
CHAPTER 8

SPECIALIZATION OF FILTERED D-MODULES

Summary. In this chapter, we take up the notion of specialization and the
compatibility property with proper pushforward for filtered DX -modules. Com-
pared with the approach of Sections 7.3–7.8, we insist in keeping the strictness
property, that is, we only work with filtered DX -modules, not graded modules
over the Rees ring RFDX . We will compare the two approaches in Section 8.8.

8.1. Introduction

One can introduce the notion of filtered D-module by keeping the data of the
D-module and its filtration. The advantage is to keep a hand on the filtration at
each step. The main goal of this chapter is to give a proof of the criterion given in
Theorem 7.8.5 from this point of view. One should be careful since the category is
not abelian anymore. As a consequence, dealing with derived categories, as needed
when considering pushforward, needs some care, as well as strictness for bi-filtered
complexes.

On the way, we will introduce the notion of compatible filtrations, which will be
important in Chapter 11. The comparison between the present approach and that
of Chapter 7 will be done in Section 8.8. Of particular interest is the property that,
for a strict graded RFDX -module, strict R-specializability along a smooth divisor H

implies a regularity property, which has not been emphasized up to now, but which is
essential for the approach in this chapter. In particular, the approach of Section 7.8
does not give as a result the strictness of the pushforward, only its strict specializabil-
ity. We will show in Section 8.8 how to recover strictness properties from this point of
view. On the other hand, the advantage of the approach of Section 7.8 is to allow gen-
eralization to cases where the regularity property is not fulfilled (twistor D-modules),
since strictness is not used for proving Theorem 7.8.5, only strict specializability is
used. Lastly, localization and maximalization also have a natural formalism in the
framework of graded RFDX -module. We will not take up the corresponding formalism
in the setting of filtered DX -modules.
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8.2. Strict and bistrict complexes

In this section we review the definition and basic properties of strictness for filtered
and bi-filtered complexes. We will consider the case of several filtrations in Section 8.3.
In particular, when dealing with at least three filtrations, an important role is played
by the compatibility condition on filtrations. However, this condition does not arise
when dealing with one or two filtrations and the strictness condition on complexes is
also very easy to treat directly.

Convention 8.2.1. We work in an abelian category A in which all filtered direct limits
exist and are exact. Given an object A in this category, we only consider increasing
filtrations F•A that are indexed by Z and satisfy lim

�!

k
FkA = A. We write a filtered

object in A as (A,F ), where F = (FkA)k2Z.

Note that if (A,F ) is a filtered object, then a subobject B of A carries the induced
filtration (FkA \ B)k2Z, while a quotient object A/A0 carries the induced filtration
((FkA + A0)/A0)k2Z. It is easy to see that the two possible induced filtrations on a
subquotient B/A0 of A agree.

Definition 8.2.2 (Strictness of filtered complexes). Consider a complex (C•, F ) of filtered
objects in A. This is a strict complex if all morphisms d : Ci

! Ci+1 are strict, in the
sense that the isomorphism Coim(d) ! Im(d) is an isomorphism of filtered objects,
that is, we have

d(FkC
i) = FkC

i+1

\ d(Ci) for all k, i 2 Z.

Exercise 8.2.3. Show that a complex (C•, F ) which is bounded from above is strict
if and only if the associated Rees complex RFC

• is strict in the sense of Definition
A.2.7.

Exercise 8.2.4. Show that (C•, F ) is strict if and only if the canonical morphism
H i(FkC

•)!H i(C•) is a monomorphism for all k, i 2 Z.

Exercise 8.2.5. By considering the long exact sequence in cohomology for the exact
sequence

0 �! FkC
•
�! C

•
�! C

•
/FkC

•
�! 0,

show that if (C•, F ) is strict, then for every i and k we have a short exact sequence

0 �!H i(FkC
•
) �!H i(C

•
) �!H i(C

•
/FkC

•
) �! 0.

Furthermore, show also that the map H i(FkC
•) ! H i(F`C

•) is a monomorphism
for every k<`, by considering the long exact sequence in cohomology corresponding to

0 �! FkC
•
�! F`C

•
�! F`C

•
/FkC

•
�! 0,

and obtain a short exact sequence

0 �!H i(FkC
•
) �!H i(F`C

•
) �!H i(F`C

•
/FkC

•
) �! 0

for every i 2 Z.
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Exercise 8.2.6. Show that if (C•, F ) is a strict complex, then for every k 2 Z, the
complexes (FkC

•, F ) and (C•/FkC
•, F ), with the induced filtrations, are strict. In

particular, using the second complex and Exercise 8.2.5, deduce that for every k <

` < m and every i, we have short exact sequences

0 �!H i (F`C
•
/FkC

•
) �!H i (C

•
/FkC

•
) �!H i (C

•
/F`C

•
) �! 0

and

0 �!H i (F`C
•
/FkC

•
) �!H i (FmC

•
/FkC

•
) �!H i (FmC

•
/F`C

•
) �! 0.

Exercise 8.2.7. Show that the complex (C•, F ) is strict if and only if all canonical
morphisms H i(FkC

•) ! H i(Fk+1

C•) are monomorphisms. [Hint : It is clear that
this condition is necessary; prove sufficiency by showing that the condition implies that
H i(FkC

•) ! H i(F`C
•) is a monomorphism for every k < `; use the exhaustivity

of the filtration and the exactness of filtering direct limits to prove that H i(C•) '

lim
�!

`
H i(F`C

•).]

We will be interested in complexes of bi-filtered objects in A. These are objects
of A carrying two filtrations (A,F 0, F 00). We write

(8.2.8) F 0
kF

00
` A := F 0

kA \ F 00
` A.

The morphisms in this case are required to be compatible with each of the two filtra-
tions.

Definition 8.2.9. Let (C•, F 0, F 00) be a complex of bi-filtered objects. We say that the
complex is strict (or bistrict, if we want to emphasize the fact that we consider two
filtrations) if for every i, p, and q, the natural maps in the commutative square

H i(F 0
kF

00
` C

•) //

✏✏

H i(F 0
kC

•)

✏✏

H i(F 00
` C

•) // H i(C•)

are injective, and furthermore, the square is Cartesian, that is, H i(F 0
kF

00
` C

•) =

H i(F 0
kC

•) \H i(F 00
` C

•).

Remark 8.2.10. It follows from Remark 8.2.4 that (C•, F 0, F 00) is strict if and only if
all canonical morphisms

H i(F 0
kC

•
) �! F 0

kH
i(C

•
), H i(F 00

` C
•
) �! F 00

` H i(C•),

H i(F 0
kF

00
` C

•
) �! F 0

kF
00
` H i(C

•
)and

are isomorphisms.

Lemma 8.2.11. If (C•, F 0, F 00) is a strict complex of bi-filtered objects, then the com-
plexes (C•, F 0) and (F 0

kC
•, F 00) are strict for every k 2 Z. In particular, we have a

short exact sequence

0 �!H i(F 0
kF

00
` C

•
) �!H i(F 0

kF
00
mC

•
) �!H i (F 0

k(F
00
mC

•
/F 00

` C
•
)) �! 0
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for every ` < m and every i. Furthermore, for every k, every ` < m < n, and every i,
we have short exact sequences

0!H i
⇣

F 0
k(F

00
mC

•
/F 00

` C
•
)
⌘

�!H i
⇣

F 0
k(C

•
/F 00

` C
•
)
⌘

�!H i
⇣

F 0
k(C

•
/F 00

mC
•
)
⌘

! 0

and

0!H i
⇣

F 0
k(F

00
mC

•
/F 00

` C
•
)
⌘

�!H i
⇣

F 0
k(F

00
nC

•
/F 00

` C
•
)
⌘

�!H i
⇣

F 0
k(F

00
nC

•
/F 00

mC
•
)
⌘

! 0.

Proof. The first assertion is an immediate consequence of the definition, while the
exact sequences follow from the strictness of (F 0

kC
•, F 00), using Remarks 8.2.5 and

8.2.6.

Lemma 8.2.12. If (C•, F 0, F 00) is a strict complex of bi-filtered objects, then for
every k < q, the complex (F 00

k C
•/F 00

` C
•, F 0) is strict. In particular, each complex

(grF
00

k (C•), F 0) is strict.

Proof. It follows from Lemma 8.2.11 that for every s and i, in the following commu-
tative diagram

0 // H i(F 0
mF 00

k C
•) //

u
✏✏

H i(F 0
mF 00

` C
•)

v
✏✏

// H i
⇣

F 0
m(F 00

` C
•/F 00

k C
•)
⌘

w
✏✏

// 0

0 // H i(F 00
k C

•) // H i(F 00
` C

•) // H i (F 00
` C

•/F 00
k C

•)) // 0

the rows are exact. Furthermore, since (C•, F 0, F 00) is a strict complex, it follows that
u and v are injective and the left square is Cartesian (this follows by describing all
the objects that appear in that square as subobjects of H i(C•)). This implies that w
is injective, hence (F 00

` C
•/F 00

k C
•, F 0) is a strict complex.

8.3. Compatible filtrations and strictness

We keep Convention 8.2.1.

8.3.a. Compatible filtrations. Suppose that A is an object of our category A, and
A

1

, . . . , An ✓ A are finitely many subobjects. When n = 1, we have a short exact
sequence of the form

A
1

�! A �! ⇤



8.3. COMPATIBLE FILTRATIONS AND STRICTNESS 161

where ⇤ is of course just an abbreviation for the quotient A/A
1

. When n = 2, we
similarly have a commutative diagram of the form

⇤

//
⇤

//
⇤

A
2

//

OO

A //

OO

⇤

OO

⇤

//

OO

A
1

//

OO

⇤

OO

in which all rows and all columns are short exact sequences. (For example, the entry
in the upper-right corner is A/(A

1

+A
2

), the entry in the lower-left corner A
1

\A
2

.)
Once n > 3, such a diagram no longer exists in general; if it does exist, one says that
A

1

, . . . , An are compatible subobjects of A. More precisely, the condition is the fol-
lowing: there should exist an n-dimensional commutative diagram C(A

1

, . . . , An;A),
consisting of 3n objects placed at the points {�1, 0, 1}n and 2n · 3n�1 morphisms
corresponding to the line segments connecting those points, such that A sits at the
point (0, . . . , 0), each Ai sits at the point (0, . . . ,�1, . . . , 0) on the i-th coordinate axis,
and all lines parallel to the coordinate axes form short exact sequences in the abelian
category. It is easy to see that the objects at points in {�1, 0}n are just intersections:
if the i-th coordinate of such a point is �1 for i 2 I ⇢ {1, . . . , n} and 0 for i 62 I, then
the exactness of the diagram forces the corresponding object to be

T

i2I

Ai,

with the convention that the intersection equals A when I is empty. In particular,
the object A

1

\ · · · \An always sits at the point with coordinates (�1, . . . ,�1).
On the other hand, given a subset I ⇢ {1, . . . , n}, fixing the coordinate "oi 2

{�1, 0, 1} for every i 2 I produces a sub-diagram of size n�#I, hence n�#I com-
patible sub-objects of the term placed at ("oi2I , 0i/2I), that we denote by A("oi2I , 0i/2I).
For example, fixing "oi = 0 shows that the sub-family (Ai)i/2I is a compatible family.

Exercise 8.3.1. Show similarly that the object A(1i2I , 0i/2I) is equal to A/
P

i2I Ai.

As another example, fix "on = �1. Then the induced family (Ai \ An)i2{0,...,n�1}
of sub-objects of An is also compatible.

As still another example, let us fix "on = 1. We have an exact sequence

An = A(0, . . . , 0,�1) �! A = A(0, . . . , 0) �! A/An = A(0, . . . , 0, 1).

Our new diagram has central term A/An and the term placed at (0, . . . , (�1)i, . . . , 0, 1)
is Ai/Ai \ An. This means that the induced family (Ai/Ai \ An)i2{0,...,n�1} is also
compatible.

In the definition of compatibility, the object A does not play a relevant role and
one can replace it by a sub-object provided that all Ai are contained in it. Similarly
one can replace it by a sup-object. This is shown in the exercise below.
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Exercise 8.3.2.

(1) Let A
1

, . . . , An ⇢ A be a compatible family of sub-objects of A and let B � A.
Show that A

1

, . . . , An, A is a compatible family in B (in particular, A
1

, . . . , An is a
compatible family in B). [Hint : note first that, for " = ("

1

, . . . , "n) with "i > 0 forall i,
A surjects to A(") and set A(") = A/I("), with I(0) = 0; define then B(", "n+1

) by

B(",�1) = A(") 8 ",

B(", 0) =

(

A(") if 9 i, "i = �1,
B/I(") if 8 i, "i > 0,

B(", 1) =

(

0 if 9 i, "i = �1,
B/A if 8 i, "i > 0;

check the exactness of sequences like B(�1, "0, 0)! B(0, "0, 0)! B(1, "0, 0).]
(2) Let A

1

, . . . , An ⇢ A be a family of sub-objects of A which is compatible in B,
for some B � A. Then this family is compatible in A. [Hint : set A(") = B(") if
"i = �1 for some i, and if "i > 0 for all i, set A(") = A/I("), where B(") = B/I(")

and show first that I(") ⇢
P

i Ai by using Exercise 8.3.1.]
(3) Let A

0

, A
1

, . . . , An ⇢ A be a family of sub-objects of A. Assume that
A

1

, . . . , An�1

⇢ An. Show that the family A
0

, A
1

, . . . , An is compatible if and only
if the family A

0

\ An, A1

, . . . , An of sub-objects of An is compatible. [Hint : if the
diagram C(A

0

, . . . , An;A) exists, there should be an exact sequence

0! C(A
0

\An, . . . , An;An)! C(A
0

, . . . , An;A)! C
⇣ A

0

A
0

\An
, 0, . . . , 0;

A

An

⌘

! 0,

corresponding to exact sequences

0 �! A("
0

, "0,�1) �! A("
0

, "0, 0) �! A("
0

, "0, 1);

show that A("
0

, "0, 1) = 0 if "0i = �1 for some i = 1, . . . , n� 1; set thus A("
0

, "0, 0) :=

A("
0

, "0,�1) for such an "0; to determine A("
0

, "0, 0) for "0i > 0 for all i, use Exercise
8.3.1 if "

0

> 0 and deduce the case "
0

= �1; end by checking that all possibly exact
sequences are indeed exact.]

Lemma 8.3.3. Let A
1

, . . . , An ⇢ A be a family of sub-objects of A. Assume the follow-
ing properties:

(1) A
1

⇢ A
2

.
(2) Both sub-families A

1

, A
3

, . . . , An and A
2

, A
3

, . . . , An are compatible.
Then the family A

1

, . . . , An is compatible. Moreover, the family (Ai \A
2

)/(Ai \A
1

)

(i = 3, . . . , n) of sub-objects of A
2

/A
1

is also compatible.

Proof. We wish to define a diagram with vertices A("
1

, "
2

, . . . , "n) ("i 2 {�1, 0, 1})
satisfying the properties above. The second assumption means that we have the
diagrams with vertices A("

1

, 0, "
3

, . . . , "n) and A(0, "
2

, . . . , "n). On the other hand,
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if the diagram we search for exists, the inclusion A
1

\ A
2

= A
1

⇢ A
2

is satisfied for
all terms of the diagram, namely

(8.3.4) A(�1,�1, ">3

) = A(�1, 0, ">3

) ⇢ A(0,�1, ">3

).

We are thus forced to set
A(1,�1, ">3

) := A(0,�1, ">3

)/A(�1,�1, ">3

)

A(1, 1, ">3

) := A(0, 1, ">3

).
(8.3.5)

In such a way, we obtain a commutative diagram where the columns are exact se-
quences (by assumption for the middle one, by our setting for the left and right ones),
as well as the middle horizontal line

(8.3.6)

A(1,�1, ">3

) // A(1, 0, ">3

) // A(1, 1, ">3

)

A(0,�1, ">3

)

OOOO

� � // A(0, 0, ">3

)

OOOO

// // A(0, 1, ">3

)

A(�1,�1, ">3

)
?�

OO

A(�1, 0, ">3

)
?�

OO

// A(�1, 1, ">3

) = 0

OO

It is then easy to check that the upper horizontal line is exact. This shows that, in the
diagram of size n, the lines where "

1

varies in {�1, 0, 1} and all other "i fixed, as well
as the lines where "

2

varies and all other "i are fixed, are exact. Let us now vary "
3

,
say, by fixing all other "i and let us omit "i for i > 4 in the notation. From the
diagram above, we see that the only possibly non-obvious exact sequence has terms
A(1,�1, "

3

)"3=�1,0,1. We now consider the commutative diagram where the columns
are exact and only the upper horizontal line is possibly non-exact:

(8.3.7)

A(1,�1,�1) // A(1,�1, 0) // A(1,�1, 1)

A(0,�1,�1)

OOOO

� � // A(0,�1, 0)

OOOO

// // A(0,�1, 1)

OOOO

A(�1,�1,�1)
?�

OO

� � // A(�1,�1, 0)
?�

OO

// // A(�1,�1, 1)
?�

OO

But the snake lemma shows its exactness. We conclude that the family A
1

, A
2

, . . . , An

is compatible. We now remark that

A
2

/A
1

= A
2

/(A
1

\A
2

) = A(1,�1, 0, . . . , 0).

The compatibility of the family (Ai \ A
2

/Ai \ A
1

)i=3,...,n will be proved if we prove
(A

3

\A
2

)/(A
3

\A
1

) = A(1,�1,�1, 0, . . . , 0), and similarly for i > 4. Let us consider
the previous diagram when fixing "i = 0 for i > 4. The left vertical inclusion reads
A

1

\A
2

\A
3

,! A
2

\A
3

, hence the desired equality.

The previous lemma can be taken the other way round, which can be used for an
inductive construction of compatible families.
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Lemma 8.3.8. Let A
1

, . . . , An ⇢ A be a family of sub-objects of A. Assume the follow-
ing properties:

(1) A
1

⇢ A
2

.
(2) Both families A

1

, A
3

, . . . , An in A and A
2

/A
1

, A
3

/(A
3

\A
1

), . . . , An/(An\A1

)

in A/A
1

are compatible.
Then the family A

1

, A
2

, . . . , An is compatible in A.

Proof. We argue as in Lemma 8.3.3, from which we keep the notation. We have the
diagrams of exact sequences with A("

1

, 0, ">3

) and A(1, "
2

, ">3

). We must also have
(8.3.4). It remains to determine A(0, "

2

, ">3

) and check that the sequences, when "i
varies in {�1, 0, 1} and all other "j fixed, are exact. We know A(0, 0, ">3

), and as for
(8.3.5), we must set

A(0, 1, ">3

) := A(1, 1, ">3

),

the latter term being known. We then search for a diagram similar to (8.3.6):

(8.3.9)

A(1,�1, ">3

) �
�
// A(1, 0, ">3

) // // A(1, 1, ">3

)

A(0,�1, ">3

)?

OO

a // A(0, 0, ">3

)

OOOO

b // A(0, 1, ">3

)

A(�1,�1, ">3

)

OO

A(�1, 0, ">3

)
?�

OO

// A(�1, 1, ">3

) = 0

OO

where A(0,�1, ">3

) has to be chosen so that the left column is exact (the other
ones being so), and we must then show that the middle line is exact (the other ones
being so). Clearly b is onto, so we are forced to set A(0,�1, ">3

) = Ker b. The
exactness of the left column is then left as an exercise. We now vary "

3

, say, and
consider the corresponding sequences. The only possibly non-exact ones have "

1

= 0

and we are left to examining the diagram

(8.3.10)

A(0, 1,�1)
� � // A(0, 1, 0) // // A(0, 1, 1)

A(0, 0,�1)

OOOO

� � // A(0, 0, 0)

OOOO

// // A(0, 0, 1)

OOOO

A(0,�1,�1)
?�

OO

// A(0,�1, 0)
?�

OO

// A(0,�1, 1)
?�

OO

By the exactness of the middle line in (8.3.9), all columns are exact, and by assumption
the middle line is exact. On the other hand, the upper line is identified with the similar
line with "

1

= 1, so is exact. Therefore, the lower line is also exact.

Definition 8.3.11 (Compatible filtrations). Given finitely many increasing filtrations
F 1

• A, . . . , F
n
• A of an object A in the abelian category, we call them compatible if

F 1

k1
A, . . . , Fn

kn
A ✓ A

are compatible sub-objects for every choice of k
1

, . . . , kn 2 Z.
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Remark 8.3.12.

(1) As a consequence of our previous remarks, any sub-family of filtrations of a
compatible family remains compatible. Moreover, by Lemma 8.3.3, any finite family
of sub-objects consisting of terms of the filtrations F 1

• A, . . . , Fn
• A is compatible, and

the last assertion of this lemma implies that the induced filtrations F 1

• , . . . , F
n�1

• on
each grF

n

` A are compatible.
(2) Let B = F 1

j1
\ · · · \ Fn

jn
for some j

1

, . . . , jn. Then the family of filtrations
F 1

• B, . . . , Fn
• B naturally induced on B is compatible, as follows from the compatibil-

ity of the family of 2n sub-objects F 1

k1
A, . . . , Fn

kn
A,F 1

j1
A, . . . , Fn

jn
A and that of the

induced family on B.

8.3.b. Reformulation in terms of flatness. Let A be an object with n filtrations
F 1

• A, . . . , F
n
• A. As usual, we can pass from filtered to graded objects by the Rees

construction. Let R = C[z
1

, . . . , zn] denote the polynomial ring in n variables, with
the Zn-grading that gives zi the weight ei = (0, . . . , 1, . . . , 0). For k 2 Zn, we define

Mk = Mk1,...,kn = F 1

k1
A \ · · · \ Fn

kn
A ✓ A.

We then obtain a Zn-graded module M over the ring R by taking the direct sum

RF 1,...,FnA := M =
L

k2Zn

Mk,

with the obvious Zn-grading: for m 2Mk, the product zim is simply the image of m
under the inclusion Mk ✓ Mk+ei . From now on, we use the term “graded” to mean
“Zn-graded”.

Theorem 8.3.13. A graded R-module comes from an object with n compatible filtrations
if and only if it is flat over R.

Before giving the proof, we recall a few general facts about flatness. For any
commutative ring R, flatness of an R-module M is equivalent to the condition that

TorR
1

(M,R/I) = 0

for every finitely generated ideal I ✓ R; when R is Noetherian, it is enough to check
this for all prime ideals P ✓ R. In our setting, the ring R is graded, and by a similar
argument as in the ungraded case, flatness is equivalent to

TorR
1

(M,R/P ) = 0

for every graded prime ideal P ✓ R. Of course, there are only finitely many graded
prime ideals in R = C[z

1

, . . . , zn], namely those that are generated by the 2n possible
subsets of the set {z

1

, . . . , zn}. Moreover, the quotient R/P always has a canonical
free resolution given by the Koszul complex.
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Example 8.3.14. For n = 1, a graded R-module M is flat if and only if z
1

: M ! M

is injective. For n = 2, a graded R-module M is flat if and only if z
1

: M ! M and
z
2

: M !M are both injective and the Koszul complex

M
(�z

2

, z
1

)
��������!M �M

z
1

• + z
2

•
��������!M

is exact in the middle. (Here we are ignoring the grading in the notation.) The Koszul
complex is just the simple complex associated to the double complex

M
z
1 // M

M
z
1 //

z
2

OO

M

z
2

OO

with Deligne’s sign conventions. The exactness of the Koszul complex in the middle
can be read on each graded term as Mk1�1,k2

\Mk1,k2�1

= Mk1�1,k2�1

. In this way, it
is clear that two filtrations give rise to a flat R-module, illustrating thereby Theorem
8.3.13.

Exercise 8.3.15 (Applications of the flatness criterion).
(1) Let A be an object with n compatible filtrations F 1

• A, . . . , Fn
• A. Show that

any family of filtrations G1

•A, . . . , Gm
• A where each Gi

•A is obtained by convolution
of some of the filtrations F j

• A, i.e.,

Gi
pA =

X

q1+···+qk=p

F j1
q1 A+ · · ·+ F jk

qk
A,

(also denoted by Gi
•A = F j1

• A? · · ·?F j1
• A) is also a compatible family. [Hint : express

the Rees module Ri
GA as obtained by base change from RF j1 ,...,F jkA and, more

generally express RG1,...,GmA as obtained by base change from RF 1,...,FnA; conclude
by using that flatness is preserved by base change.]

(2) Let F 1

• A, . . . , Fn
• A be filtrations on A. Let B be a sub-object of A and let F i

•B

and F i
•(A/B) be the induced filtrations. Assume that

(a) the families (F i
•B)i and (F i

•(A/B))i are compatible,
(b) for all k

1

, . . . , kn, the following sequence is exact:

0 �!
n
T

i=1

F i
ki
B �!

n
T

i=1

F i
ki
A �!

n
T

i=1

F i
ki
(A/B) �! 0.

Then the family (F i
•A)i is compatible. [Hint : show that there is an exact sequence

of the associated Rees modules, and use that flatness of the extreme terms implies
flatness of the middle term.]

Exactness of the Koszul complex is closely related to the concept of regular se-
quences. Recall that z

1

, . . . , zn form a regular sequence on M if multiplication by z
1

is injective on M , multiplication by z
2

is injective on M/z
1

M , multiplication by z
3

is
injective on M/(z

1

, z
2

)M , and so on.
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Lemma 8.3.16. A graded R-module M is flat over R if and only if any permutation of
z
1

, . . . , zn is a regular sequence on M .

Proof. This is one of the basic properties of the Koszul complex. The point is that
multiplication by z

1

is injective on M if and only if the Koszul complex

M
z
1

���!M

is a resolution of M/z
1

M . If this is the case, multiplication by z
2

is injective on
M/z

1

M if and only if the Koszul complex

M
(�z

2

, z
1

)
��������!M �M

z
1

• + z
2

•
��������!M

is a resolution of M/(z
1

, z
2

)M , etc.

Proof of Theorem 8.3.13. Let us first show that if F 1

• A, . . . , Fn
• A are compatible filtra-

tions, then the associated Rees module M is flat over R. Because of the inherent sym-
metry, it is enough to prove that zn, . . . , z1 form a regular sequence on M . Because M

comes from a filtered object, multiplication by zn is injective and

M/znM =
L

k2Zn

Mk1,...,kn
/Mk1,...,kn�1,kn�1

.

This is now a Zn-graded module over the polynomial ring C[z
1

, . . . , zn�1

]. We re-
marked, after Definition 8.3.11, that for every ` 2 Z, the n � 1 induced filtrations
on

A` = grF
n

` A = Fn
` A/Fn

`�1

A

are still compatible, and that

F 1

k1
A` \ · · · \ Fn�1

kn�1
A` 'Mk1,··· ,kn�1,`/Mk1,...,kn�1,`�1

.

By induction, this implies that zn�1

, . . . , z
1

form a regular sequence on M/znM ,
which is what we wanted to show.

For the converse, suppose that M is now an arbitrary graded R-module that is flat
over R. We need to construct from M an object with n compatible filtrations. We
consider the graded components Mk as a directed system, indexed by k 2 Zn, with
morphisms given by multiplication by z

1

, . . . , zn; since M is flat, all these morphisms
are injective. Since we are working in an abelian category in which all filtered direct
limits exist and are exact, we can define

A = lim
�!

k2Zn

Mk.

If we hold the i-th index fixed, the resulting direct limit determines a subobject F i
ki
A,

and in fact an increasing filtration F i
•A. We can use the flatness of M to prove that

these n filtrations are compatible, and that

(8.3.17) Mk1,...,kn
= F 1

k1
A \ · · · \ Fn

kn
A,

as subobjects of A.
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Fix k, ` 2 Zn. Observe that because R is graded, the graded submodules
z`1
1

R, . . . , z`nn R are trivially compatible; in fact, the required n-dimensional commu-
tative diagram exists in the category of graded R-modules. If we tensor this diagram
by M , it remains exact everywhere, due to the fact that M is flat. Take the graded
piece of degree k + ` everywhere; for n = 2, for example, the result looks like this:

⇤

//
⇤

//
⇤

Mk1+`1,k2
//

OO

Mk1+`1,k2+`2
//

OO

⇤

OO

Mk1,k2
//

OO

Mk1,k2+`2
//

OO

⇤

OO

Apply the direct limit over ` 2 Zn; this operation preserves exactness. For n = 2, for
example, the resulting n-dimensional commutative diagram looks like this:

⇤

//
⇤

//
⇤

F 2

k2
A //

OO

A //

OO

⇤

OO

Mk1,k2
//

OO

F 1

k1
A //

OO

⇤

OO

The existence of such a diagram proves that F 1

k1
A, . . . , Fn

kn
A are compatible subob-

jects of A, and also that (8.3.17) holds.

Remark 8.3.18 (Interpretation of flatness in terms of multi-grading)
Lemma 8.3.16 has the following practical consequence: for compatible filtrations

F 1

• A, . . . , F
n
• A, the n-graded object obtained by inducing iteratively the filtrations

on the j-graded object grF
ij

kij
· · · grF

i1

ki1
A (j = 1, . . . , n) does not depend on the order

{i
1

, . . . , in} = {1, . . . , n}, and is equal to

F 1

k1
A \ · · · \ Fn

kn
A

P

j F
1

k1
A \ · · · \ F j

kj�1

A \ · · · \ Fn
kn
A

.

Remark 8.3.19 (Multi-filtered morphisms). Let (A, (F i
•A)i=1,...,n) and (B, (F i

•B)i=1,...,n)

be two multi-filtered objects in A and let ' : A ! B be a morphism compatible
with the filtrations. It induces various morphisms grF

ij

kij
· · · grF

i1

ki1
'. Assume that

the filtrations in A and in B are compatible. Then the source and the target of
these morphisms are independent of the order of multi-grading, as remarked above.
We claim that the morphisms grF

ij

kij
· · · grF

i1

ki1
' are also independent of the order of

multi-grading. Indeed, ' induces a graded morphism RF' : M ! N between the
associated Rees objects, and due to the compatibility assumption, we are led to
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checking that the restriction of RF' to M/(zki1
, . . . , zkij

)M is independent of the
order, which is clear.

Exercise 8.3.20. We keep the notation as in Lemma 8.3.16.
(1) Show that the sequence z

1

, . . . , zn is a regular sequence on M if and only if
for every k = 1, . . . , n, the Koszul complex K(z

1

, . . . , zk;M) is a graded resolution of
M/(z

1

, . . . , zk)M .
(2) Deduce that the following properties are equivalent:

(a) any permutation of z
1

, . . . , zn is a regular sequence on M ,
(b) any subsequence of z

1

, . . . , zn is a regular sequence on M ,
(c) for every subset J ⇢ {1, . . . , n} the Koszul complex K((zj)j2J ;M) is a

graded resolution of M/(zj)j2JM .

8.3.c. Flatness criterion. Under certain conditions on the graded R-module M ,
one can deduce flatness from the vanishing of the single R-module

TorR
1

�

M,R/(z
1

, . . . , zn)R
�

.

In the case of local rings, this kind of result is usually called the “local criterion for
flatness”. The simplest example is when M is finitely generated as an R-module,
which is to say that all the filtrations are bounded from below.

Proposition 8.3.21. If M is a finitely generated graded R-module, then the vanishing
of TorR

1

�

M,R/(z
1

, . . . , zn)R
�

implies that M is flat.

Proof. This is a general result in commutative algebra. To show what is going on, let
us give a direct proof in the case n = 2. By assumption, the Koszul complex

M
(�z

2

, z
1

)
��������!M �M

z
1

• + z
2

•
��������!M

is exact in the middle. It follows quite easily that multiplication by z
1

is injective.
Indeed, if there is an element m 2 Mi,j with z

1

m = 0, then the pair (m, 0) is in the
kernel of the differential (z

1

, z
2

), and therefore m = �z
2

m0 and 0 = z
1

m0 for some
m0
2 Mi,j�1

. Continuing in this way, we eventually arrive at the conclusion that
m = 0, because Mi,j = 0 for j ⌧ 0. For the same reason, multiplication by z

2

is
injective; but now we have checked the condition in the definition of flatness for all
graded prime ideals in R.

8.3.d. Strictness. Let A and B be two objects in our abelian category A, each
with n compatible filtrations F 1

• A, . . . , Fn
• A respectively F 1

• B, . . . , Fn
• B. Denote

by M and N the graded R-modules that are obtained by the Rees construction;
both are flat by Theorem 8.3.13. Now consider a filtered morphism ' : A ! B. It
induces an R-linear morphism RF' : M ! N between the two Rees modules.

Definition 8.3.22. We say that ' : A ! B is strict if CokerRF' is again a flat
R-module.
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Flatness of CokerRF' implies also that KerRF' and ImRF' are flat: the reason
is that we have two short exact sequences

0 �! KerRF' �!M �! ImRF' �! 0

0 �! ImRF' �! N �! CokerRF' �! 0,and

and because M and N are both flat, flatness of CokerRF' implies that of ImRF',
which implies that of KerRF'. Note that Ker' and Coker' are equipped with
filtrations F 1

• Ker', . . . , Fn
• Ker' respectively F 1

• Coker', . . . , Fn
• Coker' naturally

induced from those on A and B. If ' is strict, we have

KerRF' = RF Ker', ImRF' = RF Im', CokerRF' = RF Coker'.

Indeed, we know by Theorem 8.3.13 that the graded modules KerRF', ImRF' and
CokerRF' are attached to compatible filtrations, and (for Coker' for example) the
term in degree k 2 Zn is (F 1

k1
B \ · · · \ Fn

kn
B) + Im'/ Im', so that the compatible

filtrations on Coker' given by the theorem are nothing but the filtrations induced
by F i

•B.
For example, in the case of two filtrations F 0, F 00 as considered in Definition 8.2.9,

the last equality in bi-degree k, ` gives

F 0
kF

00
` B/'(F 0

kF
00
` A) = (F 0

kB + Im') \ (F 00
` B + Im')/ Im',

which corresponds to the condition of Definition 8.2.9.

Caveat 8.3.23. The strictness of ' implies that the induced filtrations (on Ker', Im'

and Coker') are compatible. However, the latter condition is not enough for strict-
ness. For example, two filtrations are always compatible, while a morphism between
bi-filtered objects need not be strict.

Example 8.3.24 (Strict inclusions). The composition of strict morphisms need not
be strict in general. However, the composition of strict monomorphisms i

1

, i
2

between objects with compatible filtrations remains a strict monomorphism since
CokerRF (i2 � i1) = Coker(RF i2 �RF i1) is an extension of CokerRF i2 by CokerRF i1,
and flatness is preserved by extensions.

Given n compatible filtrations F 1

• A, . . . , Fn
• A, they induce compatible filtrations

on Mk := F 1

k1
A \ · · · \ Fn

kn
A for every k = (k

1

, . . . , kn) 2 Zn (see Remark 8.3.12).
Moreover, for k 6 ` 2 Zn (i.e., ki 6 `i for all i = 1, . . . , n), the inclusion Mk ,! M`

is strict. Indeed, by the preliminary remark, it is enough to show that the inclusion
Mk�1i

,!Mk is strict for all i. This has been explained in the first part of the proof
of Theorem 8.3.13.

Lemma 8.3.25 (A criterion for strictness of inclusions). Let (A,F 0

• A,F 1

• A, . . . , Fn
• A)

and (B,F 0

• B,F 1

• B, . . . , Fn
• B) be multi-filtered objects of A and let ' be a multi-filtered

monomorphism between them. Assume the following properties:
(a) F 0

pB = 0 for p⌧ 0,
(b) ' is F i-strict for i = 0, 1, . . . , n (i.e., F i

pA = F i
pB \A),
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(c) for each p, the induced filtrations F 1, . . . , Fn on grF
0

p A, grF
0

p B are compatible
and grF

0

p ' : grF
0

p A! grF
0

p B is an n-strict monomorphism.

Then the filtrations F 1, . . . , Fn on A,B are compatible and ' is an n-strict
monomorphism.

Proof. We denote by F 0 the n-multi-filtration forgetting F 0 and by C the cokernel of
' : A ! B, equipped with the induced filtrations. By the second assumption, the
sequence

0 �! RF 0A �! RF 0B �! RF 0C

is exact, and we wish to complete it into a short exact sequence. By the same
assumption, Coker grF

0

p ' = grF
0

p C for every p. Then the third assumption says that
RF 0grF

0

p B ! RF 0grF
0

p C is an epimorphism for every p, and grF
0

p RF 0C is C[z
1

, . . . , zn]-
flat. Let us also note that RF 0grF

0

p = grF
0

p RF 0 .
By induction on p and because of the first assumption, we have a diagram where all

terms except possibly those of the middle line are C[z
1

, . . . , zn]-flat and all sequences
are exact:

0

✏✏

0

✏✏

0

✏✏

0 // F 0

p�1

RF 0A //

✏✏

F 0

p�1

RF 0B //

✏✏

F 0

p�1

RF 0C //

✏✏

0

0 // F 0

pRF 0A //

✏✏

F 0

pRF 0B //

✏✏

F 0

pRF 0C

✏✏

0 // grF
0

p RF 0A //

✏✏

grF
0

p RF 0B //

✏✏

grF
0

p RF 0C //

✏✏

0

0 0 0

It follows that all terms of the middle line are C[z
1

, . . . , zn]-flat, since flatness is
preserved by extensions, and the middle line can be completed as an exact sequence.
Taking the limit for p!1 implies that the sequence

0 �! RF 0A �! RF 0B �! RF 0C �! 0

is exact and all its terms are C[z
1

, . . . , zn]-flat.

If we have a complex of objects with n compatible filtrations and differentials
that preserve the filtrations, we consider the associated complex of flat graded R-
modules; if all of its cohomology modules are again flat over R, we say that the
original filtered complex is strict. At least if the complex is bounded from above, a
similar argument with short exact sequences proves that strictness of a complex is
equivalent to strictness of the individual differentials.
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8.4. Specializability of filtered DX-modules

In the remaining part of this chapter, we will work with right DX -modules, since
we are mainly interested in the pushforward theorem. Accordingly, we will consider
increasing V -filtrations.

We assume that X = H ⇥ �t, where �t is a disc with coordinate t and we set
X

0

= H ⇥ {0} ⇢ X. We use the notion of a coherent V -filtration for a coherent
DX -module M as defined in Section 7.3, as well as the notion of R-specializability.
Since we are dealing with DX -modules, the strictness property is not involved.

We now turn to R-specializability for filtered DX -modules. Suppose that (M, F )

is a coherent filtered DX -module (the coherence condition means that the grF (DX)-
module grFM := �mFmM/Fm�1

M is coherent). One says that (M, F ) is R-speciali-
zable along H if the following hold:

(a) M is R-specializable along H with V -filtration denoted by V•M.
(b) (FpV↵M) · t = FpV↵�1

M for all p 2 Z and ↵ < 0.
(c) (Fpgr

V
↵M) · @t = Fp+1

grV↵+1

M for all p 2 Z and ↵ > �1.
(We do not use the terminology “strictly R-specializable” since strictness is included

in the fact that we only consider filtered DX -modules.)
In the above, we have set FpV↵M := FpM \ V↵M as in (8.2.8), and Fpgr

V
↵M :=

FpV↵M/FpV<↵M. Note that, arguing as in Proposition 7.3.28, Condition (b) says that
multiplication by t induces an isomorphism FpV↵M ! FpV↵�1

M and Condition (c)
implies that multiplication by @t gives an isomorphism Fpgr

V
↵M ! Fp+1

grV↵+1

M.
Of course, the inclusions “✓” in (b) and (c) always hold for every ↵ 2 R. We also
note that each (grV↵M, F ) is a filtered DX0

-module.
As above, in the presence of a nonzero g 2 O(X), we consider the graph embedding

◆g : X ! X ⇥ A1

C. Given a filtered DX -module (M, F ) on X, we say that (M, F ) is
R-specializable along (g) if ◆g⇤(M, F ) is so along H ⇢ X ⇥A1

C. One can show that if
(g = 0) is smooth, then this condition holds if and only if (M, F ) is R-specializable
along (g) (see Exercise 7.3.31(4)).

8.5. Strictness criterion for complexes of filtered D-modules

8.5.a. Setup. Assume that X = H ⇥ �t and set X
0

= X ⇥ {0}. We consider a
bounded complex

· · · �!Mi�1

d
��!Mi d

��!Mi+1

�! · · ·

of DX -modules. We set X = H ⇥�t. We make the following assumptions:
(a) Each Mi has an increasing filtration F•M

i by OX -submodules, exhaustive,
locally bounded below, and compatible with the order filtration on DX .

(b) Each Mi has an increasing filtration V•M
i by OX -submodules, discretely in-

dexed by R, on which t and @t act in the usual way.
(c) The differentials d : Mi

!Mi+1 respect both filtrations F•M
i and V•M

i.
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(d) The OX -modules H i(FpV↵M
•) are coherent for every i, p 2 Z and ↵ 2 R.

(e) The morphism t : FpV↵M
i
! FpV↵�1

Mi is an isomorphism for i, p 2 Z and
↵ < 0.

(f) The morphism @t : Fpgr
V
↵M

i
! Fp+1

grV↵+1

Mi is an isomorphism for i, p 2 Z and
↵ > �1.

(g) For every ↵ 2 R, the operator t@t � ↵ acts nilpotently on H i(grV↵M
•).

(h) For every ↵ 2 [�1, 0], the complex grV↵M
•, with the induced differential and

the filtration induced by F•M
•, is strict.

(i) For every i 2 R, the Rees module
L

p2Z H i(FpM
•) is coherent over RFDX .

Let us denote by (M•, d) the resulting complex of graded modules over the ring
R = C[z, v]; here the z-variable goes with the filtration F•M

i, and the v-variable
with the filtration V•M

i. Since the latter is indexed by R, this needs a little bit of
care. Because we are dealing with a bounded complex, we can choose an increasing
sequence of real numbers ↵k 2 R, indexed by k 2 Z, such that all the jumps in the
filtrations V•M

b happen at some ↵k; we then define

M i
j,k = FjV↵k

Mi

for i, j, k 2 Z. This makes each

M i =
L

j,k2Z
M i

j,k

into a Z2-graded module over the ring R; since the differentials in the original complex
are compatible with both filtrations, they induce morphisms of graded R-modules
d : M i

!M i+1.

Theorem 8.5.1. The complex (M•, d), endowed with the two filtrations F•M
• and V•M

•,
is strict on an open neighborhood of X

0

.

In contrast with the analogous proposition 7.8.7, the proof we give here does not
use completions.

8.5.b. Proof of Theorem 8.5.1. Note first that each M i is a flat R-module. Using
the above definition of the complex (M•, d), we clearly have

(M
•
/yM

•
)j,k =

FjV↵k
M•

FjV↵k�1
M• = Fjgr

V
↵k
M

•
.

The condition in (h) has the following interpretation.

Lemma 8.5.2. All cohomology modules of the complex (M•/yM•, d) are flat over the
ring R/yR = C[x].

Proof. Together with (e) and (f), the condition in (h) says that the complex grV↵M
•

is strict for every ↵ 2 R. In terms of graded modules, this means that multiplication
by x is injective on the cohomology of the complex M•/yM•, which is equivalent to
flatness over the ring C[z].
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The next step in the proof involves a local argument, and so we fix a point x 2 X
0

and localize everything at x. Although we keep the same notation as above, in
the remainder of this section, each Mi is a DX,x-module, the condition in (d) reads
H i(FpV↵M

•) is a finitely generated OX,x-module, etc. With this convention in place,
consider the short exact sequence of complexes

0 �!M
•
�!M

•
�!M

•
/vM

•
�! 0,

in which the morphism from M• to M• is multiplication by v. (To keep the notation
simple, we are leaving out the change in the grading.) The resulting long exact
sequence in cohomology looks like this:

· · · �! Hi(M
•
) �! Hi(M

•
) �! Hi(M

•
/vM

•
) �! Hi+1(M

•
) �! Hi+1M

•
�! · · ·

The following result constitutes the heart of the proof.

Proposition 8.5.3. The connecting homomorphisms � : Hi(M•/vM•) ! Hi+1(M•) in
the long exact sequence are trivial.

Once we have proved the proposition, we will know that the multiplication mor-
phisms v : Hi(M•)! Hi(M•) are injective and that

Hi(M•)

vHi(M•)
' Hi(M

•
/vM

•
).

Together with Lemma 8.5.2, this will tell us that v, z is a regular sequence on Hi(M•),
which is two thirds of what we need to prove that Hi(M•) is a flat R-module.

In preparation for the proof, let us consider the graded pieces in a fixed bidegree
(j, k) in the long exact sequence; to simplify the notation, set p = j and ↵ = ↵k. We
then have the following commutative diagram with exact rows and columns:

H i+1(FpV�M
•)

✏✏

H i(Fpgr
V
↵M

•)
� //

"
))

H i+1(FpV<↵M
•) //

✏✏

H i+1(FpV↵M
•)

H i+1(FpV
(�,↵)M

•)

Here � < ↵, and the notation V
(�,↵)M

• is an abbreviation for V<↵M
•/V�M

•. We
observe that the morphism " is trivial because the source and the target have different
“weights” with respect to the action of the operator t@t.

Lemma 8.5.4. With notation as above, the morphism

" : H i(Fpgr
V
↵M

•
) �!H i+1(FpV

(�,↵)M
•
)

is trivial.
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Proof. We have a commutative diagram

H i(Fpgr
V
↵M

•)
" //

� _

✏✏

H i+1(FpV
(�,↵)M

•)
� _

✏✏

H i(grV↵M
•) // H i+1(V

(�,↵)M
•)

in which the two vertical morphisms are injective because of (h). Now the operator t@t
acts on the OX -module in the lower left corner with ↵ as its only eigenvalue, and on
the OX -module in the lower right corner with eigenvalues contained in the interval
(�,↵); this is a consequence of (g). Since the bottom arrow is compatible with the
action of t@t, it must be zero; but then " is also zero.

We conclude from the lemma that the image of

� : H i(Fpgr
V
↵M

•
)!H i+1(FpV<↵M

•
)

is contained in the intersection
T

�<↵

Im
⇣

H i+1(FpV�M
•
)!H i+1(FpV<↵M

•
)
⌘

We can now use (e) and Krull’s intersection theorem to prove that this intersection
is trivial (in the local ring OX,x).

Lemma 8.5.5. We have
T

�<↵

Im
⇣

H i(FpV�M
•
)!H i(FpV↵M

•
)
⌘

= {0}.

Proof. Consider the following commutative diagram:

FpV�M
i�1

d //
� _

✏✏

FpV�M
i d //

� _

✏✏

FpV�M
i+1

� _

✏✏

FpV↵M
i�1

d // FpV↵M
i d // FpV↵M

i+1

Suppose that we have an element m 2 FpV↵M
i with dm = 0 that belongs to the

image of H i(FpV�M
•). Then

m = dm
0

+m
1

for some m
0

2 FpV↵M
i�1 and some m

1

2 FpV�M
i. Now if � < �1, then by (e), we

have m
1

= m
2

t for a unique m
2

2 FpV�+1

Mi. Since multiplication by t is injective
on FpV�+1

Mi+1, the fact that dm
1

= 0 implies that dm
2

= 0. As long as � + 1 6 ↵,
we also have

m
2

t 2 (FpV�+1

Mi) · t ✓ (FpV↵M
i) · t,

and therefore m 2 d(FpV↵M
i�1)+ (FpV↵M

i) · t. By this type of argument, one shows
more generally that

T

�<↵

Im
⇣

H i(FpV�M
•
)!H i(FpV↵M

•
)
⌘

✓

T

m2N
H i(FpV↵M

•
) · tm.
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Since H i(FpV↵M
•) is finitely generated as an OX,x-module by (d), Krull’s intersec-

tion theorem implies that the right-hand side is equal to zero.

The conclusion is that � = 0, and hence that v, z form a regular sequence on
Hi(M•). Together with the following result, this proves that Hi(M•) is flat as an
R-module.

Lemma 8.5.6. The morphism z : Hi(M•)! Hi(M•) is injective.

Proof. Since v, z form a regular sequence on Hi(M•), the corresponding Koszul com-
plex is exact. By the same argument as in the proof of Proposition 8.3.21, every
element in the kernel of z : Hi(M•) ! Hi(M•) can be written as v times another
element in the kernel; consequently,

Ker
⇣

z : Hi(M
•
)! Hi(M

•
)
⌘

✓

T

m>1

vmHi(M
•
).

Looking at a fixed bidegree (j, k) and setting p = j and ↵ = ↵k as above, the right-
hand side equals

T

�<↵

Im
⇣

H i(FpV�M
•
)!H i(FpV↵M

•
)
⌘

,

which is equal to zero by Lemma 8.5.5.

In summary, we have shown that for every point x 2 X
0

, the localization of the
complex (M•, d) is strict (as a complex of DX,x-modules with two filtrations). Now it
remains to prove that the complex (M•, d) is strict on an open neighborhood of X

0

,
using the coherence condition in (i). This will end the proof of Theorem 8.5.1.

Lemma 8.5.7. If (M•, F, V ) is a complex of bi-filtered DX-modules whose restriction
to X

0

is strict and which satisfies the following two conditions:
(1) for every j, the RFDX-module �p2ZH j(FpM

•) is coherent;
(2) we have H j(FpM

•) = 0 for |j|� 0 and all p.
Then (M•, F, V ) is strict in a neighborhood of X

0

.

Proof. Note that over XrX
0

we have V↵DX = DX for every ↵. Since
S

↵ V↵M = M,
it is easy to deduce that over this open subset, V↵M = M for every ↵. Therefore
(M•, F, V ) is strict over an open subset U ✓ X rX

0

if and only if (M•, F ) is strict
over U .

By assumption, (M•, F, V ) is strict at the points x 2 X
0

, hence in order to complete
the proof of the lemma, it is enough to show that if (M•, F ) is strict at a point
x 2 X, then it is strict in an open neighborhood of x. Since the F -filtration on M•

is exhaustive, it follows from Exercise 8.2.7 that (M•, F ) is strict at x 2 X if and
only if the natural map H j(FpM

•)x ! H j(Fp+1

M•)x is injective for all p and j.
For every j, consider the coherent BX -module Mj := �p2ZH j(FpM

•). We see that
(M•, F ) is strict at x 2 X if and only if the map uj : Mj !Mj given by multiplication
with z is injective for all j. Furthermore, by (2) we only need to consider finitely
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many j. Since Mj is a coherent BX -module, it follows that Ker(uj) is a coherent
RFDX -module. In the neighborhood of a given point x 2 X, we have a finite set of
generators s

1

, . . . , sr of Ker(uj) over RFDX . If all the si vanish at x, then they also
vanish in an open neighborhood of x and uj is injective in this neighborhood. Since
we can argue in this way simultaneously for finitely many j, this concludes the proof
of the lemma.

8.6. Induced bi-filtered DX-modules

We assume that we are in the setting of Section 8.5. In particular, we consider
the F and V -filtrations on DX corresponding to X

0

⇢ X.
Let L be an OX -module and suppose that p 2 Z and ↵ 2 [�1, 0]. We assume that

the following holds: L has no t-torsion, unless ↵ = 0, and in this case

{u 2 L | utj = 0 for some j > 1} = {u 2 L | ut = 0}.

Given this data, we define L⌦(DX , F [p], V [↵]) to be the right DX -module L⌦OX
DX ,

with the corresponding filtrations given by

Fq(L ⌦DX) = Im(L ⌦ Fq�pDX ,�! L ⌦DX)

V�(L ⌦DX) = Im(L ⌦ V��↵DX ,�! L ⌦DX).

In order to study the properties of such objects, it is convenient to treat separately
the case when L has no t-torsion and when L t = 0, the general case following using
the existence of an exact sequence

0 �! L 0
�! L �! L 00

�! 0,

with L 0t = 0 and L 00 without t-torsion.
It is useful to note that since L 0t = 0, we have

L 0
⌦DX = L 0

⌦OX0
DX0

[@t],

Fq(L
0
⌦DX) = �j>0

(L 0
⌦OX0

(Fq�p�jDX0)@
j
t )

V�(L
0
⌦DX) = �

b�c
j=0

(L 0
⌦OX0

DX0@
j
t ).

(8.6.1)

Lemma 8.6.2. With the above notation, for every q and �, we have
(i) FqV�(L ⌦DX) = Im(L ⌦ Fq�pV��↵DX ! L ⌦DX).
(ii) There is an exact sequence

0 �! FqV�(L
0
⌦DX) �! FqV�(L ⌦DX) �! FqV�(L

00
⌦DX) �! 0.

Furthermore, we have L ⌦ (DX , F [p], V [↵]) 2 FV(DX).

Proof. The assertion in (i) follows easily when L has no t-torsion, using the fact that
the following maps are injective:

L ⌦ V��↵DX �! L ⌦DX , L ⌦ Fq�pV��↵DX �! L ⌦DX ,

L ⌦ (V��↵DX/Fq�pV��↵DX) �! L ⌦DX/Fq�pDX .and
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When L t = 0, we deduce (i) from the explicit description in (8.6.1).
We now note that we have exact sequences

0 �! Fq(L
0
⌦DX) �! Fq(L ⌦DX) �! Fq(L

00
⌦DX) �! 0

0 �! V�(L
0
⌦DX) �! V�(L ⌦DX) �! V�(L

00
⌦DX) �! 0and

(exactness follows from definition and the fact that the maps

L 00
⌦ Fq�pDX �! L 00

⌦DX and L 00
⌦ V��↵DX �! L 00

⌦DX

are injective. Let

M = Im(L ⌦ Fq�pV��↵DX �! L ⌦DX)

and we similarly define M 0 and M 00. We deduce that we have a commutative diagram
with exact rows and injective vertical maps

0 // M 0 //

j0
✏✏

M //

j
✏✏

M 00 //

j00
✏✏

0

0 // FqV�(L 0
⌦DX) // FqV�(L ⌦DX) // FqV�(L 00

⌦DX)

(for the exactness of the top row we use the fact that the map

L 00
⌦ Fq�pV��↵DX �! L 00

⌦DX

is injective; the exactness of the bottom row follows from the above two exact se-
quences). Since we know that j0 and j00 are surjective, it follows that j is also surjec-
tive. This completes the proof of both (i) and (ii). The last assertion in the lemma is
easy to check for L 0 and L 00, and we deduce it also for L using (ii).

We consider the category FV(DX) consisting of triples (M, F, V ), where M is a
right DX -module, F is a (usual) filtration and V is a V -filtration indexed by A + Z
on M, for some finite set A 2 (�1, 0], both of them exhaustive and compatible with
the F and V -filtrations on DX , such that FpM = 0 for p⌧ 0, and the following two
conditions are satisfied (no coherence assumption is made here):

(i) Multiplication by t induces an isomorphism FpV↵M ' FpV↵�1

M whenever
↵ < 0.

(ii) Multiplication by @t induces an isomorphism Fpgr
V
↵M ' Fp+1

grV↵+1

M when-
ever ↵ > �1.

We note that Condition (i) implies, in particular, that V↵M · t = V↵�1

M for all
↵ < 0. However, we do not assume that (V↵M)↵2R is a coherent V -filtration with
respect to H (more precisely, we do not require any coherence condition or the fact
that t@t � ↵ is nilpotent on grV↵M). The morphisms in FV(DX) are morphisms of
right DX -modules that are compatible with both filtrations. We usually refer to the
objects of FV(DX) simply as bi-filtered DX-modules.
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Remark 8.6.3. It is not true that a morphism ' in FV(DX) has kernels and cokernels
(it is not necessarily true that the induced filtrations on the DX -modules kernels or
cokernels satisfy conditions (i) and (ii) above). However, this is the case if ' is strict,
and in this case we have an isomorphism Coim(') ' Im(').

An induced bi-filtered DX -module is an object of FV(DX) that is isomorphic to a
direct sum

�i(Li ⌦OX
(DX , F [pi], V [↵i])),

for some Li, pi, and ↵i as above. The full subcategory of FV(DX) consisting of
induced objects is denoted FVi(DX).

Remark 8.6.4. Given (M, F, V ) 2 FV(DX), note that for every ↵ 2 [�1, 0] and every
p 2 Z, we can define FpV↵M ⌦ (DX , F [p], V [↵]). Indeed, we know that FpV↵M has
no t-torsion when ↵ < 0. Furthermore, if u 2 FpV0

M is such that tju = 0 for some
j > 2, then tu 2 FpV�1

M, hence tu = 0. We have a strict surjective morphism
L

p2Z
↵2[0,1]

FpV↵M⌦ (DX , F [p], V [↵]) �! (M, F, V )

(in this case strictness simply means that the filtrations on the target are induced by
the ones on the source). Indeed, the surjectivity is a consequence of Conditions (i)
and (ii) in the definition of the category FV(DX). By applying the same argument to
the kernel, with the induced filtrations (note that this lies in FV(DX)), we obtain a
(possibly infinite) resolution of (M, F, V ) by induced objects.

We consider the category of complexes C⇤(FV(DX)), where ⇤ stands for +, �, b,
or for the empty set. We assume that all complexes C• in this category satisfy the
following assumptions:

(i) For p⌧ 0, we have FpC
• = 0.

(ii) There exists a finite set A suitable for each term of C•.

We have a corresponding homotopic category K⇤(FV(DX)). A morphism C•
1

! C•
2

in K(FV(DX)) is a filtered quasi-isomorphism if H i(FpV↵C
•
1

) ! H i(FpV↵C
•
2

) is an
isomorphism for all p 2 Z and ↵ 2 R. Note that since we work with exhaustive
filtrations, every filtered quasi-isomorphism is, in particular, a quasi-isomorphism.

We obtain the filtered derived categories D⇤(FV(DX)) by localizing K⇤(FV(DX))

at the class of filtered quasi-isomorphisms. As in the case of the derived category
of an abelian category, one shows that each D⇤(FV(DX)) is a triangulated category.
It follows from the universal property of the localization that we get exact functors

H iFpV↵(�) : D
⇤(FV(DX)) �! D⇤(OX),

where D⇤(OX) is the derived category of OX -modules, with the suitable boundedness
condition.
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Remark 8.6.5. Note that for every ↵ 2 R, taking (C•, F, V ) to (grV↵ (C
•), F ) defines an

exact functor D⇤(FV(DX)) ! D⇤(F(DX0
)), where D⇤(F(DX0

)) is the filtered derived
category of filtered DX -modules (with suitable boundedness conditions).

Let K⇤(FVi(DX)) be the homotopic category of complexes of induced objects in
FV(DX), with suitable boundedness conditions. By localizing this with respect to
filtered quasi-isomorphisms, we get D⇤(FVi(DX)).

Lemma 8.6.6. The exact functor

D�(FVi(DX)) �! D�(FV(DX))

induced by inclusion is an equivalence of categories.

Proof. For every (M, F, V ) 2 FV(DX), we construct the resolution I •(M, F, V ) by
induced bi-filtered DX -modules as in Remark 8.6.4. It is clear that this is functorial
and we extend the construction to a functor C�(FV(DX))! C�(FVi(DX)), by map-
ping a complex (M•, F, V ) to the total complex of the double complex I •(M•, F, V ).
It is standard to check that this induces a functor between the corresponding fil-
tered derived categories and that this gives an inverse for the functor induced by the
inclusion.

Remark 8.6.7. If (M, F, V ) is a bi-filtered DX -module, we can choose a finite subset
A ⇢ [�1, 0] such that grV↵ (M) = 0 for all ↵ 2 [�1, 0] r A. As in Remark 8.6.4, we
obtain a strict surjective morphism

L

p2Z
↵2A

FpV↵M⌦ (DX , F [p], V [↵]) �! (M, F, V ),

and by iterating this construction, we obtain a resolution (I •, F, V ) of (M, F, V ) by
induced objects such that each (I i, F, V ) is the direct sum of bi-filtered modules of
the form L ⌦OX(DX , F [pi], V [↵i]), with the ↵i varying over a finite set. In particular,
since for every q and � we have

FqV�(L ⌦ OX(DX , F [pi], V [↵i])) = 0 unless pi 6 q,

we conclude that if FpV↵M is a coherent OX -module for every p and ↵, then FpV↵I j

is a coherent OX -module for every p, ↵, and j.

Lemma 8.6.8. Consider two induced bi-filtered DX-modules

(Mi, F, V ) = Li ⌦ (DX , F [p], V [↵]) i = 1, 2,

and consider the exact sequences

0 �! L 0
i �! Li �! L 00

i �! 0,

where L 0
i t = 0 and L 00

i has no t-torsion. If u : L
1

! L
2

is an injective morphism
such that the induced morphism u00 : L 00

1

! L 00
2

has the property that Coker(u00) has
no t-torsion, then the induced morphism u : (M

1

, F, V ) ! (M
2

, F, V ) is strict and
Coker(u) ' Coker(u)⌦ (DX , F [p], V [↵]).
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Proof. We need to show that if we consider on Coker(u) ' Coker(u)⌦DX the induced
filtrations, then for every q and �, the sequence

0 �! FqV�(L1

⌦DX) �! FqV�(L2

⌦DX) �! FqV�(Coker(u)⌦DX) �! 0

is exact. This is easy to check when both Li have no t-torsion and it follows from
the explicit description in (8.6.1) when Lit = 0 for i = 1, 2.

We now consider the general case. Let u0 : L 0
1

! L 0
2

be the morphism induced
by u. Note first that the Snake lemma gives an exact sequence

0 �! Coker(u0) �! Coker(u) �! Coker(u00) �! 0.

(since Ker(u00) has no t-torsion, it has to be zero). This exact sequence is the canonical
one associated to Coker(u) such that the first term is annihilated by t and the third
one has no t-torsion.

Consider the commutative diagram

0

✏✏

0

✏✏

0

✏✏

0 // FqV�(L 0
1

⌦DX) //

✏✏

FqV�(L1

⌦DX)

✏✏

// FqV�(L 00
1

⌦DX)

✏✏

// 0

0 // FqV�(L 0
2

⌦DX) //

✏✏

FqV�(L2

⌦DX)

✏✏

// FqV�(L 00
2

⌦DX)

✏✏

// 0

0 // FqV�(Coker(u
0)⌦DX)

✏✏

// FqV�(Coker(u)⌦DX)

✏✏

// FqV�(Coker(u
00)⌦DX)

✏✏

// 0

0 0 0.

The first and the third columns are exact by what we have already discussed. More-
over, the rows are all exact by Lemma 8.6.2. Therefore the middle column is also
exact, which is what we had to prove.

In order to define functors between filtered derived categories, it will be convenient
to use the Godement resolution (see Definition A.8.7), that we now extend to our
bi-filtered setting.

For (M, F, V ) 2 FV(DX), we define C0(M, F, V ) to be the bi-filtered DX -module
N =

S

p,↵ C0(FpV↵M) ✓ C0(M), with the filtrations given by FpN =
S

↵ C0(FpV↵M)

and V↵N =
S

p C
0(FpV↵M) for p 2 Z, ↵ 2 R. One checks that

C0(FpV↵M) \ C0(FqV�M) = C0(F
min(p,q)Vmin(↵,�)M).

It follows that FpV↵N = C0(FpV↵M), hence each FpV↵N is flabby. We have a
natural strict monomorphism (M, F, V ) ,! C0(M, F, V ), whose cokernel is also a bi-
filtered DX -module, and we can proceed inductively as in Definition A.8.7 to define the
complex God

•
(M, F, V ) in C+(FV(DX)) that is filtered quasi-isomorphic to (M, F, V ).

Lemma 8.6.9. Given an induced bi-filtered DX-module

(M, F, V ) ' L ⌦OX
(DX , F [p], V [↵]),
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we have
C0(M, F, V ) ' C0(L )⌦OX

(DX , F [p], V [↵]).

Proof. If we consider the exact sequence

0 �! L 0
�! L �! L 00

�! 0,

where L 0t = 0 and L 00 has no t-torsion, then we have an induced exact sequence

0 �! C0(L 0) �! C0(L ) �! C0(L 00) �! 0

and C0(L 0)t = 0, while C0(L 00) has no t-torsion. In particular, we see that every
t-torsion element in C0(L ) is annihilated by t. We also deduce from this that it is
enough to prove the lemma when either L has no t-torsion or when L t = 0.

Suppose first that L has no t-torsion. In this case we have

FqV�(C
0(L )⌦DX) = C0(L )⌦ Fq�pV��↵DX ' C0(L ⌦ Fq�pV��↵DX),

since Fq�pV��↵DX is a locally free OX -module, of finite type (see Exercise A.8.9(2)).
This implies the isomorphism in the lemma. The case when L t = 0 follows similarly,
using the explicit description in (8.6.1).

Corollary 8.6.10. If (M, F, V ) 2 FV(DX) is induced, then its filtered resolution

0 �! (M, F, V ) �! C0(M, F, V ) �! C1(M, F, V ) �! . . .

consists of induced objects and the morphisms are strict and they correspond to mor-
phisms of OX-modules.

Proof. This follows by combining Lemmas 8.6.8 and 8.6.9. The only thing to note is
that if we have a short exact sequence of OX -modules

0 �! L 0
�! L �! L 00

�! 0,

with L 0t = 0 and L 00 without t-torsion, then Coker(L 00
! C0(L 00)) has no t-

torsion.

8.7. The direct image of bi-filtered DX-modules

Let f : X ! X 0 be a morphism between complex manifolds. We assume that
X 0 = H 0

⇥�t and X = H ⇥�t such that f = f|H ⇥ Idt. We set X
0

= H ⇥ {0} and
X 0

0

= H 0
⇥ 0. Our first goal is to define a functor f⇤ : D

�(FV(DX))! D�(FV(DX0)).
In addition to the sheaf DX , we also have on X the sheaf f�1(DX0). This carries

the F -filtration and the V -filtration induced from DX0 (the V -filtration being the one
with respect to X 0

0

). In particular, we may consider the categories FV(f�1(DX0)) and
FVi(f

�1(DX0)). For example, an object in FVi(f
�1(DX0)) is one that is isomorphic

to a direct sum of objects of the form L ⌦f�1
(OX0 ) (f

�1(DX0), F [p], V [↵]), where L
is an f�1(OX0)-module that has no t-torsion, unless ↵ = 0, in which case the all local
sections of L that are annihilated by some power of t are actually annihilated by t.
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The same construction from before shows that the inclusion functor determines an
equivalence of categories

D�(FVi(f
�1(DX0))) �! D�(FV(f�1(DX0))).

As in the case of the direct image of non-filtered DX -modules, the key player in
the definition of the direct image for bi-filtered DX -modules is

DX!X0 := OX ⌦f�1
(OX0 ) f

�1(DX0).

This has a structure of left DX -module and right f�1(DX0)-bimodule and carries
an F -filtration and a V -filtration induced from f�1(DX0). These are compatible not
only with the F and V -filtrations on f�1(DX0), via right multiplication, but also with
the F and V -filtrations on DX , via left multiplication.

Example 8.7.1. The two main examples are when f is smooth and when f is a closed
immersion. The typical case for f being smooth is when f : X = X 0

⇥ W ! X 0

is the projection onto the first factor. In this case we have a surjection DX0⇥W !

DX0⇥W!X0 such that in local coordinates w
1

, . . . , wr on W , we get an isomorphism

DX0⇥W!X0
' DX0⇥W /DX0⇥W · (@w1 , . . . , @wr ).

On the other hand, the typical case when f is a closed immersion is when f : X ,!

X 0 = X ⇥ Z is given by f(x) = (x, z
0

). If we have coordinates z
1

, . . . , zr on Z, then

DX!X⇥Z ' DX ⌦ C[@z1 , . . . , @zr ].

We first define the functor DRX/X0 : FVi(DX)! FVi(f
�1(DX0)) by

DRX/X0(M, F, V ) = (M, F, V )⌦DX
(DX!X0 , F, V ),

with the tensor product of the filtrations from the two factors. Note that this is
well-defined, since we have

L ⌦OX
(DX , F [p], V [↵])⌦DX

(DX!X0 , F, V ) ' L ⌦f�1
(OX0 ) (f

�1(DX0), F [p], V [↵]).

Lemma 8.7.2. The functor DRX/X0 maps a filtered quasi-isomorphism in K(FVi(DX))

to a filtered quasi-isomorphism.

Proof. We need to prove that if (C•, F, V ) is a complex of bi-filtered DX -modules such
that all complexes FpV↵C

• are exact, then FpV↵ DRX/X0(C•) is exact for all p 2 Z
and ↵ 2 R. By factoring f as X

j
! X ⇥X 0 p

! X 0, where p is the second projection
and j is the graph of f , we reduce the proof for f to proving the assertion separately
for j and p (note that DX!X0

' DX!X⇥X0
⌦j�1

(DX⇥X0 ) j
�1(DX⇥X0!X0)).

The assertion for j is trivial since we may assume that we have coordinates
y
1

, . . . , yr on X 0, so that DRX/X⇥X0 can be identified with C[@y1 , . . . , @yr ]⌦C (�).
Let us prove now the assertion for the projection p : X ⇥ X 0

! X 0. For ev-
ery (M, F, V ) 2 FV(DX⇥X0), consider the complex DRX(M, F, V ) consisting of
M ⌦DX⇥X0 ^

�•⇥X (given local coordinates x
1

, . . . , xn on X, this complex can be
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identified to the Koszul-type complex corresponding to @x1
, . . . , @xr

). The filtrations
are defined by

Fp(M⌦ ^
�i⇥X) = Fp+iM⌦ ^

�i⇥X , V↵(M⌦ ^
�i⇥X) = V↵M⌦ ^

�i⇥X .

Note that the morphism DX⇥X0
⌦OX

^

�•⇥X ! DX!X0 induces a morphism

DRX(M, F, V ) �! (M, F, V )⌦DX
(DX!X0 , F, V )

for every bi-filtered DX -module (M, F, V ). This is a filtered quasi-isomorphism
if (M, F, V ) ' L ⌦ (DX⇥X0 , F [p], V [↵]), hence for all induced bi-filtered DX⇥X0 -
modules. Indeed, it is enough to check the assertion when either L has no t-torsion,
or when L t = 0; in each case, the verification is straightforward.

On the other hand, it is clear that if all FpV↵C
• are exact, then also all complexes

FpV↵(C
•
⌦ ^

�i⇥W ) are exact, hence each FpV↵ DRX/X0(C•) is exact by the above
discussion. This completes the proof of the lemma.

As a consequence of the lemma, the functor DRX/X0 we have defined induces an
exact functor DRX/X0 : D⇤(FVi(DX)) ! D⇤(FVi(f

�1(DX0))), where ⇤ stands for +,
�, b, or the empty set.

We now introduce the topological direct image. We first define it at the level of bi-
filtered D-modules. Suppose that f : X ! X 0 is as above. If (M, F, V ) is a bi-filtered
f�1(DX0)-module, we define f⇤(M, F, V ) 2 FV(DX0) to be given by (N , F, V ), where
N =

S

p,↵ f⇤(FpV↵M), with FpN =
S

↵ f⇤(FpV↵M) and V↵N =
S

p f⇤(FpV↵M).
We obtain in this way a functor f⇤ : FV(f

�1(DX))! FV(DX0). Note that if L is an
f�1(OX0)-module, then f⇤(L ⌦ (f�1(DX0), F [p], V [↵])) ' f⇤(L )⌦ (DX0 , F [p], V [↵])

by the projection formula (we use the fact that DX0 is a locally free OX0 -module).
Therefore we also have a functor f⇤ : FVi(f

�1(DX))! FVi(DX0).
We next define a version of the topological direct image functor at the level of

filtered derived categories

f⇤ : D
⇤(FVi(f

�1(DX0))) �! D⇤(FVi(DX0)),

as follows. By a variant of Corollary 8.6.10, we associate functorially to every
(M, F, V ) 2 FVi(f

�1(DX0)) a strict complex C•(M, F, V )

0 �! C0(M, F, V ) �! C1(M, F, V ) �! · · ·

that gives a filtered resolution of (M, F, V ) by induced bi-filtered modules. It is
convenient to replace this by a bounded complex, hence if dim(X) = n, we consider
the complex

eC
•
(M, F, V ) : {0! eC0(M, F, V )! eC1(M, F, V )! · · ·!

eCn(M, F, V )! 0},
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where

eCj(M, F, V ) =

8

>

>

>

<

>

>

>

:

Cj(M, F, V ), 0  j 6 n� 1;

Coker(Cn�2(M, F, V )! Cn�1(M, F, V )), j = n;

0, j > n+ 1.

It follows from the construction that eC•(M, F, V ) is a strict complex, giving a filtered
resolution of (M, F, V ) by induced bi-filtered f�1(DX0)-modules. Moreover, since we
truncated at the dimension of X, we have Rmf⇤(FpV↵

eCj(M, F, V )) = 0 for every
m > 1 and every j, p, and ↵. Given a complex (M•, F, V ) in FVi(f

�1(DX0)), we
consider the total complex of the double complex eC•(M•, F, V ). It is now standard to
see that this induces exact functors f⇤ : D⇤(FVi(f

�1(DX0)))! D⇤(FVi(DX0)), where ⇤
stands for +, �, b, or for the empty set.

By composing f⇤ and DRX/X0 , we obtain an exact functor

f⇤ : D
⇤(FVi(DX)) �! D⇤(FVi(DX0)),

which in light of Lemma 8.6.6 also gives a functor D�(FV(DX))! D�(FV(DX0)).
It is easy to see that taking the direct image commutes with taking the graded

pieces of the V -filtration. More precisely, if f
0

: X
0

! X 0
0

is the restriction of f , then
given any (M•, F, V ) 2 D�(FV(DX)) and any ↵ 2 R, we have an isomorphism

(8.7.3) (grV↵ f⇤(M
•
, F, V ), F ) ' f

0⇤(gr
V
↵ (M

•
, F, V ), F )

in D�(FV(DX0
0
)) for every ↵ 2 R.

We consider two conditions on an object C• of C(FV(DX)):
(a) The action of t@t � ↵ on H i(grV↵C

•) is nilpotent for all i 2 Z, ↵ 2 R,
(b) Each H i(FpV↵C

•) is a coherent OX -module.
Let C⇤

m(FV(DX)) and C⇤
c(FV(DX)) be the full subcategories of C⇤(FV(DX)) con-

sisting of those objects that satisfy condition (a), respectively (b), and we similarly
define D⇤

m(FV(DX)) and D⇤
c(FV(DX)) as full subcategories of D⇤(FV(DX))

Lemma 8.7.4. With the above notation, suppose also that f is proper and (M, F, V ) 2

FV(DX).
(i) If (M, F, V ) 2 Cc(FV(DX)), then f⇤(M, F, V ) 2 D�

c (FVc(DX0)).
(ii) If (M, F, V ) 2 Cm(FV(DX)), then f⇤(M, F, V ) 2 D�

m(FVm(DX0)).

Proof. Let (C•, F, V )! (M, F, V ) be a filtered resolution by induced bi-filtered DX -
modules constructed as in Remark 8.6.7. If FpV↵M is a coherent OX -module for
every p, ↵, then FpV↵C

k is a coherent OX -module for every p, ↵, and k. One can
then deduce that all H k(FpV↵ DRX/X0(C•)) are coherent f�1(OX0)-modules, and
then that all H k(FpV↵f⇤(DRX/X0(C•))) are coherent OX0 -modules.

If the action of (t@t � ↵)m on grV↵ (M) is zero, then also its action on

f
0⇤(gr

V
↵ (M), F ) ' grV↵ f⇤(M, F, V )
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is zero, hence the same holds for the action on H k(grV↵ f⇤(M, F, V )).

We now come to the main result of this chapter.

Theorem 8.7.5. Let f : X ! X 0 be a proper morphism as above and let f
0

: X
0

! X 0
0

be the restriction of f . Suppose that (M, F ) is a coherent filtered DX-module on X

which is R-specializable, with V -filtration V•M. If f
0⇤(gr

V
↵ (M), F ) is strict for every

↵ 2 R, then f⇤(M, F, V ) is strict in a neighborhood of X 0
0

.

Proof. We will apply Theorem 8.5.1 to the bounded complex ⇡⇤(M, F, V ). We first
check that the conditions (a)–(i) of Section 8.5.a are fulfilled.

Since (M, F, V ) 2 FVm(DX), an application of Lemma 8.7.4 gives that f⇤(M, F, V ) 2

D�
m(FV(DX0)). Moreover, by hypothesis we have that

(grV↵ f⇤(M
•
, F, V ), F ) ' f

0⇤(gr
V
↵ (M

•
, F, V ), F )

is strict (the isomorphism is given by (8.7.3)). On the other hand, since (M, F )

is coherent, (M, F, V ) 2 FVc(DX). Therefore another application of Lemma 8.7.4
implies that f⇤(M, F, V ) 2 D�

c (FV(DX0)). As a consequence, the conditions (a)–(h)
are thus fulfilled by f⇤(M, F, V ). Lastly, the coherence condition (i) follows from
the coherence theorem A.10.26. Therefore Theorem 8.5.1 implies that f⇤(M, F, V ) is
strict in a neighborhood of X 0

0

.

8.8. Strictness of strictly R-specializable RFDX-modules

In this section we compare the notion of specializability for filtered DX -modules,
as developed in this chapter, and that for a strict RFDX -module, as considered in
Chapter 7.

Let M be a (left) coherent graded RFDX -module which is strictly R-speciali-
zable along H and let V •M denotes its Kashiwara-Malgrange filtration. Then M
is strict if and only if V↵M is strict for some ↵, since all grV� M are assumed to be
strict. The former property is equivalent to the existence of a coherent DX -module M

equipped with a coherent F -filtration F•M such that M = RFM, while the latter is
equivalent to the existence of a coherent V

0

DX -module V↵M equipped with a coherent
F -filtration F•V↵M such that V↵M = RFV↵M.

Lemma 8.8.1. Let M be as above. If M is strict, then the Kashiwara-Malgrange
filtration of M satisfies

(8.8.1 ⇤) V↵M = M \ (V↵M [z�1]),

where the intersection takes place in M [z�1].
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Proof. For � > ↵, we have a commutative diagram

0 // V↵M

✏✏

� � // V�M

✏✏

// V�M /V↵M

✏✏

// 0

0 // V↵M [z�1] �
�
// V�M [z�1] // (V�M /V↵M )[z�1] // 0

The upper horizontal line is clearly exact, and the lower one is so because C[z, z�1] is
flat over C[z]. The first two vertical maps are injective since M is strict. The third
vertical map is injective since M is strictly R-specializable. It follows that V↵M =

V�M \ V↵M [z�1] in M [z�1]. Taking the limit for � !1 gives the assertion.

Assume that M is strict and let (M, F•M) be the coherent filtered DX -module
such that M = RFM. Then M is R-specializable and we have (see Exercise 7.3.20):

V↵M = V↵M /(z � 1)V↵M and V↵M [z�1] = V↵M[z, z�1].

Consider on M the bi-filtration FpV↵M := FpM \ V↵M. Then (8.8.1 ⇤) means that
the filtration U•M defined by U↵M :=

L

p(FpV↵M)zp satisfies the properties of
the Kashiwara-Malgrange filtration of a strictly R-specializable RFDX -module. In
particular we get, according to 7.3.28(a) and (d):

•
8 p and 8↵ < 0, t : FpV↵M! FpV↵�1

M is an isomorphism,
•
8 p and 8↵ > �1, @t : Fpgr

V
↵M! Fp+1

grV↵+1

M is an isomorphism.
The first condition can be called a regularity condition. Indeed, for a nonzero holo-
nomic DX -module M with irregular singularities, we can have V↵M = M for every ↵

(e.g. when dimX = 1, M = DX/DX(t2@t + 1)), and the condition tFpM = FpM

cannot be satisfied by a nonzero coherent OX -module FpM.

Proposition 8.8.2. Let M be a coherent DX-module which is R-specializable along H,
equipped with a coherent F -filtration. The following properties are equivalent:

(1) RFM is strictly R-specializable along H,
(2) the coherent filtration F•M satisfies

(a) 8 p and 8↵ < 0, t : FpV↵M! FpV↵�1

M is an isomorphism,
(b) 8 p and 8↵ > �1, @t : Fpgr

V
↵M! Fp+1

grV↵+1

M is an isomorphism,
(c) for every ↵ 2 [�1, 0] (equivalently after (2a) and (2b), for every ↵), the

induced filtration F•gr
V
↵M is a coherent F•gr

V
0

DX-filtration.
Moreover, when these conditions are fulfilled, the filtration F•M induces in some
neighbourhood of H on each V↵M a coherent F•DX/C-filtration with respect to any
local reduced equation t : X ! C of H, i.e., each V↵RFM = RFV↵M is RFDX/C-
coherent in some neighbourhood of H.

Proof. Let us assume (1). We have already seen that (2a) and (2b) are fulfilled since
RFM is strict, and clearly F•gr

V
↵M is coherent for every ↵, since RF gr

V
↵M = grV↵RFM.

Conversely, let us assume (2). We first note that F•gr
V
↵M is coherent for

every ↵ if it is so for ↵ 2 [�1, 0], according to (2a) and (2b). Let us set
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U↵RFM =
L

p(FpV↵M)zp. For a local section mzp of (FpV↵M)zp, we have
(tgt � ↵z)⌫mmzp 2 (Fp+⌫m

V<↵M)zp+⌫m , showing the R-specializability of RFM

and the fact that U↵RFM ⇢ V↵RFM. It is enough to show that U•M is a coherent
filtration indexed by A+Z, since we obviously have grU↵RFM = RF gr

V
↵M, hence the

strictness. According to (2a) and (2b), it is enough to show the V
0

RFDX -coherence
of U↵RFM for ↵ 2 [�1, 0). For a local reduced equation t : X ! C of H, we will
more precisely show the RFDX/C-coherence of U↵RFM in some neighbourhood of H,
showing both the reverse implication (2)) (1) and the last part of the proposition.

Since V•M is a coherent V -filtration of M (because M is assumed to be R-specializa-
ble), each V↵M is V

0

DX -coherent, and therefore each FpV↵M is OX -coherent (consider
an exhaustive increasing filtration (V↵M)` by OX -coherent submodules and use that,
for p fixed, FpM \ (V↵M)` is locally stationary). It is thus enough to show that,
locally on X, there exists po such that FpDX/C · (Fpo

V↵M) = Fp+po
V↵M for all p > 0.

Since E � ↵ is nilpotent on grV↵M, the filtration F•gr
V
↵M, being F•gr

V
0

DX -coherent
for every ↵ by assumption (2c), is also F•DH -coherent. The same argument applies
to the induced filtration (F•V↵M)/(F•V↵�1

M) and therefore there exists locally po
such that

FpDH · (Fpo
V↵M)/(Fpo

V↵�1

M) = (Fp+po
V↵M)/(Fp+po

V↵�1

M).

Let us set U↵,p = FpDX/C ·(FpoV↵M). By (2a) and since ↵ has been chosen in [�1, 0),
the left-hand term above can be written as U↵,p/tU↵,p, while the right-hand term is

(Fp+po
V↵M)/t(Fp+po

V↵M),

so Nakayama’s lemma implies finally FpDX/C ·(Fpo
V↵M) = Fp+po

V↵M in some neigh-
bourhood of H, as wanted.

Corollary 8.8.3. Let M be a coherent graded RFDX-module which is strictly R-specia-
lizable along H. Then M strict in some neighbourhood of H if and only if, for
some ↵ < 0 and all p, the pth graded component (V↵M )p is OX-coherent. In such
a case, the properties of Proposition 8.8.2 hold true and in particular, M = RFM

and (V↵M )p = FpM \ V↵M for every ↵, p, where M := M /(z � 1)M is a coherent
DX-module which is R-specializable along H and F•M is a coherent F -filtration of M.

Proof. If M is strict, we can write M = RFM for some coherent F -filtration on M :=

M /(z � 1)M , and we have, according to Proposition 8.8.2, (V↵M )p = FpM \ V↵M,
which is OX -coherent as we have seen in the proof of Proposition 8.8.2.

Conversely, since M is assumed to be strictly R-specializable, each grV� M is strict,
and it is enough to prove that V↵M is strict for some ↵ < 0. For such an ↵,
V↵M /tjV↵M is also strict for every j > 1. By left exactness of lim

 �

j
, we deduce

that lim
 �

j
(V↵M /tjV↵M ) is also strict. It is thus enough to show that the natural

morphism V↵M ! lim
 �

j
(V↵M /tjV↵M ) is injective.
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We choose ↵ < 0 as given by the assumption of the proposition, and we have
tj(V↵M )p = (V↵�jM )p for j > 0 and any p, due to 7.3.28(a). Then

�

V↵M /tjV↵M
�

p
= (V↵M )p/t

j(V↵M )p

for every j > 0 and p, and therefore
�

lim
 �

j

(V↵M /tjV↵M )
�

p
= lim
 �

j

�

(V↵M )p/t
j(V↵M )p

�

.

Since (V↵M )p is OX -coherent, lim
 �

j
(V↵M )p/t

j(V↵M )p = O[X|H ⌦OX|H (V↵M )p and
the natural morphism (V↵M )p|H ! lim

 �

j
(V↵M )p/t

j(V↵M )p is injective. It follows
that

(V↵M )p|H �!
�

lim
 �

j

(V↵M /tjV↵M )
�

p

is injective for every p, and thus so is (V↵M )|H !
�

lim
 �

j
(V↵M /tjV↵M )

�

, as wanted.

We can now add the strictness property in Theorem 7.8.5, obtaining thus a com-
plete analogue of Theorem 8.7.5.

Corollary 8.8.4. With the notation and assumptions of Theorem 7.8.5,
(4) if M is strict in the neightbourhood of H, then H i

Df⇤M is strict in the neight-
bourhood of H 0.

Proof. We replace X 0 by a suitable neighbourhood of H 0 and X by the pullback of
this neighbourhood, so that M is strict on X. By Corollary 8.8.3 it is enough to show
the OX -coherence of U↵H i(Df⇤M )p = H i(Df⇤V↵M )p for some ↵ < 0 and each p, i,
where the equality holds according to 7.8.5(1).

If f : X = X 0
⇥ Z ! X 0 is a projection, we have, in a way similar to Theorem

A.8.11(6), Df⇤V↵M = Rf⇤(V↵M ⌦ eOX
^

�•
e⇥X/X0), and H i(Df⇤V↵M )p is the ith

cohomology of the relative Spencer complex (m = dimX/X 0)

Rf⇤

⇣

0! (V↵M )p�m ⌦ ^
m⇥X/X0

! · · ·! (V↵M )p�1

⌦⇥X/X0
! (V↵M )p ! 0

⌘

whose differentials are OX0 -linear. Since each term of the complex is OX -coherent by
our assumption of strictness of M and since f is proper, Grauert’s coherence theorem
together with a standard spectral sequence argument in the category of OX0 -complexes
show that H i(Df⇤V↵M )p is OX0 -coherent.

If f : X ,! X 0 is a closed immersion, it is locally of the form (t, x
2

, . . . , xn) 7!

(t, x
2

, . . . , xn, 0, . . . , 0). Then

Df⇤V↵M = H 0

Df⇤V↵M = f⇤V↵M [gx0
1
, . . . , gx0

m
]

and
(H 0

Df⇤V↵M )p =
X

|a|6p

f⇤(V↵M )p�|a|@
a
x0 ,
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which is eOX0 -coherent since (V↵M )q = 0 for q ⌧ 0 locally (use that (V↵M )q =

Fq(M /(z�1)M )\V↵(M /(z�1)M ) according to Corollary 8.8.3, and apply Exercise
A.10.5(3)).

Corollary 8.8.5. With the notation and assumptions of Corollary 7.8.6, if M is strict
in the neighbourhood of g�1(0), so is H i

Df⇤M in the neighbourhood of g0�1(0).

8.9. Comments

The aim of this chapter, which covers part of the content of [Sai88, §1& 3] and
whose first sketch has been written by Mircea Mustață, is to give a proof of Theo-
rem 8.7.5 which closely follows the original proof of Saito [Sai88, Prop. 3.3.17], from
which is extracted the formalism of bi-filtered derived categories (see also Appendix
A.11 which is inspired form [Sai89a]). However, the original argument using for-
mal completions, which has been reproduced in the proof of Proposition 7.8.7, has
been replaced here (Section 8.5.b) by an argument, due to Christian Schnell, using
his interpretation of compatibility of a finite family of filtrations in terms of flatness,
which somewhat clarifies [Sai88, §1.1]. This interpretation is explained with details
in Section 8.3, ending with Exercise 8.3.20 due to Matthieu Kochersperger. The con-
clusion of Proposition 8.8.2 is an adaptation of [Sai88, Cor. 3.4.7], and is inspired
from [ESY15, Prop. 2.2.4].


