
CHAPTER 9

LOCALIZATION AND MAXIMAL EXTENSION

Summary. We introduce the localization functor along a divisor D ⇢ X. Al-
though it only consists in tensoring with OX(⇤D) in the case of DX -modules, the
definition for modules over RFDX is more subtle. It strongly uses the Kashiwara-
Malgrange filtration. This construction can also be made for the dual localization
functor, and this leads to the notion of middle extension along D. On the other
hand, the maximal extension functor enables one to describe a eDX -module in
terms of the localized object along D and of a eDX -module supported on D.

In this chapter, we keep the notation and setting as in Chapter 7. In particular, we
keep Notation 7.0.1, and Remarks 7.0.2 and 7.0.3 continue to be applied. We continue
to treat the case of right eDX -modules.

Remark 9.0.1 (The case of left eDX -modules). The case of left eDX -modules is very
similar, and the only changes to be made are the following:

• to consider V >�1 instead of V<0

,
• to modify the definition of  t,� with a shift,
• to change the definition of can (with a sign).

9.1. Introduction

We consider the following question in this chapter: given a coherent eDX -module,
to classify all coherent eDX -modules which coincide with it on the complement of a
divisor D. This has to be understood in the algebraic sense, i.e., the eDX -modules
coincide after tensoring with the sheaf OX(⇤D) of meromorphic functions with poles
along D.

For every DX -module M which is R-specializable along D, the localized DX -module
M(⇤D) := OX(⇤D)⌦OX

M is DX -coherent and specializable along D. There is a dual
notion, giving rise to M(!D), and we get natural morphisms

M(!D) �!M �!M(⇤D).
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The notion of localization is subtler when taking into account the coherent
F -filtration. Indeed, for a coherent graded RFDX -module M , we cannot just con-
sider M (⇤D), since this would correspond to tensoring each term of the underlying
coherent filtration by OX(⇤D), which produces a non-coherent OX -module. If M is
strictly R-specializable along a smooth hypersurface H, one can construct a substi-
tute to the “stupid” localized module M (⇤H), that we call the localized eDX-module,
denoted by M [⇤H], and a dual version M [!H]. Both are eDX -coherent and strictly
R-specializable along H, and we have natural morphisms

M [!H] �!M �!M [⇤H].

Due to the possible failure of Kashiwara’s equivalence for RFDX -modules, the trick of
considering the graph inclusion ◆g when D = (g) is not enough to ensure localizability
for arbitrary D, so we are forced to considering the possibly smaller category of strictly
R-specializable eDX -modules along D which are localizable along D, in order to have
well-defined functors [!D] and [⇤D], and a sequence

M [!D] �!M �!M [⇤D].

The purpose of this chapter reduces to recovering any strictly R-specializable
eDX -module M from a pair of eDX -modules and of morphisms between them, one
of them being supported on D and the other one being localizable along D. This
leads to the construction of the maximal extension ⌅M of M along D. It can be
done when M is strictly R-specializable along D, at least when D = H is a smooth
hypersurface (with multiplicity one). For a general divisor D, we encounter the same
problem as for the localization, and the existence of the maximal extension is not guar-
anteed by the strict specializability condition only. We say that M is maximalizable
along D when this maximal extension exists.

Assume that D = (g). Given a strictly R-specializable, localizable and maximal-
izable (along D) eDX(⇤D)-module M⇤, we will construct a functor GM⇤ from the
category consisting of triples (N , c, v), where N is strictly R-specializable along D

and supported on D, and c, v are morphisms

 g,1M⇤

c
&&

N

v(�1)

hh

to that of strictly R-specializable and localizable eDX -modules, so that
(a) GM⇤(N , c, v)(⇤D) = M⇤,
(b) the diagram above is isomorphic to the specialization diagram

 g,1GM⇤(N , c, v)

can
))

�g,1GM⇤(N , c, v)

var
(�1)

ii
.
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This classifies all such eDX -modules M 0 such that M 0(⇤D) = M⇤. A first approx-
imation of this construction was obtained in Exercise 7.3.33.

9.2. Localization of DX-modules

Let us forget the filtration F in this subsection. Let us start with a smooth divisor,
that we denote by H, with ideal IH . For DX -modules which are R-specializable
along H, the V -filtration enables us to control the localization functor.

Proposition 9.2.1. Let M be a right DX-module. Assume that M is coherent and
R-specializable along H. Then

(1) its localization M(⇤H) along H is also DX-coherent and R-specializable
along H,

(2) the natural morphism M!M(⇤H) induces an isomorphism

V<0

M �! V<0

M(⇤H),

and, if X ' H ⇥�t, its kernel (resp. cokernel) is isomorphic to that of

D◆H⇤t : D◆H⇤gr
V
0

M �! D◆H⇤gr
V
�1

M.

(3) We have V
0

M(⇤H) = V�1

M · I �1

H and M(⇤H) = V
0

M(⇤H) · DX .

Let s be a new variable. Consider the sheaf DX [s] of differential operators with
coefficients in OX [s] and set M(⇤H)[s] = M(⇤H) ⌦DX

DX [s]. This is a right DX [s]-
module. We will now twist this structure, keeping fixed however the underlying
OX(⇤H)[s]-structure.

Lemma 9.2.2. Assume that we have a local decomposition X ' H⇥�t. Then following
rule defines a right DX [s]-module structure on the OX [s]-module M(⇤H)[s]: for every
` 2 N and any local section m of M(⇤H), in local coordinates (x

2

, . . . , xn, t) where
H = {t = 0},

ms`@xj = m@xjs
`,

ms`@t = [m@t �mt�1s]s`.

Proof. Use Exercise A.3.2.

In this local setting, it will be convenient to denote by M(⇤H)[s]ts the OX(⇤H)[s]-
module M(⇤H)[s] equipped with this twisted structure. That is, we formally write
the new action as ts � DX [s] � t�s. Be careful however that “ts” is nothing but a
symbol which enables one to remember, by means of the Leibniz rule, the right DX [s]
structure.

Exercise 9.2.3 (Specialization to s = k). Let k be any integer.
(1) Show that tkDXt�k defines a right DX -structure on the OX(⇤H)-module

M(⇤H), denoted by M(⇤H)tk.
(2) Show that (M(⇤H)tk) 'M(⇤H)[s]ts

�

(s� k)M(⇤H)[s]ts.
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Exercise 9.2.4 (Bernstein’s functional equation). Let g : X ! C be a holomorphic
function and let M be a right DX -module. We denote by M(⇤g) its localization
M⌦OX

OX(⇤g), and from now on we assume that M = M(⇤g).
(1) Show that the OX(⇤g)[s]-module M[s] ' M[s] ⌦ gs endowed with the right

action of @xi
defined by

(m⌦ gs)@xj
= (m@xj

⌦ gs)� (m@xi
log f ⌦ gs)s

is a right DX [s]-module. [Hint : Use Exercise A.3.2.]
(2) Let ⌧ be a new variable and define the right action of ⌧ by the formula

(m⌦ gs)h(x, s)⌧ := (mg ⌦ gs)h(x, s+ 1).

Show that [⌧, s] acts as ⌧ , and conclude that, via the identification s = ⌧@⌧ , M[s]⌦ gs

is naturally endowed with a right action of DX [⌧ ]h⌧@⌧ i = V
0

DX [⌧ ]h@⌧ i.
(3) Let ◆g : X ,! X⇥C denote the graph embedding of g, with coordinate ⌧ on the

second factor. Identify as in Example A.8.9 D◆g⇤M with ◆g⇤M[@⌧ ] and let U
0

(D◆g⇤M)
denote the V

0

DX [⌧ ]h@⌧ i-submodule generated by ◆g⇤M. Show that U
0

(D◆g⇤M) =
◆g⇤M[⌧@⌧ ].

(4) Show that M[s]⌦ gs ' U
0

(D◆g⇤M) as V
0

DX [⌧ ]h@⌧ i-modules.
(5) Let m be a local section of M(⇤H) and let b(s) 2 C[s]. Show that the following

conditions are equivalent:
(a) (m⌦ gs)b(s) 2 (m⌦ gs)gDX [s],
(b) ◆g⇤m · b(⌧@⌧ ) 2 ◆g⇤m · V�1

DX [⌧ ]h@⌧ i.
(6) Assume now, as in Lemma 9.2.2, that X = H⇥�t and set g(x, t) = t. Conclude

from Exercise 7.3.37(4) that the following conditions are equivalent:
(7) mb(t@t) 2 mV�1

(DX) (V -filtration with respect to t),
(8) mtsb(s) 2 mts+1DX [s].

Proof of Proposition 9.2.1.
(1) Let M be a coherent DX -module which is R-specializable along H. Let us first

show the coherence of M(⇤H). This is a local problem; moreover, by induction on
the cardinal of a generators system of M, we can assume that M is generated by one
section m 2 M. After Exercise 9.2.4, there exists a nonzero polynomial b(s) 2 C[s]
such that mtsb(s) 2 mts+1DX [s].

Let k
0

2 N be an integer, such that b(k) 6= 0 for every k > k
0

+1. Then, by specializ-
ing to s = k, . . . , k

0

+1 the previous relation, we find mt�k
2 mt�k0DX , for k > k

0

+1.
From the identity (m@t)t�k = (mt�k)@t � kmt�k�1, we get M(⇤H) = DX ·mt�k0 .
The filtration mt�k0

· F`DX (` 2 N) is a coherent filtration (see Exercise A.10.3),
hence the DX -module M(⇤H) is coherent.

Let m0 be a local section of M(⇤H). It can be written as m0 = mt�k for some local
section m of M. As M is R-specializable along H, there exists a nonzero polynomial
b(s) such that mb(E) 2 mV�1

(DX). From this, we deduce a Bernstein’s identity for
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m0
2M(⇤H):

mt�kb(E+k) 2 mt�kV�1

(DX).

Therefore, M(⇤H) is R-specializable along H.
(2) Let T (M) = �

[H]

M be the DX -submodule in M of sections supported by H.
We have the exact sequence:

0 �! T (M) �!M �!M(⇤H) �! C(M) �! 0.

The modules M and M(⇤H) are R-specializable along H. It follows from Exercise
7.3.37 (here the strictness property is empty) that the DX -modules T (M) and C(M)
are so. On the other hand, these modules are supported by H, so that V<0

(T (M)) = 0
and V<0

(C(M)) = 0 and we deduce from Exercise 7.3.37 the natural isomorphism:

V<0

(M) �! V<0

(M(⇤H)).

We apply Example 7.3.38 to get the second assertion.
(3) Let us check that the filtration of M(⇤H) defined by

V↵M(⇤H) :=

(

V↵M for ↵ < 0,

V↵�kMt�k for ↵ > 0, k 2 Z and ↵� k 2 [�1, 0)

is a coherent V•DX -filtration (it is a priori a coherent V•DX(⇤H)-filtration). Let us
check for example that V

1

M(⇤H) = V
0

M(⇤H)+V
0

M(⇤H)@t, that is, V�1

M(⇤H)t�2 =
V�1

M(⇤H)t�1 + V�1

M(⇤H)t�1@t and equivalently, since t acts in an invertible way
on M(⇤H), V�1

M = V�1

Mt+ V�1

Mt�1@tt
2, which in turn reads

V�1

M = V�1

Mt+ V�1

M(t@t + 2).

The inclusion � is clear. The inclusion ⇢ amounts to the surjectivity of (t@t + 2) :
grV�1

M ! grV�1

M, which follows from the property that �2 is not an eigenvalue
of E on grV�1

M = V�1

M/V�2

M. One shows similarly, for every k > 0, the equality
VkM =

Pk
j=0

V
0

M@jt , hence the last statement of the proposition.

Let now g : X ! C be a holomorphic function and set X
0

= g�1(0) and D = (g).
We have OX(⇤D) = OX(⇤X

0

). The following result is easily obtained.

Corollary 9.2.5 (Properties of the localization along D). Let M be DX-coherent and
R-specializable along X

0

. Set H = X ⇥ {0} ⇢ X ⇥ C.

(1) We have

D◆g⇤
�

M(⇤D)
�

= (D◆g⇤M)(⇤H).

(2) The DX-module M(⇤D) is strictly R-specializable along D and

var : �g,1
�

M(⇤D)
�

�!  g,1

�

M(⇤D)
�

is an isomorphism.
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(3) There is a natural morphism M!M(⇤D). This morphism induces isomor-
phisms

 g,�M
⇠
�! g,�

�

M(⇤D)
�

for every �, and its kernel (resp. cokernel) is isomorphic to the kernel (resp. cokernel)
of var :  g,1M! �g,1M.

9.3. Localization of eDX-modules

Let us now return to the case of graded eDX = RFDX -modules.

9.3.a. “Stupid” localization. Let D be an effective divisor in X. The sheaf
OX(⇤D) of meromorphic functions on X with arbitrary poles along the sup-
port of D at most is a coherent sheaf of ring. So are the sheaves DX(⇤D) :=

OX(⇤D)⌦OX
DX = DX ⌦OX

OX(⇤D), and eOX(⇤D), eD(⇤D) defined similarly. Given
a coherent eDX -module M , its “stupid” localization M (⇤D) := M ⌦ eOX

eOX(⇤D) is a
coherent eDX(⇤D)-module.

Assume that D is smooth. We then denote it by H, and we keep the notation
of Section 7.2. The IH -adic filtration of eOX(⇤H) is now indexed by Z, and the
corresponding V -filtration (7.2.1) of eDX(⇤H) is nothing but the corresponding IH -
adic filtration. We can then define the notion of a coherent V -filtration for a coherent
eDX(⇤H)-module, and the notion of strict R-specializability of Definition 7.3.25 can
be adapted in the following way: we replace both conditions 7.3.25(2) and (3) by the
only condition 7.3.25(2) which should hold for every for every ↵ 2 R. By using a
local graph embedding, one defines similarly, for every effective divisor D, the notion
of strict R-specializability along D.

The following lemma is then mostly obvious.

Lemma 9.3.1. Let M be a coherent eDX-module which is strictly R-specializable
along D. Then the coherent eDX(⇤D)-module M (⇤D) is strictly R-specializable
along D.

Our aim in the next subsections is to define a localization functor with values in
the category of strictly R-specializable eDX -modules along D.

9.3.b. Localization along a smooth hypersurface for RFDX-modules

If M is coherent and strictly R-specializable, we cannot assert that M (⇤H) is
coherent. However, the natural morphism V<0

M !M (⇤H) is injective since V<0

M
has no IH -torsion. For ↵ 2 [�1, 0) and k > 1, let us set

V↵+kM (⇤H) = V↵M t�k
⇢M (⇤H),

where t is any local reduced equation of H. Each V�M (⇤H) is a coherent V
0

eDX -
submodule of M (⇤H), which satisfies V�M (⇤H)t = V��1

M (⇤H) and V�M (⇤H)gt ⇢
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V�+1

M (⇤H) (multiply both terms by t). Lastly, each grV� M (⇤H) is strict, being
isomorphic to grV��[�]�1

M if � > 0.

Definition 9.3.2 (Localization of strictly R-specializable eDX -modules)
For a coherent eDX -module which is strictly R-specializable along H, the localized

module is (see 7.3.31(b))

M [⇤H] = V
0

(M (⇤H)) · eDX ⇢M (⇤H).

Remark 9.3.3. The construction of M [⇤H] only depends on the eDX(⇤H)-module
M (⇤H), provided it is strictly R-specializable in the sense given in Section 9.3.a.
In Proposition 9.3.4 below, we could start from such a module.

Proposition 9.3.4 (Properties of the localization along H). Assume that M is eDX-cohe-
rent and strictly R-specializable along H. Then we have the following properties.

(1) M [⇤H] is eDX-coherent and strictly R-specializable along H.
(2) The natural morphism M !M (⇤H) factorizes through M [⇤H], so defines a

morphism ◆_ : M !M [⇤H] and induces an isomorphism

V<0

M �! V<0

M [⇤H],

and in particular

grV� ◆
_ : grV� M

⇠
�! grV�1

M [⇤H] for any � 2 [�1, 0).

Moreover, if X ' H ⇥ �t, Ker ◆_ (resp. Coker ◆_) is isomorphic to the kernel
(resp. cokernel) of D◆H⇤t : D◆H⇤grV

0

M ! D◆H⇤grV�1

M .
(3) For every �, we have V�M [⇤H] = V�M (⇤H)\M [⇤H] and, for � 6 0, we have

V�M [⇤H] = V�M (⇤H).
(4) We have, with respect to a local product decomposition X ' H ⇥�t,

V�M [⇤H] =

8

>

>

>

>

>

<

>

>

>

>

>

:

V�M if � < 0,

V
0

M (⇤H) = V�1

M · t�1 if � = 0,

V��[�]�1

Mg[�]+1

t +

[�]
X

j=0

V
0

M (⇤H)gjt in M (⇤H), if � > 0.

(5) (M [⇤H]/(z�1)M [⇤H])=(M /(z�1)M )(⇤H), and M [⇤H][z�1]=M (⇤H)[z�1].
(6) If t is a local generator of IH , the multiplication by t induces an isomorphism

grV
0

M [⇤H]
⇠
�! grV�1

M [⇤H].
(7) M [⇤H] = V

0

(M (⇤H))⌦V0
eDX

eDX .
(8) Assume M ! N is a morphism between strictly R-specializable coherent

eDX-modules which induces an isomorphism M (⇤H) ! N (⇤H) (i.e., whose restric-
tion to V<0

is an isomorphism). Assume moreover that N satisfies (6), i.e., the
multiplication by t induces an isomorphism grV

0

N
⇠
�! grV�1

N . Then N 'M [⇤H].
More precisely, the induced morphism M [⇤H]! N [⇤H] is an isomorphism, as well
as N ! N [⇤H].
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(9) Let M ,N be as in (8). Then any morphism N !M [⇤H] factorizes through
N [⇤H]. In particular, if N is supported on H, such a morphism is zero.

(10) If M is strict, then so is M [⇤H].
(11) Let 0 ! M 0

! M ! M 00
! 0 be an exact sequence of coherent strictly

R-specializable eDX-modules. Then the sequence

0 �!M 0[⇤H] �!M [⇤H] �!M 00[⇤H] �! 0

is exact.

Proof. The eDX -coherence of M [⇤H] is clear, by definition. Let us set U↵M [⇤H] =
V↵(M (⇤H))\M [⇤H] as in (3). Our first goal is to show both that M [⇤H] is strictly
R-specializable and that U•M [⇤H] is its Kashiwara-Malgrange filtration.

Note that U↵M [⇤H] is a coherent V
0

eDX -submodule of M [⇤H] (locally, M [⇤H] has
a coherent V -filtration, which induces on V↵(M (⇤H)) a filtration by coherent V

0

eDX -
submodules, which is thus locally stationary since V↵(M (⇤H)) is V

0

eDX -coherent). It
satisfies in an obvious way the following local properties:

• U↵M [⇤H]t ⇢ U↵�1

M [⇤H],
• U↵M [⇤H]gt ⇢ U↵+1

M [⇤H],
• grV↵ M [⇤H] ⇢ grV↵ M (⇤H) is strict.

Also obvious is that U↵M [⇤H] = V↵M (⇤H) for ↵ 6 0, and thus U↵M [⇤H]t =
U↵�1

M [⇤H] for such an ↵. To prove our assertion, we will check that U↵M [⇤H] =
U<↵M [⇤H] + U↵�1

M [⇤H]gt for ↵ > 0, i.e., gt : grU↵�1

M [⇤H]! grU↵M [⇤H] is onto.
We will prove the following assertion, which is enough for our purpose:

For every ↵ 2 [�1, 0) and k > 1, if m :=
PN

j=0

mjgjt 2 V↵+kM (⇤H) with mj 2

V
0

M (⇤H) (j = 0, . . . , N), then one can re-write m as a similar sum with N 6 k and
mk 2 V↵M (⇤H).

Let us first reduce to N 6 k. If N > k, we have mNgNt 2 VN�1

M (⇤H), which
is equivalent to mNgNt tN 2 V�1

M (⇤H) by definition. We note that, by strictness,
gNt tN is injective on grV� M (⇤H) for � > �1. We conclude that mN 2 V�1

M (⇤H).
We can set m0

N�1

= mN�1

+ mNgt 2 V
0

M (⇤H) and decrease N by one. We can
thus assume that N = k.

If mk 2 V�M (⇤H) with � > ↵, we argue as above that mkt
kgkt 2 V↵M (⇤H), hence

mk 2 V<�M (⇤H) by the same argument as above, and we finally find mk2V↵M (⇤H).
Now, (1) and (3) are proved, and (2) is then clear (according to Example 7.3.38 for
the last statement), as well as (4). Then (5) means that, for DX -modules, there is no
difference between M [⇤H] and M (⇤H), which is true since M (⇤H) is R-specializable,
so DX -generated by V

0

M (⇤H).
For (6), we note that, by (3), grV

0

M [⇤H] = grV
0

M (⇤H) and grV�1

M [⇤H] =

grV�1

M (⇤H), and by definition t : grV
0

M (⇤H)
⇠
�! grV�1

M (⇤H) is an isomorphism.
Let us now prove (7). Set M 0 = V

0

(M (⇤H)) ⌦V0
eDX

eDX . By definition, we have
a natural surjective morphism M 0

! M [⇤H] and the composition V
0

(M (⇤H)) !
M 0
! M [⇤H] is injective, where the first morphism is defined by m 7! m ⌦ 1. We
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thus have V
0

(M (⇤H)) ⇢ M 0 and we set VkM 0 =
Pk

j=0

V
0

M (⇤H)gjt for k > 0. Let
us check that, for k > 1, gk : grV

0

M 0
! grVk M 0 is injective. We have a commutative

diagram (here grVk means Vk/Vk+1

)

grV
0

M 0 gkt //

o

✏✏

grVk M 0

✏✏

grV
0

M [⇤H]
gkt
⇠

// grVk M [⇤H]

Therefore, the upper horizontal arrow is injective. Note that it is onto by definition.
Therefore, all arrows are isomorphisms, and it follows, by taking the inductive limit
on k, that M 0

!M [⇤H] is an isomorphism.
For (8) we notice that, since V

0

M (⇤H)
⇠
�! V

0

N (⇤H) and according to (7), we
have M [⇤H]

⇠
�! N [⇤H]. Since N is strictly R-specializable and satisfies (6), we

have N ⇢ N (⇤H) and V
0

N = V
0

N (⇤H). Still due to the strict R-specializability,
N is generated by V

0

N , hence we conclude by Definition 9.3.2.
For (9), we remark that a morphism N !M [⇤H] induces a morphism N (⇤H)!

M [⇤H](⇤H) = M (⇤H) and thus V
0

N (⇤H) ! V
0

M (⇤H), hence the first assertion
follows (7). The second assertion is then clear, since N [⇤H] ⇢ N (⇤H).

(10) holds since, if M is strict, then M (⇤H) is also strict, and thus so is M [⇤H].
It remains to prove (11). By flatness of eOX(⇤H) over eOX , the sequence

0 �!M 0(⇤H) �!M (⇤H) �!M 00(⇤H) �! 0

is exact, and by Exercise 7.3.37(2), the sub-sequence

0 �! V�1

M 0
�! V�1

M �! V�1

M 00
�! 0

is also exact. It follows that the sequence

0 �! V
0

M 0(⇤H) �! V
0

M (⇤H) �! V
0

M 00(⇤H) �! 0

is exact. By (7) we conclude that the sequence

M 0[⇤H] �!M [⇤H] �!M 00[⇤H] �! 0

is exact. Since M [⇤H] ⇢M (⇤H), the injectivity of M 0[⇤H]!M [⇤H] is clear.

Remark 9.3.5. In the local setting X = H ⇥ �t, if t : grV
0

M ! grV�1

M is injective,
then ◆_ : M !M [⇤H] is injective. Indeed, the assumption implies that the t-torsion
of M is zero, hence M !M (⇤H) is injective (see Proposition 7.7.2(1)).

9.3.c. Localization along a principal divisor

Let g : X ! eC be a holomorphic function. Let M be a coherent eDX -module which
is strictly R-specializable along (g). We say that M is localizable along (g) if there
exists a coherent eDX -module N such that (D◆g⇤M )[⇤H] = D◆⇤N . Recall indeed that
Kashiwara’s equivalence is not strong enough in the filtered case in order to ensure
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the existence of N . Nevertheless, by full faithfulness, if N exists, it is unique, and
we denote it by M [⇤g]. At this point, some checks are in order.

• Assume that g is smooth. Then one can check that M [⇤g] as defined by 9.3.2
satisfies the defining property above, so there is no discrepancy between Definition
9.3.2 and the definition above.

• By uniqueness, the local existence of M [⇤g] implies its global existence.
• Let u be an invertible holomorphic function on X. We denote by 'u : X ⇥ C!

X ⇥ C the isomorphism defined by (x, t) 7! (x, u(x)t), so that ◆ug = 'u � ◆g. We
continue to set H = X ⇥ {0}, so that 'u induces the identity on H.

Let M be a coherent eDX -module which is strictly R-specializable along (g). If M
is localizable along (g), then it is so along (ug) and we have M [⇤g] = M [⇤ug]. Indeed,
one checks that

D'u⇤
�

(D◆g⇤M )[⇤H]
�

= (D◆ug⇤M )[⇤H],

and this implies (D◆ug⇤M )[⇤H] = D◆ug⇤(M [⇤g]), hence the assertion by uniqueness.
This enables us to define M [⇤D] when M is a coherent eDX -module which is strictly

R-specializable along the support of D and such that M [⇤g] exists locally for some
(or any) local equation g defining the divisor D. We then say that M is localizable
along D.

Corollary 9.3.6 (Properties of the localization along g). Let g : X ! C be a holomorphic
function and let M be eDX-coherent and strictly R-specializable along (g). Set H =
X ⇥ {0} ⇢ X ⇥ C. Assume moreover that M is localizable along (g).

(1) The eDX-module M [⇤g] is strictly R-specializable along (g) and

var : �g,1
�

M [⇤g]
�

�!  g,1

�

M [⇤g]
�

(�1)

is an isomorphism.
(2) There is a natural morphism ◆_ : M !M [⇤g]. This morphism induces an

isomorphism
M (⇤g)

⇠
�!

�

M [⇤g]
�

(⇤g),

and isomorphisms
 g,�M

⇠
�! g,�

�

M [⇤g]
�

for every �.

Moreover, we have a commutative diagram

�g,1M
�g,1◆

_

//

varM
✏✏

�g,1
�

M [⇤g]
�

o

varM [⇤g]
✏✏

 g,1M (�1)
⇠

 g,1◆
_

//  g,1

�

M [⇤g]
�

(�1)

and Ker ◆_ (resp. Coker ◆_) is identified with Ker varM (resp. Coker varM ).
(3) Given a short exact sequence of coherent eDX-modules which are strictly

R-specializable and localizable along (g), the [⇤g] sequence is exact.
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Proof. This follows from Proposition 9.3.4 by using full faithfulness of D◆g⇤ (Proposi-
tion 7.6.2) and Proposition 7.6.6.

Remark 9.3.7. The proof gives in particular that D◆g⇤◆
_
g = ◆_t .

Remark 9.3.8 (Remark 9.3.3 continued). One checks easily that D◆g⇤(M (⇤g)) =

(D◆g⇤M )(⇤H), so that, in Corollary 9.3.6, we could start from a coherent eDX(⇤g)-
module M⇤ which is strictly R-specializable. One deduces that the construction
M [⇤g] only depends on the stupidly localized module M⇤. Similarly, for an effective
divisor D, M [⇤D] (when it exists) only depends on M (⇤D).

Remark 9.3.9 (Restriction to z = 1). Assume that M is eDX -coherent and is strictly
R-specializable and locaizable along (g). Then

(D◆g⇤M )(⇤H)/(z � 1)(D◆g⇤M )(⇤H) = (D◆g⇤M)(⇤H),

the same holds for V
0

, and thus (D◆g⇤M )[⇤H]/(z � 1)(D◆g⇤M )[⇤H] = (D◆g⇤M)(⇤H).
As a consequence,

M [⇤g]/(z � 1)M [⇤g] = M(⇤g).

9.4. Dual localization

In this section, we treat simultaneously the case of DX -modules and that of RFDX -
modules. The Kashiwara-Malgrange filtration enables one to give a comprehensive
definition of the dual localization functor, which should be thought of as the adjoint
of the localization functor by the eDX -module duality functor. We will give a more
direct definition and we will not need the duality functor.

9.4.a. Dual localization along a smooth hypersurface

Definition 9.4.1 (Dual localization along a smooth hypersurface)
Let H ⇢ X be a smooth hypersurface and let M be eDX -coherent and strictly

R-specializable along H. The dual localization of M along H is defined as

M [!H] := V<0

M ⌦V0
eDX

eDX .

Proposition 9.4.2 (Properties of the dual localization along H)
Assume that M is eDX-coherent and strictly R-specializable along H. Then the

following properties hold.
(1) M [!H] is eDX-coherent and strictly R-specializable along H.
(2) The natural morphism ◆ : M [!H]!M induces an isomorphism

V<0

M [!H]
⇠
�! V<0

M ,

and in particular
grV�1

◆ : grV�1

M [!H]
⇠
�! grV�1

M .
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(3) With respect to a local decomposition X ' H ⇥�t,

gt : grV�1

M [!H] �! grV
0

M [!H](�1)

is an isomorphism, and Ker grV�1

◆ (resp. Coker grV�1

◆) is isomorphic to the kernel
(resp. cokernel) of gt : grV�1

M ! grV
0

M .
(4) Assume N ! M is a morphism between strictly R-specializable coherent

eDX-modules which induces an isomorphism N (⇤H) ! M (⇤H) (i.e., whose restric-
tion to V<0

is an isomorphism). Assume moreover that N satisfies (3), i.e., the
action of gt induces an isomorphism grV�1

N
⇠
�! grV

0

N (�1). Then N ' M [!H].
More precisely, the induced morphism N [!H] ! M [!H] is an isomorphism, as well
as N [!H]! N .

(5) Let M ,N be as in (4). Then any morphism M [!H]! N factorizes through
N [!H]. In particular, if N is supported on H, such a morphism is zero.

(6) If M is strict, then so is M [!H].
(7) Let 0 ! M 0

! M ! M 00
! 0 be an exact sequence of coherent strictly

R-specializable eDX-modules. Then the sequence

0 �!M 0[!H] �!M [!H] �!M 00[!H] �! 0

is exact.

Proof. We first construct locally a eDX -module M
!

which satisfies all properties
described in Proposition 9.4.2, and we then identify it with the globally defined
eDX -module M [!H]. The question is therefore local on X and we can assume that
X ' H ⇥�t. We will use the notation and results of Exercise 7.3.36.

Step one. We search for M
!

with a morphism M
!

! M inducing an isomorphism
V<0

M
!

! V<0

M , hence  t,�M
!

⇠
�!  t,�M for every � 2 S1, and such that �t,1M!

is naturally identified with the graph of canM :  t,1M ! �t,1M , hence to  t,1M ,
so that  t,1M!

!  t,1M is the identity, while �t,1M!

!  t,1M is induced by the
second projection  t,1M � �t,1M ! �t,1M , hence can be identified with canM .

We use the identification of Exercise 7.3.36(5) of M /V�1

M with
L

↵2(�1,0] gr
V
↵ M [s].

On the other hand, we introduce a similar V
0

eDX -module structure on grV�1

M [s] by
setting

µ
(j)
�1

sj · t =

(

0 if j = 0,
�

µ
(j)
�1

(E+(j � 1)z)
�

sj�1 if j > 1,

(µ(j)
�1

sj)tgt =
�

µ
(j)
�1

(E+(j � 1)z)
�

sj .

One checks similarly that this is indeed a V
0

eDX -module structure (i.e., [tgt, t] acts
as zt), but the action of gt, defined as the multiplication by s, does not extend this
structure as a eDX -module structure (see Exercise 7.3.36(6)). We then notice that the
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morphism

⇢ : grV�1

M [s] �! grV
0

M [s] ⇢M /V�1

M

µ
(j)
�1

sj 7�! (µ(j)
�1

gt)sj

is V
0

eDX -linear.

Exercise 9.4.3. Show however that the action of gt induces a eDX -module structure on
Ker ⇢ and on Coker ⇢, and identify these eDX -modules with Ker canM and Coker canM

respectively. [Hint : Argue as in Example 7.3.38.]

Given a local section m of M , we denote by [m] its class in M /V�1

M =
L

↵2(�1,0] gr↵M [s], and by [m]
0

=
P

j>0

[m](j)
0

sj the component of this class in
grV

0

M [s]. Let us consider the V
0

eDX -submodule M
!

⇢ M � grV�1

M [s] consisting
of pairs (m,µ�1

) of local sections such that [m]
0

= ⇢(µ�1

) (since the maps ⇢ and
m 7! [m]

0

are V
0

eDX -linear, M
!

is indeed a V
0

eDX -submodule). We will extend
the V

0

eDX -module structure on M
!

to a eDX -module structure so that the natural
morphism M

!

!M induced by the first projection is eDX -linear.
We have a decomposition M /V<�1

M ' grV�1

M �

L

↵2(�1,0] gr
V
↵ M [s] and, for a

local section m of M , we can write

[mgt]0 = canM [m](0)�1

+
X

j>1

[m](j�1)

0

sj = canM [m](0)�1

+ [m]
0

s,

where [m](0)�1

obviously denotes the component of m mod V<�1

M in grV�1

M . For any
local section (m,µ�1

) of M
!

we define

(m,µ�1

)gt := (mgt, [m](0)�1

+ µ�1

s).

The right-hand term is easily checked to belong to M
!

. We now check that
(m,µ�1

)[gt, t] = z(m,µ�1

). On the one hand, we have

(m,µ�1

)gtt =
�

mgtt, ([m](0)�1

+µ�1

s)t
�

=
⇣

mgtt,
P

j>0

(N+jz)µ(j)
�1

sj
⌘

= (mgtt, µ�1

gtt),

and, on the other hand,

(m,µ�1

)tgt =
⇣

mt,
P

j>1

(N + (j � 1)z)µ(j)
�1

sj�1

⌘

gt

=
⇣

mtgt, [mt](0)�1

+
P

j>1

(N + (j � 1)z)µ(j)
�1

sj
⌘

.

Moreover, we have [mt](0)�1

= varM [m](0)
0

= varM (canM µ
(0)

�1

) = Nµ(0)

�1

. As a conse-
quence,

(m,µ�1

)[gt, t] = (zm, zµ�1

+ varM [m](0)
0

�Nµ
(0)

�1

) = z(m,µ�1

).

Since M is eDX -coherent and grV�1

M is eDH -coherent, one concludes easily that M
!

is
eDX -coherent.
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We set

V↵

�

M � grV�1

M [s]
�

:= V↵M �

[↵]
L

j=0

grV�1

M sj .

The induced filtration V↵M
!

:= M
!

\ V↵

�

M � grV�1

M [s]
�

satisfies V↵M
!

⇠
�! V↵M

for ↵ < 0 and

grV↵ M
!

=

8

>

>

<

>

>

:

grV↵ M if ↵ 62 N,
{([m](j)

0

, µ
(j)
�1

) 2 grV
0

M � grV�1

M | [m](j)
0

= canM µ
(j)
�1

} · sj if ↵ = j

' grV�1

M sj .

It is clear that this is a coherent V -filtration and that M
!

satisfies 9.4.2(1)–(3).

Identification between M [!H] and M
!

. Since V<0

M
!

⇠
�! V<0

M , the natural mor-
phism M

!

[!H]!M [!H] is an isomorphism, and we will prove that the natural mor-
phism

(9.4.4) M
!

[!H] = V<0

M
!

⌦V0
eDX

eDX �!M
!

is an isomorphism. For any coherent eDX -module N which is strictly R-specializable
along H, the natural morphism V

0

N ⌦V0
eDX

eDX ! N is onto, and if canN is onto,
then V<0

N ⌦V0
eDX

eDX ! N is also onto. Since canM!
is an isomorphism, (9.4.4) is

onto.
The composition V<0

M
!

' V<0

M
!

[!H] ! M
!

[!H] ! M
!

, so (9.4.4) is injec-
tive when restricted to the V<0

part. We V -filter M
!

[!H] by setting U<kM!

[!H] =
P

j6k V<0

M
!

gjt , so that U<0

M
!

[!H] = V<0

M
!

. For k > 1 we have a commutative
diagram

(U<0

/U<�1

)M
!

[!H]
⇠ //

gkt
✏✏

(V<0

/V<�1

)M
!

gkto

✏✏

(U<k/U<k�1

)M
!

[!H] // (V<k/V<k�1

)M
!

The left down arrow is onto by definition, and since the right down arrow is an
isomorphism by the properties of M

!

, the left down arrow is also an isomorphism, as
well as the lower horizontal arrow, showing by induction on k that M

!

[!H] ! M
!

is
an isomorphism, so M

!

[!H] = M [!H] satisfies 9.4.2(1)–(3).
We now prove (4). Since V<0

N
⇠
�! V<0

M , Definition 9.4.1 implies N [!H]
⇠
�!

M [!H]. It remains to check that N [!H]! N is an isomorphism. Since the question
is local, it is enough to check that the morphism N

!

! N is an isomorphism, which
is straightforward from the construction of N

!

, with the assumption that canN is an
isomorphism.

For (5), we remark that the morphism M [!H] ! N restricts to a morphism
V<0

M [!H] = V<0

M ! V<0

N , so the first assertion follows from Definition 9.4.1.
The second one is then obvious since V<0

N = 0 if N is supported on H.
Let us now check (6), that is, the strictness of M [!H]. One check it locally for M

!

,
for which it is clear since M

!

⇢M � grV�1

M [s].
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It remains to prove (7). The argument is the same as for 9.3.4(11) except for
the injectivity of M 0[!H] ! M [!H]. In order to prove this property, we notice that
V<0

M 0[!H]! V<0

M [!H] is injective, according to (2). It is then enough to check the
injectivity of grV↵ M 0[!H] ! grV↵ M [!H] for every ↵ > 0. Due to the strict R-specia-
lizability of M 0[!H],M [!H], injectivity holds for every ↵ /2 Z since grV↵ M 0

! grV↵ M
is injective. Similarly, if ↵ is a nonnegative integer, the injectivity at ↵ holds if and
only if it holds at ↵ = 0. Now, (3) reduces this check to the case ↵ = �1, where the
injectivity holds since grV�1

M 0
! grV�1

M is injective.

Remark 9.4.5 (The case of DX -modules). In case of R-specializable DX -modules, we
simply denote M[!H] by M(!H) for the symmetry with the notation in Section 9.2.

Remark 9.4.6 (Remark 9.3.3 continued). Clearly, M [!H] only depends on M (⇤H), so
that, in Proposition 9.4.2, we could start from a coherent eDX(⇤H)-module M which
is strictly R-specializable.

Remark 9.4.7 (Uniqueness of the morphism ◆). Let ◆0 : M [!H] ! M be a morphism
whose stupid localization ◆0

(⇤H)

: M [!H](⇤H) ! M (⇤H) coincides with the stupid
localization ◆

(⇤H)

of ◆. Then ◆0 = ◆. Indeed, the assumption implies that ◆0 coincides
with ◆ when restricted to V<0

M [!H] = V<0

M . Both induce then the same morphism
M [!H] = V<0

M ⌦V0
eDX

eDX !M .

Remark 9.4.8. In the local setting X = H ⇥�t, if gt : grV�1

M ! grV
0

M is onto, then
◆ : M [!H] ! M is onto. Indeed, the assumption implies that M = V<0

M ·

eDX (in
general, we only have M = V

0

M ·

eDX).

9.4.b. Dual localization along an arbitrary effective divisor

We keep the same notation as in Section 9.3.c. Let M be eDX -coherent and
strictly R-specializable along D. We say that M is dual-localizable along D if for
any local equation g defining D, there exists a coherent eDX -module M [!g] such that
D◆g⇤(M [!g]) = (D◆g⇤M )[!H]. The various checks done in Section 9.3.c can be done
similarly here in order to fully justify this definition.

Corollary 9.4.9 (Properties of the dual localization along g). Let g : X ! C be a
holomorphic function and let M be eDX-coherent, strictly R-specializable and dual-
localizable along (g). Set H = X ⇥ {0} ⇢ X ⇥ C.

(1) The eDX-module M [!g] is strictly R-specializable along g and

can :  g,1

�

M [!g]
�

�! �g,1
�

M [!g]
�

is an isomorphism.
(2) There is a natural morphism ◆ : M [!g] ! M . This morphism induces an

isomorphism
�

M [!g]
�

(⇤g)
⇠
�!M (⇤g),
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and therefore isomorphisms

 g,�

�

M [!g]
� ⇠
�!  g,�M for every �.

Moreover, we have a commutative diagram

 g,1

�

M [!g]
�

 g,1◆

⇠

//

canM [!g]
o

✏✏

 g,1M

canM

✏✏

�g,1
�

M [!g]
�

�g,1◆
// �g,1M

and Ker ◆ (resp. Coker ◆) is identified with Ker canM (resp. Coker canM ).
(3) Given a short exact sequence of coherent eDX-modules which are strictly

R-specializable and dual-localizable along g, the [!g] sequence is exact.

Proof. Similar to that of Corollary 9.3.6.

Remark 9.4.10. The proof gives in particular that D◆g⇤◆g = ◆t.

Remark 9.4.11 (Remark 9.3.3 continued). In Corollary 9.4.9, we could start from a
coherent eDX(⇤g)-module M which is strictly R-specializable and, globally, we could
start from a coherent eDX(⇤D)-module M which is strictly R-specializable.

Remark 9.4.12 (Restriction to z = 1). One proves as in Remark 9.3.9 that dual local-
ization behaves well with respect to the restriction z = 1.

9.5. D-localizable eDX-modules and middle extension

9.5.a. D-localizable eDX-modules. Let D be an arbitrary effective divisor.

Definition 9.5.1 (D-localizable eDX -modules). Assume that M is strictly R-specializa-
ble along D. We say that it is D-localizable if it is localizable and dual-localizable
along D. The localized (resp. dual localized) module M [?D] (? = ⇤, resp. ? =!) is
then well-defined and is strictly R-specializable along D.

Recall that, if D = H is smooth, any M which is eDX -coherent and strictly
R-specializable along D is D-localizable. On the other hand, for DX -modules,
R-specializability implies D-localizability, whatever D is.

Exercise 9.5.2. We work within the full subcategory of eDX -modules which are strictly
R-specializable and localizable along D.

(1) Show that M [⇤D] and M [!D] are localizable along D and
(a) the morphisms M [!D][⇤D] !M [⇤D] and M [!D][!D] !M [!D] induced

by M [!D]!M are isomorphisms,
(b) the morphisms M [!D]!M [⇤D][!D] and M [⇤D]!M [⇤D][⇤D] induced

by M !M [⇤D] are isomorphisms.
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(2) Let g be a local equation of D. Show that there are isomorphisms of diagrams
(see Definition 7.7.3)

 g,1M [⇤g]

can
''

�g,1M [⇤g]

var
(�1)

⇠

gg
'  g,1M

N
(�1)

**

 g,1M

Id

jj

and

 g,1M [!g]

can
⇠ ''

�g,1M [!g]

var
(�1)

gg
'  g,1M

Id
**

 g,1M

N(�1)

jj
.

9.5.b. Middle extension along an arbitrary effective divisor

Definition 9.5.3 (Middle extension). Assume that M is eDX -coherent, strictly R-specia-
lizable and localizable along an effective divisor D. The image of the composed
morphism M [!D]!M !M [⇤D] is called the middle extension of M along D and
denoted by M [!⇤D].

Note however that we do not assert that M [!⇤D] is strictly R-specializable along D.
Nevertheless, if D = (g), D◆g⇤M [!⇤D] is the image of D◆g⇤M [!D] ! D◆g⇤M [⇤D],
that is, the image of (D◆g⇤M )[!H]! (D◆g⇤M )[⇤H], and it is R-specializable along H

with strict V -graded objects, according to Exercise 7.3.37(3). We will still use the
notation  g,�M [!⇤D] and �g,1M [!⇤D] for grV↵ D◆g⇤M [!⇤D](1) for ↵ 2 [�1, 0) and
grV

0

D◆g⇤M [!⇤D] respectively.

Remark 9.5.4 (Minimal extension and middle extension). Assume that D = (g) and
that M is strictly R-specializable and localizable along D (if D = H is smooth, the
latter condition holds if the former holds). Assume moreover that can is onto and var
is injective, that is, M is a minimal extension along g. Then, according to Remarks
9.3.5 and 9.4.8, M [!D]!M is onto and M !M [⇤D] is injective, so M = M [!⇤D],
and in particular M [!⇤D] is strictly R-specializable along D.

Exercise 9.5.5. We keep the assumptions as in Definition 9.5.3 and we also assume also
that D = (g). Recall that ◆_ (resp. ◆) have been defined in 9.3.4(2) (resp. 9.4.2(2)).

(1) Show that the kernel and cokernel of the natural morphism

◆_ � ◆ : M [!g] �!M [⇤g]

are equal respectively to the kernel and cokernel of

�g,1(◆
_
� ◆) : �g,1M [!g] �! �g,1M [⇤g],

and also to the kernel and cokernel of

N :  g,1M �!  g,1M (�1).
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[Hint : Show that ◆_ � ◆ induces an isomorphism on V<0

and argue as in Example
7.3.38 for D◆g⇤(M [⇤g]).]

(2) Identify  g,�M [!⇤g] with  g,�M and �g,1M [!⇤g] with image(N).
(3) Show that if N :  g,1M !  g,1M (�1) is strict, then ◆_ � ◆ : M [!g]!M [⇤g] is

strictly R-specializable.

Proposition 9.5.6 (A criterion for the strict R-specializability of M [!⇤g])
Assume that M is eDX-coherent, strictly R-specializable and localizable along (g).

If N = var � can :  g,1M !  g,1M (�1) is a strict morphism, then M [!⇤g] is strictly
R-specializable along g.

Proof. This follows from Exercise 9.5.5.

Exercise 9.5.7. With the assumptions of Proposition 9.5.6, show similarly that the
morphism M !M [⇤g] (resp. M [!g]!M ) is strictly R-specializable along g if and
only if the morphism var : �g,1M !  g,1M (�1) (resp. can :  g,1M ! �g,1M ) is
strict.

9.6. Beilinson’s maximal extension and applications

In this section, we continue working with right eDX -modules.

Remark 9.6.1 (The case of left eDX -modules). The same changes as in Remark 9.0.1
have to be made for left eDX -modules.

9.6.a. Properties of Beilinson’s maximal extension. Let g : X ! C be a
holomorphic function. Let M be a coherent eDX -module which is strictly R-speciali-
zable along D := (g). When D is not smooth, we also assume that M is D-localizable,
and maximalizable (see Definition 9.6.13 below). We aim at constructing a coherent
eDX -module ⌅gM , called Beilinson’s maximal extension of M along D, which is also
strictly R-specializable along D. It comes with two exact sequences

0 �!M [!g]
a
��! ⌅gM

b
��!  g,1M (�1) �! 0,(9.6.2 !)

0 �!  g,1M
b_
���! ⌅gM

a_

���!M [⇤g] �! 0,(9.6.2 ⇤)

such that b � b_ = �N and a_
� a = ◆_ � ◆, where ◆, ◆_ are the natural morphisms

(see Corollaries 9.3.6(2) and 9.4.9(2))

M [!g]
◆
��!M and M

◆_
���!M [⇤g].

The construction and the exact sequences only depend on the stupidly localized mod-
ule M (⇤D) (recall also that M [!g] and M [⇤g] only depend on M (⇤D)). It can be
done for any coherent eDX(⇤D)-module M⇤ which is strictly R-specializable along D

and gives rise nevertheless to a coherent eDX -module which is strictly R-specializable
along D. The usefulness of Beilinson’s maximal extension comes from Corollary 9.6.5
below, which enables one to treat some questions on eDX -modules which are strictly
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R-specializable along D by reducing to the case of eDX(⇤D)-modules strictly R-specia-
lizable along D on the one hand, and to the case of eDX -modules supported on D and
strictly R-specializable along D on the other hand, the latter case being subject to
an induction argument.

Theorem 9.6.3 (Gluing construction). Let M⇤ be a coherent eDX(⇤D)-module which is
strictly R-specializable, D-localizable and maximalizable along D = (g). Let (N , c, v)

be a triple consisting of a coherent eDX-module supported on D and strictly R-specia-
lizable along D, and a pair morphisms c :  g,1M⇤ ! N and v : N !  g,1M⇤(�1)
such that v � c = N. Then the complex

(9.6.3 ⇤)  g,1M⇤
b_ � c
������! ⌅gM⇤ �N

b+ v
�����!  g,1M⇤(�1)

has nonzero cohomology in degree one at most, its H 1 is a coherent eDX-module
G(M⇤,N , c, v) which is strictly R-specializable along D and we have an isomorphism
of diagrams
2

6

6

6

4

 g,1G(M⇤,N , c, v)

can
))

�g,1G(M⇤,N , c, v)

var
(�1)

ii

3

7

7

7

5

'

2

6

4

 g,1M⇤

c
**

N

v(�1)

jj

3

7

5

.

Remarks 9.6.4.

(1) We obviously have G(M⇤,N , c, v)(⇤D) = (⌅gM⇤)(⇤D) = M⇤.
(2) If D = H is smooth and g is a projection, the conditions “D-localizable” and

“maximalizable” along D follow from the condition “strictly R-specializable along D”.

Set D = (g) and consider the category Glue(X,D) whose objects consist of data
(M⇤,N , c, v) satisfying the properties as in the theorem, and whose morphisms are
pairs of morphisms M⇤ !M 0

⇤ and N ! N 0 which are naturally compatible with c, v
and c0, v0.

We have a natural functor

M 7�! G(M (⇤D),�g,1M , can, var).

from the category of eDX -coherent modules which are strictly R-specializable, localiz-
able and maximalizable along D, to the category Glue(X,D).

Corollary 9.6.5. This functor is an equivalence of categories.

We start with the case of a projection t : X ' H⇥�t ! �t in Sections 9.6.b–9.6.c.

9.6.b. A construction of  t,1 starting from localization. We will give an-
other construction of  t,1M⇤ for a strictly R-specializable eDX(⇤H)-module M⇤
(see Section 9.3.a for this notion).
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Let k be a non-negative integer, set " = 0, 1, and let J(",k) denote the upper Jordan
block of size k+ ", that is, the filtered vector space Ce" � · · ·�Cek, where ei 2 F i�"

(i > "), so J(",k) is in fact graded, with the nilpotent endomorphism

J(",k)
J(",k)
�����! J(",k)(�1)

ei 7�����! ei�1

(convention: e"�1

= 0).

Similarly, we denote by J
(",k) the lower Jordan block Ce" � · · · � Cek increasingly

filtered (in fact graded) so that ei 2 Fi�", with the nilpotent endomorphism

J
(",k)

J
(",k)

�����! J
(",k)(�1)

ei 7�����! ei+1

(convention: ek+1

= 0).

We have natural morphisms (graded of degree zero and compatible with the nilpotent
endomorphisms):

J(1,k)(�1)  � � J(0,k) ,�! J(0,k+1)

ei  �7 ei=1,...,k 7�! ei
0  �7 e

0

7�! e
0

J
(1,k)(1) ,�! J

(0,k)  � � J
(0,k+1)

ei=1,...,k 7�! ei  �7 ei=0,...,k

0  �7 ek+1

Exercise 9.6.6 (Linear algebra 1). Let (M,N) be a graded C-vector space with a nilpo-
tent endomorphism N : M ! M(�1). For " = 0, 1, set M (",k) = M ⌦C J(",k) with
nilpotent endomorphism

N(",k) := N⌦ Id+ Id⌦J(",k) : M (",k)
�!M (",k)(�1)

and similarly for N
(",k). Show the following properties.

(1) The morphism

M �!M (",k)

m 7�!
Pk

i="(�N)i�"m⌦ ei

induces an isomorphism KerNk+1�" ⇠
�! KerN(",k) with respect to which the

natural morphism KerN(",k)
! KerN(",k+1) correspond to the natural morphism

KerNk+1�" ,! KerNk+2�" and the natural morphism KerN(0,k)
! KerN(1,k)(�1)

correspond to the natural morphism KerNk+1

�N

�! KerNk(�1). In particular, if N
has finite order on M , show that have natural commutative diagrams

lim
�!

k
KerN(0,k)

✏✏

lim
�!

k
KerNk+1

⇠oo

�N
✏✏

⇠ // M

�N
✏✏

lim
�!

k
KerN(1,k)(�1) lim

�!

k
KerNk(�1)

⇠oo ⇠ // M(�1)

and the limits are achieved for k > ord(N).
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(2) Show that the morphism

M (",k)
�!M("� k)

k
X

i="

mi ⌦ ei 7�!

k
X

i="

(�N)k�imi

induces an isomorphism

CokerN(",k) := M (",k)(�1)/ ImN(",k) ⇠
�!M("� (k + 1))/ ImNk+1�",

and thus, if k > ord(N),

CokerN(",k)
'M("� (k + 1)).

(3) Show similar properties for the lower Jordan block. Note that the previous
diagram becomes

M
⇠ //

�N
✏✏

lim
 �

k
CokerNk

�N
✏✏

lim
 �

k
CokerN

(1,k)
⇠oo

✏✏

M(�1)
⇠ // lim
 �

k
CokerNk+1(�1) lim

 �

k
CokerN

(0,k)(�1)
⇠oo

Exercise 9.6.7 (Linear algebra 2). We keep the notation as in Exercise 9.6.6.
(1) Show that the two composed natural maps

M (0,k)
�!M (1,k)(�1)

N(1,k)

������!M (1,k)(�2)

M (0,k) N (0,k)

������!M (0,k)(�1) �!M (1,k)(�2)and

coincide. Let ⌅kM denote their kernel. In particular, N (0,k) induces a map

N(0,k)

|⌅kM
: ⌅kM �! Ker

⇥

M (0,k)(�1)!M (1,k)(�2)
⇤

' (M ⌦ e
0

)(�1) 'M(�1).

(2) Show that the map

M �KerNk(�1) �!M (0,k)

(n,m) 7�! n⌦ e
0

+
Pk

i=1

(�N)i�1m⌦ ei

induces an isomorphism onto ⌅kM .
(3) Show that, under this isomorphism, N(0,k)

|⌅kM
: ⌅kM !M(�1) is identified with

(n,m) 7! Nn+m.
(4) Conclude that, if ord(N) is finite and k > ord(N), then the exact sequence

0 �! Ker
⇥

M (0,k)
!M (1,k)(�1)

⇤

�! ⌅kM �! KerN(1,k)
�! 0

is isomorphic to the naturally split sequence 0 ! M ! M �M(�1) ! M(�1) ! 0
with respect to which the exact sequence

0 �! KerN(0,k)
�! ⌅kM �! Ker

⇥

M (0,k)(�1)!M (1,k)(�2)
⇤

�! 0
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corresponds to

0 �! Ker(N + Id) �!M �M(�1)
N + Id
������!M(�1) �! 0.

(5) Show similar properties for the lower Jordan block.

Let M⇤ be a strictly R-specializable eDX(⇤H)-module. We set M⇤(",k)=M⇤ ⌦C J
(",k)

with the action of tgt given by

(m⌦ ei)tgt := (mtgt)⌦ ei + m⌦ J
(",k)ei,

and we define M (",k)
⇤ similarly. The following lemma is easy.

Lemma 9.6.8. If M⇤ is strictly R-specializable along H, then so are M (",k)
⇤ and

M⇤(",k), we have V•M
(",k)
⇤ = (V•M⇤)(",k) and the lower similar equalities, and for

every �,  t,�(M
(",k)
⇤ ) ' ( t,�M⇤)(",k), and other similar equalities with �t,1, together

with the lower similar equalities.

Proposition 9.6.9. Assume that M⇤ is strictly R-specializable along H.
(1) The morphisms

(◆_ � ◆)(",k) : M (",k)
⇤ [!H] �!M (",k)

⇤ [⇤H]

(◆_ � ◆)
(",k) : M⇤(",k)[!H] �!M⇤(",k)[⇤H]and

are strictly R-specializable for k large enough, locally on H.
(2) We have functorial isomorphisms

lim
�!

k

Ker(◆_ � ◆)(",k) '  t,1M⇤ ' lim
 �

k

Coker(◆_ � ◆)
(",k),

and the limits are achieved for k large enough, locally on H.
(3) The composed natural morphisms

M (0,k)
⇤ [!H] �!M (0,k)

⇤ [⇤H] �!M (1,k)
⇤ [⇤H](�1)

M⇤(1,k)[!H](1) �!M⇤(0,k)[!H] �!M⇤(0,k)[⇤H]and

are strictly R-specializable for k large enough, locally on H.

Proof.
(1) Since the morphisms considered induce isomorphisms on V<0

, it is enough to
check that their �t,1 are strict for k large enough (Example 7.3.38). By Exercise
9.5.5(3), this amounts to the strictness of N(",k) :  t,1M

(",k)
⇤ !  t,1M

(",k)
⇤ (�1) and,

by Lemma 9.6.8, to the strictness of N(",k) : ( t,1M⇤)(",k) ! ( t,1M⇤)(",k)(�1), and
similarly for N

(",k). For k large enough locally on H, the cokernel of N(",k) is identified
with  t,1M⇤("� (k + 1)), and similarly for N

(",k), according to Exercise 9.6.6, hence
the strictness.
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(2) By Exercise 9.5.5(1) and Lemma 9.6.8, we have

Ker(◆_ � ◆)(",k) ' Ker
⇥

N(",k) : ( t,1M⇤)
(",k)

! ( t,1M⇤)
(",k)(�1)

⇤

,

which is identified with  t,1M⇤ according to Exercise 9.6.6. We argue similarly for
the lower case.

(3) Arguing as above, we are reduced to checking the strictness of �t,1 of the
composed morphisms. The upper one reads

( t,1M⇤)
(0,k) N(0,k)

������! ( t,1M⇤)
(0,k)(�1) �! ( t,1M⇤)

(1,k)(�2)

and, according to Exercise 9.6.7(1), coincides with the composed morphism

( t,1M⇤)
(0,k)

�! ( t,1M⇤)
(1,k)(�1)

N(1,k)

������! ( t,1M⇤)
(1,k)(�2)

whose cokernel, which is the cokernel of N(1,k) since the first morphism is onto, is
identified with  t,1M⇤(�k � 1) for k large, hence the strictness. The argument for
the lower one is similar.

9.6.c. The maximal extension along H ⇥ {0}

Definition 9.6.10 (Maximal extension along H). Let M⇤ be a coherent eDX(⇤H)-module
which is strictly R-specializable along H. We set

⌅tM⇤ := lim
�!

k

Ker
�

M (0,k)
⇤ [!H]!M (1,k)

⇤ [⇤H](�1)
�

.

Proposition 9.6.11 (The basic exact sequences). The limit in the definition of ⌅tM⇤ is
achieved for k large enough, locally on H, and ⌅tM⇤ is a coherent eDX-module which
is strictly R-specializable along H. We have two functorial exact sequences

0 �!M⇤[!H]
a
��! ⌅tM⇤

b
��!  t,1M⇤(�1) �! 0,(9.6.11 !)

0 �!  t,1M⇤
b_
���! ⌅tM⇤

a_

���!M⇤[⇤H] �! 0,(9.6.11 ⇤)

with b� b_ = �N and a_
�a = ◆_ � ◆ (see Corollaries 9.3.6(2) and 9.4.9(2)). Moreover,

we also have

⌅tM⇤ := lim
 �

k

Coker
�

M⇤(1,k)[!H](1)!M⇤(0,k)[⇤H]
�

.

Proof. Arguing as in Proposition 7.3.40, one checks that the kernel of the morphism
M (0,k)

⇤ [!H] ! M (1,k)
⇤ [⇤H](�1) is strictly R-specializable along H. We decompose

this morphism either as

M (0,k)
⇤ [!H] �!M (1,k)

⇤ [!H](�1) �!M (1,k)
⇤ [⇤H](�1)

or as
M (0,k)

⇤ [!H] �!M (0,k)
⇤ [⇤H] �!M (1,k)

⇤ [⇤H](�1).

In the first case, its kernel is the middle term of a short exact sequence having the
kernel of the right-hand morphism as right-hand term, that is,  t,1M⇤(�1) for k

large enough locally, according to Proposition 9.6.9, and the kernel of the left-hand
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morphism as left-hand term, that is, M⇤[!H], according to Proposition 9.4.2(7). The
kernel is thus independent of k if k is large enough locally, and we have thus obtained
(9.6.11 !).

In the second case, its kernel is the middle term of a short exact sequence having
the kernel of the right-hand morphism as right-hand term, that is, M⇤[⇤H], according
to Proposition 9.3.4(11), and the kernel of the left-hand morphism as left-hand term,
that is,  t,1M⇤ for k large enough locally, according to Proposition 9.6.9. We have
thus obtained (9.6.11 ⇤).

The composed morphism a_
� a is the composition

M⇤[!H] 'M⇤[!H]⌦ e
0

,�!M (0,k)
⇤ [!H]

◆_(0,k) � ◆(0,k)
�����������!M (0,k)

⇤ [⇤H]

�!M⇤[⇤H]⌦ e
0

'M⇤[⇤H]

which is equal to ◆_�◆. On the other hand, the morphism b�b_ :  t,1M⇤ !  t,1M⇤(�1)
is identified with the natural morphism

Ker(◆_(0,k) � ◆(0,k)) �! Ker(◆_(1,k) � ◆(1,k))

for k large enough locally. It is identified with the natural morphism

Ker
⇥

N(0,k) : ( t,1M⇤)
(0,k)

! ( t,1M⇤)
(0,k)(�1)

⇤

�! Ker
⇥

N(1,k) : ( t,1M⇤)
(1,k)

! ( t,1M⇤)
(1,k)(�1)

⇤

,

which is identified, as in Exercise 9.6.6, to the morphism (k large enough locally)

�N : KerNk+1

'  t,1M⇤ �! KerNk(�1) '  t,1M⇤(�1).

Proposition 9.6.12 (Nearby and vanishing cycles of the maximal extension)
(1) The morphisms a : M⇤[!H] ! ⌅tM⇤ and a_ : ⌅tM⇤ ! M⇤[⇤H] induce iso-

morphisms when restricted to V<0

, and thus isomorphisms of the  t,� objects.
(2) The exact sequence �t,1(9.6.11 !) is isomorphic to the naturally split exact se-

quence 0!  t,1M⇤
i1
�!  t,1M⇤ � t,1M⇤(�1)

p2
�!  t,1M⇤(�1)! 0. With respect to

this isomorphism, the exact sequence �t,1(9.6.11 ⇤) reads

0 �!  t,1M⇤
(Id,�N)
��������!  t,1M⇤ �  t,1M⇤(�1)

N + Id
������!  t,1M⇤(�1) �! 0.

Proof.
(1) We notice that, since all modules in (9.6.11 !) and (9.6.11 ⇤) are strictly

R-specializable, the morphisms a and a_ are strictly R-specializable, in the sense
of Definition 7.3.39. The result follows from Proposition 7.3.40, since  t,1M⇤ is
supported on H.

(2) This follows from Exercise 9.6.7.

Proof of Theorem 9.6.3 for the function t. The complex C• considered in the theorem
has nonzero cohomology in degree one only, since b_ is injective and b is onto. We
show that  t,�C

• and �t,1C
• are strict. We have  t,�C

• = {0 !  t,�⌅tM ! 0},
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so the strictness follows from Proposition 9.6.11. On the other hand, according to
Proposition 9.6.12, �t,1C• is identified with the complex

 t,1M //  t,1M �  t,1M (�1)�N //  t,1M (�1)

e
� // (e,�Ne, ce)

(e,m, ") � // m+ v".

Its cohomology in degree one is then identified with N . Since N is assumed to
be strict, H 1�t,1C

• is strict, and we clearly have H j�t,1C
• = 0 for j 6= 1. We

deduce from Corollary 7.3.41 that H 1C• is strictly R-specializable along H and
 t,�H 1C• = H 1 t,�C

•, and �t,1H 1C• = H 1�t,1C
•.

Proof of Corollary 9.6.5 for the function t. The construction G of Theorem 9.6.3
gives a right inverse of the functor considered in Corollary 9.6.5, implying that the
latter is essentially surjective. That it is fully faithful now follows from Corollary
7.3.34.

9.6.d. The maximal extension along an arbitrary effective divisor

Definition 9.6.13. Let D be an arbitrary effective divisor in X and let M⇤ be eDX(⇤D)-
coherent and strictly R-specializable along D.

(1) If D = (g), where g : X ! C is a holomorphic function, set H = X ⇥ {0} ⇢

X ⇥ C. We say that M⇤ is maximalizable along (g) if M (",k)
⇤ is (g)-localizable for

every k and " 2 {0, 1} (see Definition 9.5.1).
(2) In general, we say that M⇤ is maximalizable along D if for each point xo 2 D

and some (or any) local equation g of D near xo, M⇤ is maximalizable along (g).

Proposition 9.6.14. Assume that M⇤ is maximalizable along D = (g). Set

⌅gM⇤ := lim
�!

k

Ker
�

M (0,k)
⇤ [!D]!M (1,k)

⇤ [⇤D](�1)
�

.

Then the analogues of Propositions 9.6.11 and 9.6.12 hold for ⌅gM⇤.

Sketch of proof. One first checks that the analogue of Proposition 9.6.9 holds, by
checking that it holds after applying D◆g⇤. This follows from the fact that the mor-
phisms ◆ and ◆_ behave well under D◆g⇤ (see Remarks 9.4.10 and 9.3.7). The remaining
part of the proof is done with similar arguments.

Remark 9.6.15. If we denote by ag, a
_
g , bg, b

_
g and at, a

_
t , bt, b

_
t the morphisms a, a_, b, b_

given by (9.6.2 !), (9.6.2 ⇤) and Proposition 9.6.11 respectively, we have at = D◆g⇤ag,
etc.

Proof of Theorem 9.6.3 and Corollary 9.6.5. Let us apply the exact functor D◆g⇤ to
(9.6.3 ⇤)g. Since M⇤ is maximalizable along D, this produces (9.6.3 ⇤)t, to which
we apply the theorem. Since H j

D◆g⇤(9.6.3 ⇤)g ' D◆g⇤H j(9.6.3 ⇤)t, we deduce the
theorem for (9.6.3 ⇤)g, and thus the functor of Corollary 9.6.5 is essentially surjective.
It is fully faithful because it is so when g = t and D◆g⇤ is fully faithful by Proposition
7.6.2.
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Proposition 9.6.16 (Recovering �g,1 from localization and maximalization)
Let M be as above and set M⇤ = M (⇤D). Then the complex

(9.6.16 ⇤) �•
gM :=

n

M⇤[!g]
a� ◆
�����! ⌅gM⇤ �M

a_
� ◆_

�������!M⇤[⇤g]
o

satisfies H k�•
gM = 0 for k 6= 1 and H 1�•

gM ' �g,1M .

Proof. We first consider the case of X = H ⇥ eC and g = t. Injectivity of a� ◆ follows
from that of a, and surjectivity of a_

� ◆_ follows form that of a_. Since, for every
� 2 S1,  t,�a and  t,�a

_ are isomorphisms inverse one to the other, and the same
property holds for  t,�◆ and  t,�◆

_, it follows that  t,��
•
tM ' 0. On the other hand,

the complex �t,1�•
tM is isomorphic to the complex

0 //  t,1M //  t,1M �  t,1M (�1)� �t,1M //  t,1M (�1) // 0

e � // (e, 0, can e)

(e, n, ") � // Ne+ n� var "

so H 1�t,1�
•
tM ' ( t,1M � �t,1M )/ Im(Id� can), and therefore the projection

 t,1M � �t,1M ! �t,1M induces an isomorphism H 1�t,1�
•
tM

⇠
�! �t,1M . As a

consequence of Corollary 7.3.41, the cohomology ot complex �•
tM is strictly R-specia-

lizable along H and in particular �t,1H 1�•
tM 'H 1�t,1�

•
tM . The first part of the

proof also shows that H 1�•
tM ' �t,1H 1�•

tM , so H 1�•
tM ' �t,1M .

The general case is obtained by using the exactness of D◆g⇤.

9.7. Good behaviour of localizability and maximalizability by pushforward

Let us keep the notation and assumptions of Corollary 7.8.6.

Corollary 9.7.1.

(1) Assume moreover that M is localizable along (g). Then H i
Df⇤M are so

along (g0) for all i, we have (H i
Df⇤M )[?g0] ' H i

Df⇤(M [?g]) (? = ⇤, !) and the
morphisms ◆, ◆_ behave well under H i

Df⇤.
(2) Assume moreover that M is maximalizable along (g). Then H i

Df⇤M are so
along (g0) for all i, we have ⌅g0(H i

Df⇤M ) 'H i
Df⇤(⌅gM ), and the exact sequences

(9.6.2 !) and (9.6.2 ⇤) behave well under H i
Df⇤.

Proof.

(1) Assume first that f takes the form fH ⇥ Id : H ⇥�t ! H 0
⇥�t. Then from

Theorem 7.8.5 one deduces that H i
Df⇤(M [?H]) satisfies the characteristic properties

9.3.4(8) or 9.4.2(4) for (H i
Df⇤M )[?H 0], so the statement holds in this case.
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For the general case, we note that we have a cartesian diagram

X

f
✏✏

� � ◆g // X ⇥�t

f ⇥ Id
✏✏

X 0 � � ◆g
0
// X 0
⇥�t

and we set H = X ⇥ {0}, H 0 = X 0
⇥ {0}. Then

(H i
D(f ⇥ Id)⇤M )[?H 0] 'H i

D(f ⇥ Id)⇤
�

(D◆g⇤M )[?H]
�

'H i
D(f ⇥ Id)⇤

�

D◆g⇤(M [?g])
�

' D◆g0⇤(H
i
Df⇤(M [?g])),

and the assertion holds according to the first case.
(2) Let us indicate the proof in the case where f = fH⇥Id, as above. We first notice

that H i
Df⇤(M (",k)) ' (H i

Df⇤M )(",k), and since f is proper, we can locally on X 0

choose k big enough so that the limits involved are already obtained for k. Let us
denote by 'k the morphism M (0,k)[!H]!M (1,k)[⇤H]. We have a natural morphism
H i

Df⇤ Ker'k ! KerH i
Df⇤'k and, according to (1), it induces a morphism between

sequences

H i
Df⇤

�

(9.6.11 !)(M )
�

�! (9.6.11 !)(H i
Df⇤M ),

H i
Df⇤

�

(9.6.11 ⇤)(M )
�

�! (9.6.11 ⇤)(H i
Df⇤M ).

The right-hand sequences are short exact, while the left-hand ones are a priori only
exact in the middle. Moreover, the extreme morphisms between these sequences are
isomorphisms, by the previous results. Let us show that the left-hand sequences are
indeed short exact and that the morphisms (in the middle) are isomorphisms. We
will treat (9.6.11 !) for example. The composed (diagonal) morphism

H i
Df⇤(M [!H])

H i
Df⇤a

//

))

o

✏✏

H i
Df⇤⌅g(M )

✏✏

(H i
Df⇤M )[!H 0] �

� a // ⌅g0H i
Df⇤M

is injective by assumption, hence so is H i
Df⇤a, and by applying this with i + 1,

we find that H i
Df⇤⌅g(M ) ! H i

Df⇤( t,1M ) is onto, so that the sequence
H i

Df⇤
�

(9.6.11 !)(M )
�

is short exact. Now, it is clear that it is isomorphic to
(9.6.11 !)(H i

Df⇤M ).

9.8. Comments

Here come the references to the existing work which has been the source of inspi-
ration for this chapter.




