CHAPTER 7

NEARBY AND VANISHING CYCLES OF Z-MODULES

Summary. We introduce the Kashiwara-Malgrange filtration for a @X-module7
and the notion of strict R-specializability. This leads to the construction of the
nearby and vanishing cycle functors. One of the main results is a criterion for the
compatibility of this functor with the proper pushforward functor of Z-modules.

Throughout this chapter we use the following notation.

Notation 7.0.1.

« X denotes a complex manifold.

« H denotes a smooth hypersurface in X.

« Locally on H, we choose a decomposition X = H x A;, where A; is a small disc
in C with coordinate t. We have the corresponding z-vector field 0.

o D denotes an effective divisor on X. Locally on D, we choose a holomorphic
function g : X — C such that D = (g). We then set Xy = g—!(0) (this is the support
of D in the local setting).

« Recall that éx means Yx or Rrp9x and, in the latter case, éx—modules mean
graded Zx-modules (see Appendix A). We then use (k) for the shift by k of the
grading (see Section A.2.a). When the information on the grading is not essential, we
just omit to indicate the corresponding shift. We use the convention that, whenever
@X means Py, all conditions and statements relying on gradedness or strictness are
understood to be empty or tautological.

Remark 7.0.2 (Left and right @-modules). For various purposes, it is more convenient
to work with right Z-modules. However, left Z-modules are more commonly used
in applications. We will therefore mainly treat right Z-modules and give the corre-
sponding formulas for left Z-modules in various remarks.

Remark 7.0.3 (Restriction to z = 1). Throughout this chapter we keep the Conven-
tion A.2.19. All the constructions can be done either for Zx-modules or for graded
RpPx-modules, in which case a strictness assumption (strict R-specializability) is
most often needed. By “good behaviour with respect to the restriction z = 17, we
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mean that the restriction functor 4 — M := .# /(z — 1).# is compatible with the
constructions. We will see that many, but not all, of the constructions in this chapter
have good behaviour with respect to setting z = 1. We will make this precise for each
such construction.

7.1. Introduction

This chapter has one main purpose: Given a coherent .éx-module7 to give a suffi-
cient condition such that the restriction functor to a divisor D, producing a complex
of @X—modules supported on the divisor D which corresponds to the functor pep.ptyy
when ¢y : H — X is the inclusion of a smooth hypersurface, gives rise to a complex
of éx—modules with coherent cohomology.

The property of being specializable along D will answer this first requirement. How-
ever, in the case where éx = Rp9x, strictness comes into play in a fundamental way
in order to ensure a good behaviour. This leads to the notion of strict specializability
along D. When forgetting the F-filtration, i.e., when considering Zx-modules, the
strictness condition is empty.

Given any holomorphic function g on X with associated divisor D and for ev-
ery strictly R-specializable @X—module M along D, we introduce the nearby cycle
Px-modules Ygrd (A € C* with |A\| = 1) and the vanishing cycle functor ¢4 1.4
They are the “generalized restriction functors”, which the usual restriction functors
can be deduced from.

The construction is possible when the Kashiwara-Malgrange V-filtration exists on
a given @X—module. More precisely, the notion of V-filtration is well-defined in the
case when D is a smooth divisor. We reduce to this case by considering, when more
generally D = (g), the graph inclusion ¢y : X — X x C. The V-filtration can exist
on the pushforward ... We then say that .# is strictly specializable along D.

Kashiwara’s equivalence is an equivalence (via the pushforward functor ¢y : Y < X)
between the category of coherent Zy-modules and that of coherent Zx-modules sup-
ported on the submanifold Y. When Y has codimension one in X, this equivalence
can be extended as an equivalence between strict coherent @y—modules and coherent
éx—modules which are strictly R-specializable along Y.

Complex Hodge modules will satisfy a property of semi-simplicity with respect
to their support that we introduce in this chapter under the name of strict S-
decomposability (“S” is for “support”). The support of a coherent Jx-module . is
a closed analytic subspace in X. It may have various irreducible components. We
introduce a condition which ensures first that .# decomposes as the direct sum of
éx—modules7 each of which supported by a single component. However, we wish
that each such summand decomposes itself as the direct sum of .@X—modules, each of
which supported on an irreducible closed analytic subset of the support of the given
summand, in order to satisfy a “geometric simplicity property”, namely each such
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new summand has no coherent sub-module supported on a strictly smaller closed
analytic subset. We then say that such a summand has pure support.

In Section 7.8, we give a criterion in order that the functors 1, » and ¢4, com-
mute with proper pushforward. This will be an essential step in the theory of complex
Hodge modules (see Chapter 13), where we need to prove that the property of strict
S-decomposability (i.e., geometric semi-simplicity) is preserved by proper pushfor-
ward.

7.2. The filtration V,éx relative to a smooth hypersurface

Let H C X be a smooth hypersurface V) of X with defining ideal .7 C Ox. We
first define a canonical i 1ncreasmg filtration of @X indexed by Z. Let us set i = =0 25
for £ < 0 and #% = fé ﬁx for ¢ > 0. For " every k e Z the subsheaf Vk@X - QX
(k € Z) counsists of operators P such that JI?IP C /I]{ for every j € Z. For every
open set U of X we thus have

(7.2.1) Vi9x(U) ={P e 9x(U) | #3(U)- P C 73 (), Vj ez}
This defines an increasing filtration V, @X of @X indexed by Z. Note that one can

also define Vi, Zx (U) as the set of Q € Zx(U) such that Q - .73, (U) c 75 *(U),
VjeZ.

Exercise 7.2.2. Show the following properties.

(1) Let us fix a local decomposition X ~ H x A; (where A; C C is a disc with
coordinate t). With respect to this decomposition,

j
VoZx = Ox(0,,10)), V_;9x =VoPx ¥, Vi9x =Y VoZx -0 (j=0).
k=0
(2) For every k, VkQX is a locally free VyZx-module.
(3) @X = U Vkﬁx (the filtration is exhaustive).
(4) Vk@X Vi9x C Vk+(@x with equality for k,/ <0ork, >0
(5) Vox is a sheaf of subalgebras of Zx.
(6) vk.éxp(\H = Dx|xp for all k € Z.
(7) gry V' 9 is supported on H for all k € Z,
(8) The induced filtration VkQX N ﬁx = ﬂHkéx is the E{—adic filtration of 5)(
made increasirlg.
9) (N Vk@X)IH = {0}.
Exercise 7.2.3 (Euler vector field).

(1) Show that the class E of 3, in gry’ Zx in some local product decomposition as
above does not depend on the choice of such a local product decomposition.

1. Other settings can be considered, for example a smooth subvariety, or a finite family of smooth
subvarieties, but they will not be needed for our purpose.
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(2) Show that if H has a global equation g, then gry Vg ~ QH[ .
(3) Conclude that grg @X is a sheaf of rings and that E belongs to its center.

Remark 7.2.4 (Structure of grj @X) While @H can be identified to the quotlent
grg :@X/Egr Dx = grg @X/gro Zx E, it is not identified with a subsheaf of gry Y9y,
except when Ny X is trivial. When H is globally defined by a holomorphic function g,
or more generally for any holomorphic function g : X — C, we will often use the
trick of the graph inclusion ¢4 : X — X x C and we will then consider the filtration
V.-@thc with respect to X x {0}, so that we will be able to identify grgé){xc with
the ring Zx [E].

Exercise 7.2.5. Show the equlvalence between the category of O'x-modules with in-
tegrable logarithmic connection Vol — QL x(log H) @ # and the category of left

V()@X modules. Show that the residue Res V corresponds to the induced action of E
on .////fH%

Let v : Ng X — H denote the normal bundle of H in X and set é[NHX] = V*_@NHX
(where v, is taken in the algebraic sense) with its filtration V, %y, x]. Then there
is a canonical isomorphism (as graded objects) gr¥?x ~ ng@[NH x1, and the latter

sheaf is isomorphic (forgetting the grading) to é[ N X]-

Exercise 7.2.6 (The Rees sheaf of rings RV@X) Introduce the Rees sheaf of rlngs
RV@X = @D, VkQX vk .@X[v v~ associated to the filtered sheaf (@X,V@X)
(see Definition A.2.3), and similarly Ry Ox = P, ViOx - vF C Ox[v,v™], which is
the Rees ring associated to the j]; adic filtration of & X

(1) Show that Ry ﬁX = ﬁX [v,tv~!], where t = 0 is a local equation of H.
(2) Show that Ry Zx = Ox|[v, to= ] (vdy, O,y - . - 0,
(3) Conclude that Ry Py is locally free over Ry Oy .

Remark 7.2.7 (V -filtration indexed by A 4+ Z). The following construction of extending
the set of indices will prove useful. Let A C [0, 1) be a finite subset containing 0. Let
us fix the numbering of A+7Z = {...,a_1,a,,a1,...} which respect the order and
such that o, = 0. We thus have 1 = QA We denote by Ay, @X the filtration indexed
by A+ Z defined by 4V, Dy = Vi Px. We consider it as a filtration indexed by Z
by using the previous order-preserving bijection. Since [a] + [ﬁ] < [a + ], we have
Ay @X AVg.@X - Va+5@X, and on the other hand, 4V, QX = Vo-@X The Rees
ring is Ray Zx = @kez Vak@Xvk Note also that

keZ ke#AZ

It will sometimes be convenient to write, for short, RAvéX = @QGA+Z AVa:éXv“.

Exercise 7.2.8. Define similarly AVaﬁ~ x and show that RAvéx is locally free over
Ray Ox.
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Remark 7.2.9 (Restric~ti0n toz = 1).~The V—ﬁNItration restricts Well when setting z = 1,
that is, Vx 9x = Vk@)(/(z — 1)Vk@X = Vk@)(/(z — 1)9}( NV,9x.

7.3. Specialization of coherent P x-modules

In this section, H denotes a smooth hypersurface of a complex manifold X and
we denote by ¢ a local generator of . We use the definitions and notation of
Section 7.2.

Caveat 7.3.1. In Subsections 7.3.a-7.3.c, when :@X = Rp9x, we will forget about the
grading of the @X—modules and morphisms involved, in order to keep the notation
similar to the case of Zx-modules. From Section 7.4, we will remember the shift
of grading for various morphisms, in the case of Rp%Zx-modules (this shift has no
influence in the case of Zx-modules).

7.3.a. Coherent V-filtrations

Exercise~ 7.3.2 (Coherence of Rvéx). We consider the Rees sheaf of rings Rvéx =
D, Vi2x - v¥ as in Exercise 7.2.6. The aim of this exercise is to show the coherence
of the sheaf of rings Ry Zx. Since the problem is local, we can assume that there are
coordinates (¢, xa,...,x,) such that H = {t = 0}.

(1) Let K be a compact polycylinder in X. Show that Ry Ox (K) = Rv(éx(K))
is Noetherian, being the Rees ring of the .#-adic filtration on the ring &'x (K) (which
is Noetherian, by a theorem of Frisch). Similarly, as Ox , is flat on Ox (K) for every
x € K, show that the Iing (Rvﬁx)T = Rvﬁx(K) ®5X(K) ﬁX,m is flat on Rvﬁx(K)

(2) Show that Ry Ox is coherent on X by following the strategy developed in
[GM93|. [Hint: Let Q be any open set in X and let ¢ : (Rvﬁx)fﬁ — (Rvﬁx)fﬁ
be any morphism. Let K be a polycylinder contained in Q. Show that Ker o(K)
is finitely generated over Ry Ox(K) and, if K° is the interior of K, show that
Ker o =Kerp(K)®p 5 (1) (RV?X)H(Q. Conclude that Ker o) ko is finitely gen-

erated, whence the coherence of Ry Ox |

(3) Consider the sheaf Ox|[r,&,...,&] equipped with the V-filtration for
which 7 has degree 1, the variables &s,...,&, have degree 0, and inducing the
V-filtration (i.e., t-adic in the reverse order) on Ox. Firstly, forgetting 7, Show that
RV(ﬁX[é.Qa ce 7£n]) = (RVﬁX)[fQ, e agn] Secondly, uSing Vk(ﬁX[Tv 523 cee 75”” =
>is0 Vi—j(Ox[6a, ... ,&a])T? for every k € 7Z, show that we have a surjective
morphism

RvéX[éba .. af’n] ®((~j (E[T/] — RV(&/X[T7 527 s 7571])
ViOx[€a, ..., E)d" T — ViOx &, ... Ea)TIq" .

If K C X is any polycylinder show that Rv(ﬁx [1,&2,...,&])(K) is Noetherian, by
using that (Ry Ox (K))[7',&,,...,&,] is Noetherian.
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(4) As Ry Zx can be filtered (by the degree of the operators) in such a way that,
locally on X, grRV_@X is isomorphic to Rv(ﬁx [1,&2,...,&n]), conclude that, if K is
any sufficiently small polycylinder, then Ry 9x (K) is Noetherian.

(5) Use now arguments similar to that of [GM93] to concludes that Ry Px is
coherent.

Definition 7.3.3 (Coherent V -filtrations). Let .# be a coherent right @X—module.
A V-filtration indexed by Z is an increasing filtration U,.# which satisfies
Uy - Vkéx C Upgpr A for every k,f € Z. In particular, each U,.# is a right
Vo.@x—module. We say that it is a coherent V-filtration if each U, 4 is V().@X—
coherent, locally on X, there exists ¢, > 0 such that, for all £ > 0,
k
U_k—pyt = U_go.//'tk and  Ugqq# = ZU@O///6g

Jj=0

Remark 7.3.4 (The case of left @X-modules). For left @—modules, it is more usual to
consider a decreasing filtration U°®.# which satisfies Vkéx UM c UF g for
every k,{ € 7. We say that such a filtration is a coherent V -filtration if each U*.4 is
Voéx—coherent, locally on X, there exists £, > 0 such that, for all k£ > 0,

k
Ukt st =t*U" .t and U0 g =N "djU .
j=0
Exercise 7.3.5 (Characterization of coherent V -filtrations). Let .# be a coherent right
P x-module. Show that the following properties are equivalent for a V-filtration U, .# .

(1) U, # is a coherent filtration.

(2) The Rees module Ry.# = @, Up v’ is Rvéx—coherent.

(3) For every z € X, replacing X with a small neighbourhood of z, there exist
integers Aj=1, g, ti=1,... p, Ki=1,..p and a presentation (recall that [+] means a shift of
the grading)

q - P
_EBlgx[)\j] — @ Dx i) — M — 0
= =

=1
such that Up.# = image(PF_, Vi, 10 Zx [i))-

Note that, as for j;f—adic filtrations on coherent & 'x-modules, it is not enough to
check the coherence of gr;;.# as a gr¥%x-module in order to deduce that U,.# is a
coherent V-filtration.

Exercise 7.3.6 (From coherent Rvéx-modules to éx-modules with a coherent
V filtration)

(1) Show that a graded Rvéx—module M can be written as Ry.# for some
V-filtration on some éx—module A if and only if it has no v-torsion.

(2) Show that, if M is a graded coherent Rvéx—module7 then its v-torsion is a
graded coherent Ry @X—module.
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(3) Conclude that, for any graded coherent Ry Zx-module M, there exists a
unique coherent Zx-module and a unique coherent V-filtration U®*.# such that
M /v-torsion = Ry A .

Exercise 7.3.7 (Some basic properties of coherent V -filtrations)
(1) Show that the filtration naturally induced by a coherent V-filtration on a coher-
ent Yx-module on a coherent sub or quotient Zx-modules is a coherent V-filtration.
(2) Deduce that, locally on X, Ehere exist intege~rs N=1,...q> Lj=1,..q) Hi=1,..p>
ki=1,...p and a presentation @j_, Ix[\;] — @i Zx[w] — 4 — 0 inducing for
every £ a presentation
q ~ p ~
@ W].Jrg@xp\j} — Vki+z.@x [/Ll] — Ue/// — 0.
j=1 i=1
(3) Show that two coherent V-filtrations U,.# and U's.# are locally comparable,
that is, locally on X there exists ¢, > 0 such that, for every ¢ € Z,

Ug,goe// C Ué.// C Ug+g0//.

(4) It U,.# is a coherent V-filtration, then for every ¢, € Z, the filtration U, o, .4
is also coherent.

(5) If Usott and U4 are two coherent V-filtrations, then the filtration U) . # =
Uptl + UM is also coherent.

(6) Assume that H is defined by an equation ¢ = 0. Prove that, locally on X,
there exists kg such that, for every k < ko, ¢ : Uy — Ug_1 is bijective. [Hint: Use (2)
above.|

Exercise 7.3.8. Let % be a coherent left Voéx—module and let 7 be its t-torsion
subsheaf, i.e., the subsheaf of local sections locally killed by some power of ¢. Show
that, locally on X, there exists £ such that .7 N % t* = 0. [Hint: Consider the t-adic
filtration on VO:_@X, i.e., the filtration V_; @X with j > 0. Show that the filtration %t/
is coherent with respect to it, and locally there is a surjective morphism (V()@X)" - U
which is strict with respect to the V-filtration. Deduce that its kernel .%Z" is coherent
and comes equipped with the induced V-filtration, which is coherent. Conclude that,
locally on X, there exists jo > 0 such that Vj,_; ¢ = V7o ¢ -tJ for every j > 0. Show
that, for every j > 0 there is locally an exact sequence (up to shifting the grading on
each V,éX summand)

(Vog 7x)™ — (Voo Zx)" — 21U+ — 0.
Ast: Vkéx — Vk,léx is bijective for k < 0, conclude that t : Zt7o — ¥ to+! is so,
hence 7 Nt/ = 0.]

Exercise 7.3.9 (Coherent V -filtration indexed by A + 7). Extend the previous proper-
ties to coherent V-filtrations indexed by A + Z, where A C [0,1) is some finite set
(see Remark 7.2.7).
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7.3.b. Specializable coherent @X-modules. Let H C X be a smooth hypersur-
face. Let .# be a left (resp. right) coherent @X—module and let m be a germ of section
of . In the following, we abuse notation by denoting E € Voéx any local lifting
of the Euler operator E € gry’ éx, being understood that the corresponding formula
does not depend on the choice of such a lifting.

Definition 7.3.10.
(1) A weak Bernstein equation for m is a relation
(7.3.10 ) m- (2b(E) — P) =0,
where
« / is some nonnegative integer,
« b(s) is a nonzero polynomial in a variable s with coefficients in C, which
takes the form [] . ,(s — az)” for some finite subset A € C (depending on m),
« Pisagermin V_1%x, i.e., P =1tQ = Q't with Q,Q’ germs in Vy;Zx.
(2) We say that # is specializable along H if any germ of section of .# is the
solution of some weak Bernstein equation (7.3.10 x).

Exercise 7.3.11. Show that a coherent @X—module M is specializable along H if and
only if one of the following properties holds:

(1) locally on X, some coherent V-filtration U, .# has a weak Bernstein polyno-
mial, i.e., there exists a nonzero b(s) and a nonnegative integer ¢ such that

(7.3.11 %) VkeZ, gl 2b(E—kz)=0;
(2) locally on X, any coherent V-filtration U,.# has a weak Bernstein polynomial.

[Hint: in one direction, take the V-filtration generated by a finite number of local
generators of .#; in the other direction, use that two coherent filtrations are locally
comparable.]

Exercise 7.3.12. Assume that .Z is @X—coherent and specializable along H.

(1) Fix ¢, € Z and set Uj# = Upyy,#. Show that by:(s) can be chosen as
bu(s — £,2).

(2) Set by =b1bs where b; and by have no common root. Show that the filtration
UM :=Up_1.4 + by(E—kz)Up M is a coherent filtration and compute a polyno-
mial by in terms of by, bs.

(3) Conclude that there exists locally a coherent filtration U,.# for which by (s) =
[Ioca(s —az)> and Re(A) C (—1,0].

Assume that .# is Py-coherent and specializable along H. According to Bézout,
for every local section m of .#, there exists a minimal polynomial

b (s) = H (s — az)=

aER(m)
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giving rise to a weak Bernstein equation (7.3.10x). We say that .Z is R-specializable
along H if for every local section m, we have R(m) C R. We then set:

(7.3.13) ordg (m) = max R(m).

Exercise 7.3.14. Assume that .# is an R-specializable coherent éx—module. Show
that, for m € #,, and P € V;;Px 5,, we have

ordy 4, (m - P) < ordy ,, (m) + k.
[Hint: use that [B,V_1Zx] C VoZx and that the coherent V-filtrations Zx (mP) N
V.9x -m and V,Zx - mP of Dx - (mP) are locally comparable.]

The filtration by the order along H, also called the Kashiwara-Malgrange filtration
of # along H, is the increasing filtration V,.#,, indexed by R defined by
(7.3.15) Vally, ={m € M, | ordy z,(m) < o},
(7.3.16) Veally, ={m € My, | ordy, ,(m) < a}.
We do not claim that it is a coherent V -filtration. The order filtration satisfies,
VkeZ,Va,B R

Va%wo . ngX,wo C VaJrke//faju.

It is a filtration of .# by subsheaves V,.#Z of Vo_@x—modules. We set
(7.3.17) gt M=Vl |V M.

These are gry @X—modules. In particular, they are endowed with an action of the
Euler field E. We already notice, as a preparation to strict R-specializability, that
the satisfy part of the strictness condition.

Lemma 7.3.18. The gr(‘)/éx -module gr¥ 4 has no z-torsion.

Proof. Tt is a matter of proving that, for a section m of V,.#, if mz’ is a section of
Ve for some j > 0, then so does m. But one checks in a straightforward way that,
if P in Exercise 7.3.14 is equal to 2/, then the inequality there is an equality (with
k=0). O

Remark 7.3.19 (The case of left 17 x-modules). The order of a local section m is defined
as ordg (m) = min R(m). In Exercise 7.3.14 we have ordy ,, (Pm) > ordy 4, (m) — k.
The filtration by the order along H is the decreasing filtration V*.#,  indexed by R
defined by
VB///% ={m € M, | ordp z,(m) > B},

VP, = {mc M,, | ordy ., (m) > B}
The order filtration satisfies, Vk € Z, Va, 3 € R, Vkéx,% -Vﬁ//lxo C Vﬁﬁk///%. We
set griy. M = VPMIVZP M.
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Exercise 7.3.20.

(1) Assume that .# is R-specializable along H. Show that any sub-Zx-module ./’
and any quotient Zx-module .#Z” is also R-specializable along H.

(2) Let ¢ : A1 — M5 be a morphism between R-specializable modules along H.
Show that ¢ is compatible with the order ﬁltzations along H. Conclude that, on the

full sbucategory consisting of R-specializable Zx-modules of the category of @X—mod—
v

o is a functor to

ules (and morphisms consist of all morphisms of éx—modules), gr
the category of gry Zx-modules.

Exercise 7.3.21 (Restriction to z = 1). Let .# be a coherent RrpZx-module. Assume
that .# is R-specializable along H.

(1) Show that for every «,
(z=0) Vol =(z—1)Vo o

[Hint: let m = (z—1)n be a local section of (z —1).#4 NV,.#; then n is a local section
of V,.# for some ~; if v > «, show that the class of n in gr;//// is a annihilated by
z — 1; conclude with Exercise A.2.5(1).]

(2) Conclude that M := .# /(= — 1).# is R-specializable along H and that, for

every q,
VaM = Vol [(z = V)Vol = Vot [ ((z = 1)l NVo ),
gro M =g M [(z = V)gry M.
(3) Show that (Vo) ®c(s) Clz, 271 = VaM[z, 271].

Exercise 7.3.22 (Side changing). Define the side changing functor for Vbéx—modules
by replacing @X with VOQX in Definition A.3.10. Show that .Z'°f is R-specia-
lizable along H if and only if .Z™8" is so and, for every B € R, VA(.#"") =
[V_g_l(///“ght)}ldt. [Hint: Use the local computation of Exercise A.3.17.]

7.3.c. Strictly R-specializable coherent @X-modules. A drawback of the set-
ting of Section 7.3.b is that we cannot ensure that the order filtration is a coherent
V -filtration.

Lemma 7.3.23 (Kashiwara-Malgrange V -filtration). Let .# be an R-specializable coher-
ent Dx -module. Assume that, in the neighbourhood of x, € X there exists a coherent
V -filtration U, .# with the following two properties:

(1) its minimal weak Bernstein polynomial by(s) = [[,caqn (s — z)" satisfies
A(U) c (=1,0],

(2) for every k, Uy M |Uy_1.4 has no z-torsion.
Then such a filtration is unique and equal to the order filtration when considered
indexed by integers, which is therefore a coherent V -filtration as such. It is called the
Kashiwara-Malgrange filtration of M .
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Proof. Assume U,M satisfies (1) and (2). Let m be a local section of Uy.# and let
U,(m - éX) be the V-filtration induced by U,.# on m - Zx. By Exercise 7.3.7(1),
it is a coherent V-filtration. There exists thus k, > 1 such that Uy_g, (m - .@X) C
m - V_1Px. It follows that R(m) C (A(U) +k)U---U(AU) +k — k, + 1) and thus
ordgm = max R(m) < k, som C Vi 4.

Conversely, assume m is a local section of V.. It is also a local section of
Uk, # for some k, > 0. Its class in grf] , .# is annihilated both by z‘b,,(E)
and by 2¢by(E —(k + ko)z) (for some £,¢' > 0), so if k, > 0, both polynomials
have no common z-root, and this class is annihilated by some nonnegative power
of z, according to Bézout. By Assumtion (2), it is zero, and m is a local section of
U, —1.4 , from which we conclude by induction that m is a local section of Uy.#,
as wanted. O

Exercise 7.3.24 (Indexing with Z or with R). The order filtration is naturally indexed
by R, while the notion of V-filtration considers filtrations indexed by Z. The purpose
of this exercise is to show how both notions match when the properties of Lemma
7.3.23 are satisfied. Let U,.# be a filtration for which the properties of Lemma 7.3.23
are satisfied. Then we have seen that U,.# coincides with the “integral part” of the
order filtration V,.#. Show the following properties.

(1) The weak Bernstein equations (7.3.10 %) and (7.3.11 ) hold without any power
of z, i.e., for every k the operator E —kz has a minimal polynomial on Uy A /Uy _1.# =
Vet | Vi;—1.4 which does not depend on k.

(2) The eigen module of E —kz on this quotient module corresponding to the eigen-
value az isomorphic to grg 4,/ and the corresponding nilpotent endomorphism is

(7.3.24 %) N:=(E—-(k+ a)z).
In particular, each grx 4 is strict and we have a canonical identification

Vk%/Vk_ljl = @ grg+k%.
~1<a<0
(3) Forevery a € (—1,0], identify Vi1 4.2 with the pullback of @, _ /<, gy M
by the projection Vi — Vit [Vi—1.4, and show that the shifted order filtration
indexed by integers V,i..# is a coherent V-filtration.
(4) Conclude that there exists a finite set A C (—1, 0] such that the order filtration
is indexed by A 4+ Z, and is coherent as such (see Exercise 7.3.9).

Definition 7.3.25 (Strictly R-specializable @X-modules). Assume that .# is R-speciali-
zable along H. We say that it is strictly R-specializable along H if

(1) there exists a finite set A C (—1, 0] such that the filtration by the order along H
is a coherent V-filtration indexed by A + Z,
and for some (or any) local decomposition X ~ H x Ay,

(2) for every a < 0, t : gr¥ # — gr¥_, .4 is onto,

(3) for every o > —1, Oy : grl, M — gr} .4 (—1) is onto.
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Proposition 7.3.26. Assume that A is strictly R-specializable along H. Then, every
gr¥ M is a graded gry Px-module, and is strict as such (see Definition A.2.7).

Proof. Recall that, for a graded module, strictness is equivalent to absence of z-tor-
sion (see Exercise A.2.5(1)). Therefore, the second point follows from the first one
and from Lemma 7.3.18.

Let us consider the first point. We first claim that a local section m of .# is a local
section of V,,.# if and only if it satisfies a relation

m-b(E) € Vot

for some b with z-roots < «. Indeed, if m is a local section of V3.#Z with § > «
and satisfying such a relation, the Bézout argument already used and the absence of
z-torsion on each grlj/// (Lemma 7.3.18) implies that m is a local section of Vg .
Property 7.3.25(1) implies that there is only a finite set of jumps of the V-filtration
between « and 3, so by induction we conclude that m € V,.#. The converse is clear.

The grading on .# induces a natural (right) action of —0.z on .Z: for a local
section m = €p,m, of A = @, A", we set m(—0,z) := P, pm,. This action
is natural in the sense that it satisfies the usual commutation relations with the
right action of @X (it would be more standard to use the natural left action of 29,
on .'*). We claim that, for every a € R, we have V. (—0,z) C V.. Let m be
a local section of V., which satisfies a relation mb,,(E) =m - P with P € V,léx.
Then one checks that

m(—0.2)bm (E) = mby, (E)(—0.2) + mQ, Q € Vox
=mP(-0,z) + mQ, P¢€ V,léx
=m(—0,2)P+mR, ReVyPx.

We conclude that m(—0,z) € V,,.# by applying the first claim above.

Since the eigenvalues of (—0.z) on .# are integers and are simple, the same prop-
erty holds for V,.#, showing that V,.# decomposes as the direct sum of its (=0, z)-
eigenspaces, which are its graded components of various degrees. O

Remark 7.3.27 (The need of a shift). If we regard the actions of ¢ and 0; as morphisms
in Mod(@H)—modules, that is, graded morphisms of degree zero, we have to introduce
a shift by —1 (see Remark A.2.4) for the action of d;, which sends Fjz? to Fj,412P*1.
The same shift has to be introduced for the action of E, as well as for that of N =
(E —az).

Exercise 7.3.28. Check that if (2) and (3) hold for some local decomposition X =~
H x Ay at x, € H, then they hold for any such decomposition.

Remark 7.3.29 (The case of left .@X-modules). For left .@X—modules, we take f > —1 in
7.3.25(2) and 8 < 0 in 7.3.25(3) for gr@///. The nilpotent endomorphism N of gr@///
is induced by the action of —(E —3z).
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Remark 7.3.30 (Side-changing). Let .# be a left @X—module and let 278 = Oy @ .4
denote the associated right éx—module. Let us assume that H is defined by one
equation g = 0, so that gr?,/// and gr’.#"#" are respectively left and right @H—
modules endowed with an action of E.

Assume first that .# = Ox and .Z"8" = 5. We have

~ o if k <0, N & if &
VEGy =37 1 and Viwx = wx B !

9" O0x it k>0, if k
We have gr¥,@x = &y ® dg/z, so that dg/z induces an isomorphism (see Remark
A.2.4)

Op(—1) =5 gr¥ @x, that is, gryl(éﬁght) ~ (g% Ox)"#h(—1).
Arguing similarly for .# and .#"&" gives an identification
grzy/'(%right) ~ (gret%)right(_1>7 B=—a-1.

With this identification, the actions of E (resp. N) on both sides coincide.

Proposition 7.3.31. Assume that A is strictly R-specializable along H. Then, in any
local decomposition X ~ H x Ay we have

(a) Va<0, t: Vol — Vo_1.#4 is an isomorphism;
(b) Vaz0, Vol =Veql + (Vo1.4)0¢;
. bi fo <o,
(c) togrl M — grl M s ?n' zsgmorp i z'fa
injective if a > 0;
‘ hi if o > —1,
(d) Oy :ng///—)ngH///(—l) is c‘m' zsolmorp i z'fa
injective ifa < —1;

In particular (from (b)), M is generated as a Dx-module by Vo .

Proof. Because V,1,.# is a coherent V-filtration, (a) holds for o« < 0 locally and
(b) for o« > 0 locally. Therefore, (a) follows from (c¢) and (b) follows from (d).
By 7.3.25(2) (resp. (3)), the map in (c) (resp. (d)) is onto. The composition td; =
(E —az) + az is injective on gr¥ .# for a # 0 since (E —az) is nilpotent and gr¥ .#
is strict, hence (c¢) holds. The argument for (d) is similar. O

In the next exercises, we explain which set of data is needed to recover coherent
Vo Zx-modules and morphisms between them. This will be used from a more general
point of view in Chapter 9.
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Exercise 7.3.32 (Recovering morphisms from their restriction to 1)

Assume that X = H x Ay and that .41, .45 are strictly R-specializable along H.
Let p«o : Voutts — Vodls be a morphism in I\/Iod(VoéX) such that the diagram (Dg)
commutes:

P<k
Vi1 M —— Vig_1. M

(Dk) 8{ Ft

Vk/fl —>¥7\k Vk///2

Show that ¢<o extends in a unique way as a morphism ¢ : .# — #>. [Hint: For
the uniqueness, use 7.3.31(b); show inductively the existence of o<y, : Vi dty — Vi Mo
(k > 1); for example, if k = 1, use 7.3.31(d) to show that, for m,m’,n,n’ € Vo, if
m —m/ = (n’ —n)0d, then n’ —n € V_1.#5 and deduce that setting p<1(m + nd;) =
w<o(m) + p<o(n)d; well defines a Voéx—linear morphism pq @ Vi.dy — Vil for
which (D7) commutes.]

Exercise 7.3.33 (Recovering Vy.#). Assume that X = H x A; and that .# is strictly
R-specializable along H. We have a natural exact sequence of VyZx-modules

0 — Vol — Vol — gryy M — 0.

We wish to recover explicitly the middle term in terms of the extreme ones and of
the morphisms (c) and (d) in Proposition 7.3.31 above, for the most interesting value
a=0.

(1) Consider the morphisms
gr¥ (1) A, Vol ®gr¥ (1) ®gry A _B gV, A

et (07€,€6t)
(m,e,e)————— [m]+e- Ot —e-t

where, for m € V_,.4, [m] denotes its class in gr¥,.#. Show that the composition is
zero, hence they define a complex C* of VO.@X—modules (by regarding each gr¥ .# as
a V()@X—module). Show that H’(C*) =0 for j # 1.

(2) Consider the morphism from Vy.# to the middle term given by p — (u-t, 0, [u]),
where [11] denotes the class of y in gry .#. Show that it injects into Ker B and that
its intersection with Im A is zero. [Hint: Use 7.3.31(a).]

(3) Show that the induced morphism Vo.# — H'(C*) is an isomorphism. [Hint:
Injectivity follows from (2) above; modulo Im A, any element of Ker B can be repre-
sented in a unique way as (m,0,0) with [m] = ¢ - ¢; choose any lifting 5 € Vot of §
and show that there exists n € Vog.# such that m — St = 7 -t by using 7.3.31(a);
conclude by setting p =6 + 7.]

(4) Show that, for any Voéx—linear morphism p¢_1 @ Vo141 — V_1.45, the
diagram (D_;) commutes, and conclude that giving a morphism p<oVo#1 — Vo tls
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such that (Dg) commutes is equivalent to giving a pair (p<_1,¢o) such that, with
respect to the morphisms
-0
/_N)
eV, M gry M
v
-t
and setting p_1 = gr¥ o<1, we have
Orop_1=¢o00:, p-10t="10¢p.

Assume that X = H x A;. Consider the category whose objects consist of the data
(M1, Mp,c,v), where

o M<_1 is a coherent Voéx—module on which ¢ is torsion-free and such that
My = Mg 1] M1t is strict and the induced action of ;¢ on it is nilpotent
with index of nilpotence locally bounded on H,

o My is a strict coherent gry éx—module on which the action of tJ; is nilpotent
with index of nilpotence locally bounded on H,

« the data c, v are gry @X—linear morphisms

¢ 1)

/—\
My M

\_/

v
such that cov =0,t on .#Z_1 and voc = t0; on 4.
Morphisms in this category consist of pairs (p<_1,¢0), where o<1 : M1 — N4
is Vbéx—linear, wo My = N s grgéx—linear, and the restriction ¢_; of p<_1
to 4 _1 satisfies

COWY_1 =®pOC, P_10V=VOY.
We have a functor from the category of coherent éx-modules which are strictly
R-specializable along H to the above category:

M —s (VM vy MO t).

Corollary 7.3.34 (Recovering morphisms from their restriction to V_; and gr})
This functor is fully faithful, i.e., any morphism (w<_1, o) can be lifted in a
unique way as a morphism .

Proof. Consider the category whose objects are coherent Voéx—modules M<o such
that

o M<o/ Mot is strict,

« t0; acting on #<o/ M<ot has a minimal polynomial with roots az satistying
a € (—1,0],
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« defining V,.# for a« < 0 as in Exercise 7.3.24, every gr¥ #o is strict and
7.3.31(a) holds,

and whose morphisms are VO_@X—linear morphisms such that (Dg) commutes.
According to Exercise 7.3.32, the functor .# — #¢y := Vo.# is fully faithful.
Now, the functor A<o — (V_1.#<o,gry M<o,0s,t) is an equivalence of categories.
Indeed, Exercise 7.3.33 shows that it is essentially surjective and, since the recon-
struction is functorial in an obvious way, it enables one to lift in a unique way a pair
(p<—1,%0) as a Voéx—linear morphism <o such that (Dg) commutes, showing the
full faithfulness. O

Remark 7.3.35 (Restriction to z = 1). Let us keep the notation of Exercise 7.3.21. For a
coherent Zx-module M which is R-specializable, 7.3.25(2) and (3) are automatically
satisfied. Moreover, the morphisms in 7.3.31(c) and (d) are isomorphisms for the
given values of a.. In other words, for coherent Zx-modules, being R-specializable is
equivalent to being strictly R-specializable. In particular, Exercise 7.3.21 applies to
coherent RpZx-modules which are strictly R-specializable along H.

Exercise 7.3.36 (Structure of .# /V_, #). Let .# be a coherent right .@X—module
which is strictly R-specializable along H. Let us fix o, € R. Then A4 /Veo, # is a
Vo Zx-module.

(1) Show that # /V.,, A is strict.
(2) Show that .#/V<.,.# decomposes as P, Ker(E —az)N with N > 0.
(3) Show that the a-summand can be identified with gr! ..
(4) Show that 4 /V.,,.# can be identified with €@ gry M as a Vo Zx-module.
Does the Voéx—module structure of A /V.,, A extend to a @X—module structure?
[Hint: in local coordinates, what about the relation [3;,¢] = z applied to a nonzero
section of grl .47

(5) Assume now that X ~ H x A;. Let s be a new variable and let us equip
gtV M |s] := gtV .M @¢ C[s] with the following right Vo ZPx-structure defined by

o 0 ifj=0,
m;s’ -t = ] e
(m§(E+jz))s’ ifj>1,
(m?‘sj)tﬁt = (m§(E +j2))s.

aza,

Check that this is indeed a VyZx-module structure (i.e., [td;,t] acts as zt). Show
that .# /V_1.# can be identified with €D, _1 g grY #[s]. With this structure, show
that gr¥ #s? = Ker(td; — (a+ j)2)N (with N > 0 locally).
[Hint: use that 3, : gr¥ .# — grl,,.# is an isomorphism for & > —1 to identify
Do gry A with @ae(—l,o] @j)o gy A7)

(6) Equip gry .#[s] with the action of 8, defined by (m$s?)d, = m§s’™'. Show
that the relation [3;,] = z holds on sgr¥ .#[s|, but that [0;,t] = z+(E+z) on gr¥ ..

Conclude that this action does not define a Zx-module structure on gr¥ .#s|.
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Exercise 7.3.37 (First properties of strictly R-specializable coherent 17 'x-modules)
Show the following properties.

(1) Let .# be a coherent Zx-module which is strictly R-specializable along H.
If A = HD Ms with M1, M5 _@X—coherent, then 41, .#; are strictly R-specializa-
ble along H.

(2) In an exact sequence 0 — #y — # — M> — 0 of coherent éx-modules,
if A is strictly R-specializable along H, set

Unty = Vot N My, Uslo =image(VyH).

« Show that these V-filtrations are coherent (see Exercise 7.3.7(1)) and that,
for every «, the sequence

0 —gltty — gttt — Yty — 0

is exact.

« Conclude that U, satisfies the Bernstein property 7.3.23(1) and the
strictness property 7.3.23(2) (with index set R), and thus injectivity in 7.3.31(a)
and (d), but possibly not 7.3.25(2) and (3). Deduce that U,.#1 = V,.#1. [Hint:
use the uniqueness property of Lemma 7.3.23.]

o If each gr{.#5 is also strict, show that Uy #o = V.M.

o If moreover one of both .#1, #5 is strictly R-specializable, then so is the
other one.

(3) Let ¢ : .4\ — M5 be any morphism between coherent _@X—modules which are
strictly R-specializable along H. Apply the previous result to Im .

(4) Let ¢ : X — X; be a closed inclusion of complex manifolds, and let H; C X3 be
a smooth hypersurface such that H := X N H; is a smooth hypersurface of X. Then a
coherent Zy-module . is strictly R-specializable along H if and only if .4} := pe..#
is so along H;, and we have, for every «,

(gry, 1, N) = (ptugry 4 ,N).

[Hint: assume that X7 = H XAy x A, and X = H x Ay x {0}, so that 4 = 1,.#[0,];
show that the filtration Uy .#) := 1.V, .#[0,] satisfies all the characteristic properties
of the V-filtration of .#; along H; .|

Example 7.3.38 (Morphisms inducing an isomorphism on V()

Assume that X = H x A;. Let .4, 4 be strictly R-specializable along H and
let o : M — N be a P x-linear morphism. Since ¢ is also %@X—linear, it induces a
morphism A [V, M — N [Veq, A for each a,, which decomposes with respect to
the decomposition 7.3.36(2). Each summand is then identified with gr’¢. We will
consider more specifically the case where ¢ induces an isomorphism on V.

We first claim that this condition implies that Ker ¢ and Coker ¢ are supported
on H, that is, every local section of Ker ¢, Coker ¢ is annihilated by some power
of t (due to the Jg-coherence of these modules). For Ker ¢, this follows from
Ker o N Voo = 0 together with the property that ¢ is nilpotent on 4 /V o .
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For Coker ¢, we note that any local section n of 4" satisfies t*n € Voot = (Vo)
for some k, hence t* is nilpotent on Coker ¢.

The decomposition 7.3.36(2) induces decompositions Ker ¢ = €9 k>0 Ker gr,‘c/go and
Coker <p = @k>0 Coker gr} ¢ as Voéx modules. Moreover, since E acts as 0 on
Ker gry ¢, Coker gro , the obstruction in 7.3.36(6) (adapted to the present setting) to
extendlng the V()@X structure to a @X structure vanishes, and we conclude that the
@X module Ker ¢, resp Coker @, is identified with the @X module »ig. Kergry o,
resp. pig+« Coker gro .

Definition 7.3.39. A morphism ¢ between strictly R-specializable coherent left
Zx-modules is said to be strictly R-specializable if for every a € [—1, 0], the induced
morphism gr¥ ¢ is strict (i.e., its cokernel is strict), and a similar property for right
modules.

Proposition 7.3.40. If ¢ is strictly R-specializable, then grl¢ is strict for every
a € R, and Ker g, Im ¢ and Coker ¢ are strictly R-specializable along H and their
V -filtrations are given by

Vo Kerp = Vo NKerp, V, Coker p = Coker(¢v,.#),
Valmo =Im(ppv, z) = Vot NIm .

Proof. Let us endow Ker ¢ and Coker ¢ with the filtration U, naturally induced by
V,.#,V, /. By using 7.3.31(c) and (d) for .# and .4, we find that gr Ker ¢ and
gr Coker ¢ are strict for every a € R. By the uniqueness of the V-filtration, the
first line in (7.3.40) holds, and therefore all properties of Definition 7.3.25 hold for
Ker ¢ and Coker ¢. Now, Im ¢ has two possible coherent V-filtrations, one induced
by V,.#" and the other one being the image of V,.#. For the first one, strictness of
gr,, Im ¢ holds, hence Im ¢ is strictly R-specializable and V,, Im ¢ = Im ¢NV,.4". For
the second one U, Im ¢, gr/ Im ¢ is identified with the image of grY ¢, hence is also
strict, so U, Im ¢ is also equal to V, Im ¢. O

Corollary 7.3.41. Let A4* = {-- RN -+ } be a complex bounded above whose
terms are éx-coherent and strictly R-specmlizable along H. Assume that, for ev-
ery a € [—1,0], the graded complex gr¥ #° is strict, i.e., its cohomology is strict.
Then each differential d; and each '/ * is strictly R-specializable along H and grY
commutes with taking cohomology.

Proof. By using 7.3.31(c) and (d) for each term of the complex gr¥ .#°, we find that
strictness of the cohomology holds for every o € R. We argue by decreasing induction.
Assume .#Z**t! = 0. Then the assumption implies that dj : .#Z*~1 — .#* is strictly
R-specializable, so we can apply Proposition 7.3.40 to it. We then replace the complex
by .52 dk—fi Kerd;, — 0 and apply the inductive assumption. Moreover, the
strict R-specializability of .#*/ Ker dy, ~ Imdj,; implies that of dj_;. O
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Definition 7.3.42 (Strictly R-specializable W -filtered 17 'x -module)

Let (#,W,.#) be a coherent P x-module endowed with a locally finite filtration
by coherent .@X—submodules. We say that (#,W,.#) is a strictly R-specializable
(along H) filtered P x-module if each W,.# and each gr)V .4 is strictly R-specializa-
ble.

Lemma 7.3.43. Let (M, W, 4 ) be a strictly R-specializable filtered Dy -module. Then
each Wyl Wi M (k < L) is strictly R-specializable along H.

Proof. By induction on ¢ — k > 1, the case £ — k = 1 holding true by assumption.
Let U,(Wodtl JWy#) be the V-filtration naturally induced by V,W,.# . It is a coher-
ent filtration. By induction we have U,(Wy_1 A /Wy M) = V,(Wy_1.4 Wy ) and
U.ngV,/// = V.grgv///. Similarly, V.Wytl "Wy_1 M = V,Wy_1.4. We conclude that
the sequence

0 — gry Wyl Wy l) — gV (Wotl Wi tt) — gr¥ar)V # — 0

is exact, hence the strictness of the middle term. O

7.4. Nearby and vanishing cycle functors

We will now remember explicitly the grading in the case of Rp Zx-modules. Recall
(see (A.2.3%) and (A.2.4%x)) that, given a graded object M = B, M, (with M, in
degree —p), we set M (k) = @, M (k), with M(k), = M,_j. We have seen that, for
strictly R-specializable RrZ-modules, the module gr’.# are graded Rp%-modules
in a natural way. Let us emphasize that, in Definition 7.3.25(2) and (3),

« the morphism ¢ is graded of degree zero,

« the morphism 9, is graded of degree one; we thus write 7.3.25(3) as

Op rgrl s~ gr¥ (—1) fora> —1.

Definition 7.4.1 (Nearby and vanishing cycle functors). Let g : X — C be a holomorphic
function. Let X —% X x C denote the graph inclusion of g. We say that a right
Px-module A is strictly R-specializable along g = 0 if 14,4 is strictly R-specia-
lizable along X x {0}. We then set

{wg,wz = Y (At (1), A= exp(2ia), a € [-1,0),

(7.4.2)
bg1 M = gr(‘)/(%oDLg*///)-

Then g zAM , $g1.# are Zx-modules supported on g~1(0), endowed with an endo-
morphism E induced by ¢3;. We set N = (E —az).

Remark 7.4.3 (Choice of the shift). The choice of a shift (1) for ¢4 y.# and no shift for
¢g1.# is justified by the following examples.

(1) If # = @xxc we have gr¥ 0xxc(l) ~ @x by identifying @xxc with
Bx ®z, Oxxcdt/z.
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(2) If A is a right .@XXC—module of the form e,/ where 4 is a right éXx{O}‘
module and ¢ : X x {0} < X x C is the inclusion, then gr§’ .# = 4.

Exercise 7.4.4. Justify that 14 and ¢4 1 are functors from the category of R-specia-
lizable right Zx-modules to the category of right Zx-modules supported on g=1(0).
[Hint: Use Exercise 7.3.20(2).]

Exercise 7.4.5. Let .# be a right éx—module. When g is smooth and ¢~%(0) = H,
show that we have g\ ~~ ola«gry /(1) and Gg1 M = oLy M , where
iy : H — X denotes the inclusion.

Remark 7.4.6 LN earby/vanishing cycle functors for left @X-modules)
For left Zx-modules, we also use the graph embedding. However, we now have
olgedl = H 7 o1yt . Therefore, one sets

Vg AMe = gr@(,%ﬂ_lDLg*///le“), A =exp(—2m7i B), B € (—1,0],
Qf’g,l///left = gr\_/l(%ﬂilDLg*‘//k&)(*l);

with no shift of the grading in the first line, in order that gr9, 5ch = ﬁ~XX{0} (with
grading). The nilpotent endomorphism N is induced by —(td; — 8z).

Lemma 7.4.7 (Side-changing for the nearby/vanishing cycle functors)
The side-changing functor commutes with the nearby/vanishing cycle functors,
namely

¢97A(%right) _ (wg7,\,//lleft)right, ¢g71(%right) _ (¢g71%lef‘c)right.

Proof. If A is a left éXXC—module which is strictly R-specializable along X x {0},
we have (see Remark 7.3.30)

g (Gxxc @ N) ~Gx @ gri (N)(1) YVaeR, f=—a—1.

We apply this to A = 571 1. ', so that AN = 720, g/risht, O

Proposition 7.4.8. Let g : X — C be a holomorphic function and let .# be a coherent
Dx-module. Assume that A is strictly R-specializable along g = 0. Then g M
and ¢g1.# are Px-coherent.

Proof. By assumption, ¢4 x.# and ¢4 1.4 are gr(‘)/é)(x@ = 9y [E]-coherent. Since
E —az is nilpotent on g x4 (A = exp(27mia)), the Px-coherence follows. O

Definition 7.4.9 (Morphisms N, can and var). Assume that .# is strictly R-specializable
along g = 0. The nilpotent operator N = (¢t0; — az) is a morphism

Ygadl s g M (—1),  Ggall s Gyl (1)
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When X\ = 1, the nilpotent operator N on 14 1.# and ¢41.# is the operator obtained
as the composition varocan and canovar in the diagram below:

can = -0y
— T
(7.4.9 %) Vg1 M bg1- M
D var = ¢

with the same convention as in (3.2.15).

Remark 7.4.10 (The case of left @X-modules). In this case we have N = —(td; — 8z)
and the diagram

can = —0; -
— T
(7.4.10 %) Vg 1M Gy M .
St R —

Exercise 7.4.11. Similarly to Exercise 7.4.5, show that, if X = H x A; and g is the
projection to Ay, so that ¢4 is induced by the diagonal embedding A; — Ay x Ay,
then can = 9, and var = ty for pige# are pig.(0y,) and pig«(t1), with d;, = 0, :
gtVoll — gry M (—1) and ty =t gry M — gr¥ M.

Definition 7.4.12 (Monodromy operator). We work with right Zx-modules. Assume
that M is R-specializable along (g). The monodromy operator T on 1, \M is the op-
erator induced by exp(2witd;) (for left Zx-modules T = exp(— 27itd})), and T — A1d
is nilpotent, and the nilpotent operator N is given by ﬁ log(T — AId) on ¢4 \M. On
Yg 1M, ¢g 1M we have T = exp27iN and N = ﬁ log(T —Id).

Remark 7.4.13 (Monodromy filtration on nearby and vanishing cycles)

The monodromy filtration relative to N on ¢, x.# and ¢, 1.# (see Exercise 3.1.1
and Remark 3.1.10) is well-defined in the abelian category of graded éX—modules
with the automorphism o induced by the shift (1) of the grading (or in the abelian
category of Px-modules). The Lefschetz decomposition holds in this category, with
respect to the corresponding primitive submodules Py s, Pypg 1.4 for £ > 0.

Nevertheless, strict R-specializability is not sufficient to ensure that each such
primitive submodule (hence each graded piece of the monodromy filtration) is strict.
The following proposition gives a criterion for the strictness of the primitive parts.

Proposition 7.4.14. Assume . is strictly R-specializable along (g) and fix X € St. The
following properties are equivalent.
(1) For every £ > 1, N : opy x Ml — thg xM (L) is a strict morphism.

(2) For every £ € Z, gr)ap, x4 is strict.
(3) For every £ >0, Pppg M is strict.

We have a similar assertion for ¢41 M.

Proof. This is Proposition 3.1.11. O
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Remark 7.4.15 (Restriction to z = 1 of the monodromy filtration)

If A is a coherent RpZx-module which is strictly R-specializable along D and
setting M = A4 /(z — 1), we have g \M = g x M [(z — 1)pg \A and ¢y 1 M =
Gg1M (2 — 1)pg1.4, according to Exercise 7.3.21, and the morphisms can and var
for .4 obviously restrict to the morphisms can and var for M, as well as the nilpotent
endomorphism N.

Similarly, the monodromy filtration M, (N) on ¢4 x4 , ¢4 1.4 restricts to the mon-
odromy filtration M,(N) on 9, \M, ¢, 1M, since everything behaves C[z, z~!]-flatly
after tensoring with C[z, z71].

Exercise 7.4.16 (Strict specializability along {t" = 0}). Let ¢ be a smooth function on X,
set Xo = t71(0) and assume that X = Xy x C. Let .# be a coherent @X—module
which is strictly R-specializable along ¢ = 0. The purpose of this exercise is to show
that .# is then also strictly R-specializable along g = ¢t = 0 for every r > 2, and to
compare nearby cycles of .# with respect to ¢t and to g.

Following the steps below, show that .# is strictly R-specializable along {g = 0}
and, denoting by ¢ : Xg — X the closed inclusion,

(@) (Ygadl ,N) = (pts(tPear ), N/r) for every A,
(b) ((bg,l'//ﬂ N) = (DL* (¢t,1‘%)7 N/T),

(c) there is an isomorphism
can, = cang o(t" 1)1

cang =1 cang

wQ,I%C‘ég,l% ~ i gl *wt,l///; ~ j¢t71=///

(=1) vary \y
(=1

varg 1= t"=1 o var,

(1) Write pigetl = Py A @ 0% as a Dx [u](8,,)-module, with
(m®d)dk =m®sdk V>0,
(m ® 6)0; = (md;) @6 — (rt"'m) ® 69,
(m®du=(mt") @4,
(m®0)6x = (mbx) @4,
and with the usual commutation rules. Show the relation
r(m ® §)ud, = [mtd;] ® 6 — (mt ® §)0;.

(2) We will denote by V* the V-filtration with respect to the variable ¢ and by V*
that with respect to the variable u.
For o < 0, set

Ualptgetl) = (Vi ©6) - Vi'(Dx [u] (D)),
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and for a > 0 define inductively
Ua(ptgxtl) = Ucqo(ptgetl) + Uq—1(ptge )0,

Assume that o < 0. Using the above relation show that, if

Vi (D, — raz)e C VL, M,
then Ua(plgsedl)(udy — az)"™ C Ucq(plge ),

and conclude that ud, — «z) is nilpotent on gr¥ (ptg..#) for a < 0.
(3) Show that if mq,...,m, generate V!, # over V{Px, then m; ®4,...,my @3¢
generate Uy (ptgw ) over Vi (P x[u](0,)), by using the relation

(mtd;) ® § = (m ® 9) (L0 — rud,).

Conclude that Uy (ptg+s) is VO“(.@X [u](Dy))-coherent for every <0, hence for ev-
ery a.
(4) Show that, for every «,

Ua—1(ptgxt) C Ua(ptge M )u, resp. Uit (plgst) C Ucasi(ptgwd)+Ua(ptgs )00,

with equality if @ < 0 (resp. if & > —1). [Hint: Use the analogous property for . .|
Deduce that U.(DLQ*/// ) is a coherent V-filtration.

(5) Show that, for v < 0, V¥ (ptgutl) = VE (otgutl) + 350 (Vig Ml @ 6)0;.
Deduce, by considering the degree in 0,,, that the natural map

Dgrlntl @0 — grl (oigel)
k
Dlmi] @3 — [ > (i 0 0)0}

k i
is an isomorphism of .@X—modules. Deduce that .# is strictly R-specializable
along g = 0 with (increasing) Kashiwara-Malgrange filtration V*(ptg+.#) equal to
U.(ptgsd ). Conclude the proof of (a) and (b), and then that of (c).

7.5. Strict non-characteristic restrictions

7.5.a. Non-characteristic property. Let 1y : Y — X denote the inclusion of a
closed submanifold with ideal .#y (in local coordinates (z1,...,x,), Hy is generated
by z1,...,2p, where p = codim Y"). The pullback functor ¢3 is defined in Section A.7.
The case of left 9)( modules is easier to treat, so we will consider left QX modules
and the corresponding setting for the V-filtration in this section.

Let us make the construction explicit in the case of a closed inclusion. A local
Section & of vy 'Oy (vector field on X, considered at points of Y only; we denote
by LY the sheaf-theoretic pullback) is said to be tangent to Y if, for every | local
section g of Jy, &(g) € fy This defines a subsheaf @X‘y of 1y @X Then G)y =

ﬁy ® S Ex @X|y = LY@X|Y is a subsheaf of LY@X
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Given a left éx—module, the action of L{,l(:)x on L{,l/// restricts to an action of éy
on 5y M = Oy ®,-15, L;l%. The criterion of Exercise A.3.1 is fulfilled since it is
Y

fulfilled for O x and .# , defining therefore a left @y—module structure on 3. this
is iy A .

Without any other assumption, coherence is not preserved by ¢5-. For example,
DL§§X is not éy-coherent if codimY > 1. A criterion for coherence of the pullback
is given below in terms of the characteristic variety.

The cotangent map to the inclusion defines a natural bundle morphism
w : T" Xy x C, — T"Y x C,, the kernel of which is by definition the conor-
mal bundle 7§y X X C, of Y x C, in X x C,.

Definition 7.5.1 (Non-characteristic property). Let .# be a holonomic Zx-module with
characteristic variety Char.# contained in A x C,, where A C T*X is Lagran-
gean (see Section A.10.c). Let Y C X be a submanifold of X. We say that Y is
non-characteristic with respect to the holonomic .@X-module M, or that A is non-
characteristic along Y, if one of the following equivalent conditions is satisfied:

o (Ty X xC,)NChar# C T3 X x Cy,

» w: Char Ay xc, — T"Y x C, is finite, i.e., proper with finite fibres.

Exercise 7.5.2. Show that both conditions in Definition 7.5.1 are indeed equivalent.
[Hint: use the homogeneity property of Char .Z .|

Theorem 7.5.3 (Coherence of non-characteristic restrictions)
Assume that A is Dx-coherent and that Y is non-characteristic with respect
to M. Then p1y M is Dy -coherent and Char 15,4 C w(Char .y ).

Sketch of proof. The question is local near a point z € Y. We may therefore assume
that .# has a coherent filtration F,.# .

(1) Set Fypt} A = image[ty Fy M — 1 #]. Then, using Exercise A.10.8(2), one
shows that F,,tj .4 is a coherent filtration with respect to F,DQ‘,@X.

(2) The module grfy,i}..# is a quotient of 13 grf. , hence its support is contained
in Char.Z|y. By Remmert’s Theorem, it is a coherent grf’ @y—module.

(3) The filtration F,,}-.# is thus a coherent filtration of the @y—module ply A .
By Exercise A.10.5(1), pt}- 4 is @y—coherent. Using the coherent filtration above, it

is clear that Char t5..# C w(Char.Z)y). O
Exercise 7.5.4. With the assumptions of Theorem 7.5.3, show similarly that, if ¥ is
defined by x; = --- = z, = 0 then, considering the map « : X — C? induced by
x = (r1,...,2p), then .# is Zx cr-coherent.

Definition 7.5.5 (Strict non-characteristic property). In the setting of Definition 7.5.1,
we say that . is strictly non-characteristic along Y if .# is non-characteristic along Y’

and moreover L i34 = Oy @, - L{,l/// is strict.
Lty Ox
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Proposition 7.5.6. If ./ is strictly non-characteristic along Y, then L n05 M = piy M .

Proof. The result holds for Zx-modules, and therefore it holds after tensoring with
Clz, 271]. As a consequence, 77 L ,1* .4 is a z-torsion module if j # 0. It is strict if
and only if it is zero. O

Proposition 7.5.7. Assume that codimY = 1 and denote it by H. Then if A is strictly
non-characteristic along H, it is also strictly R-specializable along H and 5 A4 is
naturally identified with gr 4 .

Proof. Since the question is local, we may assume that X ~ H x A;. The previous
proposition says that ¢t : .# — .4 is injective and the definition amounts to the
strictness of A [t 4 .

Since . is .@X/C—coherent (Exercise 7.5.4), the filtration defined by UX.# =tk . #
(k € N) is a coherent V-filtration and E : gr¥,.# — gr?.# acts by 0 since 0,U°.# C
U = #. Tt follows that .# is specializable along H and that the Bernstein
polynomial of the filtration U*.# has only integral roots. Moreover, t : gr¥. # —
gri/ is onto for k > 0. We will show by induction on k that each grf,.# is
strict. The assumption is that gr¥,.# is strict. We note that E —kz acts by zero on
gr’f]///. If gr’fj//{ is strict, then the composition 9;t acts by (k+ 1)z on gr’f]///, hence
is injective, so ¢ : gr’f,/// — gr’ffl/// is bijective, and gr]f]“/// is thus strict. It follows
that .# is strictly R-specializable along H, and the t-adic filtration U*.# is equal to
the V-filtration.

Locally, we have an identification pt5,.# = A [t.# = gr',.#. We note that gt #
is naturally a @H—module since E acts by 0, and @H = grgéx/ Egr}{@x. Therefore
the previous identification is global. O

Remark 7.5.8 (The case of right Zx-modules). Let .# be a left Zx-module and let
M = Gy ®g, A be the associated right Zx-module (with grading). If .# is
strictly non-characteristic along H, then so is .Z"#". We have

DUy TN = G ®g, vty =wn QgF, gt = gr¥ (1),

according to Remark 7.3.30.
Assume that H is globally defined by the smooth function g. Then

* right 0 \% right right
olHspUg A" = pipgry M = grl A1) = g MTET,

according to Exercise 7.4.5.

7.5.b. Specialization of a strictly non-characteristic divisor with normal
crossings. We make explicit an example of computation of nearby cycles along a
divisor with normal crossings in a simple situation, anticipating more complicated
computations in Chapter 11. Let D = D;U D3 be a divisor with normal crossings in X
and smooth irreducible components D1, Dy. We set Dy 2 = DM D2, which is a smooth
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manifold of codimension two in X. Let .Z be a left @X—module which is strictly non-
characteristic along Dy, Dy and D; 5. Let us summarize some consequences of the
assumption on nearby cycles. In local coordinates we will set D; = {z; = 0} (i = 1,2).

(a) A is strictly R-specializable along D; and Dy;. We denote by V(;)/// the
V-filtration of .# along D; (i = 1,2).

(b) gry, # =0if B¢ N.

(c) gr(‘),m/// = ptp,H = tp, A . In local coordinates, gr(‘)/(i)/// = M|z, M.

Lemma 7.5.9. Fori = 1,2, the épi—module otp, - 1is strictly non-characteristic, hence
strictly R-specializable, along D1 2 and ‘/(a)gr?,m/// is the filtration induced by V(‘Q)///,
and conversely, so that

0 0 _ 0 .0 - ok
grv@)gfv(l)// = grv(l)grv(?)/// = oth, , M =, M.

Proof. The first point is mostly obvious, giving rise to the last formula, according
to (c). For the second point, we have to check in local coordinates that x% (4 /x4 ) =
x5 M |z x5 M for every k > 1, that is, the morphism

k
M |11 M T2, A A

is an isomorphism. Recall (see Exercise 7.5.4) that .# is éx Jc2-coherent, so by taking

a local resolution by free Zx/c2-modules, we are reduced to proving the assertion for

M= .@fUCQ, where it is obvious. O

Exercise 7.5.10. Conclude from the lemma that (x1,x2) is a regular sequence on .Z,
ie., x1.#4 N xoll = xix0.4. Show that, for every k > 1, if we have a relation
D kst ko—k a8 %2 my k= 0 in .#, then there exist Wi € A for i,j > 0 (and the
convention that y; ; = 0 if ¢ or j < —1) such that my, x, = 1tk —1,ky — T2/lky ko1
for every ki, ko.

Our aim is to compute, in the local setting, the nearby cycles of .# along g = z125
(after having proved that .# is strictly R-specializable along (g), of course). We con-
sider then the graph inclusion ¢4 : X — X x C;. We will return to the right setting,
so we assume .# = .#"8"  but the following proposition also holds in the left case
after side-changing.

Proposition 7.5.11. Under the previous assumptions, the éXXC—module plge M 15 a
minimal extension along (t), we have g = 0 for X # 1 and there are local
isomorphisms

Yy 1M DB Yy 1 M if £ =0,
(7511 *) wag,bﬁ = 1/111,11%2,1///(—1) = 1/112,11/211,1//(—1) /Lfg = ]-7

0 otherwise.
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Proof. We set A = pigedl. We have A = 14,.#[0,) with the usual structure of
a right Px xc-module (see Example A.8.9). We identify ¢4..# as the component of
04-degree zero in A. Let U..4" denote the filtration defined by
U_1(AN)-tF if k
Soe y UalH)-0F itk
We wish to prove that U*®.4" satisfies all the properties of the V-filtration of 4.
Let m be a local section of .#. From the relation

)

- >0
U_i(N) = tgul - Dx C N, Uk() = 0

(7.5.12) (m®1)0;, = (M0y,) ® 1 — magy ® Oy
we deduce
(m® 1)0it = (m0y,x1) @1 — (Mm@ 1)210,,

7.5.13
( ) = (M0z,22) ® 1 — (M ® 1)220,,,

showing that U_1(A4) is a V0§XXct—module. If (m;)ier is a finite set of local @X/Cz—
generators of .Z (see Exercise 7.5.4), we deduce that it is a set of @X—generators, hence
of Voé)(x@t—generators, of U_1(A). It follows that U*(.4") is a good V-filtration
of A”. Moreover, the formulas above imply

(m® 1)(6tt)2 = ((m8x18x2 ® 1) + (m® 1)63“6%2 - (maﬁh ® 1)8931 - (mall ® 1)6552) ’ t’
giving a Bernstein relation. Since (d;¢)? vanishes on gr¥; (.#"), the monodromy filtra-
tion is given by
M—Qgrgl (‘/V) =0, M—lgr
Mogr?; (#) = Ker[0,t : gr?y () = grly (A)],  Magr?y(A) =
As a consequence,
Pogrt?, (A) = grd'er?, () = Ker d;t/ Im 8;t,
Prgr?y () = griar’ () = ety () Ker Bt > M_ygr¥, (4)(~1).
We will identify these @X—modules with those given in the statement. This will also
prove that gr¥, (4) is strict, because ¥y, 1.4,y 1M , by, 102, 1.4 are strict.
Let G,/ denote the filtration by the order with respect to 0;. It will be useful
to get control on the various objects occurring in the computations, mainly because

when working on gr_#", the action of d,, amounts to that of —zo ® 9; and similarly
for 0,,, and the action of z1,z2 on . is well understood, due to Exercise 7.5.10.

Lemma 7.5.14. We have U_y (A )N Gp(AN) =) o< (A ©1)051 02

T T2
Proof. Any local section v of U_1(4") can be written as >, 1 (M, k, ® 1)0k1 ke
for some local sections my, i, of A4 and, if ¢ = max{ki + ko | my, x, # 0}, the degree
of v with respect to 9; is < q and the coefficient of &% is

ki _k
(_1)q E mkl,k2x21‘r12'
k1+ka=q
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If this coefficient vanishes, Exercise 7.5.10 implies that
v= 3 (kg =101 = iy hy—122) @ 1)O5 002
ki+k2<q

The operator against p; ; ® 1 is (210, — £20,,)0% 07, and (7.5.13) implies

xr1 "xT2?

(i g @ 1) (2102, — 2204,) = (pi,j (2102, — 2204,)) @ 1,

sothat v e, oo (A ® 1)ok k2. O
As a consequence, let us prove the equality
(7.5.15) O (Ua(M)NUN =D (M (w1, 22) @ 1)05 52,
k1,ko

and that t acts injectively on U_1.4".

Let v = 3 ., vy ® 0f be a nonzero local section of U_1(4#") of G-order p, so
that v, # 0. We will argue by induction on p. By the lemma we have v, =
Zk1+k2:p(mk1,kz ® 1)5’;15’;@ with Zk1+k2:p mkl,k2$§1$]f2 # 0 in 4. Assume O,v
is a local section of U_1(#"). Then >, ., _ My kT8 22 is a local section of
M (21, 79)PTL that is, is equal to Zk1+k2=p ,ukl,b:rg’ x’fQ with pg, k, € A (x1,22), SO
V= kst hpmp (Her ko @ 1)0k18%2 alocal section of 8,U_1 (4 )NU_1.#" and has G-order

< p— 1. We can conclude by induction.
Assume now that vt = 0. We have

0=(vt), = [, ® 5f)t]p = v, ® 0} = vpx 122 @ OF,
so vpz122 = 0 in ./, and thus v, = 0, a contradiction. O
Recall that .# = V_(ll)t/// (V-filtration relative to x1), so that .4/ # 1 = gry(ll)%

and N = (M| M21)[0y,] ~ by, 1.4#(—1), according to Exercise 7.4.5. Similarly,
Mo >y, 10z, 1.4#(—2). The map

(7516) My ky @ ok Op2 — (mk1,k2 & 1)6k1 k2 . Ot

17T Tr1 " T2

sends A (x1,22)[04,,04,] to U_o4# (1), according to (7.5.12) and defines thus a
surjective morphism

wﬂm,lwa}z,l‘%(_Q) = ‘/‘/12 — grll/llgrgl'/‘/(_l)'

Let us prove that it is also injective. Let us denote by [my, k,] the class of my, 1, in
M| M (x1,22). Let Y [mp, i,] ® 051052 be nonzero and of degree equal to p and set

v=3 (mg . @100k
k1+k2<p
Assume that v0;t € U_s.4", hence, by the injectivity of ¢, vd, € U_1.4". The proof
of (7.5.15) above shows that, for ki + ko = p, there exists p, g, € A4 (x1,22) such
that > o p,—p (M ks — Ly by )8 22 = 0, and by Exercise 7.5.10 we conclude that

Moy key € A (21,22), SO [Ny, k,] =0, a contradiction.
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As a consequence, if vO;t = > (my, g, ®1)0510%20,¢ belongs to U_o N = U_1.N -,
(7.5.15) implies v € > (A (z1,x2) ® 1)0%510%2. We obtain therefore

N
(7.5.17) g gr? A — e (1) = Py, 19, 1 (—2),

and these modules are strict. Note that the isomorphism .47 — grMerV, 4" =
U_1.A [(0it) " U_1.#) is induced by

7.5.18 Mis gy @ 0F10%2 — (my, 1, ® 1)0%10F2
1,~2 1,~2

X1 T2 Ty T2’

Let us now consider My. Note that (7.5.15) and the injectivity of ¢ imply

Mogr?, 4 = Y (M (21, 22) @ 1051042 mod U_g A,
k1,k2

and clearly 3, . (A z120 ® 1)okigk2 c U_,.#. Note also that (mz; ® 1)0k =

o i )
(md% z1) ® 1 mod Im 8¢, according to (7.5.13). As a consequence,

Mogr¥, 4 = Z(///xz ® 1)k + Z(//le ®1)3%2  mod (U_1 ATyt + U_s.N),

k1 k2

and we have a surjective morphism
(7.5.19) oy M (~1) @ Gy 1 M (1) = N © Ny — gr¥ler, A,

sending mg, 0 @ 0% to (my, 0z ®1)0F and mox, @052 to (mo, k21 ®1)052. In order
to show injectivity, we first check that it is strict with respect to the filtration G,.4
and the filtration by the degree in 9,,,0,, on .47, 5.

Assume that (my, 022 ®1)05 + (mg k21 ®1)0%2 € G,_1A for ki, ka < p. Then we
find that m, ¢ € .# 21 and mop.# 2, as wanted. By the same argument we deduce
the injectivity.

Due to the strictness of A1, 43, 412, we conclude at this point that grgl/// is
strict. If we show that gr¥/ . is also strict for any k, then U..#" satisfies all proper-
ties characterizing the V-filtration. As a consequence, .Z is strictly R-specializable
along (g), gr%, A = 1pg 1.4 (—1), and (7.5.11 %) holds.

Clearly, 0; : gtV 4 — gt 4" is onto. So we are left to proving the following
assertions:

(i) t*: @Y, /" — gr¥, _, A is an isomorphism (equivalently, injective) for k > 1,

(i) t : gt A — gr¥, 4 is injective (so gr{ A is strict),

(iii) OF : grf /" — gV 4 is an isomorphism (equivalently, injective) for k > 1.

Proof of the assertions.

(i) If v € U_1.¥ satisfies vtk = put**+1 for some p € U_1.4 then, by injectivity of ¢
onU_ 1N, v=ypt,soveU_oN.

(ii) If v € U_1.4" is such that v, - t € U_o.4", then there exists u € U_1.4" such
that (v¥0; — )t = 0 hence, by t-injectivity, v0; € U_1.4".
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(iii) We prove the injectivity by induction on k > 1. Let v € U_1.# and consider
vd; mod U_1.4 as an element of grf 4. If (vd,)dF € Up_1.4, then (vOF)d;t = 0 in
gr{ A . Since d;t—kz is nilpotent on gr{ ;.4 and since gr/ ;.4 is strict (by (ii) and
the inductive assumption), ;¢ is injective on gr¥ .4, so (18,)3 1 =0in gry A,
and by induction vd; = 0 in gr§ 4. O

This concludes the proof of Proposition 7.5.11. O

7.6. Strict Kashiwara’s equivalence

We now return to the case of right @X—module when considering the pushforward
functor.

Let ty : Y C X be the inclusion of a complex submanifold. The following is known
as “Kashiwara’s equivalence”.

Proposition 7.6.1 (see [Kas03, §4.8]). The pushforward functor piy. induces a natural
equivalence between coherent Py -modules and coherent Px-modules supported on'Y,
whose quasi-inverse is the restriction functor i3, . [

Be aware however that this result does not hold for graded coherent RpZx-
modules. For example, if X = C with coordinate s and ¢y : Y = {0} — X denotes
the inclusion, pty.C[z] = d5 - C[z,04] with dss = 0. On the other hand, consider
the Clz, s](05)-submodule of C[z] ®¢ pty+C = §;Clz, J5] generated by 0595 (note: 05
and not ds). This submodule is written 0;C[z] @ D5, 5,0%0,. Tt has finite type
over Clz, s](0s) by construction, each element is annihilated by some power of s, and
A0 (8505 - Clz, 8](Ds)) = 65C[2], but it is not equal to pty.C[z].

Note also that this proposition implies in particular that %% iy .. = 0 for
k # —1, if A is Dx-coherent. In the example above, we have iy ,C = C[0;] and the
complex 1}ty «C is the complex C[d,] — C[0,] with terms in degrees —1 and 0.
It has cohomology in degree —1 only.

However, this is not true for graded coherent RpZx-modules. With the similar
example, the complex ity ,C[2] is the complex C[z,d,] — C[z,d,]. We have
0k . s = k20%~1, so the cokernel of s is not equal to zero.

Proposition 7.6.2 (Strict Kashiwara’s equivalence). Assume that Y is smooth of codi-
mension one in X, and let 1y 1Y — X denote the inclusion. The functor ply :
ModCOh(éy) — Modcoh(éx) s fully faithful. It induces an equivalence between the
full subcategory of Modcoh(@y) whose objects are strict, and the full subcategory of
Modcoh(_@x) whose objects are strictly R-specializable along Y and supported on Y.

An inverse functor is M > gry M .

Proof the full faithfulness. It is enough to prove that each morphism ¢ : iy .1 —
ply« N takes the form iy, for a unique ¢ : 4] — A5. Because of uniqueness, the
assertion is local with respect to Y, hence we can assume that there exists a local
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coordinate s defining Y. Assume .# = iy« for some coherent .@y—module N
Then one can recover A from .# as the éy—module M| M -Ts. As a consequence, 1)
must be the morphism induced by ¢ on .# /.# -, hence its uniqueness. On the other
hand, since . is generated by 4] ® gs over éx, @ is determined by its restriction
to ¥ ® 0, that is by 1, and the formula is ¢ = pry ). O

Lemma 7.6.3. Assume X ~Y x C with coordinate s on the second factor. Let .# be
a coherent Jx -module supported on'Y x {0}.
(1) Assume that there exists a strict @y -module N such that # ~ iy« . Then
(a) A =Ker[s: A — A,
(b) A s .@y—coherent,
(¢) A is strict and strictly R-specializable along Y,
(d) N =gl .
(2) Conversely, if # is strictly R-specializable along Y, then such an A exists.
In particular, A is also strict.

Remark 7.6.4 (Strictness and strict R-specializability). Let .# be as in Lemma 7.6.3,
that is, Zx-coherent and supported on Y x {0}. Then the filtration Up.# = Ker s C
Ur# = Kers? C --- is a filtration by Voéx—submodules and obviously admits a
weak Bernstein polynomial. Assume moreover that .# is strict. Then every gr{ . #
is also strict: if m € Up.# and z'm € Uy_1.#, that is, if s**'m = 0 and s*2'm = 0,
then s¥m = 0 by strictness of .# and thus m = 0 in gr{.#. Therefore, U, # is the
Kashiwara-Malgrange filtration V,.# in the sense of Lemma 7.3.23, and Properties
7.3.25(1) and (2) are satisfied.

However, the condition that .# is strict is not enough to obtain the conclusion
of 7.6.3(1), as shown by the following example. The point is that 7.3.25(3) may
not hold. Assume that Y is reduced to a point and let .# be the éX—submodule
of the Zx|[z]-module C(d,) generated by 1 and 9, (recall that C := C[z]), that we
denote by [1] and [J;] for the sake of clarity. By definition, we have [1]s = 0 and
[05]s? = 0. For the Kashiwara-Malgrange filtration V,.# defined above, 0, : gry .4 =
C — gtV = [9,]C is not onto, for its cokernel is [9,]C. In other words, . is not
strictly R-specializable at s = 0 and not of the form iy ../ .

Proof of Lemma 7.6.3.

(1) Assume # = piy/ for some strict éy—module . We have ply At =
Doty ®0,0% with d,s = 0 (see Exercise A.8.30(2)). The action of s on pry .4
is the z-shift n ® §50% + 2kn ® 6,071, hence .4 = Ker s because .4 is strict. Given
a finite family of local .éx-generators of ./, we produce another such family made
of homogeneous elements, by taking the components on the previous decomposition.
Therefore, there exists a finite family of local sections n; of 4" such that n; ® d,
generate 4. Let A7 C A be the Jy-submodule they generate. Then piy..t” —
plysA = . is onto. On the other hand, since .4 is also strict, this map is injective:
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If Zé\;l n} @050 = 0, then n’y ®5;0Y +— 0, and sV ny ®0,0Y = x2Vn)y ®5,0) — 0,
where * is a nonzero constant; so z¥n/y = 0 in .4, hence njy = 0. We conclude
AN = A since both are equal to Kers in pry,.#". Therefore, .4 is locally finitely
Qy generated in ., and then is @y coherent. One then checks that the filtration
Ujdl = @z ty+N @ 6,0% is a coherent V-filtration of .#, and A = grf.#. We
deduce that each gr.# is strict, and .# is strictly R-specializable. Lastly, n ® d
satisfies (n ® 05)s0s =0, so V,.# = U,.# jumps at nonnegative integers only.

(2) Assume that . is strictly R-specializable along Y. Then V_o# = 0, according
to 7.3.31(a). Similarly, gr¥ . # =0 for « ¢ Z. As s : gry M4 — gry_, ./ is injective
for k # 0 (see 7.3.31(c)), we conclude that

groy M =~ Vol =Ker[s: M — M).
Since O : gry .4 — gr)_,.# is an isomorphism for k < 0, we obtain

M= @ gy MO = gy M.
£20
Lastly, E+2z acts by zero on gro YV #, which is therefore a coherent éy module by
means of the isomorphism gr Vx| (E +2)gry Dx ~ Dy. Tt is strict since . is strictly
R-specializable. O

End of the proof of Proposition 7.6.2. It remains to prove essential surjectivity. Let
V.. be the V-filtration of .# along Y. By the argument in the second part of the
proof of Lemma 7.6.3, we have local isomorphisms .# — ,i.gry 4 which induce
the identity on Vo.# = gry .#. By full faithfulness they glue in a unique way as a
global isomorphism .# ~ gty A . O

Corollary 7.6.5. Assume codimY = 1. Let A be @y coherent and set M = DLY*JV
If H = M & Mo with My, Mo being D - coherent, then there exist coherent Dy -sub-
modules N, N of N such that N = N @ Ny and M; = piy N forj=1,2.

Proof. Each #; is coherent and supported on Y. We set 4] = .#; N A". Locally,
choose a coordinate s defining Y and set A4, = ;) #; - Os. Since N = . | A - s,
we deduce that A = A @ A5/, and we have a (local) isomorphism .#; ~ .. A
Then one checks that 471 = A4}, so it is globally defined. O

We now consider the behaviour of strict R-specializability along a function
g : X — C with respect to strict Kashiwara’s equivalence along Y.

Proposition 7.6.6. Let .V be a coherent éy—module and set M = piy N .

(1) Assume that A" is strictly R-specializable along (gy). Then # is strictly
R-specializable along (g).

(2) Assume that A is strictly R-specializable along (g). Then A is strictly
R-specializable along (g)y ).
In such a case, we have Vg \ M = DLY*’I/Jg‘yy)\JV and ¢pg1M = Day*qﬁg‘y’lﬂ, More-
over, can_y = ply Can_y and Var g = plys Var s .
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Proof. The first statement is easy to check. Let us consider the second one. We
first consider the case where X = Hy x C4 x C;, with Y = Hy x C; and g is the
projection to C;. We denote by V the V-filtration along t. We have 4 = piy N =
@k //Y*v/V ® 6555

Let n be a local section of A". If b(td,) — tP(y,s,t,0y,0s,t0;) is a Bernstein
equation for n ® §5 in pry«.t", and if P = Py + sQ, where Py does not depend on s,
then b(t0;) — tPy(y, t, 0y, 0s,t0;) is also a Bernstein equation for n ® 6. The degree-
zero part with respect to d of this equation still gives a Bernstein equation for n® d,,
and thus a Bernstein equation for n in .4#". We conclude that .4 is R-specializable
along Hy and that ordy (n) > ordy (n ® d5).

Let us now prove that the V-filtration of .# is compatible with the decom-
position. Let Zﬁio n; ® 0,0% be a section in V,.#. We will prove by induc-
tion on N that ordy(n;) < « for every i. It is enough to prove it for ¢ = N.
We have Zﬁio n; ® 0,08 - N = xzNny ® 85 € V,.# for some nonzero constant *.
If ny ® 65 € Vol for v > a, then the class of ny ® 05 in ng/// is annihilated
by 2V, hence is zero since gr‘v/'/// is strict. Therefore, ny ® §; € V,.#, and by
the preliminary remark, ordy(ny) < a. If we denote by U,/ the (possibly not
coherent) V-filtration by the V-order, then one has V,.# = @,y Ust ® 6,0
and gr¥ M = @, ty.gry N ® §,0L. 1t follows that U,.#" is a coherent V-filtration
of 4 and that each grY .4 is strict. By uniqueness of the V-filtration, we have
U N = V,/, and Properties 7.3.25(2) and (3) are clearly satisfied, as they hold
for A .

For the general case, the question is local and we can assume that Y is defined by
a smooth function h. By assumption, pig«(pty«4) is strictly R-specializable along ¢,
and thus so is pi(,g)«(pty«t) = pls=0xlgy A, after (1). The previous argument
implies that Lg‘ye/’/ is strictly R-specializable along ¢, that is, .4 is strictly R-specia-
lizable along gy

The last statement is then clear by the computation of the V-filtrations above. [

7.7. Strictly support-decomposable Z-modules

Let g : X — C be a holomorphic function. We set Xo = g~(0). Let ¢y : X <
X X C denote the graph embedding associated with g. We set H = X x {0} € X xC.
We first interpret the strict Kashiwara’s equivalence in this setting.

Corollary 7.7.1. Assume that A is .@X—coherent, strictly R-specializable along
D := (g) and supported on Xo. Then M ~ ¢pg1.4 .

Proof. By Proposition 7.6.2 we have ptg«l = DLt*ngDLg*/// = plesPg 14 . On the
other hand, we recover .# from iy« as M = ppiptge, where p: X x C — C is
the projection. We then use that pot; = Idy. O
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Proposition 7.7.2. Let .# be a coherent .@X -module which is strictly R-specializable
along (g).
(1) The following properties are equivalent:
(a) var : @g 1.4 — Yg1.4(—1) is injective,
(b) ptgsd has no proper subobject in Modcoh(.éXXc) supported on H,
(c) There is no strictly R-specializable inclusion A — piged with N
strictly R-specializable supported on H.
(2) Ifcan : g 1. — ¢g1. 4 is onto, then iy M has no proper quotient satisfying
7.3.25(1) and supported on H.

Definition 7.7.3 (Minimal extension along ¢). Let .# be a coherent @X—module which
is strictly R-specializable along (g). We say that .# is a minimal extension along (g)
if var : ¢g 1.4 — 1.4 (—1) is injective and can : Yg 1.4 — ¢41.#4 is onto.

Exercise 7.7.4 (can-var diagram for a minimal extension). Show that the diagram
(7.4.9%) or (7.4.10%) is isomorphic to the diagram

can = N

— T
(7.7.4%) g1 M ImN.
v

Y Gar = incl.

Proposition 7.7.5. Let .# be as in Proposition 7.7.2. The following properties are
equivalent:

(1) ¢g1.#4 =Imcan@® Kervar,

(2) M =M DM with H', A" strictly R-specializable along (g), A’ being a
minimal extension along (g) and .#" supported on g=1(0).
Moreover, if M, N satisfy these properties, any morphism ¢ : M — N decomposes
correspondingly.

Proof of Propositions 7.7.2 and 7.7.5. All along this proof, we set A" = g for
short.
7.7.2(1) (1a) < (1b): It is enough to show that the morphisms

Ker[t : VotV — V_1.4]

— T

Ker[t : A — A Ker[t : gryy A — gr¥, A

are isomorphisms. It is clear for the right one, since t : V<04 — V<714 is an
isomorphism, according to 7.3.31(a). For the left one this follows from the fact that ¢
is injective on gr¥ .4 for a # 0 according to 7.3.31(c).

(1b) & (1c): let us check < (the other implication is clear). Let .7 denote the
t-torsion submodule of .4 and 7' the _@ch—submodule generated by

Ty = Kerlt : &/ — A].
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Assertion 7.7.6. 7' is strictly R-specializable and the inclusion T’ — N is strictly
R-specializable.

This assertion gives the implication < because Assumption (1c) implies 7’ = 0,
hence t : A — A is injective, so 7 = 0.

Proof of the assertion. Let us show first that .7 is éXXC—coherent. As we remarked
above, we have 9y = Ker[t : gry 4 — gr¥,.4]. Now, % is the kernel of a linear
morphism between Zp-coherent modules (H = X x {0}), hence is also Zp-coherent.
It follows that .7 is @XXC—coherent.

Let us now show that 7' is strictly R-specializable. We note that % is strict
because it is isomorphic to a submodule of gry’.#". Let U,.7’ be the filtration induced
by V.4 on Z'. Then U.q.7' = 0, according to 7.3.31(a), and gr¥ .7’ = 0 for a ¢ N.
Let us show by induction on k that

UnT' = T+ Fody + -+ -+ F0.

Let us denote by U;.7’ the right-hand term. The inclusion D is clear. Let z, € H,
m € U7, and let £ > k such that m € U7, . If £ > k one has m € 7 NVy_1.4,,
hence mt* € 7] NV_1.A4;,, =0. Set

m =mg +mid; + - + mdy,

with m;t =0 (j =0,...,£). One then has m,0{t’ = 0, and since
¢
mﬁftz =my - H(tﬁt +jz) =10 mezt
j=1
and 7} is strict, one concludes that m, = 0, hence m € U;_, .7, . By induction, this
implies the other inclusion.

As gr¥ .7’ is contained in gr} .4, one deduces from 7.3.31(d) that 9, : gr{ 7" —
grg_i_lﬂ " is injective for k > 0. The previous computation shows that it is onto, hence
' is strictly R-specializable and U, J' is its Malgrange-Kashiwara filtration.

It is now enough to prove that the injective morphism gr§ 7’ — gry A" is strict.
But its cokernel is identified with the submodule Im[t : gr} A" — gr¥, 4] of gr¥, A,
which is strict. O

7.7.2(2) If can is onto, then 4 = @XX(C - Voot If A has a t-torsion quotient
T satisfying 7.3.25(1), then V9.7 = 0, so Vo4 is contained in Ker[.#/" — J] and

thus A = P & V<oV is also contained in this kernel, that is, 7 = 0.

7.7.5(1) = 7.7.5(2) Set
UpN' =Vo N +0,V_1 N and T =Ker[t: N/ — A].
The assumption (1) is equivalent to VoA = Up A" & Fp. Define
Up V' =ViDx -UpN' and Up A" =Vi9x - T
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for k> 0. AsVi NV = Vi1 N/ +0,Vi_1.4 for k > 1, one has Vi, N = Up N+ UpN"
for k > 0. Let us show by induction on &k > 0 that this sum is direct. Fix & > 1 and
let m € Up V' NURAN". Write

/ / !
my_q1,Ny_q € U1 A7,

— ! / _ " "
mo=my_y +ng_10¢ =my_y +ng_ 10, { " " Ur g
Mp_1,M—1 € Ur—147

One has [n},_,]0; = [n}_,]0; in Vit /V_1.47, hence, as
5,5 : Vk,1W/Vk72W — Vke/V/kale/V

is bijective for k > 1, one gets [n},_,] = [n}_;] in Vy_1.4"/Vi_2.#" and by induction
one deduces that both terms are zero. One concludes that m € Up,_1 4" NUL_14" =0
by induction.

This implies that A4 = A" ® A" with A" := |, UpA#" and A" defined similarly.
It follows from Exercise 7.3.37(1) that both .47 and A4 are strictly R-specializable
along H and the filtrations U, above are their Malgrange-Kashiwara filtrations. In
particular A" satisfies (1) and (2). By Corollary 7.6.5 we also know that 4/ =
plgxdl and N = pug.. " for some coherent D x-modules M M.

7.7.5(2) = 7.7.5(1): One has V_q.#" = 0. Let us show that Im can = gr}’ .4 and
Kervar = gry 4", The inclusions Im can C gr} 4" and Ker var D gry A" are clear.
Moreover gryy A NKervar = 0 as 4" satisfies (1). Last, can : gr¥, 47 — gry’ 4" is
onto, as .4 satisfies (2). Hence gry .4 = Im can @ Ker var.

Let us now prove the last assertion. Let us consider a morphism ¢ : .4’ & .#" —
AN @ A", Firstly, by (1b) in Proposition 7.7.2, the component .#" — A" is zero.
For the component .#’ — A" let us denote by .#] its image. The V-filtration on
plgw{ induced by V,peg..#" is coherent (Exercise 7.3.7(1)) and satisfies 7.3.25(1),
hence by Proposition 7.7.2(2) we have pig.. 4] = 0. O

Definition 7.7.7 (Strictly S(upport)-decomposable @X-modules)
We say that a coherent Zx-module .# is

o strictly S-decomposable along (g) if it is strictly R-specializable along (g) and
satisfies the equivalent conditions 7.7.5;

o strictly S-decomposable at x, € X if for any analytic germ ¢ : (X, z,) — (C,0),
A s strictly S-decomposable along (g) in some neighbourhood of z,;

o strictly S-decomposable if it is strictly S-decomposable at all points z, € X.

Lemma 7.7.8.

(1) If A is strictly S-decomposable along {t = 0}, then it is strictly S-decomposable
along {t" = 0} for everyr > 1.

(2) If A = M\ & Mo, then M is strictly S-decomposable of some kind if and only
if M\ and M5 are so.

(3) We assume that A is strictly S-decomposable and its support Z is a pure
dimensional closed analytic subset of X. Then the following conditions are equivalent:
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(a) for any analytic germ g : (X,z,) — (C,0) such that g~*(0) N Z has
everywhere codimension one in Z, pigw.# is a minimal extension along (g);

(b) near any x,, there is no .@X—coherent submodule of A with support having
codimension > 1 in Z;

(¢c) near any x,, there is no nonzero morphism @ : M — N, with N strictly
S-decomposable at x,, such that Im  is supported in codimension > 1 in Z.

Proof. Property (1) is an immediate consequence of Exercise 7.4.16, and property (2)
follows from the fact that for any germ g, the corresponding can and var decompose
with respect to the given decomposition of .#. Let us now prove (3). Both conditions
(3a) and (3b) reduce to the property that, for any analytic germ g : (X, z,) — (C,0)
which does not vanish identically on any local irreducible component of Z at x,, the
corresponding decomposition .# = #' @& A" of 7.7.5(2) reduces to A4 = A, ie.,
A" = 0. For the equivalence with (3c), we note that, according to the last assertion
in Proposition 7.7.5, and with respect to the decomposition ¢ = ¢’ @ ¢” along a
germ g, we have Im ¢ # 0 and supported in g=!(0) if and only if Im ¢” # 0, and
thus .#"" # 0. Conversely, if .#"" # 0, the projection .# — .#" gives a morphism
contradicting (3c). O

Definition 7.7.9 (Pure support). Let .# be strictly S-decomposable and having support
a pure dimensional closed analytic subset Z of X. We say that .# has pure support
Z if the equivalent conditions of 7.7.8(3) are satisfied.

Proposition 7.7.10 (Generic structure of a strictly S-decomposable module)

Assume that A is holonomic and strictly S-decomposable with pure support Z,
where Z is smooth. Then there exists a unique holonomic and strictly S-decomposable
éz-module N such that M = piz..V . Moreover, there exists a Zariski dense open
subset Z° C Z such that A|zo is Oyo -locally free of finite rank.

Proof. By uniqueness, the question is local on Z. We argue by induction on dim X.
Let H be a smooth hypersurface containing Z such that H = {t = 0} of some
local coordinate system (t,zo,...,zq). Since .# is strictly R-specializable along ¢,
the strict Kashiwara’s equivalence implies that .# = ig+./#" for a unique coherent
Py-module A . Moreover, .4 is strictly R-specializable along any function g on H,
according to Proposition 7.6.6. If g = gy, then one checks that a decomposition
7.7.5(2) for .4 along g comes from a decomposition 7.7.5(2) for .4 along g. We
conclude that .4 is also strictly S-decomposable, and has pure support Z C H. Con-
tinuing this way, we reach a coherent 9 z-module which is strictly S-decomposable.
It is easy to check that .4 is holonomic since, if Char.# is obtain by a straightfor-
ward formula from Char.4#". By deleting from Z the projection of all components
of Char 4" except the zero section, we obtain a Zariski-dense open subset Z° of Z
such that Char .A4{z. C T;Z x C,. We conclude from Exercise A.10.16 that .4z is

O zo-coherent.
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Let us now prove the 5Zo—local freeness of A{z.. If t is a local coordinate, notice
that each term of the V-filtration V, .4 is 5Zo—coherent. It follows that the filtration
is locally stationary, hence .4/ = Vy.4, since gr’ .4 = 0 for a > 0, hence for all
a > 0. Let m be a local section of .4 killed by z. Then m is zero in A/ At
by strict R-specializability. As .4 is 0 zo-coherent, Nakayama’s lemma (applied to
N ®é,0 Ozoxc. ) implies that m = 0. O

We will now show that a strictly S-decomposable holonomic @X—module
(see Definition A.10.18) can indeed be decomposed as the direct sum of holo-
nomic @X—modules having pure support. We first consider the local decomposition
and, by uniqueness, we get the global one. It is important for that to be able to
define a priori the strict components. They are obtained from the characteristic
variety of .Z, equivalently of M, according to Corollary 7.7.15 below.

Proposition 7.7.11. Let .# be holonomic and strictly S-decomposable at x,, and
let (Zi,xo)icr be the family of closed irreducible analytic germs (Z;,x,) such
that Char.# = ;T3 X x C. near z,. There exists a unique decomposition
My, = Bic1 Mz, », of germs at x, such that Mz, , = 0 or has pure support (Z;, z,).

Proof. We will argue by induction on dim Supp .#. First, we reduce to the case when
the support S of .# (see Proposition A.10.13) is irreducible at z,. For this purpose,
let S” be an irreducible component of S at z, of maximal dimension, and let S” be
the union of all the other ones. Let g : (X,z,) — (C,0) be an analytic germ such
that S” C ¢=1(0) and (S’,z,) ¢ g~ 1(0). Then, according to 7.7.5(2), near x,, .4
has a decomposition .4 = .#' & .#", with .#’ supported on S’ and being a minimal
extension along (g), and .#Z" supported on S”.

Conversely, if we have any local decomposition .# = @®.#s,, with (S;,z,) irre-
ducible and s, (strictly S-decomposable after Lemma 7.7.8(2)) having pure sup-
port S;, then S; € 8" or S; C S” and A" = ®gs,g 57 Ms,, M = Bg,cs Ms,.

By induction on the number of irreducible components, we are reduced to the case
when (S, z,) is irreducible. We can assume that dim .S > 0.

Choose now a germ g : (X,z,) — (C,0) which is nonconstant on S and such
that ¢g~1(0) contains all components Z; defined by Char.#, except S. We have,
as above, a unique decomposition .#Z = .#' & .#" of germs at xz,, where .#" is a
minimal extension along (g), and .#" is supported on ¢g=*(0), by the assumption of
strict S-decomposability along (g) at x,. Moreover, .#’ and .#" are also strictly
S-decomposable at x,. We can apply the inductive assumption to .#" .

Let us show that .#’ has pure support S near z,: if .#/ is a coherent submodule
of .#' supported on a strict analytic subset Z C S, then Z is contained in the union
of the components Z;, hence .#/ is supported in g=1(0), so is zero. We conclude by
7.7.8(3b).

For the uniqueness, we note that, given such a local decomposition with components
Mz, «,, the components ¢;; of any morphism ¢ : .#,, — .#,, vanishes as soon as
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i # j. Indeed, we have either codimy,(Z; N Z;) > 1, or codimz,(Z; N Z;). In the
first case we apply Lemma 7.7.8(3c) to .#z, 5,. In the second case, we apply Lemma
7.7.8(3b) to Mz, ,. We apply the same result for the identity .# — .# with respect
to two such local decompositions. O

By uniqueness of the local decomposition, we get:

Corollary 7.7.12. Let 4 be holonomic and strictly S-decomposable on X and let
(Zi)icr be the (locally finite) family of closed irreducible analytic subsets Z; such that
Char . C U;T; X xC,. There exists a unique decomposition M = ©;. Mz, such that
each Mz, =0 or has pure support Z;.

A closed analytic irreducible subset Z of X such that .#Zz # 0 is called a strict
component of A .

Proof of Corollary 7.7.12. Given the family (Z;);c;r and z, € X, the germs (Z;, x,)
are equidimensional, and Proposition 7.7.11 gives a unique decomposition .#,,6 =
@ic1 Mz, 5, by gathering the local irreducible components of (Z;, x,). The uniqueness
enables us to glue all along Z; the various germs .#, ;. O

Corollary 7.7.13. Let A', #" be two holonomic Dx-module which are strictly
S-decomposable and let (Z;);c; be the family of their strict components. Then any
morphism ¢ : My — ///gj vanishes identically if Z; # Z;.

Proof. The image of ¢ is supported on Z;NZ;, which has everywhere codimension > 1
in Z; or Z; if Z; # Z;. We then apply Lemma 7.7.8. O

Corollary 7.7.14. Let 4 be holonomic and strictly S-decomposable. Then A is strict.

Proof. The question is local, and we can assume that .# has pure support Z with Z
closed irreducible analytic near x,. Proposition 7.7.10 applied to the smooth part
of Z produces a dense open subset Z° of Z such that .#| . is strict. (In fact, since Z°
was defined in terms of the characteristic variety, one can show that it is Zariski open
in Z, but this will not matter here.) Let m be a local section of .# near x, € Z
killed by z. Then m - @X is supported by a proper analytic subset of Z near z, by
the previous argument. As .# has pure support Z, we conclude that m = 0. O

Corollary 7.7.15. Let .4 be holonomic and strictly S-decomposable. Then Char # =
Char(A [(z —1)#) x C,.

Proof. Since .# is strict, we can apply Exercise A.10.23(1). O

Remark 7.7.16 (Restriction to z = 1). Let us keep the notation of Exercise 7.3.21 and
let us assume that .# is RpZx-coherent and strictly R-specializable. It is obvious
that, if can is onto for ., it is also onto for M := .# /.# (z —1). On the other hand,
it is also true that, if var in injective for .#, it is also injective for M (see Exercise
A.2.5(3)). As aconsequence, if .# is a minimal extension along (g), so is M. Moreover,
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if A is strictly S-decomposable along (g) at z,, so is M, and the strict decomposition
M =M B M restricts to the decomposition M = M’ & M” given by 7.7.5(2).

We conclude that, if .# is strictly S-decomposable, then M is S-decomposable, and
the strict components, together with the pure support, are in one-to-one correspon-
dence.

7.8. Direct image of strictly R-specializable coherent @X-modules

Let us consider the setting of Theorem A.10.26. So f : X — X' is a proper
holomorphic map, and .# is a coherent right _@X—module. Let H' € X' be a smooth
hypersurface. We will assume that H := f*(H’) is also a smooth hypersurface of X.

If # has a coherent V-filtration U, # along H, the Ry @X module Ry .# is there-
fore coherent. With the assumptions above it is p0551b1e to define a sheaf RV QX_> X/
and therefore the pushforward , f. Ry .# as an RVQX/ module (where V, QX/ is the
V-filtration relative to H').

We will show the Ry éx/—coherence of the cohomology sheaves %, f, Ry # of the
pushforward , f. Ry .# if .# is endowed with a coherent filtration. By the argument
of Exercise 7.3.6, by quotienting by the v-torsion, we obtain a coherent V-filtration
on the cohomology sheaves J#%, f,.# of the pushforward , f,.#

The v-torsion part contains much information however, and this supplementary
operation killing the v-torsion looses it. The main result of this section is that, if .#
is strictly R-specializable along H, then so are the cohomology sheaves %, f, . #
along H’, and moreover, when considering the filtration by the order, the corre-
sponding Rees modules 7%, f, Ry .# have no v-torsion, and can thus be written as
Ry A%, f.. 4 for some coherent V-filtration U, 7%, f..# . This coherent V-filtration
is nothing but the Kashiwara-Malgrange filtration of ., f..#. We say that the
Kashiwara-Malgrange filtration behaves strictly with respect to the pushforward func-
tor p fi.

Another way to present this property is to consider the individual terms V,.#
of the Kashiwara-Malgrange filtration as Voéx—modules. By introducing the sheaf
Voéxﬁx/, one can define the pushforward complex ,f,V,.# for every «, and
the strictness property amounts to saying that for every k and «, the morphisms
R f Vol — P o are injective. In the following, we work with right

P x-modules and increasing V-filtrations.

7.8.a. Definition of the pushforward functor and the Coherence Theorem

We first note that our assumption on H, H', f is equivalent to the property that,
locally at x, € H, setting 2/, = f(xz,), there exist local decompositions (X, z,) =~
(H,z,) x (C,0) and (X', ) ~ (H',x,) x (C,0) such that f(y,t) = (fiju(y).t)-.

Let U, # be a V-filtration of .# and let Ry.# be the associated graded Rvéx—
module. Our first obJectlve is to apply the same reasoning as in Theorem A.10.26 by
replacing the category of Z-modules with that of graded RV@X modules.
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The sheaf .@X%X/ has a V-filtration: we set ng?x_)X/ = ﬁ~x ®f‘15x/ fﬁlvkéxl.
One checks in local decompositions as above that, with respect to the left
P x-structure one has V;Px - Vi, Ix . x' CVirePDx - x. We can write

Rvéxﬁxl = 5){ ®f715x' f_le.éX/ = Rvﬁx ®f’1RvUZXr f_legx/.

According to Exercise 7.2.6, Rvéxf is Rvéxf-locally free, so Rvéx_ggr is Rvéx—
locally free.
We define

(7.8.1) ofRu M = Rf.(Ry.# &F

Ry 5x Rv9Px_x1)

as an object of Db(Rvéx/).

Theorem 7.8.2. Let A be a @X -module endowed with a coherent filtration F, # . Let
U, be a coherent V -filtration of .#. Then the cohomology modules of . f« Ry #
have coherent Ry Px-cohomology.

Lemma 7.8.3. Let £ be an Ry 5X -module. Then
~ L ~ B _
(£ @p, 6, RvZx) Op 5 BvIxox =L@ g 5, [T RvZx:.

Proof. Tt is a matter of proving that the left-hand side has cohomology in degree 0
only, since this cohomology is easily seen to be equal to the right-hand side. This can
be checked on germs at © € X. Let .Z; be a resolution of .Z, by free Ry 5X’x—modules.
We have

($z®RV5X,zRvéX,m) ®§V§X)w Ry Px-x'a
=(Z ®év5x,z Ry Px.2) ®§V§X‘m Ry Pxx1z (Ex.7.2.6)
= (< DRy 6. RVéX,w) ®;V§X,I RVQXHX’,;E
= (< ORy 6. Ry Px..) Ry xn Ry DX —x'a
=% DRy Gx . Rv-@X—m',x
=2 ®évi§x,m Ry Dxx0

=%.® RVQX—}X’J: (RvéX%X@x is Rvﬁxx—free). ]

Ry Ox,.
As a consequence of this lemma, we have
ofi(Z ®p 5, Ry Zx) = (Rf.2) ®Dpy 6, Ry Zx:
and the cohomology of this complex is Ry @X/—coherent.

Lemma 7.8.4. Assume that # is a 9x-module having a coherent filtration F,.# and
let U, M be a coherent V -filtration of /N// Then in the neighbourhood of any compact
set of X, Ry # has a coherent F, Ry Px -filtration.
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Proof. Fix a compact set K C X. We can thus assume that .#Z is generated by a
coherent éx—module Z in some neighbourhood of K, i.e., # = I - F. Consider the
V-filtration U!.# generated by Z#, i.e., Ul # = V.9 F. Then, clearly, Ry Ox - F =
D, Vi Ox - Fv* is a coherent graded Ry O'x-module which generates Ry . as an
Rvéx—module.

If the filtration U’ 4 is obtained from U!.# by a shift by —¢ € Z, i.e., if Ry».# =
V' Ry C Mv,v71], then Ryn.# is generated by the Ry ﬁ~x—c0herent submodule
UZRV 5){ - Z.

On the other hand, let U”.# be a coherent V-filtration such that Ry~.# has a
coherent F,Rvéx-ﬁltration. Then any coherent V-filtration U, .# such that Up.# C
U}/ # for every k satisfies the same property, because Ry . is thus a coherent graded
Ry @X—submodule of Ryn.# , so a coherent filtration on the latter induces a coherent
filtration on the former.

As any coherent V-filtration U,.# is contained, in some neighbourhood of K, in
the coherent V-filtration U!.# suitably shifted, we get the lemma. O

Proof of Theorem 7.8.2. The proof now ends exactly as for Theorem A.10.26. O

7.8.b. Strictness of the Kashiwara-Malgrange filtration by pushforward

Theorem 7.8.5 (Pushforward of strictly R-specializable @-modules)

Let f: X — X' be a proper morphism of complex manifolds, let H' be a smooth
hypersurface of X' and assume that Sy = Iy Ox defines a smooth hypersurface H
of X. Let M be a coherent right éx -module equipped with a coherent filtration. As-
sume that A is strictly R-specializable along H with Kashiwara-Malgrange filtration
VoA indexed by A+ 7 with A finite contained in [0,1), and that each cohomology
module F, fiagre, A is strict (a € [—1,0]).

Then each cohomology module H°, f..# , which is @X/—cohe'rent according to The-
orem A.10.26, is strictly R-specializable along H' and moreover,

(1) for every o, i, the natural morphism H°y fo (Vo) — H fodl is injective,

(2) its image is the Kashiwara-Malgrange filtration of s f«. along H',

(3) for every a,i, gry (A futl) = A fiu(gro, M ).

As an important corollary we obtain in a straightforward way:

Corollary 7.8.6. Let f : X — X' be a proper morphism of complex manifolds. Let
¢ : X' = C be any holomorphic function on X' and let .# be Dx-coherent and
strictly R-specializable along (g) with g = ¢’ o f. Assume that for for all i and A,
A f(YgrA) and Hs fo(pg1 M) are strict.

Then H' s fo M is D1 -coherent and strictly R-specializable along (g'), we have for
all i and A,

(Vg \(Hs ol ),N) = A, fu(bg 2 M, N),
(¢g,1(=%me*///)aN) = %in*(ng,l///vN);
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and the morphisms can, var for 'y f..# are the morphisms F"'y f. can, S, f, var.
[

We first explain the mechanism which leads to the strictness property stated in
Theorem 7.8.5(1).

Proposition 7.8.7. Let H C X' be a smooth hypersurface. Let (N °, U, N"*) be a
V -filtered complex of @X/—modules, where U, is indezed by A+ 7, A C [0,1) finite.
Let N > 0 and assume that

(1) A (gr¥ N*) is strict for alla € A+7Z and alli > —N —1;

(2) for every o € A+ 7Z, there exists vy = 0 such that (E —az)” acts by zero on
A (grY N°) for everyi > —N — 1;

(3) there exists o, such that for all @ < a, and all i > —N — 1, the right mul-
tiplication by some (or any) local reduced equation t of H' induces an isomorphism
t:UpHNt "5 Up g N

(4) there exists i, € Z such that, for alli > i, and any o, one has ' (UaN*) = 0;

(5) A (UnN*) is VoDx:-coherent for all o € A+ 7 and all i > —N — 1.

Then for every o and i = —N the morphism S (UyN*) — SH(N*) is injective.
Moreover, the filtration U, (N"*) defined by

Ua (N ) = image[ 7 (Ug N *) —> HH(N°)]
satisfies grl AN ) = A (gt N*°) for alla € A+ Z.

Proof. Tt will have three steps. During the proof, the indices «, 8, will run in A+ Z.

First step. This step proves a formal analogue of the conclusion of the proposition.
Put

Ua* =l Up ¥ JUN* and A =l Up V",
ol «@

Under the assumption of Proposition 7.8.7, we will prove the following;:

(a) For all 8 < «, W’ — UjJ\V' is injective (hence, for all a, UZJ\V' s
injective) and Uy AN /Ucq N = Uf N * JUc N °.

(b) For every B < a and any i, S (Uy N */UgN*) is strict.

(c) AN (UpN*) = &iinnY A UpN*JULN*®) (i = —N).

(d) AN N*) — H(N*) is injective (i = —N).

() HHN) =l HH(Tah) (i > ~N).

We note that the statements (b)—(d) imply that %Z(J//\') is strict for ¢ > —N,
although #(_#"*) need not be strict.

Define Uy s (A*) = image [ # (Uy N *) — #(A*)]. Then the statements (a)
and (d) imply that

gV NN = AN J U H*) = (Y N*) (i = —N).
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For v < 8 < « consider the exact sequence of complexes
0 — U N JUN" — U N JUN* — Ug N JUg N — 0.

As the projective system (UqA"* /Uy A *), trivially satisfies the Mittag-LefHler con-
dition (ML) (see e.g. [KS90, Prop. 1.12.4]), the sequence remains exact after passing
to the projective limit, so we get an exact sequence of complexes

0— W‘ — Ufj —> Up N U N — 0,
hence (a).
Let us show by induction on p = a — v € A+ N that, for all v < « and ¢ > — N,
(1) [1,<p<a(E—B2)" annihilates AUy /U,),
(ii) for all 8 such that v < 8 < a, we have an exact sequence,
(7.8.8) 0= UN*JU,N) = A (Up N JULN®) = H (U JUg N ") = 0.
(iil) AN (Uqt* /UL A") is strict.
If ~ is the predecessor of @ in A + Z, (i) and (iii) are true by assumption and (ii)

is empty. Moreover, (ii), and (iii)<, imply (iii),. For v < f# < o and a — vy = p,
consider the exact sequence

o AU U) > AU fU) — AU U)
L ) -

For any i > —N, any local section of Ime**! is then killed by H5<5<Q(E_52) and
by [1,<5<5(E —0z) according to (i)<,, hence is zero by (iii)<,, and the same property
holds for Im*, so the previous sequence of S is exact. Arguing similarly, we get
the exactness of (7.8.8) for a — v = p, hence (ii),, from which (i), follows.

Consequently, the projective system (7 (Uy A" /U, N ")), satisfies (ML), so we
get (¢). Moreover, taking the limit on « in (7.8.8) gives, according to (ML), an exact
sequence

o —

0 — AU N*) — AUV ) — A (UaH* JUsN*) — 0,
hence (d). Now, (e) is clear.

Second step. For every i, , denote by Z! C (U, AN"*) the Sy -torsion subsheaf of
AUy N *). We set locally S =t0x:. We will now prove that it is enough to show

(7.8.9) Ja,, a<a,= F'=0VYix=-N.

We assume that (7.8.9) is proved (step 3). Let v < a, and i > —N, so that 7 =0,
and let & > . Then, by definition of a V-filtration, t/*~71 acts by 0 on Ua N UL N®,
so that the image of s~ (UnA"* /U, N"*) in A (U,.A"*) is contained in .7, and
thus is zero. We therefore have an exact sequence for every ¢ > —N:

0 — AUy N*) — A UalV*) — AUV JULN*) — 0,
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Using (7.8.8), we get for every 8 < « the exact sequence
0 — A (UgN*) — H(UpH*) — H(Ug N JUg N *) — 0.
This implies that S (UgA*) — HH(N*) = lim | AUy N*) is injective. For
every «, let us set
Ua N ) = image[ A (Ug N ) — HH(N")].
We thus have, for every « € A+ Z and i > —N,
gro AN ") = A (grg N ).

Third step: proof of (7.8.9). Let us choose a, as in 7.8.7(3). We notice that the
multiplication by ¢ induces an isomorphism ¢ : Up At — Uy_1.47 for a < a, and
i > —N — 1, hence an isomorphism t : (U, N*) — A (Uy_1.4*), and that (d)
in Step one implies that, for all § > —N and all a < «,, the multiplication by ¢ on
AUy NV'*) is injective.

The proof of (7.8.9) is done by decreasing induction on . It clearly hods for 7 > 4,

(given by 7.8.7(4)). We assume that, for every a < a,, we have Z/*! = 0. We have
(after 7.8.7(3)) an exact sequence of complexes, for every k € Nand « > —N — 1,

k
0 — Uyt"* t—>Ua,/V' — Ua N " JUgppV* — 0.

As 71 =0, we have, for every k > 1 an exact sequence

) k ) )
HNULN*) L HUAN*) —5 AUV * [ U s N*) — 0,

hence, according to Step one,
OGN )| SO U V) = AUV * JUn o V) = AUV *) JtEA(Ua ).
According to Assumption 7.8.7(5) and Exercise 7.3.8, for k big enough (locally
on X'), the map 7! — AU, N"*)/th A (Uyt*) is injective. It follows that
Tt — AUy N'*) is injective too. But we know that ¢ is injective on 7% (UyN"*)
for a < a,, hence 7! = 0, thus concluding Step 3. O
Proof of Theorem 7.8.5
Lemma 7.8.10. Let U, 4 be oV -filtration indexed by A+7Z of a Dx-module M which
satisfies the following properties:

(@) t: Uptdl — Upy—14 is bijective for every a < 0,

(b) O : gl — gxl, A is bijective for every a > —1.

We define Ry.# as in Remark 7.}.7, which is thus an RAzéx—module. Then
Ry # has a resolution £° R, Ray Dx, where each £ is an Ox-module.

Proof. By assumption, the morphism ¢ : @76[71’0] U, # ®g, éx — M is surjective
and induces surjective morphisms @76[71’0] U, ®5XAVQ,A,§X — Uy M for every

a € A+ Z, hence a surjective morphism € ] U, MY R, RAvéX — Ry A,

~v€[—-1,0



164 CHAPTER 7. NEARBY AND VANISHING CYCLES OF 2-MODULES

with the convention of Remark 7.2.7. We note that the V-filtered induced @X—module
that we have introduced also satisfies (a) and (b). Set .#° = Ker ¢, that we equip
with the induced filtration U, 2. We thus have an exact sequence for every «:
0 —U — @ Uyi ®5XAVQ_7§X — Uyl — 0,
v€[-1,0]
from which we deduce that U, % satisfies (a) and (b), enabling us to continue the
process. O

The assertion of the theorem is local on X’, and we will work in the neighbourhood
of a point z/, € H'. The Kashiwara-Malgrange filtration V,.# satisfies the properties
7.8.10(a) and (b), according to Proposition 7.3.31. We can then use a resolution
as in Lemma 7.8.10, that we stop at a finite step chosen large enough (due to the
cohomological finiteness of f) such that, for the corresponding bounded complex
z° ®s, RAvéX7 one has

Ao fo(Ry M) # 0= Ao fo(Ry M) = H'of( L7 @ 5, RayDx)
and similarly for every «,
s i (grl M) # 0 = A flue(gry M) = A i (L ®s, grivé)()

In such a case, 'y, f.(Ry #) = A (f. God®(£L* Q1 f_lRAvéxl))7 according
to Lemma 7.8.3. We thus set

(N UA*) = (f. God"(L* @, 5, F'9x), f. God" (£* ®15,, FHV.9x0)).
Since the sequences

0— Avaéxf — éx/ — éx//AVaéX/ —0
and 0— AV<aéX/ — AVaéX/ — grivéxf — 0

are exact sequences of locally free ﬁ’~X/—modules, they remain exact after applying
L°® 6o then also after applying the Godement functor (see Exercise A.8.13(1)),
and then after applying f. since the latter complexes consist of flabby sheaves.

This implies that U,.#* is indeed a subcomplex of .4 and gty A4 =
fx God* (.iﬂ. ®f_15X/ fﬁlgrivéx/).

Property 7.8.7(5) is satisfied, according to Theorem 7.8.2, and Properties 7.8.7(3)
and (4) are clear.

We have A (gt N*) = A (o fiu.gry, ) for i > —N for some N such that
Ao fiuwgry #) = 0if i < —N, so that 7.8.7(1) holds by assumption and 7.8.7(2)
is satisfied by taking the maximum of the local values v, along the compact fibre
=)

From Proposition 7.8.7 we conclude that 7.8.5(1) holds for « € A + Z and any .
Denoting by U, 5}, f..# the image filtration in 7.8.5(1), we thus have Ry 5, fo.# =
A f Ry M and therefore

g (A ful) = A fimaerl M.
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In particular, the left-hand term is strict by assumption on the right-hand term.

By the coherence theorem 7.8.2, we conclude that U, ¢, f,.# is a coherent
Ay filtration of ', f..#. Therefore, U, 5", f..# satisfies the assumptions of
Lemma 7.3.23 (extended to filtrations indexed by A + Z). Moreover, the properties
7.3.25(2) and (3) are also satisfied since they hold for .#. We conclude that Sy, f..#
is strictly R-specializable along H' and that U, ", f..# is its Kashiwara-Malgrange
filtration. Now, Properties (1)—(3) in Theorem 7.8.5 are clear. O

7.9. Comments

Here come the references to the existing work which has been the source of inspi-
ration for this chapter.






