
CHAPTER 7

NEARBY AND VANISHING CYCLES OF eD-MODULES

Summary. We introduce the Kashiwara-Malgrange filtration for a eDX -module,
and the notion of strict R-specializability. This leads to the construction of the
nearby and vanishing cycle functors. One of the main results is a criterion for the
compatibility of this functor with the proper pushforward functor of eD-modules.

Throughout this chapter we use the following notation.

Notation 7.0.1.

• X denotes a complex manifold.
• H denotes a smooth hypersurface in X.
• Locally on H, we choose a decomposition X = H ⇥�t, where �t is a small disc

in C with coordinate t. We have the corresponding z-vector field gt.
• D denotes an effective divisor on X. Locally on D, we choose a holomorphic

function g : X ! C such that D = (g). We then set X
0

= g�1(0) (this is the support
of D in the local setting).

• Recall that eDX means DX or RFDX and, in the latter case, eDX -modules mean
graded eDX -modules (see Appendix A). We then use (k) for the shift by k of the
grading (see Section A.2.a). When the information on the grading is not essential, we
just omit to indicate the corresponding shift. We use the convention that, whenever
eDX means DX , all conditions and statements relying on gradedness or strictness are
understood to be empty or tautological.

Remark 7.0.2 (Left and right eD-modules). For various purposes, it is more convenient
to work with right eD-modules. However, left eD-modules are more commonly used
in applications. We will therefore mainly treat right eD-modules and give the corre-
sponding formulas for left eD-modules in various remarks.

Remark 7.0.3 (Restriction to z = 1). Throughout this chapter we keep the Conven-
tion A.2.19. All the constructions can be done either for DX -modules or for graded
RFDX -modules, in which case a strictness assumption (strict R-specializability) is
most often needed. By “good behaviour with respect to the restriction z = 1”, we
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mean that the restriction functor M 7! M := M /(z � 1)M is compatible with the
constructions. We will see that many, but not all, of the constructions in this chapter
have good behaviour with respect to setting z = 1. We will make this precise for each
such construction.

7.1. Introduction

This chapter has one main purpose: Given a coherent eDX -module, to give a suffi-
cient condition such that the restriction functor to a divisor D, producing a complex
of eDX -modules supported on the divisor D which corresponds to the functor D◆H⇤D◆

⇤
H

when ◆H : H ,! X is the inclusion of a smooth hypersurface, gives rise to a complex
of eDX -modules with coherent cohomology.

The property of being specializable along D will answer this first requirement. How-
ever, in the case where eDX = RFDX , strictness comes into play in a fundamental way
in order to ensure a good behaviour. This leads to the notion of strict specializability
along D. When forgetting the F -filtration, i.e., when considering DX -modules, the
strictness condition is empty.

Given any holomorphic function g on X with associated divisor D and for ev-
ery strictly R-specializable eDX -module M along D, we introduce the nearby cycle
eDX -modules  g,�M (� 2 C⇤ with |�| = 1) and the vanishing cycle functor �g,1M .
They are the “generalized restriction functors”, which the usual restriction functors
can be deduced from.

The construction is possible when the Kashiwara-Malgrange V -filtration exists on
a given eDX -module. More precisely, the notion of V -filtration is well-defined in the
case when D is a smooth divisor. We reduce to this case by considering, when more
generally D = (g), the graph inclusion ◆g : X ,! X ⇥ C. The V -filtration can exist
on the pushforward D◆⇤M . We then say that M is strictly specializable along D.

Kashiwara’s equivalence is an equivalence (via the pushforward functor ◆Y :Y ,!X)
between the category of coherent DY -modules and that of coherent DX -modules sup-
ported on the submanifold Y . When Y has codimension one in X, this equivalence
can be extended as an equivalence between strict coherent eDY -modules and coherent
eDX -modules which are strictly R-specializable along Y .

Complex Hodge modules will satisfy a property of semi-simplicity with respect
to their support that we introduce in this chapter under the name of strict S-
decomposability (“S” is for “support”). The support of a coherent eDX -module M is
a closed analytic subspace in X. It may have various irreducible components. We
introduce a condition which ensures first that M decomposes as the direct sum of
eDX -modules, each of which supported by a single component. However, we wish
that each such summand decomposes itself as the direct sum of eDX -modules, each of
which supported on an irreducible closed analytic subset of the support of the given
summand, in order to satisfy a “geometric simplicity property”, namely each such
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new summand has no coherent sub-module supported on a strictly smaller closed
analytic subset. We then say that such a summand has pure support.

In Section 7.8, we give a criterion in order that the functors  g,� and �g,1 com-
mute with proper pushforward. This will be an essential step in the theory of complex
Hodge modules (see Chapter 13), where we need to prove that the property of strict
S-decomposability (i.e., geometric semi-simplicity) is preserved by proper pushfor-
ward.

7.2. The filtration V•
eDX relative to a smooth hypersurface

Let H ⇢ X be a smooth hypersurface (1) of X with defining ideal IH ⇢ OX . We
first define a canonical increasing filtration of eDX indexed by Z. Let us set fI `

H = eOX

for ` < 0 and fI `
H = I `

H
eOX for ` > 0. For every k 2 Z, the subsheaf Vk

eDX ⇢
eDX

(k 2 Z) consists of operators P such that fI j
HP ⇢ fI j�k

H for every j 2 Z. For every
open set U of X we thus have

(7.2.1) Vk
eDX(U) = {P 2 eDX(U) | fI j

H(U) · P ⇢ fI j�k
H (U), 8 j 2 Z}.

This defines an increasing filtration V•
eDX of eDX indexed by Z. Note that one can

also define Vk
eDX(U) as the set of Q 2 eDX(U) such that Q ·

fI j
H(U) ⇢ fI j�k

H (U),
8 j 2 Z.

Exercise 7.2.2. Show the following properties.
(1) Let us fix a local decomposition X ' H⇥�t (where �t ⇢ C is a disc with

coordinate t). With respect to this decomposition,

V
0

eDX = eOXhgx, tgti, V�j
eDX = V

0

eDX · tj , Vj
eDX =

j
X

k=0

V
0

eDX · gkt (j > 0).

(2) For every k, Vk
eDX is a locally free V

0

eDX -module.
(3) eDX =

S

k Vk
eDX (the filtration is exhaustive).

(4) Vk
eDX · V`

eDX ⇢ Vk+`
eDX with equality for k, ` 6 0 or k, ` > 0.

(5) V
0

eDX is a sheaf of subalgebras of eDX .
(6) Vk

eDX |XrH = eDX |XrH for all k 2 Z.
(7) grVk

eDX is supported on H for all k 2 Z,
(8) The induced filtration Vk

eDX \
eOX = fI �k

H
eOX is the fIH -adic filtration of eOX

made increasing.
(9)

�

T

k Vk
eDX

�

|H = {0}.

Exercise 7.2.3 (Euler vector field).
(1) Show that the class E of tgt in grV

0

eDX in some local product decomposition as
above does not depend on the choice of such a local product decomposition.

1. Other settings can be considered, for example a smooth subvariety, or a finite family of smooth
subvarieties, but they will not be needed for our purpose.
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(2) Show that if H has a global equation g, then grV
0

eDX '
eDH [E].

(3) Conclude that grV
0

eDX is a sheaf of rings and that E belongs to its center.

Remark 7.2.4 (Structure of grV
0

eDX ). While eDH can be identified to the quotient
grV

0

eDX/EgrV
0

eDX = grV
0

eDX/grV
0

eDX E, it is not identified with a subsheaf of grV
0

eDX ,
except when NHX is trivial. When H is globally defined by a holomorphic function g,
or more generally for any holomorphic function g : X ! C, we will often use the
trick of the graph inclusion ◆g : X ,! X ⇥ C and we will then consider the filtration
V•

eDX⇥C with respect to X ⇥ {0}, so that we will be able to identify grV
0

eDX⇥C with
the ring eDX [E].

Exercise 7.2.5. Show the equivalence between the category of eOX -modules with in-
tegrable logarithmic connection e

r : M !

e⌦1

X(logH) ⌦M and the category of left
V
0

eDX -modules. Show that the residue Res er corresponds to the induced action of E
on M / fIHM .

Let ⌫ : NHX ! H denote the normal bundle of H in X and set eD
[NHX]

:= ⌫⇤ eDNHX

(where ⌫⇤ is taken in the algebraic sense) with its filtration V•
eD
[NHX]

. Then there
is a canonical isomorphism (as graded objects) grV eDX ' grV eD

[NHX]

, and the latter
sheaf is isomorphic (forgetting the grading) to eD

[NHX]

.

Exercise 7.2.6 (The Rees sheaf of rings RV
eDX ). Introduce the Rees sheaf of rings

RV
eDX :=

L

k Vk
eDX · vk ⇢ eDX [v, v�1] associated to the filtered sheaf ( eDX , V•

eDX)

(see Definition A.2.3), and similarly RV
eOX =

L

k Vk
eOX · vk ⇢ eOX [v, v�1], which is

the Rees ring associated to the fIH -adic filtration of eOX .
(1) Show that RV

eOX = eOX [v, tv�1], where t = 0 is a local equation of H.
(2) Show that RV

eDX = eOX [v, tv�1]hvgt, gx2
, . . . , gxn

i.
(3) Conclude that RV

eDX is locally free over RV
eOX .

Remark 7.2.7 (V -filtration indexed by A+Z). The following construction of extending
the set of indices will prove useful. Let A ⇢ [0, 1) be a finite subset containing 0. Let
us fix the numbering of A + Z = {. . . ,↵�1

,↵o,↵1

, . . .} which respect the order and
such that ↵o = 0. We thus have 1 = ↵

#A. We denote by AV•
eDX the filtration indexed

by A + Z defined by AV↵
eDX := V

[↵]
eDX . We consider it as a filtration indexed by Z

by using the previous order-preserving bijection. Since [↵] + [�] 6 [↵ + �], we have
AV↵

eDX ·

AV�
eDX ⇢

AV↵+�
eDX , and on the other hand, AV↵o

eDX = V
0

eDX . The Rees
ring is RAV

eDX :=
L

k2Z
AV↵k

eDXvk. Note also that

gr
AV

eDX =
L

k2Z
gr

AV
↵k

eDX =
L

k2#A·Z
grV

(k/#A)

eDX .

It will sometimes be convenient to write, for short, RAV
eDX :=

L

↵2A+Z
AV↵

eDXv↵.

Exercise 7.2.8. Define similarly AV↵
eOX and show that RAV

eDX is locally free over
RAV

eOX .
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Remark 7.2.9 (Restriction to z = 1). The V -filtration restricts well when setting z = 1,
that is, VkDX = Vk

eDX/(z � 1)Vk
eDX = Vk

eDX/(z � 1) eDX \ Vk
eDX .

7.3. Specialization of coherent eDX-modules

In this section, H denotes a smooth hypersurface of a complex manifold X and
we denote by t a local generator of IH . We use the definitions and notation of
Section 7.2.

Caveat 7.3.1. In Subsections 7.3.a–7.3.c, when eDX = RFDX , we will forget about the
grading of the eDX -modules and morphisms involved, in order to keep the notation
similar to the case of DX -modules. From Section 7.4, we will remember the shift
of grading for various morphisms, in the case of RFDX -modules (this shift has no
influence in the case of DX -modules).

7.3.a. Coherent V -filtrations

Exercise 7.3.2 (Coherence of RV
eDX ). We consider the Rees sheaf of rings RV

eDX :=
L

k Vk
eDX · vk as in Exercise 7.2.6. The aim of this exercise is to show the coherence

of the sheaf of rings RV
eDX . Since the problem is local, we can assume that there are

coordinates (t, x
2

, . . . , xn) such that H = {t = 0}.
(1) Let K be a compact polycylinder in X. Show that RV

eOX(K) = RV ( eOX(K))

is Noetherian, being the Rees ring of the fIH -adic filtration on the ring eOX(K) (which
is Noetherian, by a theorem of Frisch). Similarly, as eOX,x is flat on eOX(K) for every
x 2 K, show that the ring (RV

eOX)x = RV
eOX(K)⌦ eOX(K)

eOX,x is flat on RV
eOX(K).

(2) Show that RV
eOX is coherent on X by following the strategy developed in

[GM93]. [Hint : Let e⌦ be any open set in X and let ' : (RV
eOX)q

|e⌦
! (RV

eOX)p
|e⌦

be any morphism. Let K be a polycylinder contained in e⌦. Show that Ker'(K)

is finitely generated over RV
eOX(K) and, if K� is the interior of K, show that

Ker'|K� = Ker'(K)⌦RV
eOX(K)

(RV
eOX)|K� . Conclude that Ker'|K� is finitely gen-

erated, whence the coherence of RV
eOX .]

(3) Consider the sheaf eOX [⌧, ⇠
2

, . . . , ⇠n] equipped with the V -filtration for
which ⌧ has degree 1, the variables ⇠

2

, . . . , ⇠n have degree 0, and inducing the
V -filtration (i.e., t-adic in the reverse order) on eOX . Firstly, forgetting ⌧ , Show that
RV ( eOX [⇠

2

, . . . , ⇠n]) = (RV
eOX)[⇠

2

, . . . , ⇠n]. Secondly, using Vk( eOX [⌧, ⇠
2

, . . . , ⇠n]) =
P

j>0

Vk�j( eOX [⇠
2

, . . . , ⇠n])⌧ j for every k 2 Z, show that we have a surjective
morphism

RV
eOX [⇠

2

, . . . , ⇠n]⌦eC
eC[⌧ 0] �! RV ( eOX [⌧, ⇠

2

, . . . , ⇠n])

V`
eOX [⇠

2

, . . . , ⇠n]q
`⌧ 0j 7�! V`

eOX [⇠
2

, . . . , ⇠n]⌧
jq`+j .

If K ⇢ X is any polycylinder show that RV ( eOX [⌧, ⇠
2

, . . . , ⇠n])(K) is Noetherian, by
using that

�

RV
eOX(K)

�

[⌧ 0, ⇠
2

, . . . , ⇠n] is Noetherian.
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(4) As RV
eDX can be filtered (by the degree of the operators) in such a way that,

locally on X, grRV
eDX is isomorphic to RV ( eOX [⌧, ⇠

2

, . . . , ⇠n]), conclude that, if K is
any sufficiently small polycylinder, then RV

eDX(K) is Noetherian.
(5) Use now arguments similar to that of [GM93] to concludes that RV

eDX is
coherent.

Definition 7.3.3 (Coherent V -filtrations). Let M be a coherent right eDX -module.
A V -filtration indexed by Z is an increasing filtration U•M which satisfies
U`M · Vk

eDX ⇢ U`+kM for every k, ` 2 Z. In particular, each U`M is a right
V
0

eDX -module. We say that it is a coherent V -filtration if each U`M is V
0

eDX -
coherent, locally on X, there exists `o > 0 such that, for all k > 0,

U�k�`0M = U�`oM · tk and Uk+`0M =
k

X

j=0

U`oMgjt .

Remark 7.3.4 (The case of left eDX -modules). For left eD-modules, it is more usual to
consider a decreasing filtration U•M which satisfies Vk

eDX · U `M ⇢ U `�kM for
every k, ` 2 Z. We say that such a filtration is a coherent V -filtration if each U `M is
V
0

eDX -coherent, locally on X, there exists `o > 0 such that, for all k > 0,

Uk+`0M = tkU `oM and U�(k+`0)M =
k

X

j=0

gjtU�`oM .

Exercise 7.3.5 (Characterization of coherent V -filtrations). Let M be a coherent right
eDX -module. Show that the following properties are equivalent for a V -filtration U•M .

(1) U•M is a coherent filtration.
(2) The Rees module RUM :=

L

` U`M v` is RV
eDX -coherent.

(3) For every x 2 X, replacing X with a small neighbourhood of x, there exist
integers �j=1,...,q, µi=1,...,p, ki=1,...,p and a presentation (recall that [•] means a shift of
the grading)

q
L

j=1

eDX [�j ] �!
p
L

i=1

eDX [µi] �!M �! 0

such that U`M = image(
Lp

i=1

Vki+`
eDX [µi]).

Note that, as for fIH -adic filtrations on coherent eOX -modules, it is not enough to
check the coherence of grUM as a grV eDX -module in order to deduce that U•M is a
coherent V -filtration.

Exercise 7.3.6 (From coherent RV
eDX -modules to eDX -modules with a coherent

V -filtration)
(1) Show that a graded RV

eDX -module M can be written as RUM for some
V -filtration on some eDX -module M if and only if it has no v-torsion.

(2) Show that, if M is a graded coherent RV
eDX -module, then its v-torsion is a

graded coherent RV
eDX -module.



7.3. SPECIALIZATION OF COHERENT eDX -MODULES 125

(3) Conclude that, for any graded coherent RV
eDX -module M, there exists a

unique coherent eDX -module and a unique coherent V -filtration U•M such that
M/v-torsion = RUM .

Exercise 7.3.7 (Some basic properties of coherent V -filtrations)
(1) Show that the filtration naturally induced by a coherent V -filtration on a coher-

ent eDX -module on a coherent sub or quotient eDX -modules is a coherent V -filtration.
(2) Deduce that, locally on X, there exist integers �j=1,...,q, `j=1,...,q, µi=1,...,p,

ki=1,...,p and a presentation
Lq

j=1

eDX [�j ] !
Lp

i=1

eDX [µi] ! M ! 0 inducing for
every ` a presentation

q
L

j=1

V`j+`
eDX [�j ] �!

p
L

i=1

Vki+`
eDX [µi] �! U`M �! 0.

(3) Show that two coherent V -filtrations U•M and U 0•M are locally comparable,
that is, locally on X there exists `o > 0 such that, for every ` 2 Z,

U`�`oM ⇢ U 0
`M ⇢ U`+`oM .

(4) If U•M is a coherent V -filtration, then for every `o 2 Z, the filtration U•+`oM
is also coherent.

(5) If U•M and U 0
•M are two coherent V -filtrations, then the filtration U 00

` M :=
U`M + U 0

`M is also coherent.
(6) Assume that H is defined by an equation t = 0. Prove that, locally on X,

there exists k
0

such that, for every k 6 k
0

, t : Uk ! Uk�1

is bijective. [Hint : Use (2)
above.]

Exercise 7.3.8. Let U be a coherent left V
0

eDX -module and let T be its t-torsion
subsheaf, i.e., the subsheaf of local sections locally killed by some power of t. Show
that, locally on X, there exists ` such that T \U t` = 0. [Hint : Consider the t-adic
filtration on V

0

eDX , i.e., the filtration V�j
eDX with j > 0. Show that the filtration U tj

is coherent with respect to it, and locally there is a surjective morphism (V
0

eDX)n ! U
which is strict with respect to the V -filtration. Deduce that its kernel K is coherent
and comes equipped with the induced V -filtration, which is coherent. Conclude that,
locally on X, there exists j

0

> 0 such that Vj0�jK = V j0K ·tj for every j > 0. Show
that, for every j > 0 there is locally an exact sequence (up to shifting the grading on
each V•

eDX summand)

(V�j
eDX)m �! (V�(j+j0)

eDX)n �! U t(j+j0)
�! 0.

As t : Vk
eDX ! Vk�1

eDX is bijective for k 6 0, conclude that t : U tj0 ! U tj0+1 is so,
hence T \U tj0 = 0.]

Exercise 7.3.9 (Coherent V -filtration indexed by A + Z). Extend the previous proper-
ties to coherent V -filtrations indexed by A + Z, where A ⇢ [0, 1) is some finite set
(see Remark 7.2.7).



126 CHAPTER 7. NEARBY AND VANISHING CYCLES OF eD-MODULES

7.3.b. Specializable coherent eDX-modules. Let H ⇢ X be a smooth hypersur-
face. Let M be a left (resp. right) coherent eDX -module and let m be a germ of section
of M . In the following, we abuse notation by denoting E 2 V

0

eDX any local lifting
of the Euler operator E 2 grV

0

eDX , being understood that the corresponding formula
does not depend on the choice of such a lifting.

Definition 7.3.10.

(1) A weak Bernstein equation for m is a relation

(7.3.10 ⇤) m · (z`b(E)� P ) = 0,

where
• ` is some nonnegative integer,
• b(s) is a nonzero polynomial in a variable s with coefficients in C, which

takes the form
Q

↵2A(s�↵z)
⌫↵ for some finite subset A 2 C (depending on m),

• P is a germ in V�1

eDX , i.e., P = tQ = Q0t with Q,Q0 germs in V
0

eDX .
(2) We say that M is specializable along H if any germ of section of M is the

solution of some weak Bernstein equation (7.3.10 ⇤).

Exercise 7.3.11. Show that a coherent eDX -module M is specializable along H if and
only if one of the following properties holds:

(1) locally on X, some coherent V -filtration U•M has a weak Bernstein polyno-
mial, i.e., there exists a nonzero b(s) and a nonnegative integer ` such that

(7.3.11 ⇤) 8 k 2 Z, grUk M · z`b(E�kz) = 0;

(2) locally on X, any coherent V -filtration U•M has a weak Bernstein polynomial.
[Hint : in one direction, take the V -filtration generated by a finite number of local
generators of M ; in the other direction, use that two coherent filtrations are locally
comparable.]

Exercise 7.3.12. Assume that M is eDX -coherent and specializable along H.
(1) Fix `o 2 Z and set U 0

`M = U`+`oM . Show that bU 0(s) can be chosen as
bU (s� `oz).

(2) Set bU = b
1

b
2

where b
1

and b
2

have no common root. Show that the filtration
U 0
kM := Uk�1

M + b
2

(E�kz)UkM is a coherent filtration and compute a polyno-
mial bU 0 in terms of b

1

, b
2

.
(3) Conclude that there exists locally a coherent filtration U•M for which bU (s) =

Q

↵2A(s� ↵z)
⌫↵ and Re(A) ⇢ (�1, 0].

Assume that M is eDX -coherent and specializable along H. According to Bézout,
for every local section m of M , there exists a minimal polynomial

bm(s) =
Y

↵2R(m)

(s� ↵z)⌫↵
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giving rise to a weak Bernstein equation (7.3.10 ⇤). We say that M is R-specializable
along H if for every local section m, we have R(m) ⇢ R. We then set:

(7.3.13) ordH(m) = maxR(m).

Exercise 7.3.14. Assume that M is an R-specializable coherent eDX -module. Show
that, for m 2Mxo

and P 2 Vk
eDX,xo

, we have

ordH,xo(m · P ) 6 ordH,xo(m) + k.

[Hint : use that [E, V�1

eDX ] ⇢ V
0

eDX and that the coherent V -filtrations eDX(mP ) \

V•
eDX ·m and V•

eDX ·mP of eDX · (mP ) are locally comparable.]

The filtration by the order along H, also called the Kashiwara-Malgrange filtration
of M along H, is the increasing filtration V•Mxo indexed by R defined by

V↵Mxo
= {m 2Mxo

| ordH,xo
(m) 6 ↵},(7.3.15)

V<↵Mxo
= {m 2Mxo

| ordH,xo
(m) < ↵}.(7.3.16)

We do not claim that it is a coherent V -filtration. The order filtration satisfies,
8 k 2 Z, 8↵,� 2 R

V↵Mxo · Vk
eDX,xo ⇢ V↵+kMxo .

It is a filtration of M by subsheaves V↵M of V
0

eDX -modules. We set

(7.3.17) grV↵ M := V↵M /V<↵M .

These are grV
0

eDX -modules. In particular, they are endowed with an action of the
Euler field E. We already notice, as a preparation to strict R-specializability, that
the satisfy part of the strictness condition.

Lemma 7.3.18. The grV
0

eDX-module grV↵ M has no z-torsion.

Proof. It is a matter of proving that, for a section m of V↵M , if mzj is a section of
V<↵M for some j > 0, then so does m. But one checks in a straightforward way that,
if P in Exercise 7.3.14 is equal to zj , then the inequality there is an equality (with
k = 0).

Remark 7.3.19 (The case of left eDX -modules). The order of a local section m is defined
as ordH(m) = minR(m). In Exercise 7.3.14 we have ordH,xo

(Pm) > ordH,xo
(m)� k.

The filtration by the order along H is the decreasing filtration V •Mxo indexed by R
defined by

V �Mxo
= {m 2Mxo

| ordH,xo
(m) > �},

V >�Mxo
= {m 2Mxo

| ordH,xo
(m) > �}.

The order filtration satisfies, 8 k 2 Z, 8↵,� 2 R, Vk
eDX,xo

· V �Mxo
⇢ V ��kMxo

. We
set gr�V M := V �M /V >�M .
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Exercise 7.3.20.

(1) Assume that M is R-specializable along H. Show that any sub- eDX -module M 0

and any quotient eDX -module M 00 is also R-specializable along H.
(2) Let ' : M

1

! M
2

be a morphism between R-specializable modules along H.
Show that ' is compatible with the order filtrations along H. Conclude that, on the
full sbucategory consisting of R-specializable eDX -modules of the category of eDX -mod-
ules (and morphisms consist of all morphisms of eDX -modules), grV↵ is a functor to
the category of grV

0

eDX -modules.

Exercise 7.3.21 (Restriction to z = 1). Let M be a coherent RFDX -module. Assume
that M is R-specializable along H.

(1) Show that for every ↵,

(z � 1)M \ V↵M = (z � 1)V↵M .

[Hint : let m = (z�1)n be a local section of (z�1)M \V↵M ; then n is a local section
of V�M for some �; if � > ↵, show that the class of n in grV� M is a annihilated by
z � 1; conclude with Exercise A.2.5(1).]

(2) Conclude that M := M /(z � 1)M is R-specializable along H and that, for
every ↵,

V↵M = V↵M /(z � 1)V↵M = V↵M /
�

(z � 1)M \ V↵M
�

,

grV↵M = grV↵ M /(z � 1)grV↵ M .

(3) Show that (V↵M )⌦C[z] C[z, z�1] = V↵M[z, z�1].

Exercise 7.3.22 (Side changing). Define the side changing functor for V
0

eDX -modules
by replacing eDX with V

0

eDX in Definition A.3.10. Show that M left is R-specia-
lizable along H if and only if M right is so and, for every � 2 R, V �(M left) =
⇥

V���1

(M right)
⇤

left. [Hint : Use the local computation of Exercise A.3.17.]

7.3.c. Strictly R-specializable coherent eDX-modules. A drawback of the set-
ting of Section 7.3.b is that we cannot ensure that the order filtration is a coherent
V -filtration.

Lemma 7.3.23 (Kashiwara-Malgrange V -filtration). Let M be an R-specializable coher-
ent eDX-module. Assume that, in the neighbourhood of xo 2 X there exists a coherent
V -filtration U•M with the following two properties:

(1) its minimal weak Bernstein polynomial bU (s) =
Q

↵2A(U)

(s � ↵z)⌫↵ satisfies
A(U) ⇢ (�1, 0],

(2) for every k, UkM /Uk�1

M has no z-torsion.
Then such a filtration is unique and equal to the order filtration when considered
indexed by integers, which is therefore a coherent V -filtration as such. It is called the
Kashiwara-Malgrange filtration of M .
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Proof. Assume U•M satisfies (1) and (2). Let m be a local section of UkM and let
U•(m ·

eDX) be the V -filtration induced by U•M on m ·

eDX . By Exercise 7.3.7(1),
it is a coherent V -filtration. There exists thus ko > 1 such that Uk�ko

(m ·

eDX) ⇢

m · V�1

eDX . It follows that R(m) ⇢ (A(U) + k) [ · · · [ (A(U) + k � ko + 1) and thus
ordHm = maxR(m) 6 k, so m ⇢ VkM .

Conversely, assume m is a local section of VkM . It is also a local section of
Uk+koM for some ko > 0. Its class in grUk+ko

M is annihilated both by z`bm(E)

and by z`
0
bU (E�(k + ko)z) (for some `, `0 > 0), so if ko > 0, both polynomials

have no common z-root, and this class is annihilated by some nonnegative power
of z, according to Bézout. By Assumtion (2), it is zero, and m is a local section of
Uk+ko�1

M , from which we conclude by induction that m is a local section of UkM ,
as wanted.

Exercise 7.3.24 (Indexing with Z or with R). The order filtration is naturally indexed
by R, while the notion of V -filtration considers filtrations indexed by Z. The purpose
of this exercise is to show how both notions match when the properties of Lemma
7.3.23 are satisfied. Let U•M be a filtration for which the properties of Lemma 7.3.23
are satisfied. Then we have seen that U•M coincides with the “integral part” of the
order filtration V•M . Show the following properties.

(1) The weak Bernstein equations (7.3.10 ⇤) and (7.3.11 ⇤) hold without any power
of z, i.e., for every k the operator E�kz has a minimal polynomial on UkM /Uk�1

M =
VkM /Vk�1

M which does not depend on k.
(2) The eigen module of E�kz on this quotient module corresponding to the eigen-

value ↵z isomorphic to grV↵+kM and the corresponding nilpotent endomorphism is

(7.3.24 ⇤) N := (E�(k + ↵)z).

In particular, each grV↵+kM is strict and we have a canonical identification

VkM /Vk�1

M =
L

�1<↵60

grV↵+kM .

(3) For every ↵ 2 (�1, 0], identify V↵+kM with the pullback of
L

�1<↵06↵ grV↵0
+kM

by the projection VkM ! VkM /Vk�1

M , and show that the shifted order filtration
indexed by integers V↵+•M is a coherent V -filtration.

(4) Conclude that there exists a finite set A ⇢ (�1, 0] such that the order filtration
is indexed by A+ Z, and is coherent as such (see Exercise 7.3.9).

Definition 7.3.25 (Strictly R-specializable eDX -modules). Assume that M is R-speciali-
zable along H. We say that it is strictly R-specializable along H if

(1) there exists a finite set A ⇢ (�1, 0] such that the filtration by the order along H

is a coherent V -filtration indexed by A+ Z,
and for some (or any) local decomposition X ' H ⇥�t,

(2) for every ↵ < 0, t : grV↵ M ! grV↵�1

M is onto,
(3) for every ↵ > �1, gt : grV↵ M ! grV↵+1

M (�1) is onto.
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Proposition 7.3.26. Assume that M is strictly R-specializable along H. Then, every
grV↵ M is a graded grV

0

eDX-module, and is strict as such (see Definition A.2.7).

Proof. Recall that, for a graded module, strictness is equivalent to absence of z-tor-
sion (see Exercise A.2.5(1)). Therefore, the second point follows from the first one
and from Lemma 7.3.18.

Let us consider the first point. We first claim that a local section m of M is a local
section of V↵M if and only if it satisfies a relation

m · b(E) 2 V↵M

for some b with z-roots 6 ↵. Indeed, if m is a local section of V�M with � > ↵

and satisfying such a relation, the Bézout argument already used and the absence of
z-torsion on each grV� M (Lemma 7.3.18) implies that m is a local section of V<�M .
Property 7.3.25(1) implies that there is only a finite set of jumps of the V -filtration
between ↵ and �, so by induction we conclude that m 2 V↵M . The converse is clear.

The grading on M induces a natural (right) action of �@zz on M : for a local
section m =

L

p mp of M =
L

p M p, we set m(�@zz) :=
L

p pmp. This action
is natural in the sense that it satisfies the usual commutation relations with the
right action of eDX (it would be more standard to use the natural left action of z@z
on M left). We claim that, for every ↵ 2 R, we have V↵M (�@zz) ⇢ V↵M . Let m be
a local section of V↵M , which satisfies a relation mbm(E) = m · P with P 2 V�1

eDX .
Then one checks that

m(�@zz)bm(E) = mbm(E)(�@zz) +mQ, Q 2 V
0

eDX

= mP (�@zz) +mQ, P 2 V�1

eDX

= m(�@zz)P +mR, R 2 V
0

eDX .

We conclude that m(�@zz) 2 V↵M by applying the first claim above.
Since the eigenvalues of (�@zz) on M are integers and are simple, the same prop-

erty holds for V↵M , showing that V↵M decomposes as the direct sum of its (�@zz)-
eigenspaces, which are its graded components of various degrees.

Remark 7.3.27 (The need of a shift). If we regard the actions of t and gt as morphisms
in Mod( eDH)-modules, that is, graded morphisms of degree zero, we have to introduce
a shift by �1 (see Remark A.2.4) for the action of gt, which sends Fpz

p to Fp+1

zp+1.
The same shift has to be introduced for the action of E, as well as for that of N =
(E�↵z).

Exercise 7.3.28. Check that if (2) and (3) hold for some local decomposition X '

H ⇥�t at xo 2 H, then they hold for any such decomposition.

Remark 7.3.29 (The case of left eDX -modules). For left eDX -modules, we take � > �1 in
7.3.25(2) and � < 0 in 7.3.25(3) for gr�V M . The nilpotent endomorphism N of gr�V M
is induced by the action of �(E��z).
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Remark 7.3.30 (Side-changing). Let M be a left eDX -module and let M right = e!X⌦M
denote the associated right eDX -module. Let us assume that H is defined by one
equation g = 0, so that gr�V M and grV↵ M right are respectively left and right eDH -
modules endowed with an action of E.

Assume first that M = eOX and M right = e!X . We have

V k
eOX =

(

eOX if k 6 0,

gk eOX if k > 0,
and Vke!X =

(

e!X if k > �1,
g�(k+1)

e!X if k 6 �1.

We have grV�1

e!X = e!H ⌦
edg/z, so that edg/z induces an isomorphism (see Remark

A.2.4)

e!H(�1)
⇠
�! grV�1

e!X , that is, grV�1

( eOright

X ) ' (gr0V eOX)right(�1).

Arguing similarly for M and M right gives an identification

grV↵ (M
right) ' (gr�V M )right(�1), � = �↵� 1.

With this identification, the actions of E (resp. N) on both sides coincide.

Proposition 7.3.31. Assume that M is strictly R-specializable along H. Then, in any
local decomposition X ' H ⇥�t we have

8↵ < 0, t : V↵M �! V↵�1

M is an isomorphism;(a)

8↵ > 0, V↵M = V<↵M + (V↵�1

M )gt;(b)

t : grV↵ M �! grV↵�1

M is

(

an isomorphism if ↵ < 0,

injective if ↵ > 0;
(c)

gt :grV↵ M �!grV↵+1

M (�1) is

(

an isomorphism if ↵ > �1,

injective if ↵ < �1;
(d)

In particular (from (b)), M is generated as a eDX-module by V
0

M .

Proof. Because V↵+•M is a coherent V -filtration, (a) holds for ↵ ⌧ 0 locally and
(b) for ↵ � 0 locally. Therefore, (a) follows from (c) and (b) follows from (d).
By 7.3.25(2) (resp. (3)), the map in (c) (resp. (d)) is onto. The composition tgt =
(E�↵z) + ↵z is injective on grV↵ M for ↵ 6= 0 since (E�↵z) is nilpotent and grV↵ M
is strict, hence (c) holds. The argument for (d) is similar.

In the next exercises, we explain which set of data is needed to recover coherent
V
0

eDX -modules and morphisms between them. This will be used from a more general
point of view in Chapter 9.
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Exercise 7.3.32 (Recovering morphisms from their restriction to V
0

)
Assume that X = H ⇥�t and that M

1

,M
2

are strictly R-specializable along H.
Let '60

: V
0

M
1

! V
0

M
2

be a morphism in Mod(V
0

eDX) such that the diagram (D
0

)
commutes:

(Dk)
Vk�1

M
1

gt
✏✏

'6k
// Vk�1

M
2

gt
✏✏

VkM1

'6k
// VkM2

Show that '60

extends in a unique way as a morphism ' : M
1

! M
2

. [Hint : For
the uniqueness, use 7.3.31(b); show inductively the existence of '6k : VkM1

! VkM2

(k > 1); for example, if k = 1, use 7.3.31(d) to show that, for m,m0, n, n0
2 V

0

M
1

, if
m�m0 = (n0

� n)gt, then n0
� n 2 V�1

M
2

and deduce that setting '61

(m+ ngt) =
'60

(m) + '60

(n)gt well defines a V
0

eDX -linear morphism '61

: V
1

M
1

! V
1

M
2

for
which (D

1

) commutes.]

Exercise 7.3.33 (Recovering V
0

M ). Assume that X = H ⇥�t and that M is strictly
R-specializable along H. We have a natural exact sequence of V

0

eDX -modules

0 �! V<0

M �! V
0

M �! grV
0

M �! 0.

We wish to recover explicitly the middle term in terms of the extreme ones and of
the morphisms (c) and (d) in Proposition 7.3.31 above, for the most interesting value
↵ = 0.

(1) Consider the morphisms

grV�1

M (1)
A // V�1

M � grV�1

M (1)� grV
0

M
B // grV�1

M

e � // (0, e, egt)
(m, e, ") � // [m] + e · gtt� " · t

where, for m 2 V�1

M , [m] denotes its class in grV�1

M . Show that the composition is
zero, hence they define a complex C• of V

0

eDX -modules (by regarding each grV↵ M as
a V

0

eDX -module). Show that Hj(C•) = 0 for j 6= 1.
(2) Consider the morphism from V

0

M to the middle term given by µ 7! (µ·t, 0, [µ]),
where [µ] denotes the class of µ in grV

0

M . Show that it injects into KerB and that
its intersection with ImA is zero. [Hint : Use 7.3.31(a).]

(3) Show that the induced morphism V
0

M ! H1(C•) is an isomorphism. [Hint :
Injectivity follows from (2) above; modulo ImA, any element of KerB can be repre-
sented in a unique way as (m, 0, �) with [m] = � · t; choose any lifting e� 2 V

0

M of �
and show that there exists ⌘ 2 V<0

M such that m � e� · t = ⌘ · t by using 7.3.31(a);
conclude by setting µ = e� + ⌘.]

(4) Show that, for any V
0

eDX -linear morphism '6�1

: V�1

M
1

! V�1

M
2

, the
diagram (D�1

) commutes, and conclude that giving a morphism '60

V
0

M
1

! V
0

M
2
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such that (D
0

) commutes is equivalent to giving a pair ('6�1

,'
0

) such that, with
respect to the morphisms

grV�1

M

· gt
))

(1)

))

grV
0

M

· t

jj

and setting '�1

= grV�1

'6�1

, we have

gt � '�1

= '
0

� gt, '�1

� t = t � '
0

.

Assume that X = H⇥�t. Consider the category whose objects consist of the data
(M6�1

,M
0

, c, v), where
• M6�1

is a coherent V
0

eDX -module on which t is torsion-free and such that
M�1

:= M6�1

/M6�1

t is strict and the induced action of gtt on it is nilpotent
with index of nilpotence locally bounded on H,

• M
0

is a strict coherent grV
0

eDX -module on which the action of tgt is nilpotent
with index of nilpotence locally bounded on H,

• the data c, v are grV
0

eDX -linear morphisms

M�1

c
((

(1)

((
M

0

v

hh

such that c � v = gtt on M�1

and v � c = tgt on M
0

.
Morphisms in this category consist of pairs ('6�1

,'
0

), where '6�1

: M6�1

! N6�1

is V
0

eDX -linear, '
0

: M
0

! N
0

is grV
0

eDX -linear, and the restriction '�1

of '6�1

to M�1

satisfies
c � '�1

= '
0

� c, '�1

� v = v � '
0

.

We have a functor from the category of coherent eDX -modules which are strictly
R-specializable along H to the above category:

M 7�! (V�1

M , grV
0

M , gt, t).

Corollary 7.3.34 (Recovering morphisms from their restriction to V�1

and grV
0

)
This functor is fully faithful, i.e., any morphism ('6�1

,'
0

) can be lifted in a
unique way as a morphism '.

Proof. Consider the category whose objects are coherent V
0

eDX -modules M60

such
that

• M60

/M60

t is strict,
• tgt acting on M60

/M60

t has a minimal polynomial with roots ↵z satisfying
↵ 2 (�1, 0],
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• defining V↵M for ↵ < 0 as in Exercise 7.3.24, every grV↵ M60

is strict and
7.3.31(a) holds,
and whose morphisms are V

0

eDX -linear morphisms such that (D
0

) commutes.
According to Exercise 7.3.32, the functor M 7! M60

:= V
0

M is fully faithful.
Now, the functor M60

7! (V�1

M60

, grV
0

M60

, gt, t) is an equivalence of categories.
Indeed, Exercise 7.3.33 shows that it is essentially surjective and, since the recon-
struction is functorial in an obvious way, it enables one to lift in a unique way a pair
('6�1

,'
0

) as a V
0

eDX -linear morphism '60

such that (D
0

) commutes, showing the
full faithfulness.

Remark 7.3.35 (Restriction to z = 1). Let us keep the notation of Exercise 7.3.21. For a
coherent DX -module M which is R-specializable, 7.3.25(2) and (3) are automatically
satisfied. Moreover, the morphisms in 7.3.31(c) and (d) are isomorphisms for the
given values of ↵. In other words, for coherent DX -modules, being R-specializable is
equivalent to being strictly R-specializable. In particular, Exercise 7.3.21 applies to
coherent RFDX -modules which are strictly R-specializable along H.

Exercise 7.3.36 (Structure of M /V<↵o
M ). Let M be a coherent right eDX -module

which is strictly R-specializable along H. Let us fix ↵o 2 R. Then M /V<↵oM is a
V
0

eDX -module.
(1) Show that M /V<↵oM is strict.
(2) Show that M /V<↵o

M decomposes as
L

↵>↵o
Ker(E�↵z)N with N � 0.

(3) Show that the ↵-summand can be identified with grV↵ M .
(4) Show that M /V<↵o

M can be identified with
L

↵>↵o
grV↵ M as a V

0

eDX -module.
Does the V

0

eDX -module structure of M /V<↵o
M extend to a eDX -module structure?

[Hint : in local coordinates, what about the relation [gt, t] = z applied to a nonzero
section of grV↵o

M ?]
(5) Assume now that X ' H ⇥ �t. Let s be a new variable and let us equip

grV↵ M [s] := grV↵ M ⌦C C[s] with the following right V
0

eDX -structure defined by

m↵
j s

j
· t =

(

0 if j = 0,
�

m↵
j (E+jz)

�

sj�1 if j > 1,

(m↵
j s

j)tgt =
�

m↵
j (E+jz)

�

sj .

Check that this is indeed a V
0

eDX -module structure (i.e., [tgt, t] acts as zt). Show
that M /V�1

M can be identified with
L

↵2(�1,0] gr
V
↵ M [s]. With this structure, show

that grV↵ M sj = Ker(tgt � (↵+ j)z)N (with N � 0 locally).
[Hint : use that gt : grV↵ M ! grV↵+1

M is an isomorphism for ↵ > �1 to identify
L

↵>�1

grV↵ M with
L

↵2(�1,0]

L

j>0

grV↵ Mgjt .]
(6) Equip grV↵ M [s] with the action of gt defined by (m↵

j s
j)gt = m↵

j s
j+1. Show

that the relation [gt, t] = z holds on sgrV↵ M [s], but that [gt, t] = z+(E+z) on grV↵ M .
Conclude that this action does not define a eDX -module structure on grV↵ M [s].
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Exercise 7.3.37 (First properties of strictly R-specializable coherent eDX -modules)
Show the following properties.

(1) Let M be a coherent eDX -module which is strictly R-specializable along H.
If M = M

1

�M
2

with M
1

,M
2

eDX -coherent, then M
1

,M
2

are strictly R-specializa-
ble along H.

(2) In an exact sequence 0 ! M
1

! M ! M
2

! 0 of coherent eDX -modules,
if M is strictly R-specializable along H, set

U↵M
1

= V↵M \M
1

, U↵M
2

= image(V↵M ).

• Show that these V -filtrations are coherent (see Exercise 7.3.7(1)) and that,
for every ↵, the sequence

0 �! grU↵M
1

�! grV↵ M �! grU↵M
2

�! 0

is exact.
• Conclude that U•M1

satisfies the Bernstein property 7.3.23(1) and the
strictness property 7.3.23(2) (with index set R), and thus injectivity in 7.3.31(a)
and (d), but possibly not 7.3.25(2) and (3). Deduce that U↵M

1

= V↵M
1

. [Hint :
use the uniqueness property of Lemma 7.3.23.]

• If each grU↵M
2

is also strict, show that U↵M
2

= V↵M
2

.
• If moreover one of both M

1

,M
2

is strictly R-specializable, then so is the
other one.

(3) Let ' : M
1

!M
2

be any morphism between coherent eDX -modules which are
strictly R-specializable along H. Apply the previous result to Im'.

(4) Let ◆ : X ,! X
1

be a closed inclusion of complex manifolds, and let H
1

⇢ X
1

be
a smooth hypersurface such that H := X\H

1

is a smooth hypersurface of X. Then a
coherent eDX -module M is strictly R-specializable along H if and only if M

1

:= D◆⇤M
is so along H

1

, and we have, for every ↵,

(grV↵ M
1

,N) = (D◆⇤gr
V
↵ M ,N).

[Hint : assume that X
1

= H⇥�t⇥�x and X = H⇥�t⇥{0}, so that M
1

= ◆⇤M [gx];
show that the filtration U↵M

1

:= ◆⇤V↵M [gx] satisfies all the characteristic properties
of the V -filtration of M

1

along H
1

.]

Example 7.3.38 (Morphisms inducing an isomorphism on V<0

)
Assume that X = H ⇥ �t. Let M ,N be strictly R-specializable along H and

let ' : M ! N be a eDX -linear morphism. Since ' is also V
0

eDX -linear, it induces a
morphism M /V↵oM ! N /V<↵oN for each ↵o, which decomposes with respect to
the decomposition 7.3.36(2). Each summand is then identified with grV↵'. We will
consider more specifically the case where ' induces an isomorphism on V<0

.
We first claim that this condition implies that Ker' and Coker' are supported

on H, that is, every local section of Ker',Coker' is annihilated by some power
of t (due to the eDH -coherence of these modules). For Ker', this follows from
Ker' \ V<0

M = 0 together with the property that t is nilpotent on M /V<0

M .
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For Coker', we note that any local section n of N satisfies tkn 2 V<0

N = '(V<0

M )
for some k, hence tk is nilpotent on Coker'.

The decomposition 7.3.36(2) induces decompositions Ker' =
L

k>0

Ker grVk ' and
Coker' =

L

k>0

Coker grVk ' as V
0

eDX -modules. Moreover, since E acts as 0 on
Ker grV

0

',Coker grV
0

', the obstruction in 7.3.36(6) (adapted to the present setting) to
extending the V

0

eDX -structure to a eDX -structure vanishes, and we conclude that the
eDX -module Ker', resp. Coker', is identified with the eDX -module DiH⇤ Ker grV

0

',
resp. DiH⇤ Coker grV

0

'.

Definition 7.3.39. A morphism ' between strictly R-specializable coherent left
eDX -modules is said to be strictly R-specializable if for every ↵ 2 [�1, 0], the induced
morphism grV↵' is strict (i.e., its cokernel is strict), and a similar property for right
modules.

Proposition 7.3.40. If ' is strictly R-specializable, then grV↵' is strict for every
↵ 2 R, and Ker', Im' and Coker' are strictly R-specializable along H and their
V -filtrations are given by

V↵ Ker' = V↵M \Ker', V↵ Coker' = Coker('|V↵M ),

V↵ Im' = Im('|V↵M ) = V↵N \ Im'.

Proof. Let us endow Ker' and Coker' with the filtration U• naturally induced by
V•M , V•N . By using 7.3.31(c) and (d) for M and N , we find that grU↵ Ker' and
grU↵ Coker' are strict for every ↵ 2 R. By the uniqueness of the V -filtration, the
first line in (7.3.40) holds, and therefore all properties of Definition 7.3.25 hold for
Ker' and Coker'. Now, Im' has two possible coherent V -filtrations, one induced
by V•N and the other one being the image of V•M . For the first one, strictness of
gr↵ Im' holds, hence Im' is strictly R-specializable and V↵ Im' = Im'\V↵N . For
the second one U↵ Im', grU↵ Im' is identified with the image of grV↵', hence is also
strict, so U• Im' is also equal to V• Im'.

Corollary 7.3.41. Let M • = {· · ·

di
�!M i di+1

�! · · · } be a complex bounded above whose
terms are eDX-coherent and strictly R-specializable along H. Assume that, for ev-
ery ↵ 2 [�1, 0], the graded complex grV↵ M • is strict, i.e., its cohomology is strict.
Then each differential di and each H iM • is strictly R-specializable along H and grV↵
commutes with taking cohomology.

Proof. By using 7.3.31(c) and (d) for each term of the complex grV↵ M •, we find that
strictness of the cohomology holds for every ↵ 2 R. We argue by decreasing induction.
Assume M k+1 = 0. Then the assumption implies that dk : M k�1

!M k is strictly
R-specializable, so we can apply Proposition 7.3.40 to it. We then replace the complex
by · · ·M k�2

dk�1
�! Ker dk ! 0 and apply the inductive assumption. Moreover, the

strict R-specializability of M k/Ker dk ' Im dk+1

implies that of dk�1

.
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Definition 7.3.42 (Strictly R-specializable W -filtered eDX -module)
Let (M ,W•M ) be a coherent eDX -module endowed with a locally finite filtration

by coherent eDX -submodules. We say that (M ,W•M ) is a strictly R-specializable
(along H) filtered eDX -module if each W`M and each grW` M is strictly R-specializa-
ble.

Lemma 7.3.43. Let (M ,W•M ) be a strictly R-specializable filtered eDX-module. Then
each W`M /WkM (k < `) is strictly R-specializable along H.

Proof. By induction on ` � k > 1, the case ` � k = 1 holding true by assumption.
Let U•(W`M /WkM ) be the V -filtration naturally induced by V•W`M . It is a coher-
ent filtration. By induction we have U•(W`�1

M /WkM ) = V•(W`�1

M /WkM ) and
U•grW` M = V•grW` M . Similarly, V•W`M \W`�1

M = V•W`�1

M . We conclude that
the sequence

0 �! grV• (W`�1

M /WkM ) �! grU• (W`M /WkM ) �! grV• grW` M �! 0

is exact, hence the strictness of the middle term.

7.4. Nearby and vanishing cycle functors

We will now remember explicitly the grading in the case of RFDX -modules. Recall
(see (A.2.3 ⇤) and (A.2.4 ⇤⇤)) that, given a graded object M =

L

p Mp (with Mp in
degree �p), we set M(k) =

L

p M(k)p with M(k)p = Mp�k. We have seen that, for
strictly R-specializable RFD-modules, the module grV↵ M are graded RFD-modules
in a natural way. Let us emphasize that, in Definition 7.3.25(2) and (3),

• the morphism t is graded of degree zero,
• the morphism gt is graded of degree one; we thus write 7.3.25(3) as

gt : grV↵ M
⇠
�! grV↵ M (�1) for ↵ > �1.

Definition 7.4.1 (Nearby and vanishing cycle functors). Let g : X ! C be a holomorphic
function. Let X ,

◆g
�! X ⇥ C denote the graph inclusion of g. We say that a right

eDX -module M is strictly R-specializable along g = 0 if H 0

D◆g⇤M is strictly R-specia-
lizable along X ⇥ {0}. We then set

(7.4.2)

(

 g,�M := grV↵ (H
0

D◆g⇤M )(1), � = exp(2⇡i↵), ↵ 2 [�1, 0),

�g,1M := grV
0

(H 0

D◆g⇤M ).

Then  g,�M ,�g,1M are eDX -modules supported on g�1(0), endowed with an endo-
morphism E induced by tgt. We set N = (E�↵z).

Remark 7.4.3 (Choice of the shift). The choice of a shift (1) for  g,�M and no shift for
�g,1M is justified by the following examples.

(1) If M = e!X⇥C we have grV�1

e!X⇥C(1) ' e!X by identifying e!X⇥C with
e!X ⌦ eOX

eOX⇥Cedt/z.
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(2) If M is a right eDX⇥C-module of the form D◆⇤N where N is a right eDX⇥{0}-
module and ◆ : X ⇥ {0} ,! X ⇥ C is the inclusion, then grV

0

M = N .

Exercise 7.4.4. Justify that  g,� and �g,1 are functors from the category of R-specia-
lizable right eDX -modules to the category of right eDX -modules supported on g�1(0).
[Hint : Use Exercise 7.3.20(2).]

Exercise 7.4.5. Let M be a right eDX -module. When g is smooth and g�1(0) = H,
show that we have  g,�M ' D◆H⇤grV↵ M (1) and �g,1M = D◆H⇤grV

0

M , where
iH : H ,! X denotes the inclusion.

Remark 7.4.6 (Nearby/vanishing cycle functors for left eDX -modules)
For left eDX -modules, we also use the graph embedding. However, we now have

D◆g⇤M = H �1

D◆g⇤M . Therefore, one sets
(

 g,�M left := gr�V (H
�1

D◆g⇤M left), � = exp(� 2⇡i�), � 2 (�1, 0],

�g,1M left := gr�1

V (H �1

D◆g⇤M left)(�1),

with no shift of the grading in the first line, in order that gr0V
eOX⇥C = eOX⇥{0} (with

grading). The nilpotent endomorphism N is induced by �(tgt � �z).

Lemma 7.4.7 (Side-changing for the nearby/vanishing cycle functors)
The side-changing functor commutes with the nearby/vanishing cycle functors,

namely

 g,�(M
right) = ( g,�M left)right, �g,1(M

right) = (�g,1M
left)right.

Proof. If N is a left eDX⇥C-module which is strictly R-specializable along X ⇥ {0},
we have (see Remark 7.3.30)

grV↵ (e!X⇥C ⌦N ) ' e!X ⌦ gr�V (N )(1) 8↵ 2 R, � = �↵� 1.

We apply this to N = H �1

D◆g⇤M left, so that N right = H 0

D◆g⇤M right.

Proposition 7.4.8. Let g : X ! C be a holomorphic function and let M be a coherent
eDX-module. Assume that M is strictly R-specializable along g = 0. Then  g,�M

and �g,1M are eDX-coherent.

Proof. By assumption,  g,�M and �g,1M are grV
0

eDX⇥C = eDX [E]-coherent. Since
E�↵z is nilpotent on  g,�M (� = exp(2⇡i↵)), the eDX -coherence follows.

Definition 7.4.9 (Morphisms N, can and var). Assume that M is strictly R-specializable
along g = 0. The nilpotent operator N = (tgt � ↵z) is a morphism

 g,�M
N
��!  g,�M (�1), �g,1M

N
��! �g,1M (�1).
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When � = 1, the nilpotent operator N on  g,1M and �g,1M is the operator obtained
as the composition var � can and can � var in the diagram below:

(7.4.9 ⇤)  g,1M

can = · gt
**

�g,1M

var = · t

jj

(�1)

jj

with the same convention as in (3.2.15).

Remark 7.4.10 (The case of left eDX -modules). In this case we have N = �(tgt � �z)
and the diagram

(7.4.10 ⇤)  g,1M

can = �gt ·
**

�g,1M .

var = t ·

jj

(�1)

jj

Exercise 7.4.11. Similarly to Exercise 7.4.5, show that, if X = H ⇥ �t and g is the
projection to �t, so that ◆g is induced by the diagonal embedding �t ,! �t1 ⇥�t2 ,
then can = gt2 and var = t

2

for D◆g⇤M are D◆g⇤(gt1) and D◆g⇤(t1), with gt1 = gt :
grV�1

M ! grV
0

M (�1) and t
1

= t : grV
0

M ! grV�1

M .

Definition 7.4.12 (Monodromy operator). We work with right DX -modules. Assume
that M is R-specializable along (g). The monodromy operator T on  g,�M is the op-
erator induced by exp(2⇡i t@t) (for left DX -modules T = exp(� 2⇡i t@t)), and T�� Id
is nilpotent, and the nilpotent operator N is given by 1

2⇡i log(T� � Id) on  g,�M. On
 g,1M,�g,1M we have T = exp 2⇡iN and N = 1

2⇡i log(T� Id).

Remark 7.4.13 (Monodromy filtration on nearby and vanishing cycles)
The monodromy filtration relative to N on  g,�M and �g,1M (see Exercise 3.1.1

and Remark 3.1.10) is well-defined in the abelian category of graded eDX -modules
with the automorphism � induced by the shift (1) of the grading (or in the abelian
category of DX -modules). The Lefschetz decomposition holds in this category, with
respect to the corresponding primitive submodules P` g,�M , P`�g,1M for ` > 0.

Nevertheless, strict R-specializability is not sufficient to ensure that each such
primitive submodule (hence each graded piece of the monodromy filtration) is strict.
The following proposition gives a criterion for the strictness of the primitive parts.

Proposition 7.4.14. Assume M is strictly R-specializable along (g) and fix � 2 S1. The
following properties are equivalent.

(1) For every ` > 1, N` :  g,�M !  g,�M (�`) is a strict morphism.
(2) For every ` 2 Z, grM`  g,�M is strict.
(3) For every ` > 0, P` g,�M is strict.

We have a similar assertion for �g,1M.

Proof. This is Proposition 3.1.11.
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Remark 7.4.15 (Restriction to z = 1 of the monodromy filtration)
If M is a coherent RFDX -module which is strictly R-specializable along D and

setting M = M /(z � 1)M , we have  g,�M =  g,�M /(z � 1) g,�M and �g,1M =
�g,1M /(z � 1)�g,1M , according to Exercise 7.3.21, and the morphisms can and var
for M obviously restrict to the morphisms can and var for M, as well as the nilpotent
endomorphism N.

Similarly, the monodromy filtration M•(N) on  g,�M ,�g,1M restricts to the mon-
odromy filtration M•(N) on  g,�M,�g,1M, since everything behaves C[z, z�1]-flatly
after tensoring with C[z, z�1].

Exercise 7.4.16 (Strict specializability along {tr = 0}). Let t be a smooth function on X,
set X

0

= t�1(0) and assume that X = X
0

⇥ C. Let M be a coherent eDX -module
which is strictly R-specializable along t = 0. The purpose of this exercise is to show
that M is then also strictly R-specializable along g = tr = 0 for every r > 2, and to
compare nearby cycles of M with respect to t and to g.

Following the steps below, show that M is strictly R-specializable along {g = 0}
and, denoting by ◆ : X

0

,! X the closed inclusion,
(a) ( g,�M ,N) = (D◆⇤( t,�rM ),N/r) for every �,
(b) (�g,1M ,N) = (D◆⇤(�t,1M ),N/r),
(c) there is an isomorphism

8

<

:

 g,1M

cang
,,
�g,1M

varg(�1)

ll

9

=

;

' D◆⇤

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

grV�rM

cang := cant �(tr�1)�1

""

 t,1M
tr�1

⇠

oo

cant
,,
�t,1M

varg := tr�1

� vart

(�1)

bb vart(�1)

ll

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(1) Write D◆g⇤M =
L

k2N M ⌦ �gku as a eDX [u]hgui-module, with

(m⌦ �)gku = m⌦ �gku 8 k > 0,

(m⌦ �)gt = (mgt)⌦ � � (rtr�1m)⌦ �gu,
(m⌦ �)u = (mtr)⌦ �,

(m⌦ �) eOX = (m eOX)⌦ �,

and with the usual commutation rules. Show the relation

r(m⌦ �)ugu = [mtgt]⌦ � � (mt⌦ �)gt.

(2) We will denote by V t the V -filtration with respect to the variable t and by V u

that with respect to the variable u.
For ↵ 6 0, set

U↵(D◆g⇤M ) :=
�

V t
r↵M ⌦ �

�

· V u
0

( eDX [u]hgui),
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and for ↵ > 0 define inductively

U↵(D◆g⇤M ) := U<↵(D◆g⇤M ) + U↵�1

(D◆g⇤M )gu.

Assume that ↵ 6 0. Using the above relation show that, if

V t
r↵M (tgt � r↵z)⌫r↵

⇢ V t
<r↵M ,

U↵(D◆g⇤M )(ugu � ↵z)⌫r↵
⇢ U<↵(D◆g⇤M ),then

and conclude that ugu � ↵z) is nilpotent on grU↵ (D◆g⇤M ) for ↵ 6 0.
(3) Show that if m

1

, . . . ,m` generate V t
r↵M over V t

0

eDX , then m
1

⌦ �, . . . ,m` ⌦ �

generate U↵(D◆g⇤M ) over V u
0

( eDX [u]hgui), by using the relation

(mtgt)⌦ � = (m⌦ �)(tgt � rugu).

Conclude that U↵(D◆g⇤M ) is V u
0

( eDX [u]hgui)-coherent for every ↵6 0, hence for ev-
ery ↵.

(4) Show that, for every ↵,

U↵�1

(D◆g⇤M ) ⇢ U↵(D◆g⇤M )u, resp. U↵+1

(D◆g⇤M ) ⇢ U<↵+1

(D◆g⇤M )+U↵(D◆g⇤M )gu,

with equality if ↵ < 0 (resp. if ↵ > �1). [Hint : Use the analogous property for M .]
Deduce that U•(D◆g⇤M ) is a coherent V -filtration.

(5) Show that, for ↵ 6 0, V u
↵ (D◆g⇤M ) = V u

<↵(D◆g⇤M ) +
P

k>0

(V t
r↵M ⌦ �)gkt .

Deduce, by considering the degree in gu, that the natural map
L

k

grV
t

r↵M ⌦ gkt �! grV
u

↵ (D◆g⇤M )
L

k

[mk]⌦ gkt 7�!
h

X

k

(mk ⌦ �)gkt
i

is an isomorphism of eDX -modules. Deduce that M is strictly R-specializable
along g = 0 with (increasing) Kashiwara-Malgrange filtration V u

• (D◆g⇤M ) equal to
U•(D◆g⇤M ). Conclude the proof of (a) and (b), and then that of (c).

7.5. Strict non-characteristic restrictions

7.5.a. Non-characteristic property. Let ◆Y : Y ,! X denote the inclusion of a
closed submanifold with ideal IY (in local coordinates (x

1

, . . . , xn), IY is generated
by x

1

, . . . , xp, where p = codimY ). The pullback functor D◆
⇤
Y is defined in Section A.7.

The case of left eDX -modules is easier to treat, so we will consider left eDX-modules
and the corresponding setting for the V -filtration in this section.

Let us make the construction explicit in the case of a closed inclusion. A local
section ⇠ of ◆�1

Y
e⇥X (vector field on X, considered at points of Y only; we denote

by ◆�1

Y the sheaf-theoretic pullback) is said to be tangent to Y if, for every local
section g of fIY , ⇠(g) 2 fIY . This defines a subsheaf e⇥X|Y of ◆�1

Y
e⇥X . Then e⇥Y =

eOY ⌦◆�1
Y

eOX

e⇥X|Y = ◆⇤Y
e⇥X|Y is a subsheaf of ◆⇤Y e⇥X .
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Given a left eDX -module, the action of ◆�1

Y
e⇥X on ◆�1

Y M restricts to an action of e⇥Y

on ◆⇤Y M = eOY ⌦◆�1
Y

eOX
◆�1

Y M . The criterion of Exercise A.3.1 is fulfilled since it is

fulfilled for e⇥X and M , defining therefore a left eDY -module structure on ◆⇤Y M : this
is D◆

⇤
Y M .

Without any other assumption, coherence is not preserved by D◆
⇤
Y . For example,

D◆
⇤
Y
eDX is not eDY -coherent if codimY > 1. A criterion for coherence of the pullback

is given below in terms of the characteristic variety.
The cotangent map to the inclusion defines a natural bundle morphism

$ : T ⇤X|Y ⇥ Cz ! T ⇤Y ⇥ Cz, the kernel of which is by definition the conor-
mal bundle T ⇤

Y X ⇥ Cz of Y ⇥ Cz in X ⇥ Cz.

Definition 7.5.1 (Non-characteristic property). Let M be a holonomic eDX -module with
characteristic variety CharM contained in ⇤ ⇥ Cz, where ⇤ ⇢ T ⇤X is Lagran-
gean (see Section A.10.c). Let Y ⇢ X be a submanifold of X. We say that Y is
non-characteristic with respect to the holonomic eDX -module M , or that M is non-
characteristic along Y , if one of the following equivalent conditions is satisfied:

• (T ⇤
Y X ⇥ Cz) \ CharM ⇢ T ⇤

XX ⇥ Cz,
• $ : CharM|Y⇥Cz

! T ⇤Y ⇥ Cz is finite, i.e., proper with finite fibres.

Exercise 7.5.2. Show that both conditions in Definition 7.5.1 are indeed equivalent.
[Hint : use the homogeneity property of CharM .]

Theorem 7.5.3 (Coherence of non-characteristic restrictions)
Assume that M is eDX-coherent and that Y is non-characteristic with respect

to M . Then D◆
⇤
Y M is eDY -coherent and Char D◆

⇤
Y M ⇢ $(CharM|Y ).

Sketch of proof. The question is local near a point x 2 Y . We may therefore assume
that M has a coherent filtration F•M .

(1) Set FkD◆
⇤
Y M = image[◆⇤Y FkM ! ◆⇤Y M ]. Then, using Exercise A.10.8(2), one

shows that F•D◆
⇤
Y M is a coherent filtration with respect to F•D◆

⇤
Y
eDX .

(2) The module grFD◆
⇤
Y M is a quotient of ◆⇤Y grFM , hence its support is contained

in CharM|Y . By Remmert’s Theorem, it is a coherent grF eDY -module.
(3) The filtration F•D◆

⇤
Y M is thus a coherent filtration of the eDY -module D◆

⇤
Y M .

By Exercise A.10.5(1), D◆
⇤
Y M is eDY -coherent. Using the coherent filtration above, it

is clear that Char D◆
⇤
Y M ⇢ $(CharM|Y ).

Exercise 7.5.4. With the assumptions of Theorem 7.5.3, show similarly that, if Y is
defined by x

1

= · · · = xp = 0 then, considering the map x : X ! Cp induced by
x := (x

1

, . . . , xp), then M is eDX/Cp -coherent.

Definition 7.5.5 (Strict non-characteristic property). In the setting of Definition 7.5.1,
we say that M is strictly non-characteristic along Y if M is non-characteristic along Y

and moreover L D◆
⇤
Y M = eOY ⌦

L
◆�1
Y

eOX
◆�1

Y M is strict.
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Proposition 7.5.6. If M is strictly non-characteristic along Y , then L D◆
⇤
Y M = D◆

⇤
Y M .

Proof. The result holds for DX -modules, and therefore it holds after tensoring with
C[z, z�1]. As a consequence, H jL D◆

⇤M is a z-torsion module if j 6= 0. It is strict if
and only if it is zero.

Proposition 7.5.7. Assume that codimY = 1 and denote it by H. Then if M is strictly
non-characteristic along H, it is also strictly R-specializable along H and D◆

⇤
HM is

naturally identified with gr0V M .

Proof. Since the question is local, we may assume that X ' H ⇥ �t. The previous
proposition says that t : M ! M is injective and the definition amounts to the
strictness of M /tM .

Since M is eDX/C-coherent (Exercise 7.5.4), the filtration defined by UkM = tkM
(k 2 N) is a coherent V -filtration and E : gr0UM ! gr0UM acts by 0 since gtU0M ⇢

U0M = M . It follows that M is specializable along H and that the Bernstein
polynomial of the filtration U•M has only integral roots. Moreover, t : grkUM !

grk+1

U M is onto for k > 0. We will show by induction on k that each grkUM is
strict. The assumption is that gr0UM is strict. We note that E�kz acts by zero on
grkUM . If grkUM is strict, then the composition gtt acts by (k+1)z on grkUM , hence
is injective, so t : grkUM ! grk+1

U M is bijective, and grk+1

U M is thus strict. It follows
that M is strictly R-specializable along H, and the t-adic filtration U•M is equal to
the V -filtration.

Locally, we have an identification D◆
⇤
HM = M /tM = gr0V M . We note that gr0V M

is naturally a eDH -module since E acts by 0, and eDH = grV
0

eDX/EgrV
0

eDX . Therefore
the previous identification is global.

Remark 7.5.8 (The case of right eDX -modules). Let M be a left eDX -module and let
M right := e!X ⌦ eOX

M be the associated right eDX -module (with grading). If M is
strictly non-characteristic along H, then so is M right. We have

D◆
⇤
HM right := e!H ⌦ eOH

D◆
⇤
HM = e!H ⌦ eOH

gr0V M = grV�1

M right(1),

according to Remark 7.3.30.
Assume that H is globally defined by the smooth function g. Then

D◆H⇤D◆
⇤
HM right = D◆H⇤gr

0

V M = grV�1

M right(1) =  g,1M
right,

according to Exercise 7.4.5.

7.5.b. Specialization of a strictly non-characteristic divisor with normal
crossings. We make explicit an example of computation of nearby cycles along a
divisor with normal crossings in a simple situation, anticipating more complicated
computations in Chapter 11. Let D = D

1

[D
2

be a divisor with normal crossings in X

and smooth irreducible components D
1

, D
2

. We set D
1,2 = D

1

\D
2

, which is a smooth
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manifold of codimension two in X. Let M be a left eDX -module which is strictly non-
characteristic along D

1

, D
2

and D
1,2. Let us summarize some consequences of the

assumption on nearby cycles. In local coordinates we will set Di = {xi = 0} (i = 1, 2).

(a) M is strictly R-specializable along D
1

and D
2

. We denote by V •
(i)M the

V -filtration of M along Di (i = 1, 2).
(b) gr�V(i)

M = 0 if � /2 N.
(c) gr0V(i)

M = D◆
⇤
Di

M = ◆⇤Di
M . In local coordinates, gr0V(i)

M = M /xiM .

Lemma 7.5.9. For i = 1, 2, the eDDi
-module D◆

⇤
Di

M is strictly non-characteristic, hence
strictly R-specializable, along D

1,2 and V •
(2)

gr0V(1)
M is the filtration induced by V •

(2)

M ,
and conversely, so that

gr0V(2)
gr0V(1)

M = gr0V(1)
gr0V(2)

M = D◆
⇤
D1,2

M = ◆⇤D1,2
M .

Proof. The first point is mostly obvious, giving rise to the last formula, according
to (c). For the second point, we have to check in local coordinates that xk

2

(M /x
1

M ) =
xk
2

M /x
1

xk
2

M for every k > 1, that is, the morphism

M /x
1

M
xk
2

���! xk
2

M /x
1

xk
2

M

is an isomorphism. Recall (see Exercise 7.5.4) that M is eDX/C2 -coherent, so by taking
a local resolution by free eDX/C2 -modules, we are reduced to proving the assertion for
M = eD`

X/C2 , where it is obvious.

Exercise 7.5.10. Conclude from the lemma that (x
1

, x
2

) is a regular sequence on M ,
i.e., x

1

M \ x
2

M = x
1

x
2

M . Show that, for every k > 1, if we have a relation
P

k1+k2=k x
k1
2

xk2
1

mk1,k2
= 0 in M , then there exist µi,j 2 M for i, j > 0 (and the

convention that µi,j = 0 if i or j 6 �1) such that mk1,k2
= x

1

µk1�1,k2
� x

2

µk1,k2�1

for every k
1

, k
2

.

Our aim is to compute, in the local setting, the nearby cycles of M along g = x
1

x
2

(after having proved that M is strictly R-specializable along (g), of course). We con-
sider then the graph inclusion ◆g : X ,! X ⇥ Ct. We will return to the right setting,
so we assume M = M right, but the following proposition also holds in the left case
after side-changing.

Proposition 7.5.11. Under the previous assumptions, the eDX⇥C-module D◆g⇤M is a
minimal extension along (t), we have  g,�M = 0 for � 6= 1 and there are local
isomorphisms

(7.5.11 ⇤) P` g,1M '

8

>

>

<

>

>

:

 x1,1M �  x2,1M if ` = 0,

 x1,1 x2,1M (�1) =  x2,1 x1,1M (�1) if ` = 1,

0 otherwise.
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Proof. We set N = D◆g⇤M . We have N = ◆g⇤M [gt] with the usual structure of
a right eDX⇥C-module (see Example A.8.9). We identify ◆g⇤M as the component of
gt-degree zero in N . Let U•N denote the filtration defined by

U�1

(N ) = ◆g⇤M ·

eDX ⇢ N , Uk(N ) =

(

U�1

(N ) · tk if k > 0,
P

`6�k U�1

(N ) · g`t if k 6 0.

We wish to prove that U•N satisfies all the properties of the V -filtration of N .
Let m be a local section of M . From the relation

(7.5.12) (m⌦ 1)gx1
= (mgx1

)⌦ 1�mx
2

⌦ gt
we deduce

(m⌦ 1)gtt = (mgx1
x
1

)⌦ 1� (m⌦ 1)x
1

gx1

= (mgx2
x
2

)⌦ 1� (m⌦ 1)x
2

gx2
,

(7.5.13)

showing that U�1

(N ) is a V
0

eDX⇥Ct
-module. If (mi)i2I is a finite set of local eDX/C2 -

generators of M (see Exercise 7.5.4), we deduce that it is a set of eDX -generators, hence
of V

0

eDX⇥Ct
-generators, of U�1

(N ). It follows that U•(N ) is a good V -filtration
of N . Moreover, the formulas above imply

(m⌦ 1)(gtt)2 =
�

(mgx1gx2 ⌦ 1)+ (m⌦ 1)gx1gx2 � (mgx2 ⌦ 1)gx1 � (mgx1 ⌦ 1)gx2

�

· t,

giving a Bernstein relation. Since (gtt)2 vanishes on grU�1

(N ), the monodromy filtra-
tion is given by

M�2

grU�1

(N ) = 0, M�1

grU�1

(N ) = grU�1

(N ) · gtt,
M

0

grU�1

(N ) = Ker[gtt : grU�1

(N )! grU�1

(N )], M
1

grU�1

(N ) = grU�1

(N ).

As a consequence,

P
0

grU�1

(N ) = grM
0

grU�1

(N ) = Ker gtt/ Im gtt,

P
1

grU�1

(N ) = grM
1

grU�1

(N ) = grU�1

(N )/Ker gtt
⇠
�! M�1

grU�1

(N )(�1).

We will identify these eDX -modules with those given in the statement. This will also
prove that grU�1

(N ) is strict, because  x1,1M , x2,1M , x1,1 x2,1M are strict.
Let G•N denote the filtration by the order with respect to gt. It will be useful

to get control on the various objects occurring in the computations, mainly because
when working on grGN , the action of gx1 amounts to that of �x

2

⌦ gt and similarly
for gx2

, and the action of x
1

, x
2

on M is well understood, due to Exercise 7.5.10.

Lemma 7.5.14. We have U�1

(N ) \Gp(N ) =
P

k1+k26p(M ⌦ 1)gk1
x1
gk2
x2

.

Proof. Any local section ⌫ of U�1

(N ) can be written as
P

k1,k2>0

(mk1,k2 ⌦ 1)gk1
x1
gk2
x2

for some local sections mk1,k2 of M and, if q = max{k
1

+ k
2

| mk1,k2 6= 0}, the degree
of ⌫ with respect to gt is 6 q and the coefficient of gpt is

(�1)q
X

k1+k2=q

mk1,k2
xk1
2

xk2
1

.
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If this coefficient vanishes, Exercise 7.5.10 implies that

⌫ =
X

k1+k26q

((µk1�1,k2
x
1

� µk1,k2�1

x
2

)⌦ 1)gk1
x1
gk2
x2
.

The operator against µi,j ⌦ 1 is (x
1

gx1 � x
2

gx2)gix1
gjx2

, and (7.5.13) implies

(µi,j ⌦ 1)(x
1

gx1 � x
2

gx2) = (µi,j(x1

gx1 � x
2

gx2))⌦ 1,

so that ⌫ 2
P

k1+k26q�1

(M ⌦ 1)gk1
x1
gk2
x2

.

As a consequence, let us prove the equality

(7.5.15) g�1

t (U�1

(N )) \ U�1

N =
X

k1,k2

(M (x
1

, x
2

)⌦ 1)gk1
x1
gk2
x2
,

and that t acts injectively on U�1

N .
Let ⌫ =

P

q6p ⌫q ⌦ gqt be a nonzero local section of U�1

(N ) of G-order p, so
that ⌫p 6= 0. We will argue by induction on p. By the lemma we have ⌫p =
P

k1+k2=p(mk1,k2 ⌦ 1)gk1
x1
gk2
x2

with
P

k1+k2=p mk1,k2x
k1
2

xk2
1

6= 0 in M . Assume gt⌫
is a local section of U�1

(N ). Then
P

k1+k2=p mk1,k2
xk1
2

xk2
1

is a local section of
M (x

1

, x
2

)p+1, that is, is equal to
P

k1+k2=p µk1,k2
xk1
2

xk2
1

with µk1,k2
2M (x

1

, x
2

), so
⌫�

P

k1+k2=p(µk1,k2⌦1)gk1
x1
gk2
x2

a local section of gtU�1

(N )\U�1

N and has G-order
6 p� 1. We can conclude by induction.

Assume now that ⌫t = 0. We have

0 = (⌫t)p =
⇥

(⌫p ⌦ gpt )t
⇤

p
= ⌫p ⌦ tgpt = ⌫px1

x
2

⌦ gpt ,

so ⌫px1

x
2

= 0 in M , and thus ⌫p = 0, a contradiction.

Recall that M = V
(1)

�1

M (V -filtration relative to x
1

), so that M /Mx
1

= grV
(1)

�1

M
and N

1

:= (M /Mx
1

)[gx1 ] '  x1,1M (�1), according to Exercise 7.4.5. Similarly,
N

12

'  x1,1 x2,1M (�2). The map

(7.5.16) mk1,k2
⌦ gk1

x1
gk2
x2
7�! (mk1,k2

⌦ 1)gk1
x1
gk2
x2

· gtt

sends M (x
1

, x
2

)[gx1
, gx1

] to U�2

N (�1), according to (7.5.12) and defines thus a
surjective morphism

 x1,1 x2,1M (�2) = N
12

�! grM�1

grU�1

N (�1).

Let us prove that it is also injective. Let us denote by [mk1,k2
] the class of mk1,k2

in
M /M (x

1

, x
2

). Let
P

[mk1,k2
]⌦ gk1

x1
gk2
x2

be nonzero and of degree equal to p and set

⌫ =
X

k1+k26p

(mk1,k2 ⌦ 1)gk1
x1
gk2
x2
.

Assume that ⌫gtt 2 U�2

N , hence, by the injectivity of t, ⌫gt 2 U�1

N . The proof
of (7.5.15) above shows that, for k

1

+ k
2

= p, there exists µk1,k2 2 M (x
1

, x
2

) such
that

P

k1+k2=p(mk1,k2
� µk1,k2

)xk1
2

xk2
1

= 0, and by Exercise 7.5.10 we conclude that
mk1,k2

2M (x
1

, x
2

), so [mk1,k2
] = 0, a contradiction.
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As a consequence, if ⌫gtt =
P

(mk1,k2
⌦1)gk1

x1
gk2
x2
gtt belongs to U�2

N = U�1

N ·t,
(7.5.15) implies ⌫ 2

P

(M (x
1

, x
2

)⌦ 1)gk1
x1
gk2
x2

. We obtain therefore

(7.5.17) grM
1

grU�1

N
N
��!

⇠

grM�1

grU�1

N (�1) '  x1,1 x2,1M (�2),

and these modules are strict. Note that the isomorphism N
12

⇠
�! grM

1

grU�1

N =
U�1

N /(gtt)�1U�1

M ) is induced by

(7.5.18) mk1,k2
⌦ gk1

x1
gk2
x2
7�! (mk1,k2

⌦ 1)gk1
x1
gk2
x2
.

Let us now consider M
0

. Note that (7.5.15) and the injectivity of t imply

M
0

grU�1

N =
X

k1,k2

(M (x
1

, x
2

)⌦ 1)gk1
x1
gk2
x2

mod U�2

N ,

and clearly
P

k1,k2
(Mx

1

x
2

⌦ 1)gk1
x1
gk2
x2
⇢ U�2

N . Note also that (mx
1

⌦ 1)gk1
x1
⌘

(mgk1
x1
x
1

)⌦ 1 mod Im gtt, according to (7.5.13). As a consequence,

M
0

grU�1

N =
X

k1

(Mx
2

⌦ 1)gk1
x1

+
X

k2

(Mx
1

⌦ 1)gk2
x2

mod (U�1

N gtt+ U�2

N ),

and we have a surjective morphism

(7.5.19)  x1,1M (�1)�  x2,1M (�1) = N
1

�N
2

�! grM
0

grU�1

N ,

sending mk1,0⌦gk1
x1

to (mk1,0x2

⌦1)gk1
x1

and m
0,k2
⌦gk2

x2
to (m

0,k2
x
1

⌦1)gk2
x2

. In order
to show injectivity, we first check that it is strict with respect to the filtration G•N
and the filtration by the degree in gx1 , gx2 on N

1

,N
2

.
Assume that (mk1,0x2

⌦1)gk1
x1
+(m

0,k2
x
1

⌦1)gk2
x2
2 Gp�1

N for k
1

, k
2

6 p. Then we
find that mp,0 2Mx

1

and m
0,pMx

2

, as wanted. By the same argument we deduce
the injectivity.

Due to the strictness of N
1

,N
2

,N
12

, we conclude at this point that grU�1

M is
strict. If we show that grUk M is also strict for any k, then U•N satisfies all proper-
ties characterizing the V -filtration. As a consequence, M is strictly R-specializable
along (g), grU�1

N =  g,1M (�1), and (7.5.11 ⇤) holds.
Clearly, gt : grU�1

N ! grU
0

N is onto. So we are left to proving the following
assertions:

(i) tk : grU�1

N ! grU�1�kN is an isomorphism (equivalently, injective) for k > 1,
(ii) t : grU

0

N ! grU�1

N is injective (so grU
0

N is strict),
(iii) gkt : grU

0

N ! grUk N is an isomorphism (equivalently, injective) for k > 1.

Proof of the assertions.

(i) If ⌫ 2 U�1

N satisfies ⌫tk = µtk+1 for some µ 2 U�1

N then, by injectivity of t
on U�1

N , ⌫ = µt, so ⌫ 2 U�2

N .
(ii) If ⌫ 2 U�1

N is such that ⌫gt · t 2 U�2

N , then there exists µ 2 U�1

N such
that (⌫gt � µ)t = 0 hence, by t-injectivity, ⌫gt 2 U�1

N .
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(iii) We prove the injectivity by induction on k > 1. Let ⌫ 2 U�1

M and consider
⌫gt mod U�1

N as an element of grU
0

N . If (⌫gt)gkt 2 Uk�1

N , then (⌫gkt )gtt = 0 in
grUk�1

N . Since gtt�kz is nilpotent on grUk�1

N and since grUk�1

N is strict (by (ii) and
the inductive assumption), gtt is injective on grUk�1

N , so (⌫gt)gk�1

t = 0 in grUk�1

N ,
and by induction ⌫gt = 0 in grU

0

N .

This concludes the proof of Proposition 7.5.11.

7.6. Strict Kashiwara’s equivalence

We now return to the case of right eDX -module when considering the pushforward
functor.

Let ◆Y : Y ⇢ X be the inclusion of a complex submanifold. The following is known
as “Kashiwara’s equivalence”.

Proposition 7.6.1 (see [Kas03, §4.8]). The pushforward functor D◆Y ⇤ induces a natural
equivalence between coherent DY -modules and coherent DX-modules supported on Y ,
whose quasi-inverse is the restriction functor D◆

⇤
Y .

Be aware however that this result does not hold for graded coherent RFDX -
modules. For example, if X = C with coordinate s and ◆Y : Y = {0} ,! X denotes
the inclusion, D◆Y ⇤C[z] = �s · C[z, gs] with �ss = 0. On the other hand, consider
the C[z, s]hgsi-submodule of C[z] ⌦C D◆Y ⇤C = �sC[z, @s] generated by �s@s (note: @s
and not gs). This submodule is written �sC[z] �

L

k>0

�sgks@s. It has finite type
over C[z, s]hgsi by construction, each element is annihilated by some power of s, and
H �1

D◆
⇤
Y (�s@s · C[z, s]hgsi) = �sC[z], but it is not equal to D◆Y ⇤C[z].

Note also that this proposition implies in particular that H k
D◆

⇤
Y D◆Y ⇤M = 0 for

k 6= �1, if M is DX -coherent. In the example above, we have D◆Y ⇤C = C[gs] and the
complex D◆

⇤
Y D◆Y ⇤C is the complex C[gs]

·s
�! C[gs] with terms in degrees �1 and 0.

It has cohomology in degree �1 only.
However, this is not true for graded coherent RFDX -modules. With the similar

example, the complex D◆
⇤
Y D◆Y ⇤C[z] is the complex C[z, gs]

·s
�! C[z, gs]. We have

gks · s = kzgk�1

s , so the cokernel of s is not equal to zero.

Proposition 7.6.2 (Strict Kashiwara’s equivalence). Assume that Y is smooth of codi-
mension one in X, and let ◆Y : Y ,! X denote the inclusion. The functor D◆Y ⇤ :
Mod

coh

( eDY ) 7! Mod
coh

( eDX) is fully faithful. It induces an equivalence between the
full subcategory of Mod

coh

( eDY ) whose objects are strict, and the full subcategory of
Mod

coh

( eDX) whose objects are strictly R-specializable along Y and supported on Y .
An inverse functor is M 7! grV

0

M .

Proof the full faithfulness. It is enough to prove that each morphism ' : D◆Y ⇤N1

!

D◆Y ⇤N2

takes the form D◆Y ⇤ for a unique  : N
1

! N
2

. Because of uniqueness, the
assertion is local with respect to Y , hence we can assume that there exists a local
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coordinate s defining Y . Assume M = D◆Y ⇤N for some coherent eDY -module N .
Then one can recover N from M as the eDY -module M /M ·gs. As a consequence,  
must be the morphism induced by ' on M /M ·gs, hence its uniqueness. On the other
hand, since M

1

is generated by N
1

⌦

e�s over eDX , ' is determined by its restriction
to N

1

⌦

e�s, that is by  , and the formula is ' = D◆Y ⇤ .

Lemma 7.6.3. Assume X ' Y ⇥ C with coordinate s on the second factor. Let M be
a coherent eDX-module supported on Y ⇥ {0}.

(1) Assume that there exists a strict eDY -module N such that M ' D◆Y ⇤N . Then
(a) N = Ker[s : M !M ],
(b) N is eDY -coherent,
(c) M is strict and strictly R-specializable along Y ,
(d) N = grV

0

M .
(2) Conversely, if M is strictly R-specializable along Y , then such an N exists.

In particular, M is also strict.

Remark 7.6.4 (Strictness and strict R-specializability). Let M be as in Lemma 7.6.3,
that is, eDX -coherent and supported on Y ⇥ {0}. Then the filtration U

0

M = Ker s ⇢

U
1

M = Ker s2 ⇢ · · · is a filtration by V
0

eDX -submodules and obviously admits a
weak Bernstein polynomial. Assume moreover that M is strict. Then every grUk M
is also strict: if m 2 UkM and z`m 2 Uk�1

M , that is, if sk+1m = 0 and skz`m = 0,
then skm = 0 by strictness of M and thus m = 0 in grUk M . Therefore, U•M is the
Kashiwara-Malgrange filtration V•M in the sense of Lemma 7.3.23, and Properties
7.3.25(1) and (2) are satisfied.

However, the condition that M is strict is not enough to obtain the conclusion
of 7.6.3(1), as shown by the following example. The point is that 7.3.25(3) may
not hold. Assume that Y is reduced to a point and let M be the eDX -submodule
of the DX [z]-module eCh@si generated by 1 and @s (recall that eC := C[z]), that we
denote by [1] and [@s] for the sake of clarity. By definition, we have [1]s = 0 and
[@s]s2 = 0. For the Kashiwara-Malgrange filtration V•M defined above, gs : grV

0

M =
eC ! grV

1

M = [@s]eC is not onto, for its cokernel is [@s]C. In other words, M is not
strictly R-specializable at s = 0 and not of the form D◆Y ⇤N .

Proof of Lemma 7.6.3.
(1) Assume M = D◆Y ⇤N for some strict eDY -module N . We have D◆Y ⇤N =

L

k>0

◆Y ⇤N ⌦ �sgks with �ss = 0 (see Exercise A.8.30(2)). The action of s on D◆Y ⇤N

is the z-shift n⌦ �sgks 7! zkn⌦ �sgk�1

s , hence N = Ker s because N is strict. Given
a finite family of local eDX -generators of M , we produce another such family made
of homogeneous elements, by taking the components on the previous decomposition.
Therefore, there exists a finite family of local sections ni of N such that ni ⌦ �s
generate M . Let N 0

⇢ N be the eDY -submodule they generate. Then D◆Y ⇤N 0
!

D◆Y ⇤N = M is onto. On the other hand, since N 0 is also strict, this map is injective:
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If
PN

k=1

n0
k⌦�sgks 7! 0, then n0

N⌦�sgNs 7! 0, and sNn0
N⌦�sgNs = ?zNn0

N⌦�sgNs 7! 0,
where ? is a nonzero constant; so zNn0

N = 0 in N , hence n0
N = 0. We conclude

N 0 = N since both are equal to Ker s in D◆Y ⇤N . Therefore, N is locally finitely
eDY -generated in M , and then is eDY -coherent. One then checks that the filtration
UjM :=

Lj
k>0

◆Y ⇤N ⌦ �sgks is a coherent V -filtration of M , and N = grU
0

M . We
deduce that each grUk M is strict, and M is strictly R-specializable. Lastly, n ⌦ �s
satisfies (n⌦ �s)sgs = 0, so V•M = U•M jumps at nonnegative integers only.

(2) Assume that M is strictly R-specializable along Y . Then V<0

M = 0, according
to 7.3.31(a). Similarly, grV↵ M = 0 for ↵ /2 Z. As s : grVk M ! grVk�1

M is injective
for k 6= 0 (see 7.3.31(c)), we conclude that

grV
0

M ' V
0

M = Ker[s : M !M ].

Since gs : grVk M ! grVk�1

M is an isomorphism for k 6 0, we obtain

M =
L

`>0

grV
0

Mg`s = D◆⇤gr
V
0

M .

Lastly, E+z acts by zero on grV
0

M , which is therefore a coherent eDY -module by
means of the isomorphism grV

0

eDX/(E+z)grV
0

eDX '
eDY . It is strict since M is strictly

R-specializable.

End of the proof of Proposition 7.6.2. It remains to prove essential surjectivity. Let
V•M be the V -filtration of M along Y . By the argument in the second part of the
proof of Lemma 7.6.3, we have local isomorphisms M

⇠
�! D◆⇤grV

0

M which induce
the identity on V

0

M = grV
0

M . By full faithfulness they glue in a unique way as a
global isomorphism M ' D◆⇤grV

0

M .

Corollary 7.6.5. Assume codimY = 1. Let N be eDY -coherent and set M = D◆Y ⇤N .
If M = M

1

�M
2

with M
1

,M
2

being eDX-coherent, then there exist coherent eDY -sub-
modules N

1

,N
2

of N such that N = N
1

�N
2

and Mj = D◆Y ⇤Nj for j = 1, 2.

Proof. Each Mi is coherent and supported on Y . We set Ni = Mi \N . Locally,
choose a coordinate s defining Y and set N 0

i = Mi/Mi · gs. Since N = M /M · gs,
we deduce that N = N 0

1

�N 0
2

, and we have a (local) isomorphism Mi ' D◆⇤N 0
i .

Then one checks that N 0i = Ni, so it is globally defined.

We now consider the behaviour of strict R-specializability along a function
g : X ! C with respect to strict Kashiwara’s equivalence along Y .

Proposition 7.6.6. Let N be a coherent eDY -module and set M = D◆Y ⇤N .
(1) Assume that N is strictly R-specializable along (g|Y ). Then M is strictly

R-specializable along (g).
(2) Assume that M is strictly R-specializable along (g). Then N is strictly

R-specializable along (g|Y ).
In such a case, we have  g,�M = D◆Y ⇤ g|Y ,�N and �g,1M = D◆Y ⇤�g|Y ,1N . More-
over, canM = D◆Y ⇤ canN and varM = D◆Y ⇤ varN .
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Proof. The first statement is easy to check. Let us consider the second one. We
first consider the case where X = HY ⇥ Cs ⇥ Ct, with Y = HY ⇥ Ct and g is the
projection to Ct. We denote by V the V -filtration along t. We have M = D◆Y ⇤N =
L

k ◆Y ⇤N ⌦ �sgks .
Let n be a local section of N . If b(tgt) � tP (y, s, t, gy, gs, tgt) is a Bernstein

equation for n⌦ �s in D◆Y ⇤N , and if P = P
0

+ sQ, where P
0

does not depend on s,
then b(tgt)� tP

0

(y, t,gy, gs, tgt) is also a Bernstein equation for n⌦ �s. The degree-
zero part with respect to gs of this equation still gives a Bernstein equation for n⌦�s,
and thus a Bernstein equation for n in N . We conclude that N is R-specializable
along HY and that ordV (n) > ordV (n⌦ �s).

Let us now prove that the V -filtration of M is compatible with the decom-
position. Let

PN
i=0

ni ⌦ �sgis be a section in V↵M . We will prove by induc-
tion on N that ordV (ni) 6 ↵ for every i. It is enough to prove it for i = N .
We have

PN
i=0

ni ⌦ �sgis · sN = ?zNnN ⌦ �s 2 V↵M for some nonzero constant ?.
If nN ⌦ �s 2 V�M for � > ↵, then the class of nN ⌦ �s in grV� M is annihilated
by zN , hence is zero since grV� M is strict. Therefore, nN ⌦ �s 2 V↵M , and by
the preliminary remark, ordV (nN ) 6 ↵. If we denote by U•N the (possibly not
coherent) V -filtration by the V -order, then one has V↵M =

L

i ◆Y ⇤U↵N ⌦ �sgis
and grV↵ M =

L

i ◆Y ⇤grV↵ N ⌦ �sgis. It follows that U•N is a coherent V -filtration
of N and that each grV↵ N is strict. By uniqueness of the V -filtration, we have
U•N = V•N , and Properties 7.3.25(2) and (3) are clearly satisfied, as they hold
for M .

For the general case, the question is local and we can assume that Y is defined by
a smooth function h. By assumption, D◆g⇤(D◆Y ⇤N ) is strictly R-specializable along t,
and thus so is D◆

(h,g)⇤(D◆Y ⇤N ) = D◆s=0⇤◆g|Y N , after (1). The previous argument
implies that ◆g|Y N is strictly R-specializable along t, that is, N is strictly R-specia-
lizable along g|Y .

The last statement is then clear by the computation of the V -filtrations above.

7.7. Strictly support-decomposable eD-modules

Let g : X ! C be a holomorphic function. We set X
0

= g�1(0). Let ◆g : X ,!

X⇥C denote the graph embedding associated with g. We set H = X⇥{0} ⇢ X⇥C.
We first interpret the strict Kashiwara’s equivalence in this setting.

Corollary 7.7.1. Assume that M is eDX-coherent, strictly R-specializable along
D := (g) and supported on X

0

. Then M ' �g,1M .

Proof. By Proposition 7.6.2 we have D◆g⇤M = D◆t⇤grV
0

D◆g⇤M =: D◆t⇤�g,1M . On the
other hand, we recover M from D◆g⇤M as M = Dp⇤D◆g⇤M , where p : X ⇥ C! C is
the projection. We then use that p � ◆t = IdX .
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Proposition 7.7.2. Let M be a coherent eDX-module which is strictly R-specializable
along (g).

(1) The following properties are equivalent:
(a) var : �g,1M !  g,1M (�1) is injective,
(b) D◆g⇤M has no proper subobject in Mod

coh

( eDX⇥C) supported on H,
(c) There is no strictly R-specializable inclusion N ,! D◆g⇤M with N

strictly R-specializable supported on H.
(2) If can :  g,1M ! �g,1M is onto, then D◆g⇤M has no proper quotient satisfying

7.3.25(1) and supported on H.

Definition 7.7.3 (Minimal extension along g). Let M be a coherent eDX -module which
is strictly R-specializable along (g). We say that M is a minimal extension along (g)
if var : �g,1M !  g,1M (�1) is injective and can :  g,1M ! �g,1M is onto.

Exercise 7.7.4 (can-var diagram for a minimal extension). Show that the diagram
(7.4.9 ⇤) or (7.4.10 ⇤) is isomorphic to the diagram

(7.7.4 ⇤)  g,1M

can = N
**
ImN.

var = incl.

jj

(�1)

jj

Proposition 7.7.5. Let M be as in Proposition 7.7.2. The following properties are
equivalent:

(1) �g,1M = Imcan�Ker var,
(2) M = M 0

�M 00 with M 0,M 00 strictly R-specializable along (g), M 0 being a
minimal extension along (g) and M 00 supported on g�1(0).
Moreover, if M ,N satisfy these properties, any morphism ' : M ! N decomposes
correspondingly.

Proof of Propositions 7.7.2 and 7.7.5. All along this proof, we set N = D◆g⇤M for
short.

7.7.2(1) (1a), (1b): It is enough to show that the morphisms

Ker[t : V
0

N ! V�1

N ]
hH

uu **

Ker[t : N ! N ] Ker[t : grV
0

N ! grV�1

N ]

are isomorphisms. It is clear for the right one, since t : V <0N ! V <�1N is an
isomorphism, according to 7.3.31(a). For the left one this follows from the fact that t
is injective on grV↵ N for ↵ 6= 0 according to 7.3.31(c).

(1b) , (1c): let us check ( (the other implication is clear). Let T denote the
t-torsion submodule of N and T 0 the eDX⇥C-submodule generated by

T
0

:= Ker[t : N �! N ].
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Assertion 7.7.6. T 0 is strictly R-specializable and the inclusion T 0 ,! N is strictly
R-specializable.

This assertion gives the implication ( because Assumption (1c) implies T 0 = 0,
hence t : N ! N is injective, so T = 0.

Proof of the assertion. Let us show first that T 0 is eDX⇥C-coherent. As we remarked
above, we have T

0

= Ker[t : grV
0

N ! grV�1

N ]. Now, T
0

is the kernel of a linear
morphism between eDH -coherent modules (H = X ⇥ {0}), hence is also eDH -coherent.
It follows that T 0 is eDX⇥C-coherent.

Let us now show that T 0 is strictly R-specializable. We note that T
0

is strict
because it is isomorphic to a submodule of grV

0

N . Let U•T 0 be the filtration induced
by V•N on T 0. Then U<0

T 0 = 0, according to 7.3.31(a), and grU↵T 0 = 0 for ↵ 62 N.
Let us show by induction on k that

UkT
0 = T

0

+ T
0

gt + · · ·+ T
0

gkt .

Let us denote by U 0
kT

0 the right-hand term. The inclusion � is clear. Let xo 2 H,
m 2 UkT 0

xo
and let ` > k such that m 2 U 0

`T
0
xo

. If ` > k one has m 2 T 0
xo
\ V`�1

Nxo

hence mt` 2 T 0
xo
\ V�1

Nxo
= 0. Set

m = m
0

+m
1

gt + · · ·+m`g`t,

with mjt = 0 (j = 0, . . . , `). One then has m`g`tt` = 0, and since

m`g`tt` = m` ·

Ỳ

j=1

(tgt + jz) = `!m`z
`

and T
0

is strict, one concludes that m` = 0, hence m 2 U 0
`�1

T 0
xo

. By induction, this
implies the other inclusion.

As grU↵T 0 is contained in grV↵ N , one deduces from 7.3.31(d) that gt : grUk T 0
!

grUk+1

T 0 is injective for k > 0. The previous computation shows that it is onto, hence
T 0 is strictly R-specializable and U•T 0 is its Malgrange-Kashiwara filtration.

It is now enough to prove that the injective morphism grU
0

T 0
! grV

0

N is strict.
But its cokernel is identified with the submodule Im[t : grV

0

N ! grV�1

N ] of grV�1

N ,
which is strict.

7.7.2(2) If can is onto, then N = eDX⇥C · V<0

N . If N has a t-torsion quotient
T satisfying 7.3.25(1), then V<0

T = 0, so V<0

N is contained in Ker[N ! T ] and
thus N = eDX⇥eC · V<0

N is also contained in this kernel, that is, T = 0.
7.7.5(1)) 7.7.5(2) Set

U
0

N 0 = V<0

N + gtV�1

N and T
0

= Ker[t : N �! N ].

The assumption (1) is equivalent to V
0

N = U
0

N 0
�T

0

. Define

UkN
0 = Vk

eDX · U
0

N 0 and UkN
00 = Vk

eDX · T
0
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for k > 0. As VkN = Vk�1

N +gtVk�1

N for k > 1, one has VkN = UkN 0+UkN 00

for k > 0. Let us show by induction on k > 0 that this sum is direct. Fix k > 1 and
let m 2 UkN 0

\ UkN 00. Write

m = m0
k�1

+ n0
k�1

gt = m00
k�1

+ n00
k�1

gt,
(

m0
k�1

, n0
k�1

2 Uk�1

N 0,

m00
k�1

, n00
k�1

2 Uk�1

N 00.

One has [n0
k�1

]gt = [n00
k�1

]gt in VkN /Vk�1

N , hence, as

gt : Vk�1

N /Vk�2

N �! VkN /Vk�1

N

is bijective for k > 1, one gets [n0
k�1

] = [n00
k�1

] in Vk�1

N /Vk�2

N and by induction
one deduces that both terms are zero. One concludes that m 2 Uk�1

N 0
\Uk�1

N 00=0
by induction.

This implies that N = N 0
�N 00 with N 0 :=

S

k UkN 0 and N 00 defined similarly.
It follows from Exercise 7.3.37(1) that both N 0 and N 00 are strictly R-specializable
along H and the filtrations U• above are their Malgrange-Kashiwara filtrations. In
particular N 0 satisfies (1) and (2). By Corollary 7.6.5 we also know that N 0 =

D◆g⇤M 0 and N 00 = D◆g⇤M 00 for some coherent eDX -modules M 0,M 00.
7.7.5(2)) 7.7.5(1): One has V<0

N 00 = 0. Let us show that Im can = grV
0

N 0 and
Ker var = grV

0

N 00. The inclusions Im can ⇢ grV
0

N 0 and Ker var � grV
0

N 00 are clear.
Moreover grV

0

N 0
\Ker var = 0 as N 0 satisfies (1). Last, can : grV�1

N 0
! grV

0

N 0 is
onto, as N 0 satisfies (2). Hence grV

0

N = Imcan�Ker var.
Let us now prove the last assertion. Let us consider a morphism ' : M 0

�M 00
!

N 0
�N 00. Firstly, by (1b) in Proposition 7.7.2, the component M 00

! N 0 is zero.
For the component M 0

! N 00, let us denote by M 0
1

its image. The V -filtration on
D◆g⇤M 0

1

induced by V•D◆g⇤N 00 is coherent (Exercise 7.3.7(1)) and satisfies 7.3.25(1),
hence by Proposition 7.7.2(2) we have D◆g⇤M 0

1

= 0.

Definition 7.7.7 (Strictly S(upport)-decomposable eDX -modules)
We say that a coherent eDX -module M is

• strictly S-decomposable along (g) if it is strictly R-specializable along (g) and
satisfies the equivalent conditions 7.7.5;

• strictly S-decomposable at xo 2 X if for any analytic germ g : (X,xo) ! (C, 0),
M is strictly S-decomposable along (g) in some neighbourhood of xo;

• strictly S-decomposable if it is strictly S-decomposable at all points xo 2 X.

Lemma 7.7.8.

(1) If M is strictly S-decomposable along {t = 0}, then it is strictly S-decomposable
along {tr = 0} for every r > 1.

(2) If M = M
1

�M
2

, then M is strictly S-decomposable of some kind if and only
if M

1

and M
2

are so.
(3) We assume that M is strictly S-decomposable and its support Z is a pure

dimensional closed analytic subset of X. Then the following conditions are equivalent:
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(a) for any analytic germ g : (X,xo) ! (C, 0) such that g�1(0) \ Z has
everywhere codimension one in Z, D◆g⇤M is a minimal extension along (g);

(b) near any xo, there is no eDX-coherent submodule of M with support having
codimension > 1 in Z;

(c) near any xo, there is no nonzero morphism ' : M ! N , with N strictly
S-decomposable at xo, such that Im' is supported in codimension > 1 in Z.

Proof. Property (1) is an immediate consequence of Exercise 7.4.16, and property (2)
follows from the fact that for any germ g, the corresponding can and var decompose
with respect to the given decomposition of M . Let us now prove (3). Both conditions
(3a) and (3b) reduce to the property that, for any analytic germ g : (X,xo)! (C, 0)
which does not vanish identically on any local irreducible component of Z at xo, the
corresponding decomposition M = M 0

�M 00 of 7.7.5(2) reduces to M = M 0, i.e.,
M 00 = 0. For the equivalence with (3c), we note that, according to the last assertion
in Proposition 7.7.5, and with respect to the decomposition ' = '0

� '00 along a
germ g, we have Im' 6= 0 and supported in g�1(0) if and only if Im'00

6= 0, and
thus M 00

6= 0. Conversely, if M 00
6= 0, the projection M ! M 00 gives a morphism

contradicting (3c).

Definition 7.7.9 (Pure support). Let M be strictly S-decomposable and having support
a pure dimensional closed analytic subset Z of X. We say that M has pure support
Z if the equivalent conditions of 7.7.8(3) are satisfied.

Proposition 7.7.10 (Generic structure of a strictly S-decomposable module)
Assume that M is holonomic and strictly S-decomposable with pure support Z,

where Z is smooth. Then there exists a unique holonomic and strictly S-decomposable
eDZ-module N such that M = D◆Z⇤N . Moreover, there exists a Zariski dense open
subset Zo

⇢ Z such that N|Zo is eOZo-locally free of finite rank.

Proof. By uniqueness, the question is local on Z. We argue by induction on dimX.
Let H be a smooth hypersurface containing Z such that H = {t = 0} of some
local coordinate system (t, x

2

, . . . , xd). Since M is strictly R-specializable along t,
the strict Kashiwara’s equivalence implies that M = D◆H⇤N for a unique coherent
eDH -module N . Moreover, N is strictly R-specializable along any function g on H,
according to Proposition 7.6.6. If g = g|H , then one checks that a decomposition
7.7.5(2) for M along g comes from a decomposition 7.7.5(2) for N along g. We
conclude that N is also strictly S-decomposable, and has pure support Z ⇢ H. Con-
tinuing this way, we reach a coherent eDZ-module which is strictly S-decomposable.
It is easy to check that N is holonomic since, if CharM is obtain by a straightfor-
ward formula from CharN . By deleting from Z the projection of all components
of CharN except the zero section, we obtain a Zariski-dense open subset Zo of Z
such that CharN|Zo

⇢ T ⇤
ZZ ⇥ Cz. We conclude from Exercise A.10.16 that N|Zo is

eOZo -coherent.
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Let us now prove the eOZo -local freeness of N|Zo . If t is a local coordinate, notice
that each term of the V -filtration V•N is eOZo -coherent. It follows that the filtration
is locally stationary, hence N = V

0

N , since grV↵ N = 0 for ↵ � 0, hence for all
↵ > 0. Let m be a local section of N killed by z. Then m is zero in N /N t

by strict R-specializability. As N is eOZo -coherent, Nakayama’s lemma (applied to
N ⌦ eOZo

OZo⇥Cz
) implies that m = 0.

We will now show that a strictly S-decomposable holonomic eDX -module
(see Definition A.10.18) can indeed be decomposed as the direct sum of holo-
nomic eDX -modules having pure support. We first consider the local decomposition
and, by uniqueness, we get the global one. It is important for that to be able to
define a priori the strict components. They are obtained from the characteristic
variety of M , equivalently of M, according to Corollary 7.7.15 below.

Proposition 7.7.11. Let M be holonomic and strictly S-decomposable at xo, and
let (Zi, xo)i2I be the family of closed irreducible analytic germs (Zi, xo) such
that CharM =

S

i T
⇤
Zi
X ⇥ Cz near xo. There exists a unique decomposition

Mxo = �i2IMZi,xo of germs at xo such that MZi,xo = 0 or has pure support (Zi, xo).

Proof. We will argue by induction on dimSuppM . First, we reduce to the case when
the support S of M (see Proposition A.10.13) is irreducible at xo. For this purpose,
let S0 be an irreducible component of S at xo of maximal dimension, and let S00 be
the union of all the other ones. Let g : (X,xo) ! (C, 0) be an analytic germ such
that S00

⇢ g�1(0) and (S0, xo) 6⇢ g�1(0). Then, according to 7.7.5(2), near xo, M
has a decomposition M = M 0

�M 00, with M 0 supported on S0 and being a minimal
extension along (g), and M 00 supported on S00.

Conversely, if we have any local decomposition M = �MSi
, with (Si, xo) irre-

ducible and MSi (strictly S-decomposable after Lemma 7.7.8(2)) having pure sup-
port Si, then Si ⇢ S0 or Si ⇢ S00 and M 0 = �Si 6⇢S00MSi , M 00 = �Si⇢S00MSi .

By induction on the number of irreducible components, we are reduced to the case
when (S, xo) is irreducible. We can assume that dimS > 0.

Choose now a germ g : (X,xo) ! (C, 0) which is nonconstant on S and such
that g�1(0) contains all components Zi defined by CharM , except S. We have,
as above, a unique decomposition M = M 0

�M 00 of germs at xo, where M 0 is a
minimal extension along (g), and M 00 is supported on g�1(0), by the assumption of
strict S-decomposability along (g) at xo. Moreover, M 0 and M 00 are also strictly
S-decomposable at xo. We can apply the inductive assumption to M 00.

Let us show that M 0 has pure support S near xo: if M 0
1

is a coherent submodule
of M 0 supported on a strict analytic subset Z ⇢ S, then Z is contained in the union
of the components Zi, hence M 0

1

is supported in g�1(0), so is zero. We conclude by
7.7.8(3b).

For the uniqueness, we note that, given such a local decomposition with components
MZi,xo

, the components 'ij of any morphism ' : Mxo
! Mxo

vanishes as soon as
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i 6= j. Indeed, we have either codimZi
(Zi \ Zj) > 1, or codimZj

(Zi \ Zj). In the
first case we apply Lemma 7.7.8(3c) to MZi,xo

. In the second case, we apply Lemma
7.7.8(3b) to MZj ,xo

. We apply the same result for the identity M !M with respect
to two such local decompositions.

By uniqueness of the local decomposition, we get:

Corollary 7.7.12. Let M be holonomic and strictly S-decomposable on X and let
(Zi)i2I be the (locally finite) family of closed irreducible analytic subsets Zi such that
CharM ⇢ [iT

⇤
Zi
X⇥Cz. There exists a unique decomposition M = �iMZi

such that
each MZi

= 0 or has pure support Zi.

A closed analytic irreducible subset Z of X such that MZ 6= 0 is called a strict
component of M .

Proof of Corollary 7.7.12. Given the family (Zi)i2I and xo 2 X, the germs (Zi, xo)
are equidimensional, and Proposition 7.7.11 gives a unique decomposition Mxo =
�i2IMZi,xo by gathering the local irreducible components of (Zi, xo). The uniqueness
enables us to glue all along Zi the various germs MZi,x.

Corollary 7.7.13. Let M 0,M 00 be two holonomic eDX-module which are strictly
S-decomposable and let (Zi)i2I be the family of their strict components. Then any
morphism ' : M 0

Zi
!M 00

Zj
vanishes identically if Zi 6= Zj.

Proof. The image of ' is supported on Zi\Zj , which has everywhere codimension > 1
in Zi or Zj if Zi 6= Zj . We then apply Lemma 7.7.8.

Corollary 7.7.14. Let M be holonomic and strictly S-decomposable. Then M is strict.

Proof. The question is local, and we can assume that M has pure support Z with Z

closed irreducible analytic near xo. Proposition 7.7.10 applied to the smooth part
of Z produces a dense open subset Zo of Z such that M|Zo is strict. (In fact, since Zo

was defined in terms of the characteristic variety, one can show that it is Zariski open
in Z, but this will not matter here.) Let m be a local section of M near xo 2 Z

killed by z. Then m ·

eDX is supported by a proper analytic subset of Z near xo by
the previous argument. As M has pure support Z, we conclude that m = 0.

Corollary 7.7.15. Let M be holonomic and strictly S-decomposable. Then CharM =
Char(M /(z � 1)M )⇥ Cz.

Proof. Since M is strict, we can apply Exercise A.10.23(1).

Remark 7.7.16 (Restriction to z = 1). Let us keep the notation of Exercise 7.3.21 and
let us assume that M is RFDX -coherent and strictly R-specializable. It is obvious
that, if can is onto for M , it is also onto for M := M /M (z� 1). On the other hand,
it is also true that, if var in injective for M , it is also injective for M (see Exercise
A.2.5(3)). As a consequence, if M is a minimal extension along (g), so is M. Moreover,
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if M is strictly S-decomposable along (g) at xo, so is M, and the strict decomposition
M = M 0

�M 00 restricts to the decomposition M = M0
�M00 given by 7.7.5(2).

We conclude that, if M is strictly S-decomposable, then M is S-decomposable, and
the strict components, together with the pure support, are in one-to-one correspon-
dence.

7.8. Direct image of strictly R-specializable coherent eDX-modules

Let us consider the setting of Theorem A.10.26. So f : X ! X 0 is a proper
holomorphic map, and M is a coherent right eDX -module. Let H 0

⇢ X 0 be a smooth
hypersurface. We will assume that H := f⇤(H 0) is also a smooth hypersurface of X.

If M has a coherent V -filtration U•M along H, the RV
eDX -module RUM is there-

fore coherent. With the assumptions above it is possible to define a sheaf RV
eDX!X0

and therefore the pushforward Df⇤RUM as an RV
eDX0 -module (where V•

eDX0 is the
V -filtration relative to H 0).

We will show the RV
eDX0 -coherence of the cohomology sheaves H k

Df⇤RUM of the
pushforward Df⇤RUM if M is endowed with a coherent filtration. By the argument
of Exercise 7.3.6, by quotienting by the v-torsion, we obtain a coherent V -filtration
on the cohomology sheaves H k

Df⇤M of the pushforward Df⇤M .
The v-torsion part contains much information however, and this supplementary

operation killing the v-torsion looses it. The main result of this section is that, if M
is strictly R-specializable along H, then so are the cohomology sheaves H k

Df⇤M
along H 0, and moreover, when considering the filtration by the order, the corre-
sponding Rees modules H k

Df⇤RV M have no v-torsion, and can thus be written as
RUH k

Df⇤M for some coherent V -filtration U•H k
Df⇤M . This coherent V -filtration

is nothing but the Kashiwara-Malgrange filtration of H k
Df⇤M . We say that the

Kashiwara-Malgrange filtration behaves strictly with respect to the pushforward func-
tor Df⇤.

Another way to present this property is to consider the individual terms V↵M
of the Kashiwara-Malgrange filtration as V

0

eDX -modules. By introducing the sheaf
V
0

eDX!X0 , one can define the pushforward complex Df⇤V↵M for every ↵, and
the strictness property amounts to saying that for every k and ↵, the morphisms
H k

Df⇤V↵M ! H k
Df⇤M are injective. In the following, we work with right

eDX -modules and increasing V -filtrations.

7.8.a. Definition of the pushforward functor and the Coherence Theorem

We first note that our assumption on H,H 0, f is equivalent to the property that,
locally at xo 2 H, setting x0

o = f(xo), there exist local decompositions (X,xo) '
(H,xo)⇥ (C, 0) and (X 0, x0

o) ' (H 0, x0
o)⇥ (C, 0) such that f(y, t) = (f|H(y), t).

Let U•M be a V -filtration of M and let RUM be the associated graded RV
eDX -

module. Our first objective is to apply the same reasoning as in Theorem A.10.26 by
replacing the category of eD-modules with that of graded RV

eDX -modules.
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The sheaf eDX!X0 has a V -filtration: we set Vk
eDX!X0 := eOX ⌦f�1 eOX0

f�1Vk
eDX0 .

One checks in local decompositions as above that, with respect to the left
eDX -structure one has V`

eDX · Vk
eDX!X0

⇢Vk+`
eDX!X0 . We can write

RV
eDX!X0 := eOX ⌦f�1 eOX0

f�1RV
eDX0 = RV

eOX ⌦f�1RV
eOX0

f�1RV
eDX0 .

According to Exercise 7.2.6, RV
eDX0 is RV

eOX0 -locally free, so RV
eDX!X0 is RV

eOX -
locally free.

We define

(7.8.1) Df⇤RUM := Rf⇤
�

RUM ⌦

L
RV

eDX
RV

eDX!X0
�

as an object of Db(RV
eDX0).

Theorem 7.8.2. Let M be a eDX-module endowed with a coherent filtration F•M . Let
U•M be a coherent V -filtration of M . Then the cohomology modules of Df⇤RUM
have coherent RV

eDX0-cohomology.

Lemma 7.8.3. Let L be an RV
eOX-module. Then

(L ⌦RV
eOX

RV
eDX)⌦L

RV
eDX

RV
eDX!X0 = L ⌦f�1RV

eOX0
f�1RV

eDX0 .

Proof. It is a matter of proving that the left-hand side has cohomology in degree 0
only, since this cohomology is easily seen to be equal to the right-hand side. This can
be checked on germs at x 2 X. Let L •

x be a resolution of Lx by free RV
eOX,x-modules.

We have

(Lx⌦RV
eOX,x

RV
eDX,x)⌦

L
RV

eDX,x
RV

eDX!X0,x

= (Lx ⌦
L
RV

eOX,x
RV

eDX,x)⌦
L
RV

eDX,x
RV

eDX!X0,x (Ex. 7.2.6)

= (L •
x ⌦RV

eOX,x
RV

eDX,x)⌦
L
RV

eDX,x
RV

eDX!X0,x

= (L •
x ⌦RV

eOX,x
RV

eDX,x)⌦RV
eDX,x

RV
eDX!X0,x

= L •
x ⌦RV

eOX,x
RV

eDX!X0,x

= Lx ⌦
L
RV

eOX,x
RV

eDX!X0,x

= Lx ⌦RV
eOX,x

RV
eDX!X0,x (RV

eDX!X0,x is RV
eOX,x-free).

As a consequence of this lemma, we have

Df⇤(L ⌦RV
eOX

RV
eDX) = (Rf⇤L )⌦RV

eOX0
RV

eDX0

and the cohomology of this complex is RV
eDX0 -coherent.

Lemma 7.8.4. Assume that M is a eDX-module having a coherent filtration F•M and
let U•M be a coherent V -filtration of M . Then in the neighbourhood of any compact
set of X, RUM has a coherent F•RV

eDX-filtration.
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Proof. Fix a compact set K ⇢ X. We can thus assume that M is generated by a
coherent eOX -module F in some neighbourhood of K, i.e., M = eDX ·F . Consider the
V -filtration U 0

•M generated by F , i.e., U 0
•M = V•

eDX ·F . Then, clearly, RV
eOX ·F =

L

k Vk
eOX · Fvk is a coherent graded RV

eOX -module which generates RU 0M as an
RV

eDX -module.
If the filtration U 00

• M is obtained from U 0
•M by a shift by �` 2 Z, i.e., if RU 00M =

v`RU 0M ⇢ M [v, v�1], then RU 00M is generated by the RV
eOX -coherent submodule

v`RV
eOX · F .

On the other hand, let U 00
• M be a coherent V -filtration such that RU 00M has a

coherent F•RV
eDX -filtration. Then any coherent V -filtration U•M such that UkM ⇢

U 00
k M for every k satisfies the same property, because RUM is thus a coherent graded

RV
eDX -submodule of RU 00M , so a coherent filtration on the latter induces a coherent

filtration on the former.
As any coherent V -filtration U•M is contained, in some neighbourhood of K, in

the coherent V -filtration U 0
•M suitably shifted, we get the lemma.

Proof of Theorem 7.8.2. The proof now ends exactly as for Theorem A.10.26.

7.8.b. Strictness of the Kashiwara-Malgrange filtration by pushforward

Theorem 7.8.5 (Pushforward of strictly R-specializable eD-modules)
Let f : X ! X 0 be a proper morphism of complex manifolds, let H 0 be a smooth

hypersurface of X 0 and assume that IH := IH0OX defines a smooth hypersurface H

of X. Let M be a coherent right eDX-module equipped with a coherent filtration. As-
sume that M is strictly R-specializable along H with Kashiwara-Malgrange filtration
V•M indexed by A + Z with A finite contained in [0, 1), and that each cohomology
module H i

Df|H⇤gr
V
↵ M is strict (↵ 2 [�1, 0]).

Then each cohomology module H i
Df⇤M , which is eDX0-coherent according to The-

orem A.10.26, is strictly R-specializable along H 0 and moreover,
(1) for every ↵, i, the natural morphism H i

Df⇤(V↵M )!H i
Df⇤M is injective,

(2) its image is the Kashiwara-Malgrange filtration of H i
Df⇤M along H 0,

(3) for every ↵, i, grV↵ (H i
Df⇤M ) = H i

Df|H⇤(gr
V
↵ H iM ).

As an important corollary we obtain in a straightforward way:

Corollary 7.8.6. Let f : X ! X 0 be a proper morphism of complex manifolds. Let
g0 : X 0

! C be any holomorphic function on X 0 and let M be eDX-coherent and
strictly R-specializable along (g) with g = g0 � f . Assume that for for all i and �,
H i

Df⇤( g,�M ) and H i
Df⇤(�g,1M ) are strict.

Then H i
Df⇤M is eDX0-coherent and strictly R-specializable along (g0), we have for

all i and �,

( g,�(H
i
Df⇤M ),N) = H i

Df⇤( g,�M ,N),

(�g,1(H
i
Df⇤M ),N) = H i

Df⇤(�g,1M ,N),
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and the morphisms can, var for H i
Df⇤M are the morphisms H i

Df⇤ can,H i
Df⇤ var.

We first explain the mechanism which leads to the strictness property stated in
Theorem 7.8.5(1).

Proposition 7.8.7. Let H 0
⇢ X 0 be a smooth hypersurface. Let (N •, U•N

•) be a
V -filtered complex of eDX0-modules, where U• is indexed by A + Z, A ⇢ [0, 1) finite.
Let N > 0 and assume that

(1) H i(grU↵N •) is strict for all ↵ 2 A+ Z and all i > �N � 1;
(2) for every ↵ 2 A + Z, there exists ⌫↵ > 0 such that (E�↵z)⌫↵ acts by zero on

H i(grU↵N •) for every i > �N � 1;
(3) there exists ↵o such that for all ↵ 6 ↵o and all i > �N � 1, the right mul-

tiplication by some (or any) local reduced equation t of H 0 induces an isomorphism
t : U↵N i ⇠

�! U↵�1

N i;
(4) there exists io 2 Z such that, for all i > io and any ↵, one has H i(U↵N •) = 0;
(5) H i(U↵N •) is V

0

eDX0-coherent for all ↵ 2 A+ Z and all i > �N � 1.
Then for every ↵ and i > �N the morphism H i(U↵N •)!H i(N •) is injective.

Moreover, the filtration U•H i(N •) defined by

U↵H i(N •) = image
⇥

H i(U↵N •) �!H i(N •)
⇤

satisfies grU↵H i(N •) = H i(grU↵N •) for all ↵ 2 A+ Z.

Proof. It will have three steps. During the proof, the indices ↵,�, � will run in A+Z.

First step. This step proves a formal analogue of the conclusion of the proposition.
Put

\U↵N • = lim
 �

�

U↵N •
/U�N • and cN • = lim

�!

↵

\U↵N •.

Under the assumption of Proposition 7.8.7, we will prove the following:

(a) For all � 6 ↵, \U�N •
!

\U↵N • is injective (hence, for all ↵, \U↵N •
!

cN • is
injective) and \U↵N •/ \U<↵N • = U↵N •/U<↵N •.

(b) For every � 6 ↵ and any i, H i(U↵N •/U�N •) is strict.
(c) H i( \U↵N •) = lim

 �

�
H i(U↵N •/U�N •) (i > �N).

(d) H i( \U↵N •)!H i( cN •) is injective (i > �N).
(e) H i( cN •) = lim

�!

↵
H i( \U↵N •) (i > �N).

We note that the statements (b)–(d) imply that H i( cN •) is strict for i > �N ,
although H i(N •) need not be strict.

Define U↵H i( cN •) = image
⇥

H i( \U↵N •) ! H i( cN •)
⇤

. Then the statements (a)
and (d) imply that

grU↵H i( cN •) = H i( \U↵N •/ \U<↵N •) = H i(grU↵N •) (i > �N).
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For � < � < ↵ consider the exact sequence of complexes

0 �! U�N •
/U�N •

�! U↵N •
/U�N •

�! U↵N •
/U�N •

�! 0.

As the projective system (U↵N •/U�N •)� trivially satisfies the Mittag-Leffler con-
dition (ML) (see e.g. [KS90, Prop. 1.12.4]), the sequence remains exact after passing
to the projective limit, so we get an exact sequence of complexes

0 �! \U�N •
�!

\U↵N •
�! U↵N •

/U�N •
�! 0,

hence (a).
Let us show by induction on ⇢ = ↵� � 2 A+ N that, for all � < ↵ and i > �N ,
(i)

Q

�<�6↵(E��z)
⌫� annihilates H i(U↵/U�),

(ii) for all � such that � < � < ↵, we have an exact sequence,

(7.8.8) 0!H i(U�N •
/U�N •)!H i(U↵N •

/U�N •)!H i(U↵N •
/U�N •)!0.

(iii) H i(U↵N •/U�N •) is strict.
If � is the predecessor of ↵ in A + Z, (i) and (iii) are true by assumption and (ii)

is empty. Moreover, (ii)⇢ and (iii)<⇢ imply (iii)⇢. For � < � < ↵ and ↵ � � = ⇢,
consider the exact sequence

· · ·

 i

���!H i(U�/U�) �!H i(U↵/U�) �!H i(U↵/U�)

 i+1

�����!H i+1(U�/U�) �! · · ·

For any i > �N , any local section of Im i+1 is then killed by
Q

�<�6↵(E��z) and
by

Q

�<�6�(E��z) according to (i)<⇢, hence is zero by (iii)<⇢, and the same property
holds for Im i, so the previous sequence of H i is exact. Arguing similarly, we get
the exactness of (7.8.8) for ↵� � = ⇢, hence (ii)⇢, from which (i)⇢ follows.

Consequently, the projective system (H i(U↵N •/U�N •))� satisfies (ML), so we
get (c). Moreover, taking the limit on � in (7.8.8) gives, according to (ML), an exact
sequence

0 �!H i( \U�N •) �!H i( \U↵N •) �!H i(U↵N •
/U�N •) �! 0,

hence (d). Now, (e) is clear.

Second step. For every i,↵, denote by T i
↵ ⇢H i(U↵N •) the IH0 -torsion subsheaf of

H i(U↵N •). We set locally IH0 = tOX0 . We will now prove that it is enough to show

(7.8.9) 9↵o, ↵ 6 ↵o =) T i
↵ = 0 8 i > �N.

We assume that (7.8.9) is proved (step 3). Let � 6 ↵o and i > �N , so that T i
� = 0,

and let ↵ > �. Then, by definition of a V -filtration, td↵��e acts by 0 on U↵N •/U�N •,
so that the image of H i�1(U↵N •/U�N •) in H i(U�N •) is contained in T i

� , and
thus is zero. We therefore have an exact sequence for every i > �N :

0 �!H i(U�N •) �!H i(U↵N •) �!H i(U↵N •
/U�N •) �! 0.
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Using (7.8.8), we get for every � < ↵ the exact sequence

0 �!H i(U�N •) �!H i(U↵N •) �!H i(U↵N •
/U�N •) �! 0.

This implies that H i(U�N •) ! H i(N •) = lim
�!

↵
H i(U↵N •) is injective. For

every ↵, let us set

U↵H i(N •) := image
⇥

H i(U↵N •) ,�!H i(N •)
⇤

.

We thus have, for every ↵ 2 A+ Z and i > �N ,

grU↵H i(N •) = H i(grU↵N •).

Third step: proof of (7.8.9). Let us choose ↵o as in 7.8.7(3). We notice that the
multiplication by t induces an isomorphism t : \U↵N i ⇠

�!

\U↵�1

N i for ↵ 6 ↵o and
i > �N � 1, hence an isomorphism t : H i( \U↵N •)

⇠
�! H i( \U↵�1

N •), and that (d)
in Step one implies that, for all i > �N and all ↵ 6 ↵o, the multiplication by t on
H i( \U↵N •) is injective.

The proof of (7.8.9) is done by decreasing induction on i. It clearly hods for i > io
(given by 7.8.7(4)). We assume that, for every ↵ 6 ↵o, we have T i+1

↵ = 0. We have
(after 7.8.7(3)) an exact sequence of complexes, for every k 2 N and • > �N � 1,

0 �! U↵N • tk
���! U↵N •

�! U↵N •�
U↵�kN

•
�! 0.

As T i+1

↵ = 0, we have, for every k > 1 an exact sequence

H i(U↵N •)
tk
���!H i(U↵N •) �!H i(U↵N •

/U↵�kN
•) �! 0,

hence, according to Step one,

H i( \U↵N •)/H i( \U↵�kN •) = H i(U↵N •
/U↵�kN

•) = H i(U↵N •)/tkH i(U↵N •).

According to Assumption 7.8.7(5) and Exercise 7.3.8, for k big enough (locally
on X 0), the map T i

↵ ! H i(U↵N •)/tkH i(U↵N •) is injective. It follows that
T i

↵ ! H i( \U↵N •) is injective too. But we know that t is injective on H i( \U↵N •)
for ↵ 6 ↵o, hence T i

↵ = 0, thus concluding Step 3.

Proof of Theorem 7.8.5
Lemma 7.8.10. Let U•M be a V -filtration indexed by A+Z of a eDX-module M which
satisfies the following properties:

(a) t : U↵M ! U↵�1

M is bijective for every ↵ < 0,
(b) gt : grU↵M ! grU↵+1

M is bijective for every ↵ > �1.

We define RUM as in Remark 7.2.7, which is thus an RAV
eDX-module. Then

RUM has a resolution L •
⌦ eOX

RAV
eDX , where each L i is an eOX-module.

Proof. By assumption, the morphism ' :
L

�2[�1,0] U�M ⌦ eOX

eDX !M is surjective
and induces surjective morphisms

L

�2[�1,0] U�M ⌦ eOX

AV↵��
eDX ! U↵M for every

↵ 2 A + Z, hence a surjective morphism
L

�2[�1,0] U�M v� ⌦ eOX
RAV

eDX ! RUM ,
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with the convention of Remark 7.2.7. We note that the V -filtered induced eDX -module
that we have introduced also satisfies (a) and (b). Set K = Ker', that we equip
with the induced filtration U•K . We thus have an exact sequence for every ↵:

0 �! U↵K �!

L

�2[�1,0]

U�M ⌦ eOX

AV↵��
eDX �! U↵M �! 0,

from which we deduce that U•K satisfies (a) and (b), enabling us to continue the
process.

The assertion of the theorem is local on X 0, and we will work in the neighbourhood
of a point x0

o 2 H 0. The Kashiwara-Malgrange filtration V•M satisfies the properties
7.8.10(a) and (b), according to Proposition 7.3.31. We can then use a resolution
as in Lemma 7.8.10, that we stop at a finite step chosen large enough (due to the
cohomological finiteness of f) such that, for the corresponding bounded complex
L •
⌦ eOX

RAV
eDX , one has

H i
Df⇤(RV M ) 6= 0 =)H i

Df⇤(RV M ) = H i
Df⇤(L

•
⌦ eOX

RAV
eDX)

and similarly for every ↵,

H i
Df|H⇤(gr

V
↵ M ) 6= 0 =)H i

Df|H⇤(gr
V
↵ M ) = H i

Df|H⇤(L
•
⌦ eOX

gr
AV
↵

eDX).

In such a case, H i
Df⇤(RV M ) = H i

�

f⇤ God
•
(L •

⌦f�1 eOX0
f�1RAV

eDX0)
�

, according
to Lemma 7.8.3. We thus set

(N •
, U•N

•) =
�

f⇤ God
•
(L •

⌦f�1 eOX0
f�1

eDX0), f⇤ God
•
(L •

⌦f�1 eOX0
f�1AV•

eDX0)
�

.

Since the sequences

0 �! AV↵
eDX0
�!

eDX0
�!

eDX0/AV↵
eDX0
�! 0

0 �! AV<↵
eDX0
�!

AV↵
eDX0
�! gr

AV
↵

eDX0
�! 0and

are exact sequences of locally free eOX0 -modules, they remain exact after applying
L •
⌦ eOX0

, then also after applying the Godement functor (see Exercise A.8.13(1)),
and then after applying f⇤ since the latter complexes consist of flabby sheaves.

This implies that U↵N • is indeed a subcomplex of N • and grU↵N • =

f⇤ God
•
(L •

⌦f�1 eOX0
f�1gr

AV
↵

eDX0).
Property 7.8.7(5) is satisfied, according to Theorem 7.8.2, and Properties 7.8.7(3)

and (4) are clear.
We have H i(grU↵N •) = H i(Df|H⇤gr

V
↵ M ) for i > �N for some N such that

H i(Df|H⇤gr
V
↵ M ) = 0 if i < �N , so that 7.8.7(1) holds by assumption and 7.8.7(2)

is satisfied by taking the maximum of the local values ⌫↵ along the compact fibre
f�1(x0

o).
From Proposition 7.8.7 we conclude that 7.8.5(1) holds for ↵ 2 A + Z and any i.

Denoting by U•H i
Df⇤M the image filtration in 7.8.5(1), we thus have RUH i

Df⇤M =
H i

Df⇤RV M and therefore

grU↵ (H
i
Df⇤M ) = H i

Df|H⇤gr
V
↵ M .
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In particular, the left-hand term is strict by assumption on the right-hand term.
By the coherence theorem 7.8.2, we conclude that U•H i

Df⇤M is a coherent
AV -filtration of H i

Df⇤M . Therefore, U•H i
Df⇤M satisfies the assumptions of

Lemma 7.3.23 (extended to filtrations indexed by A + Z). Moreover, the properties
7.3.25(2) and (3) are also satisfied since they hold for M . We conclude that H i

Df⇤M
is strictly R-specializable along H 0 and that U•H i

Df⇤M is its Kashiwara-Malgrange
filtration. Now, Properties (1)–(3) in Theorem 7.8.5 are clear.

7.9. Comments

Here come the references to the existing work which has been the source of inspi-
ration for this chapter.




