained from the lower line of (6.18) together with (6.14),
(6.15) and (6.16). □

In order to apply Proposition 5.17 we set, in a way similar to (5.16),

M̃H
k = im

[
(H 0

Hgk,!∗
p
QH

Ak)
Sk,χ → Πτ ((H

0
Hgk∗

p
QH

Ak)
Sk,χ)

]
∈ MHM(A1

τ ),

which is pure of weight k, and we have Πτ (M̃
H
k ) = Πτ ((H 0

Hgk∗
p
QH

Ak)
Sk,χ) which has weights

⩾ k. Let us consider the exact sequence in MHM(A1
τ ):

(6.20) 0 −→ M̃H
k −→ Πτ (M̃

H
k ) −→ M̃ ′H

k −→ 0.

Lemma 6.21. We have M̃H
k =WkΠτ (M̃

H
k ) and M̃ ′H

k is constant of weights ⩾ k + 1.

Proof. The cokernel of M̃H
k → WkΠτ (M̃

H
k ) is a constant pure Hodge module of weight k,

which is thus a direct summand, hence contained in Πτ (M̃
H
k ). But the C[τ ]⟨∂τ ⟩-module

underlying the latter mixed Hodge module does not contain any constant nonzero submodule,
by definition of Πτ . □

Proposition 6.22. We have, for p ∈ Z, ζ = exp(−2πiε/(n+ 1)) ̸= 1 with ε ∈ {1, . . . , n},

dimgrpF H1
mid(A1

s,Sym
k Ãin)cl = dimgrpF [P0 ψτ,1M̃

H
k (−1)],

dimgr
p−ε/(n+1)
Firr

H1
mid(A1

s, Sym
k Ãin) ̸=1 = dimgrpF

[
P0 ψτ,1(K

H

ζ−1 ⋆mid M̃
H
k )(−1)

]
.

Proof. For the first equality, we identify H1
mid(A1

s,Sym
k Ãin)cl with Wk+1H

k+1(Ak+1, tgk)
Sk,χ,

according to the second line of Corollary 6.19 and (5.10 ∗∗∗). Then we can argue as in the
proof of [7, Th. 3.2] by applying [7, Cor. A.31(1)] to M̃H

k .
The second equality follows from the second lines of Corollaries 5.28 and 6.19. □

Contrary to the case of the symmetric power of the Kloosterman connection Symk K̃l2
considered in [7], j+ Symk Ãin is not the restriction to Gm of the Fourier transform of a
regular holonomic module like Πτ (M̃k) because it is not of slope 1 at infinity (as can be seen
from Lemma 6.7). The Fourier transform of Πτ (M̃k) will nevertheless prove useful in 7.e when
n = 2. It also takes the form of a symmetric power j+ SymkGg, as asserted by the following
lemma. In other words, the rational slope of Symk Ain at infinity leads to considering both
expressions of Symk Ãin:

[n]+ Symk Ain = Symk Ãin and j+ Symk Ãin ≃ [n+ 1]+ SymkGg.

Lemma 6.23. Let Gg = j+ FT M̃1 be the restriction to Gm of the Fourier transform of M̃1

and let FT M̃k be the Fourier transform of M̃k. We have

FTΠτ (M̃k) = j+j
+ FT M̃k ≃ j+ SymkGg.

Furthermore, FT M̃k ≃ j†+ SymkGg.
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Proof. We have Πτ (M̃k) = Πτ (H 0gk+OAk)
Sk,χ, so

j+ FT M̃k = j+ FTΠτ (M̃k) ≃ j+ FT(H 0gk+OAk)
Sk,χ ≃ SymkGg.

For the second point, let us define M̃k such that FT M̃k = j†+ SymkGg. Since FT M̃k is the
minimal extension of Gg at the origin, it follows that FT M̃k ⊂ FT M̃k (because FT M̃k =

FT M̃k ∩ FT M̃k by minimality) and thus M̃k ⊂ M̃k. We wish to prove equality. Since
FT M̃k/FT M̃k is supported at the origin of A1

t, the quotient M̃k/M̃k is constant, and equality
would follow from the property that M̃k does not have any nonzero constant quotient C[τ ]⟨∂τ ⟩-
module. In order to prove this property, it is enough to show that such a quotient would
underlie a quotient in the category MHM(A1

τ ). Indeed, M̃H
k being pure, this quotient would

be a direct summand, hence contained in M̃H
k , and M̃k is known to have no nonzero constant

holonomic submodule, being contained in Πτ (M̃k). Dually, it is enough to prove that the
maximal constant C[τ ]⟨∂τ ⟩-submodule of a pure Hodge module on A1

τ underlies the maximal
constant pure Hodge module. This follows from the theorem of the fixed part. In such a way,
we have identified M̃k with M̃k. □

7. Proof of Theorem 1.1

We consider from now on the classical Airy equation ∂2z − z (the case n = 2 in Section 6),
and we set Ai = Ai2 and f(x, z) = 1

3x
3− zx. The strategy of the proof of Theorem 1.1 is very

similar to that developed in [7] for the Kloosterman case. It consists of

(1) exhibiting a natural basis of H1
dR(A1,Symk Ai) (Proposition 7.4 and Corollary 7.6);

(2) showing that this basis is adapted to the irregular Hodge filtration by lifting it to a
suitable compactification of Ak+1 and by computing order of poles of representative
differential forms along components of the divisor at infinity;

(3) showing that this basis induces a basis of each graded piece of the irregular Hodge
filtration by means of a duality argument.

Notation 7.1. We use the following notation and convention:

• For integers k ⩾ 1 and m ∈ Z, we set

k′ := ⌊(k − 1)/2⌋ (i.e., k = 2k′ + 1 or k = 2(k′ + 1)), m! and m!! = 1 if m ⩽ 0.

• Since the cases where k is even and where 4 | k play a special role, we use the simplified
common notation:

[1, k′]] =

{
{1, . . . , k′ + 1} if k is odd,
{1, . . . , k′} if k is even,

7.a. De Rham cohomology of Symk Ai and Symk Ãi. One checks that Ai is the free
C[z]-module generated by the classes v0, v1 of dx,−xdx (see (6.1 ∗)). Moreover, ∂zv0 =

−xdx = v1 and ∂2zv0 = x2dx ≡ zv0, so that we recover the Airy equation (∂2z − z)v0 = 0.
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Corollary 6.9 in this case reads

(7.2)

dimH1
dR,?(A1, Symk Ai) =

{
k′ + 1 if k is odd,
k′ if k is even,

for ? = ∅, c,

dimH1
dR,mid(A1, Symk Ai) =

{
dimH1

dR(A1, Symk Ai) if 4 ∤ k,
dimH1

dR(A1, Symk Ai)− 1 if 4 | k.

Let [2] : s 7→ s2 = z be the ramified covering of A1
z of order 2 given by s 7→ s2 = z, and set

Ãi = [2]+Ai. Let L = L−1 = (OGm , d + 1
2
dz
z ). Recall that j : Gm ↪→ A1 denotes the inclusion.

We will set L⊗ Symk Ai := j+(L⊗ j+ Symk Ai). Then

Hi
dR(A1, L⊗ Symk Ai) = Hi

dR(Gm, L⊗ j+ Symk Ai),

which has dimension 3(k′ + 1) if i = 1 and is zero otherwise. We have, on A1,

[2]+ Symk Ãi ≃ Symk Ai⊕ (L⊗ Symk Ai),

and the decomposition

(7.3) H1
dR(A1,Symk Ãi) = H1

dR(A1,Symk Ai)⊕H1
dR(A1, L⊗ Symk Ai)

into µ2-character spaces. More explicitly, we have the isomorphism

[2]∗L =
(
OGm ,d +

ds

s

)
∼−→ (OGm ,d)

via multiplication by s. Therefore, for an element of H1
dR(Gm, L⊗ j+ Symk Ai) represented by

the global section η ∈ Γ(Gm, L⊗ j+ Symk Ai⊗Ω1), we regard it as the class s[2]∗η belonging
to the image of H1

dR(A1, Symk Ãi) in H1
dR(Gm, j

+ Symk Ãi).
We use the decomposition (7.3) to obtain a basis. The connection on Ai is given by the

matrix form

∂z(v0, v1) = (v0, v1) ·
(
0 z

1 0

)
.

To treat the symmetric power moments and the twists together in this subsection, for k ⩾ 1

and ρ = 0, 1/2, we let Vρ be the connection on Gm

Vρ =

{
j+ Symk Ai, ρ = 0,

L⊗ j+ Symk Ai, ρ = 1/2.

Let Λρ = Γ(Gm, Vρ) be the differential module of global sections. We fix the basis u :=

(ua)0⩽a⩽k of Λρ where ua = vk−a
0 va1 , in which the differential structure reads

z∂zua = ρua + (k − a)zua+1 + az2ua−1, 0 ⩽ a ⩽ k,

with the convention u−1 = uk+1 = 0. Then the de Rham cohomology of Vρ is given by the
cohomology of the two term complex z∂z : Λρ → Λρ

Hi
dR(Gm, Vρ) = Hi(Λρ

z∂z−−→ Λρ).
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Proposition 7.4 (see [7, Proof of Prop. 4.14]).
(1) Put Λ+

ρ =
⊕k

a=0C[z]ua. Then the C[z]-module Λ+
ρ is stable under z∂z and the inclu-

sion of (Λ+
ρ , z∂z) into (Λρ, z∂z) is a quasi-isomorphism.

(2) The cokernel H1(Λ+
ρ , z∂z) has the basis

zk
′+1u0, · · · , zu0, u0, u1, · · · , uk if k is odd,

zk
′
u0, · · · , zu0, u0, u1, · · · , uk if k is even.

Remark 7.5. When analyzing the symmetric products Symk Kl3 of Kloosterman connec-
tions of rank three, Y.Qin [21, §3.2.1] has developed a slightly different method to obtain an
analogous result.

Proof.
(1) In fact, for any r ⩾ 0, the lattice z−rΛ+

ρ is stable under z∂z and the induced map

z∂z : z
−r−1Λ+

ρ /z
−rΛ+

ρ −→ z−r−1Λ+
ρ /z

−rΛ+
ρ

coincides with the multiplication by ρ− r − 1 and is an isomorphism.
(2) Define a degree map on Λ+

ρ by setting

deg z =
2

3
, deg ua =

a

3
.

Then z∂z is inhomogeneous of degree one. On the associated graded module Λ+
ρ , the induced

map z∂z is C[z]-linear with

z∂zua = (k − a)zua+1 + az2ua−1, 0 ⩽ a ⩽ k,

where ua denotes the image of ua.
Assume k is even. It is clear that ker z∂z = C[z]u where

u =
k′+1∑
i=0

(−1)i
(
k′ + 1

i

)
zk

′+1−iu2i.

Inside the C[z]-module H1(Λ+
ρ , z∂z), the class u0 is torsion-free, u2r+1 are z-torsion for 0 ⩽

r ⩽ k′, and

zu2r ≡
r∏

i=1

1− 2i

k + 1− 2i
z2ru0, 1 ⩽ r ⩽ k′ + 1.

Furthermore one has (see [7, Proof of Lem. 4.17] for a similar argument)

coker
[
z∂z : H

0(Λ+
ρ , z∂z)→ H1(Λ+

ρ , z∂z)
]

∼−→ H1(Λ+
ρ , z∂z)

and

z∂z(z
ru) =

k′+1∑
i=0

(−1)i
(
k′ + 1

i

)
(r + k′ + 1− i+ ρ)zr+k′+1−iu2i

≡

{
c0z

k′+1u0 + (−1)k′+1ρuk if r = 0,

crz
r+k′+1u0 if r > 0,

for certain c0, cr ∈ C. Since dimH1(Λ+
ρ , z∂z) = k+ k′ + 1, one must have cr ̸= 0 for all r ⩾ 0

and the claim follows.
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The case of k odd can be treated similarly and is easier. Indeed in this case, det z∂z =

(−1)k′+1k!!z3k
′+3 and hence H1(Λ+

ρ , z∂z)
∼= H1(Λ+

ρ , z∂z). We omit the details. □

Corollary 7.6.

(1) The classes

ωi = zi−1u0dz, ηj = uj
dz

z
(i ∈ [1, k′]], 0 ⩽ j ⩽ k)

(see Notation 7.1) form a basis of H1
dR(Gm, j

+ Symk Ai).
(2) The classes

ω−
i = ziu0

dz

z
, η−j = uj

dz

z
(i ∈ [1, k′]], 0 ⩽ j ⩽ k)

form a basis of H1
dR(Gm, L⊗ j+ Symk Ai).

(3) The family Bk = {ωi | i ∈ [1, k′]]} is a basis of H1
dR(A1, Symk Ai).

Proof. Let (Symk Ai)0 =
⊕k

j=0Cuj be the fiber of Symk Ai at z = 0. We have the exact
sequence

0 −→ H1
dR(A1, Symk Ai) −→ H1

dR(Gm, j
+ Symk Ai)

Res−−−−→ (Symk Ai)0 −→ 0

where Res denotes the residue map. Statement (3) follows by noticing that Res(ωi) = 0 and
Res(ηj) = uj . □

Remark 7.7 (see [7, Proof of Prop. 4.21]). Under the isomorphism (6.11 ∗) for ? = ∅, the
classes ωi are mapped to

wi = [zi−1dz dx1 · · · dxk].

7.b. Middle de Rham cohomology of Symk Ai. By (7.2), H1
dR,mid(A1, Symk Ai) is equal

to H1
dR(A1,Symk Ai) if 4 ∤ k and is of codimension one in it if 4 | k. In order to compute a

basis of H1
dR,mid(A1,Symk Ai) in the latter case, we define a family of numbers γk,i (i ∈ Z) as

follows. Consider the classical Airy functions Ai,Bi (see [1, §10.4] and [38]) which are entire
functions on Cz. Let s = 2

3z
3/2. As z →∞, we have the asymptotic expansions

(7.8)

Ai(z) ∼ e−s

2
√
πz1/4

∞∑
n=0

(−1)n
(n+ 1

2)2k

54nn!

1

sn
, | arg z| < π,

Bi(z) ∼ es
√
πz1/4

∞∑
n=0

(n+ 1
2)2k

54nn!

1

sn
, | arg z| < 1

3
π.

Set w = 1/z. The formal asymptotic expansion of 2π(AiBi) at z = ∞ is an element in√
w (1 +w3Q[[w3]]). It is the unique, up to scaling, formal power series solution in

√
w to the

second symmetric power of the Airy equation and one checks directly that it has a positive
coefficient in each degree

√
ww3i, i ⩾ 0. We define γk,i by the formula

(2π AiBi)k/2 ∼
∑

i≫−∞
γk,iw

i.
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We then have

γk,i


= 0 for i ̸∈ k/4 + 3Z⩾0,

= 1 for i = k/4,

> 0 for i ∈ k/4 + 3Z⩾0.

Proposition 7.9 (see [9, Cor. 3.11]). If 4 | k, the family

Bk,mid = {ωi − γk,iωk/4 | i ∈ [1, k′]], i ̸= k/4}

is a basis of H1
dR,mid(A1, Symk Ai), and ωk/4 induces a basis of

H1
dR(A1, Symk Ai)/H1

dR,mid(A1,Symk Ai).

Proof. The second statement follows from the first one and Corollary 7.6(3). For the first
part, let

ι∞̂ : Symk Ai −→ (Symk Ai)∞̂

denote the formalization of Symk Ai at infinity, and ∇̂ the induced connection. We can
represent elements of H1

dR,c(A1,Symk Ai) by pairs (m̂, η) as follows (see [8, Cor. 3.5]):

• m̂ is a formal germ in (Symk Ai)∞̂, and
• η belongs to Γ(A1,Ω1

A1 ⊗ Symk Ai),

such that, denoting by η̂ = ι∞̂η the formal germ of η in
[
Ω1
P1,∞̂ ⊗ (Symk Ai)∞̂

]
, m̂ and η are

related by ∇̂m̂ = η̂.
We can regard H1

dR,mid(A1,Symk Ai) as the image of the natural morphism

H1
dR,c(A1,Symk Ai) −→ H1

dR(A1, Symk Ai)

sending a pair (m̂, η) to η. According to [8, Rem. 3.6], there exists a basis of H1
dR,c(A1,Symk Ai)

consisting of

• pairs (m̂i, 0)i where (m̂i)i is a basis of ker ∇̂ in (Symk Ai)∞̂, and
• a set of pairs (m̂j , ηj)j , of cardinality dimH1

dR,mid(A1,Symk Ai), related as above such
that (ηj)j are linearly independent in H1

dR(A1,Symk Ai).

Furthermore, such a family (ηj)j is a basis of H1
dR,mid(A1,Symk Ai). The proposition follows

from Lemma 7.10 below. □

Lemma 7.10. Let us fix i ⩾ 1. If 4 | k, the subspace ker ∇̂ ⊂ (Symk Ai)∞̂ has dimension
one and the equation ∇̂m̂i = ι∞̂(ωi − γk,iωk/4) has a solution (in fact a dimension-one affine
space of solutions).

Proof. Assume 4 | k. In this case, the factor L⊗k
i in the (unique) formal decomposition of

(Symk Ai)∞̂ in Example 6.8 is the trivial meromorphic connection (C((w)),d), so ker ∇̂ has
dimension one. For a 1-form ω ∈ Γ(A1,Symk Ai⊗Ω1

A1), we let (ω)reg ∈ C((w))dw be the regular
part of ι∞̂(ω) in the decomposition of (Symk Ai)∞̂ (twisted by dw). Then ι∞̂(ω) ∈ im(∇̂)
if and only if resw(ω)reg = 0. In order to compute resw(ωi)reg, we consider the horizontal basis
{e0, e1} of Ai∇ given by

e0 = Ai(z)v1 − Ai′(z)v0, e1 = Bi(z)v1 − Bi′(z)v0.
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Then v0 = π(Bi e0 − Ai e1). We note that, for any i ⩾ 1,

(ωi)reg = (−w−iu0dw/w)reg = πk
(
[Bi e0 − Ai e1]

k
)
reg
· (−w−idw/w)

= πk
(
k

k/2

)
(−AiBi)k/2(e0e1)

k/2 · (−w−idw/w)

since (AiBi)k/2 is the only product among Aii Bik−i which has no exponential factor in its
asymptotic expansion by (7.8). Therefore

resw(ωi)reg = −(−π/2)k/2
(
k

k/2

)
γk,i(e0e1)

k/2

and consequently, for i ̸= k/4, there exists m̂i satisfying ∇̂m̂i = ι∞̂(ωi − γk,iωk/4). □

7.c. Proof of Theorem 1.1 for k odd. According to Theorem 6.17, the de Rham coho-
mology H1

dR(A1,Symk Ai) underlies a µ̂-exponential mixed Hodge structure H1(A1,Symk Ai)

of weights ⩾ k + 1, which is pure of weight k + 1 and equal to H1
mid(A1,Symk Ai) if 4 ∤ k. In

the case k is odd, we will first relate the irregular Hodge filtration F •
irrH

1
dR(A1, Symk Ai) of

H1
dR(A1, Symk Ai) with the basis Bk.

Lemma 7.11. If k is odd, we have

ωi ∈ F (k+1)−(k+2i)/3
irr H1

dR(A1,Symk Ai) (1 ⩽ i ⩽ k′ + 1).

Proof. From Corollary 6.19 we deduce an inclusion

(7.12) ι : H1(A1,Symk Ai) ↪−→ Hk+1(Ak+1, s3gk)

in EMHSµ̂. This inclusion is strict for the irregular Hodge filtrations on each term, hence it is
enough to check that ι(ωi) ∈ F (k+1)−(k+2i)/3

irr Hk+1(Ak+1, s3gk) for i in the given range.
We begin with the compactification Pk of Ak with the boundary Ak−1

∞ . In fact, Pk is the
toric variety associated with the Newton polytope of the Laurent polynomial gk on Gk

m and
it is non-degenerate (in the sense of Mochizuki, see [7, §A.2]) for the pair (Ak, gk). Let X be
the blowup of P1

s × Pk along {0} ×Ak−1
∞ (the intersection of the divisors {0} × Pk where s3gk

vanishes with order 3 and P1×Ak−1
∞ where s3gk has triple pole). Let P ′ be the proper transform

of P1 × Ak−1
∞ in X.

Since k is odd, it is readily checked that X is a non-degenerate compactification of
(Ak+1, s3gk) with boundary divisor D = X ∖ Ak+1. On X, the pole divisor P of s3gk equals
3({∞} × Pk + P ′). The cohomology Hk+1

dR (Ak+1, s3gk) is computed as the hypercohomology
on X of the twisted P -meromorphic de Rham complex

(Ω
•
X(logD)(∗P ),d + d(s3gk))

and the irregular filtration F •
irrH

k+1
dR (Ak+1, s3gk) on the hypercohomology is induced by the

filtration F •
Yu(Ω

•
X(logD)(∗P ), d + d(s3gk)) by subcomplexes defined by (see [39, (6)])

F λ
YuΩ

p
X(logD)(∗P ) =

{
0 if λ < 0,

Ωp
X(logD)(⌊(p− λ)P ⌋) if λ ⩾ 0.

In particular, the image of the natural map

Γ(X,Ωk+1(logD)(⌊µP ⌋)) −→ Hk+1
dR (Ak+1, s3gk)
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lies in F k+1−µ
irr Hk+1

dR (Ak+1, s3gk). Let us consider the image by ι of the basis Bk. We note that

zi−1dz ∧ dx1 ∧ · · · ∧ dxk ∈ Γ(X,Ωk+1(logD)(
⌊
1
3(k + 2i)P

⌋
)).

It follows that ι(ωi) (i = 1, . . . , k′ + 1), which is equal to the image of wi (see Remark 7.7) in
Hk+1

dR (Ak+1, s3gk), belongs to

F
(k+1)−(k+2i)/3
irr Hk+1

dR (Ak+1, s3gk). □

Remark 7.13. When k is odd, the functions fk and s3gk are non-degenerate as Laurent
polynomials. Therefore to conclude the above Lemma, one can also use the toric method of
[2, 39] via the inclusions (6.11 ∗) and (7.12) respectively and restriction of the base space from
Ak+1 to Gk+1

m as adapted in [7, §4.3.1]. Instead of describing explicitly the Newton polytope
of fk or s3gk needed in the toric approach, here we compute the Hodge filtration by exhibiting
a non-degenerate compactification which will appear again in the case of even k in Section 7.h.

It will be convenient to define the decreasing filtration GpH1
dR(A1, Symk Ai) (p ∈ Q) as

G(k+1)−(k+2i)/3H1
dR(A1,Symk Ai) =

〈
ωj ∈ Bk | j ⩽ i

〉
(1 ⩽ i ⩽ k′ + 1),

and thus

(7.14) dimgrpGH1
dR(A1, Symk Ai) =

{
1 if p = (k + 1)− (k + 2i)/3 for 1 ⩽ i ⩽ k′ + 1,

0 otherwise.

The statement of the lemma above amounts then to

(7.15) GpH1
dR(A1,Symk Ai) ⊂ F p

irrH
1
dR(A1, Symk Ai) for all p and k odd.

Proof of Theorem 1.1 when k is odd. Let us set dp = dimgrpFirr
and δp = dimgrpG. Then,

by the above inclusion,
∑

q⩾p δq ⩽
∑

q⩾p dq for each p with equality for p small and for p large.
Furthermore, by Hodge symmetry (Remark 5.6) we have dk+1−q = dq and, noticing that for k
odd the symmetry i 7→ j = k′+2−i amounts to k+1−(k+2i)/3 7→ k+1−(k+2j)/3, we deduce
from Formula (7.14) that δk+1−q = δq. As a consequence, we also have

∑
q⩽p δq ⩽

∑
q⩽p dq

for all p, and it follows that dp = δp for all p. Since δp = 1 for p as described in the theorem,
and zero otherwise, this concludes the proof. □

7.d. Synopsis of the proof of Theorem 1.1 when k is even. For k even, the formulas
in the theorem are equivalent to dimgrpF H1

dR(A1, Symk Ai) = 1 for

(7.16) p =



{
k/2− (2i− 1)/3,

k/2 + 1 + (2i− 1)/3,
1⩽ i<k/4 if 4 | (k + 2),{

k/2− 2i/3,

k/2 + 1 + 2i/3,
1 ⩽ i < k/4 if 4 | k,

k/2 + 1 if 4 | k,

and dimgrpF H1
dR(A1, Symk Ai) = 0 otherwise.

The argument used for k odd cannot be extended to this case since we are not able to
prove in a similar way that the inclusion (7.15) holds for every p (see (7.21) below), and
indeed gk is a degenerate Laurent polynomial when k is even. We will thus develop another
method, similar to that used in [7] for the moments of the Kloosterman connection, relying
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on (ramified) Fourier transformation. This will need much more material, which we develop
in Sections 7.e–7.g. Let us emphasize a new tool with respect to loc. cit., namely the inverse
stationary phase formula with filtration, as expressed in [29, (7)] (see the proof of Proposition
7.25). We explain below the main steps.

Step 1. In this step (realized in Sections 7.e–7.g), we consider the pullback Symk Ãi and the
decomposition (7.3) and its mid analogue

H1
dR,mid(A1

s, Sym
k Ãi) ≃ H1

dR,mid(A1
z, Sym

k Ai)⊕H1
dR(A1

z, L⊗ Symk Ai).

We directly compute the irregular Hodge numbers dimgrpFirr
H1

dR(A1
s,Sym

k Ãi) for all p, rela-
tive to the irregular Hodge filtration considered in Section 6.c.

For ε ∈ {0, 1, 2}, we consider the map

(7.17)
ρε : {j | 0 ⩽ j ⩽ k, k + j + ε ̸≡ 0 mod 3} −→ N

j 7−→ ⌊(k + j + ε)/3⌋ .

Note that, for p ∈ N, we have #ρ−1
ε (p) ∈ {0, 1, 2}.

Proposition 7.18 (analogous to [7, Prop. 4.20(2)]). If k is even, we have, for ε = 0, 1, 2 and
p ∈ Z,

dimgr
p−ε/3
Firr

H1
dR,mid(A1

s,Sym
k Ãi) =


1 if ε = 0 and p = k/2, k/2 + 1,

1 if ε ̸= 0 and p = k/2 + 1,

#ρ−1
ε (p− 1) otherwise.

At this step, we use the techniques explained in [7, App.] together with Proposition 6.22.
Since the irregular Hodge filtration is compatible with the decomposition (7.3), it also remains
to understand the action of µ2 on the filtered vector space H1

dR,mid(A1
s,Sym

k Ãi) and, if 4 | k,
to determine the irregular Hodge filtration on the dimension-one quotient space H1

dR/H
1
dR,mid

of Symk Ai. We will more precisely relate the irregular Hodge filtration with the filtration G•

defined below by the basis constructed in Corollary 7.6.

Step 2. We define the filtration GpH1
dR(A1,Symk Ãi) as the filtration defined by the basis made

of ωi, ω
−
i , η

−
j for i ∈ [1, k′] and 0 ⩽ j ⩽ k, such that

gr
k+1−(k+2i)/3
G = Cωi, gr

k+1−(k+2i+1)/3
G = Cω−

i , gr
k+1−(k+j+1)/3
G = Cη−j .

Lemma 7.19. If k is even, we have, for p > k/2 + 1,

GpH1
dR(A1

s, Sym
k Ãi) ⊂ H1

dR,mid(A1
s, Sym

k Ãi),

and for ε = 0, 1, 2 and k/2 + 1 < p ∈ Z,

dimgr
p−ε/3
G H1

dR(A1
s,Sym

k Ãi) = dimgr
p−ε/3
G H1

dR,mid(A1
s,Sym

k Ãi) = #ρ−1
ε (p− 1).

Proof. The first point is clear if 4 ∤ k and follows, if 4 | k, from Proposition 7.9 and from the
equivalence

k + 1− (k + 2i)/3 > k/2 + 1 ⇐⇒ i < k/4.
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For the second point, a direct check shows that

dimgrpGH1
dR,mid(A1

s,Sym
k Ãi) =


2 for p ∈ (k/2 + 1, 2k/3 + 1/3] ∩ 1

3Z,

1 for p = 2k/3 + 2/3,

0 for p > 2k/3 + 2/3.

Assume for example k ≡ 0 mod 3. Then one finds, for p ∈ Z,

ρ−1
0 (p− 1) =

{
2 for p ∈ [k/3 + 1, 2k/3] ∩ Z,

0 otherwise,

ρ−1
1 (p− 1) =


2 for p ∈ [k/3 + 1, 2k/3] ∩ Z,

1 for p = 2k/3 + 1,

0 otherwise,

ρ−1
2 (p− 1) =


2 for p ∈ [k/3 + 2, 2k/3 + 1] ∩ Z,

1 for p = k/3 + 1,

0 otherwise.

The desired equality is easily checked in this case. The other cases k ≡ 1, 2 mod 3 are checked
similarly. □

When k is even, the analogue of Lemma 7.11 holds only partially.

Lemma 7.20. If k is even, we have

ωi ∈ F (k+1)−(k+2i)/3
irr H1

dR(A1,Symk Ai) if 1 ⩽ i ⩽ ⌊k/4⌋ ,

ω−
i ∈ F

(k+1)−(k+2i+1)/3
irr H1

dR(Gm, L⊗ j+ Symk Ai) if 1 ⩽ i ⩽ k′/2,

η−j ∈ F
(k+1)−(k+j+1)/3
irr H1

dR(Gm, L⊗ j+ Symk Ai) if 0 ⩽ j ⩽ k′.

The statement of this lemma, which is proved in Section 7.h, amounts then to

(7.21)
GpH1

dR(A1, Symk Ai) ⊂ F p
irrH

1
dR(A1,Symk Ai)

GpH1
dR(A1, Symk Ãi) ⊂ F p

irrH
1
dR(A1,Symk Ãi)

for p ⩾ k/2 + 1.

Step 3: End of the proof. We conclude the proof of Theorem 1.1 in the case of even k as
follows. Firstly, Proposition 7.18 and Lemmas 7.19 and 7.20 imply the equalities

F p
irrH

1
dR,mid(A1

s,Sym
k Ãi) = GpH1

dR,mid(A1
s,Sym

k Ãi) (p > k/2 + 1).

Restricting to H1
dR,mid(A1,Symk Ai) yields

F p
irrH

1
dR,mid(A1,Symk Ai) = GpH1

dR,mid(A1, Symk Ai) (p > k/2 + 1).

Since dimgrpGH1
dR,mid(A1, Symk Ai) = 1 for p ∈ (k/2 + 1, 2k/3] and is equal to zero for p >

2k/3, we find that the same property holds for grpFirr
H1

dR,mid(A1,Symk Ai).
If 4 | (k + 2), H1(A1,Symk Ai) = H1

mid(A1, Symk Ai) is pure of weight k + 1, and Hodge
symmetry implies that dimgrpFirr

H1
dR(A1, Symk Ai) = 1 for p ∈ [k/3+ 1, k/2). The theorem is

proved in this case.



HODGE PROPERTIES OF AIRY MOMENTS 41

If 4 | k, Hodge symmetry yields the result for H1
mid(A1,Symk Ai) and it remains to obtain

the last line in (7.16). In that case, the underlying vector space HdR of the quotient

H := H1(A1,Symk Ai)/Wk+1H
1(A1, Symk Ai) = H1(A1,Symk Ai)/H1

mid(A1, Symk Ai)

has dimension one with basis ωk/4 (Proposition 7.9). Thus this µ̂-mixed Hodge structure is a
pure Hodge structure. Since its weight is ⩾ k + 2, the Hodge structure is of type (p, p) with
p ⩾ k/2 + 1. The first line of Lemma 7.20 shows that ωk/4 ∈ F k/2+1HdR, hence the previous
inequality is in fact an equality, yielding the last line of (7.16).

This completes the proof of Theorem 1.1 when k is even. □

7.e. The differential module Gg and its symmetric powers. We continue assuming k
even, although this is not important in this section. We consider the function g : A1

y → A1
τ ,

g(y) = 1
3 y

3− y and define gk(y1, . . . , yk) =
∑k

i=1 g(yi). The function g has two simple critical
points y = ±1 with critical values τ = ±2/3, upon which the vanishing cycle space is of
dimension one and local monodromy equals − Id.

We take up the notation used in Lemma 6.23. Let M̃1 = H 0g+OA1y , that we regard as

a C[τ ]⟨∂τ ⟩-module. The localized Fourier transform Gg = j+ FT M̃1 of M̃1 on Gm,t is the
cokernel of the C[t, t−1]-linear morphism

C[t, t−1][y]
∂y + (y2 − 1)t
−−−−−−−−−−−−→ C[t, t−1][y]

and is equipped with the connection ∇∂t induced by ∂t + g. Then Gg is C[t, t−1]-free of
rank two with basis {ṽ0, ṽ1}, where ṽ0 is the class of 1 and ṽ1 that of y. The matrix of the
connection in this basis is given by

∇∂t(ṽ0, ṽ1) = (ṽ0, ṽ1) ·
[
−t−1

(
1/3 0

0 2/3

)
− 2

3

(
0 1

1 0

)]
.

One can check that it is irreducible (e.g. argue as in [35, Ex. 8.19]). It has a regular singularity
at the origin with semi-simple monodromy having eigenvalues exp(±2πi/3). On the other
hand, the formalized module Ĝg at infinity decomposes as (E2t/3⊕E−2t/3)⊗L−1, where L−1

is the rank-one C((1/t))-vector space with connection having monodromy equal to − Id.
Since the determinant of Gg is the trivial rank-one bundle with connection, the differential

Galois group of Gg is contained in SL2(C). It is in fact equal to this group (argue as in
loc. cit.). It follows that SymkGg is also irreducible and its monodromy at the origin is semi-
simple with eigenvalues 1, exp 2πi/3 and exp−2πi/3. Indeed, the eigenvalues are the numbers
(counted with multiplicities) exp(i+ 2j)2πi/3, for i, j ∈ [0, k] and i + j = k, that is, the
numbers exp 2(k + j)πi/3 with j ∈ [0, k].

We will implicitly identify Z/3Z with {0, 1, 2}. For ε ∈ Z/3Z and ζ = exp(−2πiε/3), we
denote by Kζ,t the Kummer sheaf on A1

t with monodromy ζ around t = 0 (hence ζ−1 around
t =∞) and we also consider similarly Kζ−1,τ . We set M̃k,0 = M̃k and M̃k,ε = Kζ−1,τ ⋆mid M̃k

for ε ̸= 0. We note that, according to [6, Prop. 1.18], we have

FT M̃k,ε ≃ j†+(j+Kζ,t ⊗ SymkGg).

From the above computation of the monodromy of Gg we deduce, for ε, ε′ ∈ Z/3Z,

dimψt,exp 2ε′πi/3(j
+Kζ,t ⊗ SymkGg) = #{j ∈ [0, k] | k + j ≡ ε′ − ε mod 3}.
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We note that, due to semi-simplicity of the monodromy at the origin, the minimal extension
j†+(j

+Kζ,t ⊗ SymkGg) at the origin of j+Kζ,t ⊗ SymkGg satisfies

ϕt,1
[
j†+(j

+Kζ,t ⊗ SymkGg)
]
= 0,

ϕt
[
j†+(j

+Kζ,t ⊗ SymkGg)
]
= ψt,̸=1

[
j†+(j

+Kζ,t ⊗ SymkGg)
]
= ψt,̸=1(j

+Kζ,t ⊗ SymkGg).

At infinity, the formalized module satisfies

(j+Kζ,t ⊗ SymkGg)
∧ ≃

k⊕
j=0

Ê2(2j−k)t/3 ⊗ (L̂⊗k
−1 ⊗ K̂ζ−1,1/t).

(Note that on the right-hand side, the monodromy of K̂ is computed with center at infinity,
while on the left-hand side it is computed with center at the origin, hence the change from ζ

to ζ−1.) This formal module has a nonzero regular part at t =∞ if and only if k is even, and
in that case the regular component has rank one and is isomorphic to K̂ζ−1,1/t.

The monodromy at infinity (in the τ coordinate) of M̃k,ε is semi-simple and is isomorphic
to the monodromy of ϕt(j†+(j+Kζ,t ⊗ SymkGg) (according to the inverse stationary phase
formula, which is a D-module variant of [23, Cor. 5.20]), and the latter space is nothing but
the space ψt,̸=1(j

+Kζ,t ⊗ SymkGg). In particular,

rk M̃k,ε = #{j ∈ [0, k] | k + j ̸≡ −ε mod 3}

=



{
2(⌊k/3⌋+ 1) if k ̸≡ 0 mod 3,

2⌊k/3⌋ if k ≡ 0 mod 3,
if ε = 0,

{
2⌊k/3⌋+ 1 if k ̸≡ 2 mod 3,

2(⌊k/3⌋+ 1) if k ≡ 2 mod 3,
if ε ̸= 0.

(7.22)

On the other hand, since FT(Πτ (M̃k,ε)) = j+(j
+Kζ,t ⊗ SymkGg), we have

rkΠτ (M̃k,ε) = dimψ1/τ

[
Πτ (M̃k,ε)

]
= dimϕt

[
j+(j

+Kζ,t ⊗ SymkGg)
]

= dimψt

[
j+(j

+Kζ,t ⊗ SymkGg)
]
= rkSymkGg = k + 1.

Let us set M̃k,• =
⊕

ε∈Z/3Z M̃k,ε. We then find

rk M̃k,• = 2(k + 1), rkΠτ (M̃k,ε) = 3(k + 1).

In the exact sequence

0 −→ j†+(j
+Kζ,t ⊗ SymkGg) −→ j+(j

+Kζ,t ⊗ SymkGg) −→ Cε −→ 0,

the cokernel Cε is supported at the origin and is isomorphic to C[∂t]
νε , where

νε = dimψt,1(j
+Kζ,t ⊗ SymkGg) = dimψt,exp 2πiε/3 Sym

kGg.

By taking the inverse Fourier transform of the above exact sequence, we obtain the exact
sequence

0 −→ M̃k,ε −→ Πτ (M̃k,ε) −→ M̃ ′
k,ε −→ 0,
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where M̃ ′
k,ε is constant of rank νε = #{j ∈ [0, . . . , k} | k + j ≡ ε mod 3}. As a consequence,

there is an exact sequence

0 −→ M̃k,• −→ Πτ (M̃k,•) −→ M̃ ′
k,• −→ 0,

where M̃ ′
k,• is constant of rank k + 1 =

∑
ε∈Z/3Z νε.

The structure of M̃k,ε as a C[τ ]⟨∂τ ⟩-module is described by the following proposition.

Proposition 7.23. For ε ∈ Z/3Z the following properties hold.

(1) The regular holonomic C[τ ]⟨∂τ ⟩-module M̃k,ε is irreducible of rank given by (7.22).
(2) The monodromy of M̃k,ε at infinity is semi-simple with eigenvalues exp(±2πi/3).
(3) The singular points τj of M̃k,ε are the complex numbers 2(2j− k)/3, j = 0, . . . , k, and

for each such j, ϕτ−τjM̃k,ε has dimension one and monodromy (−1)k exp(2πiε/3) Id.
In particular, since k is even, 0 is a singular point of M̃k,ε.

(4) Furthermore,
• if ε ̸= 0, ϕτ,1M̃k,ε = 0 and ψτ,1M̃k,ε has dimension equal to rk M̃k,ε − 1 and

monodromy equal to Id; on the other hand, ψτ,exp(2πiε/3)M̃k,ε has dimension one;
• if ε = 0, ϕτ,1M̃k has dimension one, ψτ,1M̃k has dimension equal to rk M̃k and

the nilpotent part N of the monodromy on ψτ,1M̃k satisfies N2 = 0.

Proof. This follows from the stationary phase formula applied to M̃k,ε (see e.g. [24]) and the
formal decomposition of (j+Kζ,t ⊗ SymkGg)

∧ at t =∞ computed above. □

7.f. Weight properties of M̃k,ε. Recall the exact sequence (6.20), with M̃H
k pure of weight k.

Proposition 7.24 (analogous to [7, Prop. 2.21]). For ε ̸= 0, the C[τ ]⟨∂τ ⟩-module M̃k,ε

underlies a pure Hodge module on A1
τ of weight k + 1.

Proof. Since M̃k,ε = Kζ−1,τ ⋆midM̃k for ε ̸= 0, so that we can write M̃k,1⊕M̃k,2 as Em,τ ⋆midM̃k,
we can enrich it with the structure of a pure Hodge module EH

m,τ ⋆mid M̃
H
k of weight k + 1

(the weights behave in an additive way under middle convolution). It follows that M̃k,ε

(ε ̸= 0) can be enriched with the structure of a pure complex Hodge module M̃H
k,ε of weight

k + 1. Interpreting Πτ as additive convolution with j†OGm,τ , and noting that Hj!(
p
QH

Gm,τ
) ∈

MHM(A1
τ ) has weights 0, 1, we conclude that

Πτ (M̃
H
k,ε) := Hj!(

p
QH

Gm,τ
) ⋆ M̃H

k,ε

has weights ⩾ k + 1. Furthermore, due to the irreducibility of M̃k,ε (Proposition 7.23(1)), we
can argue as in Lemma 6.21 to conclude that M̃H

k,ε =Wk+1Πτ (M̃
H
k,ε). □

7.g. Proof of Proposition 7.18. Recall the map ρε defined by (7.17).

Proposition 7.25. The Hodge bundles F •(M̃k,ε) satisfy, for ε ∈ Z/3Z,

rk grpF M̃k,ε = #ρ−1
ε (p) ∀p.

Proof. Since the monodromy of M̃k at infinity is semi-simple, the limit mixed Hodge structure
of M̃H

k at infinity is pure, and the graded pieces of the limit Hodge filtration have the same
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dimension as the corresponding graded pieces at a generic point of A1
τ . In order to compute

rk grpF M̃k, we are thus led to computing the ranks for this limit Hodge filtration.
For that purpose, we use the comparison with the limit at t = 0 of the irregular Hodge

filtration of SymkGg, as proved in [28]3 in order to take advantage of the property that the
irregular Hodge filtration on SymkGg is easily computed by means of the Thom-Sebastiani
formula from that of Gg, hence is more directly accessible than the Hodge filtration of M̃k.

We first compute the jumps of the irregular Hodge filtration F •
irrGg,1 of Gg at t = 1. Since

Hg∗
p
QH

A1 is a pure Hodge module of weight 1, it corresponds, away from the singularities, to
a polarizable variation of pure Hodge structure of weight zero on A1

τ . The eigenvalues of the
monodromy at τ =∞ of the non constant part of g+OA1 (the constant part has rank one and
is given by the trace) being exp(±2πi/3), the irregular Hodge filtration F •

irrGg,1 jumps at 1/3
and 2/3 (see [29, (7)]).

In order to compute the jumps of the irregular Hodge filtration of j+Kζ,t ⊗ SymkGg, we
use that this filtration is obtained by tensor product from the irregular Hodge filtration of
Kζ,t and that of SymkGg (Thom-Sebastiani).

On the one hand, by the same Thom-Sebastiani argument and the computation above,
the jumps of F •

irr Sym
kGg,1 occur exactly at λ = (i + 2j)/3 where i, j vary from 0 to k and

i+ j = k. We write λ = k/3 + j/3 with j varying from 0 to k.
On the other hand, if ε ̸= 0, we regard Kζ−1,τ on A1

τ as a complex Hodge module of rank
one with Hodge filtration jumping at p = 0 only. Then, by [29, (7)], the irregular Hodge
filtration of its localized Fourier transform Kζ,t on Gm,t jumps at α only, with α ∈ [0, 1) and
α ≡ ε/3 mod 1. By using once more the good behaviour of Firr under tensor product, we find
similarly that the jumps of F •

irr(j
+Kζ,t ⊗ SymkGg) occur exactly at λ = k/3 + j/3 + ε/3,

where j varies from 0 to k and ε/3 ∈ (0, 1).
Since rk SymkGg = k + 1, this implies that the jumps are all equal to one. For applying

the inverse stationary phase formula, we do not care of the jumps at integers, and the one-
dimensional jumps of F •

irr(j
+Kζ,t ⊗ SymkGg) (ε ∈ Z/3Z) at p+ 1/3, resp. p+ 2/3 for p ∈ Z

occur respectively for

p =
1

3
(k + j + ε− 1), for j ∈ {0, . . . , k} such that k + j + ε ≡ 1 mod 3,(7.26)

p =
1

3
(k + j + ε− 2), for j ∈ {0, . . . , k} such that k + j + ε ≡ 2 mod 3.(7.27)

Using [29, (7)] once more in the other direction, we find that the limit Hodge filtration on
ψ1/τM̃k,ε satisfies, for ε ∈ Z/3Z,

dimgrpF ψ1/τ,exp(2πi/3)M̃k,ε =

{
1 in Case (7.26),
0 otherwise,

dimgrpF ψ1/τ,exp(−2πi/3)M̃k,ε =

{
1 in Case (7.27),
0 otherwise.

We thus find the desired formula. □

Proposition 7.28 (Hodge filtration on ψτ,1M̃k,ε). Assume k = 2(k′ + 1) is even.

3We used this argument in the opposite direction in [29, (7)].
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(1) If ε = 0, dimgrpF ψτ,1M̃k = rk grpF M̃k = #ρ−1
0 (p).

(2) If ε ̸= 0, dimgrpF ψτ,1M̃k,ε =

{
#ρ−1

ε (p) if p ̸= k/2,

#ρ−1
ε (k/2)− 1 if p = k/2.

Proof.

(1) In this case, ψτM̃k = ψτ,1M̃k (see Proposition 7.23(4)), so the conclusion follows.
(2) In this case, ψτ,1M̃k,ε has codimension one in ψτM̃k,ε (Proposition 7.23(4)) and we have

to determine which value of p as given by Proposition 7.25 to put aside. We know
that dimϕτ,1M̃k = 1, and this space underlies a pure Hodge structure of weight k,
hence of type (k/2, k/2), so that grpF ϕτ,1M̃k = 0 for p ̸= k/2. Recalling that M̃H

k,ε =

Hj∗K
H

ζ−1,τ ⋆midM̃
H
k , a proof similar to that of [6, Th. 3.1.2(2)] using [18, Th. 1.2] implies

that
dimgrpF ψτ,exp(2πiε/3)M̃k,ε = dimgrpF ϕτ,1M̃k,

and the conclusion follows. □

Proof of Proposition 7.18. We continue assuming k even and we recall that we have set k =

2(k′ + 1). We apply Proposition 6.22.

(1) If ε = 0, the Lefschetz decomposition of grW ψτ,1M̃
H
k reads PH

1 ⊕PH
0 ⊕Nτ (P

H
1 ), and PH

1

has weight k/2 = k′ + 1 and dimension one. Therefore, the Hodge jump on PH
1 is at

p = k′ + 1 and that on Nτ (P
H
1 ) is at k′. The remaining jumps on PH

0 are of size 1 if
p = k′, k′+1 and of size #ρ−1(p−1) for the other values of p, according to Proposition
7.28(1). We conclude with Proposition 6.22:

dimgrpFirr
H1

dR,mid(A1
s, Sym

k Ãi) =

{
1 if p = k/2, k/2 + 1,

#ρ−1
0 (p− 1) if p ̸= k/2, k/2 + 1.

(2) If ε ̸= 0, the monodromy of ψτ,1M̃k,ε is equal to the identity, so that ψτ,1M̃k,ε =

P0 ψτ,1M̃k,ε. Propositions 6.22 and 7.28(2) give

dimgr
p−ε/3
Firr

H1
dR,mid(A1

s, Sym
k Ãi) =

{
1 if p = k/2 + 1,

#ρ−1
ε (p− 1) otherwise.

□

7.h. Proof of Step 2. We prove Lemma 7.20 (in a way similar to that of [7, §4.3.3]).
We start with ωi. We take up the construction and the notation of Lemma 7.11. The

singular locus S ⊂ Ak of (gk) ⊂ Ak consists of the
(

k
k/2

)
points yi = εi with εi = ±1 and∑k

i=1 εi = 0 (where gk = 0 has ordinary quadratic singularity). Then X is non-degenerate
away from {∞}×S. Let ϖ : X̃ → X be the 3-step blowup of X constructed as follows. Let X1

be the blowup of X along {∞} × S. Then on each component of the exceptional divisor E1,
the rational function s3gk possesses an ordinary quadratic point. Let X2 be the blowup of X1

along these points with exceptional divisor E2; let X̃ be the blowup of X2, with exceptional
divisor Ẽ3, along the intersection of E2 and the proper transform of E1. Then by a direct
checking, X̃ is a non-degenerate compactification of (Ak+1, s3gk). In X̃, let D̃ = X̃ ∖ Ak+1

be the boundary, P̃ the pole divisor of s3gk and Ẽj the proper transform of Ej for j = 1, 2.
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We moreover have

ord
Ẽ1
s3gk = −1, ord

Ẽ2
s3gk = 1, ord

Ẽ3
s3gk = 0.

Given a form

ω = zr−1xndz ∧ dx1 ∧ · · · ∧ dxk, r ⩾ 1, n = (ni) ∈ {0, 1}k, ν =
∑k

i=1 ni,

one checks that the pullback satisfies

ϖ∗ω ∈ Γ
(
X̃,Ωk+1(log D̃)(⌊mr,νP̃ ⌋ − (k − 2r − ν)Ẽ2 − (k − 4r − 2ν)Ẽ3)

)
,

mr,ν =
k + 2r + ν

3
,

provided that k ⩾ 4r + 2ν (in order to have allowable pole order along Ẽ1). In particular,
if µ ⩾ 1

3(k + 2i) and i ⩽ k/4 (and since k − 2i ⩾ 2),

ϖ∗(zi−1dz ∧ dx1 ∧ · · · ∧ dxk) ∈ Γ
(
X̃,Ωk+1(log D̃)(⌊µP̃ ⌋)

)
,

and thus ι(ωi) defines an element in F k+1−(k+2i)/3Hk+1
dR (Ak+1, s3gk).

Let us now consider the basis ω−
i , η

−
j of H1

dR(A1, L⊗ Symk Ai). As in the proof of Lemma
7.11, let ι : H1(A1, L⊗ Symk Ai)→ Hk+1(Ak+1, s3gk) denote the inclusion in EMHSµ̂. In this
setting, given a form

ω = zrxn
dz

z
∧ dx1 ∧ · · · ∧ dxk, r ⩾ 0, n = (ni) ∈ {0, 1}k, ν =

∑k
i=1 ni,

one has

sϖ∗ω ∈ Γ
(
X̃,Ωk+1(log D̃)(⌊m−

r,νP̃ ⌋ − (k − 2r − ν − 1)Ẽ2 − (k − 4r − 2ν − 2)Ẽ3)
)
,

m−
r,ν =

k + 2r + ν + 1

3
,

provided that k ⩾ 4r + 2ν + 2. In particular,

[sϖ∗ω] ∈ F k+1−m−
r,ν

irr Hk+1
dR (Ak+1, s3gk) if k ⩾ 4r + 2ν + 2.

Now we have ι(ω−
i ) = ϖ∗ω with r = i, ν = 0, while ι(η−j ) = ϖ∗ω− where ω− is the average

(i.e., the symmetric projection of any) of the forms ω with r = 0, ν = j. The claim follows. □
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