
CHAPTER 6

PURE HODGE MODULES ON CURVES

Summary. The aim of this chapter is to introduce the general notion of polar-
ized pure Hodge module on a Riemann surface, as the right notion of a singular
analogue of a variation of polarized Hodge structure. We will define it by local
properties, as we do for variations of polarized Hodge structure. For that pur-
pose, we first recall basics on D-modules, which are much more developed in
Appendix A and in Chapters 7–10. While the notion of a variation of C-Hodge
structure on a punctured compact Riemann surface is purely analytic, that of
a pure Hodge module on the corresponding smooth projective curve is partly
algebraic.

6.1. Introduction

Let j : X⇤ ,! X be the inclusion of a finite set of points D in a compact Riemann
surface X, and let (H,Q) be a variation of polarized Hodge structure on X⇤, with
associated local system H and filtered holomorphic bundle (V,r, F •V). The Hodge-
Zucker theorem gives importance to the differential object (V

mid

,r) (see Exercise
5.2.4(6)). However it is, in general, not a coherent OX -module with connection. It is
neither a meromorphic bundle with connection in general, i.e., it is not a OX(⇤D)-
module (where O

�

(⇤D) denotes the sheaf of meromorphic functions on X with poles
on D at most). We have to consider it as a coherent DX -module, where DX denotes
the sheaf of holomorphic differential operators. In order to do so, we recall in Sec-
tion 6.2 the basic notions on D-modules in one complex variable, the general case
being treated in Appendix A.

The punctured Riemann surface will then be a punctured disc �⇤ in the remaining
part of this introduction. The object analogue to (V,r, F •V) on � is a holonomic
D

�

-module M endowed with a F -filtration F •M (this encodes the Griffiths transver-
sality property). Here, the language of triples introduced in Section 2.4.c becomes
useful, since we can consider a pair of such objects. A sesquilinear pairing should
then take values in a sheaf containing C1 functions on � and allowing functions
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like |t|2�L(t)k/k!, as in our discussion of Schmid’s theorem. The sheaf of distributions
on � is a possible candidate, since it is acted on by holomorphic and anti-holomorphic
differential operators.

The idea of M. Saito to define the Hodge property is to impose it on the restriction
of the data at each point of �, so that to apply the definitions of Chapter 2. While
this does not cause any trouble at points of �⇤ := � r {0}, this leads to problems
at the origin for the following reason: the restriction of M in the sense of D-modules
is a complex, which has two cohomology vector spaces in general. The right way to
consider the restriction consists in introducing nearby cycles. Therefore, the compat-
ibility of the data with the nearby and vanishing cycle functors will be the main tool
in the theory of Hodge modules.

However, not all D
�

-modules underlie a Hodge module. On the one hand, one has
to restrict to holonomic D

�

-modules having a regular singularity at the origin. This is
“forced” by the theorem of Griffiths-Schmid on the regularity of the connection on the
extended Hodge bundles. Moreover, the Hodge-Zucker theorem leads us to focus on
regular holonomic D

�

-modules which are middle extensions of their restriction to �⇤.
Now, a new phenomenon appears when dealing with D

�

-modules, when compared
to the case of vector bundles with connection, namely, there do exist D

�

-modules
supported at the origin, like Dirac distributions, and their Hodge variants are easy to
define.

There are thus two kinds of D
�

-modules that should underlie a Hodge module.
Which extensions between these two kinds can we allow? Since our goal is to define
the category of polarized Hodge modules as an analogue over � of the category of
polarized Hodge structures, we expect to obtain a semi-simple category. In order
to achieve this goal, we are therefore led to restrict the kind of extensions between
these two families: we only allow direct sums. This is why we introduce the notion of
Support-decomposability of holonomic D

�

-modules.
As for polarized Hodge structures, we will introduce C-Hodge module and polarized

C-Hodge modules. In this chapter, we will only consider left D-modules in order
to keep the analogy with vector bundles with connections and variations of Hodge
structures considered in Chapter 5.

6.2. Basics on holonomic D-modules in one variable

We denote by t a coordinate on the disc �, by C{t} the ring of convergent power
series in the variable t. Let us denote by D = C{t}h@ti the ring of germs at t = 0

of holomorphic differential operators. There is a natural increasing filtration F•D
indexed by Z defined by

FkD =

(

0 if k 6 �1,
Pk

j=0

C{t} · @j
t if k > 0.
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This filtration is compatible with the ring structure (i.e., Fk · F` ⇢ Fk+` for every
k, ` 2 Z). The graded ring grFD :=

L

k gr
F
k D =

L

k Fk/Fk�1

is isomorphic to the
polynomial ring C{t}[⌧ ] (graded with respect to the degree in ⌧).

We also denote by D
�

the sheaf of differential operators with holomorphic coef-
ficients on �. This is a coherent sheaf, similarly equipped with an increasing filtra-
tion F•D�

by free O
�

-modules of finite rank. The graded sheaf grFD
�

is identified
with the sheaf on � of functions on the cotangent bundle T ⇤� which are polynomial
in the fibres of the fibration T ⇤� ! �.

6.2.a. Coherent F -filtrations, holonomic modules. Let M be a finitely gener-
ated D-module (we basically use left D-modules, but similar properties can be applied
to right ones). By an F -filtration of M we mean increasing filtration F•M by O =

C{t}-submodules, indexed by Z, such that, for every k, ` 2 Z, FkD · F`M ⇢ Fk+`M .
Such a filtration is said to be coherent if it satisfies the following properties:

(1) FkM = 0 for k ⌧ 0,
(2) each FkM is finitely generated over O,
(3) for every k, ` 2 Z, FkD · F`M ⇢ Fk+`M ,
(4) there exists `

0

2 Z such that, for every k > 0 and any ` > `
0

, FkD · F`M =

Fk+`M .

Remark 6.2.1 (Increasing or decreasing?) In Hodge theory, one usually uses decreasing
filtrations. The trick to go from increasing to decreasing filtrations is to set, for every
p 2 Z,

F pM := F�pM.

The notion of shift is compatible with this convention:

F [k]pM = F p+kM, F [k]pM = Fp�kM.

Exercise 6.2.2 (The Rees module). The previous properties can be expressed in a sim-
pler way by adding a dummy variable. Let M be a left D-module and let F•M be an
F -filtration of M . Let z be such a variable and let us set RFD =

L

k2Z FkD · zk and
RFM =

L

k2Z FkM · zk.
(1) Prove that RFD is a Noetherian ring.
(2) Prove that RFM has no C[z]-torsion.
(3) Prove that the F -filtration condition is equivalent to: RFM is a left graded

RFD-module.
(4) Prove that RFM/zRFM = grFM and RFM/(z � 1)RFM = M .
(5) Prove that the coherence of F•M is equivalent to: RFM is a finitely generated

left RFD-module.
(6) Prove that M has a coherent F -filtration if and only if it is finitely generated.

Definition 6.2.3. We say that M is holonomic if it is finitely generated and any element
of M is annihilated by some nonzero P 2 D .
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One can prove that any holonomic D-module can be generated by one element
(i.e., it is cyclic), hence of the form D/I where I is a left ideal in D , and that this
ideal can be generated by two elements (see [BM84]).

6.2.b. The V -filtration. In order to analyze the behaviour of a holonomic module
near the origin, we will use another kind of filtration, called the Kashiwara-Malgrange
filtration. It is an extension to holonomic modules of the notion of Deligne lattice for
meromorphic bundle with connection.

We first define the increasing filtration V•D indexed by Z, by giving to any mono-
mial ta1@b1

t · · · tan@bn
t the V -degree

P

i bi �
P

i ai, and by defining the V -order of an
operator P 2 D as the biggest V -degree of its monomials.

Exercise 6.2.4.

(1) Check that the V -order of P does not depend on the way we write its monomials
(due to the non-commutativity of D).

(2) Check that each VkD is a free O-module, and that, for k 6 0, VkD = t�kV
0

D .
(3) Check that the filtration by the V -order is compatible with the product, and

more precisely that

VkD · V`D

(

⇢ Vk+`D for every k, ` 2 Z,
= Vk+`D if k, ` 6 0 or if k, ` > 0.

Conclude that V
0

D is a ring and that each VkD is a left and right V
0

D-module.
(4) Check that the Rees object RV D :=

L

k2Z VkD · vk is a Noetherian ring.
(5) Show that grV

0

D can be identified with the polynomial ring C[E], where E is
the class of t@t in grV

0

D .
(6) Show that E does not depend on the choice of the coordinate t on the disc.

Definition 6.2.5. Let M be a left D-module. By a V -filtration we mean an decreasing
filtration U•M of M , indexed by Z, which satisfies VkD · U `M ⇢ U `�kM for every
k, ` 2 Z. We say that U•M is coherent if there exists `

0

2 N such that the previous
inclusion is an equality for every k > 0 and ` 6 �`

0

, and for every k 6 0 and ` > `
0

.

Exercise 6.2.6.

(1) Show that a filtration U•M is a V -filtration if and only if the Rees object
RUM :=

L

k2Z U
kMv�k is naturally a left graded RV D-module.

(2) Show that, for every V -filtration U•M on M , RUM/vRUM = grUM and
RUM/(v � 1)RUM = M .

(3) Show that any finitely generated D-module has a coherent V -filtration.
(4) Show that a V -filtration is coherent if and only if the Rees module RUM is

finitely generated over RV D .
(5) Show that, if M is holonomic, then for any coherent V -filtration the graded

spaces grkUM are finite dimensional C-vector spaces equipped with a linear action
of E.
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(6) Show that, if U•M is a V -filtration of M , then the left multiplication by t

induces for every k 2 Z a C-linear homomorphism grkUM ! grk+1

U M and that the
action of @t induces grkUM ! grk�1

U M . How does E commute with these morphisms?
(7) Show that if a V -filtration is coherent, then t : UkM ! Uk+1M is an isomor-

phism for every k � 0 and @t : gr
k
UM ! grk�1

U M is so for every k ⌧ 0.

Proposition 6.2.7 (The Kashiwara-Malgrange filtration). Let M be a holonomic
D-module. Then there exists a unique coherent V -filtration denoted by V •M and
called the Kashiwara-Malgrange filtration of M , such that the eigenvalues of E acting
on the finite dimensional vector spaces grkV M have their real part in [k, k + 1).

Proof. Adapt Exercise 7.3.12 to the present setting.

Exercise 6.2.8 (V -strictness of morphisms). Show that any morphism ' : M ! M 0

between holonomic D-modules is V -strict, i.e., satisfies '(V kM) = '(M)\V kM 0 for
every k 2 Z. [Hint : show that the right-hand side defines a coherent filtration of
'(M) and use the uniqueness of the Kashiwara-Malgrange filtration.]

Exercise 6.2.9. Show that the Kashiwara-Malgrange filtration satisfies the following
properties:

(1) for every k > 0, the morphism V kM ! V k+1M induced by t is an isomorphism;
(2) for every k > 0, the morphism gr�1�k

V M ! gr�2�k
V M induced by @t is an

isomorphism.

Exercise 6.2.10. Show that, for any holonomic module M , the module M [t�1] :=

O[t�1] ⌦O M is still holonomic and is a finite dimensional vector space over the
field of Laurent series O[t�1], equipped with a connection. Show that its Kashiwara-
Malgrange filtration satisfies V kM [t�1] = tkV 0M [t�1] for every k 2 Z (while this only
holds for k > 0 for a general holonomic D-module. Conversely, prove that any finite
dimensional vector space (V⇤,r) over the field of Laurent series O[t�1] equipped with
a connection is a holonomic D-module.

Exercise 6.2.11 (D-modules with support the origin). Let M be a finitely generated
D-module with support the origin, i.e., each element is annihilated by some power
of t (hence M is holonomic). Show that

(1) V �M = 0 for � > �1 and gr�V M = 0 for � 62 �N⇤,
(2) M ' (gr�1

V M)[@t], where the action of D on the right-hand side is given by

@t ·m@k
t = m@k+1

t ,

t ·m@k
t = �km@k�1

t ,

(3) M has also the structure of a right D-module by setting

m@k
t · @t = m@k+1

t ,

m@k
t · t = km@k�1

t .
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6.2.c. Nearby and vanishing cycles. For simplicity, in the following we always
assume that M is holonomic. We will also assume that the eigenvalues of E acting
on grkV M are real, i.e., belong to [k, k + 1). This will be the only case of interest in
Hodge theory, according to Lemma 5.2.9. Let B ⇢ [0, 1) be the finite set of eigenvalues
of E acting on gr0V M , to which we add 0 if 0 /2 B. By Exercise 6.2.9, the set Bk of
eigenvalues of E acting on grkV M satisfies k + (B r {0}) ⇢ Bk ⇢ k +B.

For every � 2 R, we denote by V �M ⇢ V [�]M the pullback by V [�]M ! gr
[�]
V M

of the subspace of gr[�]V M corresponding to eigenvalues of E which are > �, i.e., the
subspace

L

�2[�,[�]+1)

Ker(E� � Id)N , N � 0.
In such a way, we obtain a decreasing filtration V •M indexed by B + Z ⇢ R, and

we now denote by gr�V M the quotient space V �M/V >�M . We can also consider V •M

as a filtration indexed by R which jumps at most at B + Z.

Exercise 6.2.12 (V -strictness of morphisms). Show the V -strictness of morphisms for
the V -filtration indexed by R (see Exercise 6.2.8).

Exercise 6.2.9 implies:
(1) for every � > �1, the morphism V �M ! V �+1M induced by t is an isomor-

phism, and so is the morphism t : gr�V M ! gr�+1

V M ; in particular, V �M is O-free if
� > �1;

(2) for every � < 0, the morphism gr�V M ! gr��1

V M induced by @t is an isomor-
phism.
In particular, the knowledge of gr�V M for � 2 [0, 1] implies that for all �.

Definition 6.2.13 (The morphisms N, can, var). Let M be a holonomic D-module.
(a) We denote by N the nilpotent part of the endomorphism induced by � 2⇡iE on

gr�V M for every � (we will only consider � 2 [0, 1], according to (1) and (2) above).
So we have N = � 2⇡i(E� � Id) on gr�V M for � 2 [�1, 0].

(b) We define can : gr0V M ! gr�1

V M as the homomorphism induced by �@t and
var : gr�1

V M ! gr0V M as that induced by 2⇡i t, so that var � can = N : gr0V M ! gr0V M

and can � var = N : gr�1

V M ! gr�1

V M .
(c) We also denote by M•gr

�
V M the monodromy filtration defined by the nilpotent

endomorphism N (see Section 3.2.a).

Exercise 6.2.14. Let M be a holonomic D-module. Prove that
(1) the construction of gr�V M, gr�1

V M , can, var, N, is functorial with respect to M ,
and gr�V is an exact functor (i.e., compatible with short exact sequences);

(2) can is onto iff M has no quotient supported at the origin (i.e., there is no
surjective morphism M ! N where each element of N is annihilated by some power
of t);

(3) var is injective if and only if M has no submodule supported at the origin (i.e.,
whose elements are annihilated by some power of t);

(4) M is supported at the origin if and only if gr�V M = 0 for every � > �1;
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(5) gr�1

V M = Imcan�Ker var if and only if M = M 0
�M 00, where M 00 is supported

at the origin and M 0 has neither a quotient nor a submodule supported at the origin
(in such a case, we say that M is S(upport)-decomposable).

Examples 6.2.15.

(1) If 0 is not a singular point of M , then M is O-free of finite rank and gr�V M = 0

unless � 2 N. Then can = 0, var = 0 and N = 0.
(2) If M is purely irregular, e.g. M = (O[t�1],r) with r = d + dt/t2, then

gr�V M = 0 for every �. In such a case, the gr�V -functors do not bring any interesting
information on M .

Definition 6.2.16 (Middle extension). We say that a holonomic M is the middle (or min-
imal) extension of M [t�1] := O[t�1]⌦O M if can is onto and var is injective, that is,
if M has neither a quotient nor a submodule supported at the origin.

Exercise 6.2.17.

(1) Show that the Kashiwara-Malgrange filtration of M [t�1] satisfies
(a) V >�1M [t�1] = V >�1M ,
(b) V �+kM [t�1] = tkV �M [t�1] for all k 2 Z.

(2) Show that M is a middle extension D-module if and only if M is equal to the
D-submodule of M [t�1] generated by V >�1M .

Definition 6.2.18 (Regular singularity). We say that M has a regular singularity (or is
regular) at the origin if V 0M (equivalently, any V �M) has finite type over O.

Exercise 6.2.19. Prove that, if M has finite type over D and is supported at the origin,
then M has a regular singularity at the origin.

The following proposition makes the link between the D-module approach and the
approach of Section 5.2.a.

Proposition 6.2.20. Assume that M has a regular singularity at the origin. Then
M [t�1] is equal to the germ at 0 of (V⇤,r) (Deligne’s canonical meromorphic ex-
tension), where (V,r) is the restriction of M to a punctured small neighbourhood of
the origin. Moreover, if M is a middle extension, then M is equal to the germ at 0 of
(V

mid

,r). Lastly, the filtration V•
⇤ (resp. V•

mid

) is equal to the Kashiwara-Malgrange
filtration.

Proof. Let M be a coherent D
�

-module representative of the germ M on a small
disc �, having a singularity at 0 only. Set (V,r) = M|�⇤ . By the uniqueness of
the Deligne lattices with given range of eigenvalues of the residue, we have V>�1

⇤ =

V >�1M. We then have M[t�1] = V >�1M[t�1] = V⇤, according to Exercise 6.2.17(1).
If M is a middle extension, the assertion follows from 6.2.17(2). The last assertion is
proved similarly.
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Structure of regular holonomic D-modules. Let M be regular holonomic. For � 2 R,
set

M� :=
S

k

Ker
⇥

(t@t � �)k : M �! M
⇤

.

Then M� \M� = 0 if � 6= �. Moreover, M� \ V >�M = 0: indeed, if (t@t � �)km = 0

and b(t@t)m = tP (t, t@t)m with b having roots > �, we conclude a relation m =

tQ(t, t@t) by Bézout, so the D-module D · m satisfies D · m = V �1(D · m), and its
V -filtration is constant; however, the O-finiteness of each term of this V -filtration
implies m = 0. As a consequence, M� injects in gr�V M and thus has finite dimension.
Obviously, multiplication by t sends M� to M�+1

and @t goes in the reverse direction.
Moreover, t : M� ! M�+1

is an isomorphism if � > �1 and @t : M�+1

! M� is an
isomorphism if � < 0.

The set consisting of �’s such that M� 6= 0 is therefore contained in B + Z (B is
the finite set of eigenvalues or E acting on gr0V M), and Malg :=

L

� M� is a regular
holonomic C[t]h@ti-module.

Proposition 6.2.21. If M is regular holonomic, Then the natural morphism

C{t}⌦C[t] M
alg

�! M

is an isomorphism of D-modules, and induces an R-graded isomorphism

Malg

⇠
�! grV M

alg

⇠
�! grV M.

F -filtration on nearby and vanishing cycles. Let M be holonomic and equipped with
a coherent F -filtration F•M . There is a natural way to induce a filtration on each
vector space gr�V M by setting

(6.2.22) Fpgr
�
V M :=

FpM \ V �M

FpM \ V >�M
.

Exercise 6.2.23. Show that N · Fpgr
�
V M ⇢ Fp+1

gr�V M for every � 2 R and that

can(Fpgr
0

V M) ⇢ Fp+1

gr�1

V M, var(Fpgr
�1

V M) ⇢ Fpgr
0

V M.

The germic version of the deRham complex. Let us first consider the de Rham com-
plex of M . The holomorphic de Rham complex DRM is defined as the complex

DRM = {0 ! M
r

���! ⌦1

⌦O M ! 0},

where the degree of the terms is as usual, i.e., M is in degree zero and ⌦1

⌦O M in
degree one. The de Rham complex can be V -filtered, by setting

V � DRM = {0 ! V �M
r

���! ⌦1

⌦O V ��1M ! 0},

for every � 2 R. The terms of this complex have finite type as O-modules. As the
morphism gr�V M ! gr��1

V M induced by @t is an isomorphism for every � < 0, it
follows that the inclusion of complexes

(6.2.24) V 0 DRM ,�! DRM
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is a quasi-isomorphism.
If M comes equipped with a coherent filtration F •M , we set

F p DRM = {0 ! F pM
r

���! ⌦1

⌦O F p�1M ! 0}.

6.2.d. Holonomic D
�

-modules. We now sheafify the previous constructions and
consider a D

�

-module M. We assume it is holonomic, that is, its germ at any point
of the open disc � ⇢ C centered at 0 is holonomic in the previous sense. Then the
D

�

-module M is an O
�

-module and is equipped with a connection. Moreover, we
always assume that the origin of � is the only singularity of M on �, that is, away
from the origin M is locally O

�

⇤ -free of finite rank.
All the notions of the previous subsection extend in a straightforward way to the

present setting. In particular, for an holonomic D
�

-module M having a regular sin-
gularity at the origin, Proposition 6.2.21 reads

M ' O
�

⌦C[t] M
alg.

Definition 6.2.25 (Strict support). We say that M as above has pure support the disc �

if its germ M at the origin is a middle extension, as defined in 6.2.16.

The holomorphic de Rham complex DRM is defined as the complex (degrees as
above)

DRM = {0 ! M
r

���! ⌦1

�

⌦O�
M ! 0}.

Away from the origin, the de Rham complex has cohomology in degree 0 only, and
H 0 DRM|�⇤ = Vr is a local system of finite dimensional C-vector spaces on �⇤.
In general, DRM is a constructible complex on �, that is, its cohomology spaces
at the origin are finite dimensional C-vector spaces. The subcomplex V 0 DRM is
quasi-isomorphic to DRM and, if M has a regular singularity at the origin, V 0 DRM

is a complex whose terms are O
�

-coherent (in fact V 0M is O
�

free).
If M has pure support the disc �, the de Rham complex DRM has cohomology in

degree zero only, and H 0 DRM = j⇤V
r. In such a case, both terms of V 0 DRM are

O
�

-free. On the other hand, if M is supported at the origin, then DRM ' V 0 DRM

reduces to the complex with the single term V �1M = gr�1

V M in degree one.

Exercise 6.2.26. Let M,M0 be holonomic D
�

-modules with singularity at the origin
at most. Let ' : M ! M0 be a D

�

-linear morphism. Show that, if M is a middle
extension, then ' is zero as soon as it is zero when restricted to �⇤. [Hint : if '|�⇤ = 0,
show first that ' is zero on V >�1M because V >�1M0 is O

�

-free, and then use Exercise
6.2.17(2).]

6.2.e. Pushforward of regular holonomic DX-modules. We now consider the
global setting of a compact Riemann surface and a regular holonomic DX -module M
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with singularities at a finite set D ⇢ X. The pushforward (in the sense of left
DX -modules) of M by the constant map X ! pt is the complex

R�(X,DRM),

that we regard as a complex of D-modules on a point, that is, a complex of C-vector
spaces. The definition of pushforward that we use is that given in Exercise A.8.24. It
follows that R�(X,DRM) has cohomology in degrees 0, 1, 2.

For a regular holonomic DX -module M, it is immediate to check that the space
Hk(X,DRM) is finite dimensional for every k. Indeed, denote by V �M the subsheaf
of M which coincides with V �(M|�) on each disc � near a singularity and is equal to M

away from the singularities. Then V �M is OX -coherent and 6.2.24 gives V 0(DRM) '

DRM, so Hk(X,DRM) = Hk(X,V 0 DRM) is finite dimensional since each term of
the complex V 0 DRM is OX -coherent and X is compact.

Examples 6.2.27.

(1) Assume M is supported at one point in X, and let � be a small disc centered at
that point, with coordinate t. We can assume that X = �. Denoting by ◆ : {0} ,! �

the inclusion, there exists a vector space H (equal to gr�1

V M) such that M = ◆⇤H[@t].
For k > 0 we have V kM = 0 and V �k�1M =

P

j6k ◆⇤H@j
t , so that V 0(DRM) is the

complex having the skyscraper sheaf with stalk H at the origin as its term in degree
one, and all other terms of the complex are zero. We can thus write

DRM = ◆⇤H[�1].

We then find

Hk(X,DRM) =

(

H if k = 1,

0 otherwise.
(2) Let us consider the same setting as above, but regarding now M as a right

D
�

-module (see Exercise 6.2.11(3)). It is natural to consider the deRham complex

{0 ! M
· @t

����! M
•
! 0}

so that the marked term is in degree zero (see Definition A.5.2). We then have

Hk(X,DRMright) =

(

H if k = 0,

0 otherwise.

(3) Assume now that M = V
mid

and set H = Vr. Then DRM = j⇤H and
Hk(X,DRM) = Hk(X, j⇤H). As explained in Remark 5.4.15, the only interesting
cohomology is now H1(X,DRM).

6.3. Sesquilinear parings on D-modules on a disc

We have seen in Section 4.1 that the notion of a sesquilinear pairing is instrumental
in order to define the polarization of a variation of C-Hodge structure and even, taking
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the approach of triples, in defining the notion of variation of C-Hodge structure.
It takes values in the space of C1 functions. In order to extend this notion to
that of pairing on D-modules, we need to extend the target space, as suggested by
the formula in Lemma 5.4.5. When working with left (resp. right) D-modules, the
target space for sesquilinear pairings will be the spaces of distributions (resp. currents)
on X. A general presentation of sesquilinear pairing in arbitrary, either in the left or
right case, will be given in Chapter 10. We also refer to Appendix A.4.d for general
properties of distributions and currents.

6.3.a. Basic distributions. Let us start by noticing that the C1 functions on �⇤

(punctured unit disc) considered in Lemma 5.4.5, and that we denote by

u�,p := |t|2�
L(t)p

p!
, � > �1, p 2 N,

defines a distribution on � by the formula

h⌘, u�,pi =

Z

�

u�,p⌘,

for any C1 (1, 1)-form ⌘ with compact support on �. In fact, a direct computation
in polar coordinates shows that u�,p is locally integrable on �. These distributions
are related by

(6.3.1) � (t@t � �)u�,p = �(t@t � �)u�,p = u�,p�1

,

as can be seen by using integration by parts (u�,�1

:= 0).

Proposition 6.3.2. Suppose that a distribution u 2 Db(�) solves the equations

(t@t � �)ku = (t@t � �0)ku = 0

for real numbers �,�0 > �1 and an integer k > 0.
(a) We have u = 0 unless � � �0

2 Z.
(b) If � = �0, then u is a linear combination of u�,p with 0 6 p 6 k � 1.

Proof. Let us first show that if Suppu ✓ {0}, then u = 0. By continuity, u is
annihilated by some large power of t; let m 2 N be the least integer such that tmu = 0.
If m > 1, we have

0 = tm�1(t@t � �)ku = (t@t � � � (m� 1))ktm�1u

= (@tt� � �m)ktm�1u = (� +m)tm�1u,

hence tm�1u = 0, due to the fact that � > �1. The conclusion is that m = 0, and
hence that u = 0.

Now let us prove the general case. After pulling back by the exponential mapping

{Re ⌧ < 0} �! �⇤, ⌧ 7�! e⌧ ,

we obtain a distribution eu on the half-plane {Re ⌧ < 0}, with the property that

(@⌧ � �)keu = (@⌧ � �0)keu = 0.
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The equations imply that the product

v = e��⌧e��0⌧
· eu

is annihilated by the k-th power of @⌧ and @⌧ , and in particular by the k-th power
(@⌧@⌧ )

k of the Laplacian. By the regularity of the Laplacian, v is C1, and the above
equations imply that v is a polynomial P (⌧, ⌧) of degree 6 k. Consequently,

eu = P (⌧, ⌧) · e�⌧e�
0⌧ .

By construction, eu is invariant under the translation ⌧ 7! ⌧ +2⇡i; if eu 6= 0, this forces
P (⌧, ⌧) to be a polynomial in ⌧ + ⌧ and � � �0

2 Z.
Now there are two cases. If ���0

62 Z, then eu = 0, which means that u is supported
on the origin; but then u = 0, and so the first assertion is proved. If � = �0, then
the restriction of u to �⇤ is a linear combination of the C1 functions u�,p|�⇤ with
0 6 p 6 k � 1. After adding a suitable linear combination of the distributions u�,p,
we can arrange that u is supported on the origin; but then u = 0, which proves the
second assertion.

To include the case � = �0 = �1 into the picture, we need the following simple
facts about distributions.

Exercise 6.3.3. Let �
0

be the Dirac distribution, defined by h⌘(t)dt ^ dt, �
0

i = ⌘(0).
Using Cauchy’s formula, show the formula:

@t@tL(t) = 2⇡i �
0

.

Proposition 6.3.4. Suppose that a distribution u 2 Db(�) solves the equations

(t@t + 1)ku = (t@t + 1)ku = 0

for some k > 1. Then u is a linear combination of @t@tu0,p with 1 6 p 6 k.

Proof. Using the relation t(t@t + 1) = t@tt, we find (t@t)
k
|t|2u = (t@t)

k
|t|2u = 0,

and by Proposition 6.3.2 we deduce |t|2u =
Pk�1

p=0

cp+2

u
0,p = |t|2@t@t

Pk+1

q=2

cqu0,q,
according to the basic relations (6.3.1). On the other hand, distributions solutions of
|t|2v = 0 are C-linear combinations of �

0

, @j
t �0, @

j

t
�
0

(j > 1). As a consequence, and
using Exercise 6.3.3, we find an expression

u = @t@t

k+1

X

q=1

cqu0,q +
X

j>1

(aj@
j
t �0 + bj@

j

t
�
0

),

and we are left with showing ck+1

= aj = bj = 0.
For that purpose, we note that, for p = 1, . . . , k + 1,

(@tt)
k@t@tu0,p = @t@t(t@t)

ku
0,p = (�1)k@t@tu0,p�k =

(

0 if p 6 k,

(�1)k 2⇡i �
0

if p = k + 1.
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On the other hand,

(@tt)
k
X

j>1

(aj@
j
t �0 + bj@

j

t
�
0

) =
X

j>1

aj�0@tt)
k@j

t �0

=
X

j>1

aj@
j
t (@tt� j)k�

0

=
X

j>1

(�j)kaj@
j
t �0,

and similarly
(@tt)

k
X

j>1

(aj@
j
t �0 + bj@

j

t
�
0

) =
X

j>1

(�j)kbj@
j

t
�
0

,

so the equations satisfied by u imply

2⇡i ck+1

�
0

+
X

j>1

(�j)kaj@
j
t �0 = 0 and 2⇡i ck+1

�
0

+
X

j>1

(�j)kbj@
j

t
�
0

= 0,

hence ck+1

= aj = bj = 0, as was to be proved.

6.3.b. Sesquilinear pairings. Let M0,M00 be regular holonomic D
�

-modules, each
of which written as M ' O

�

⌦C[t]Malg and let c : M0
⌦CM00

! Db
�

be a sesquilinear
pairing between them. For any local sections m0,m00 of M0,M00, we have, by definition

P (t, @t)c(m
0,m00) = c(P (t, @t)m

0,m00),

P (t, @t)c(m
0,m00) = c(m0, P (t, @t)m00).

(6.3.5)

For the sake of simplicity, we will set u�1,p := @t@tu0,p+1

. Note that the basic
relations (6.3.1) also hold for u�1,p. Propositions 6.3.2 and 6.3.4 imply immediately:

Proposition 6.3.6. Let c be a sesquilinear pairing between M0 and M00.
(1) The induced pairing c : M 0

�0 ⌦M 00
�00 ! Db

�

vanishes if �0
� �00 /2 Z.

(2) If m0
2 M 0

� and m00
2 M 00

� with � > �1, then the induced pairing c(�)(m0,m00)

is a C-linear combination of the basic distributions u�,p (p > 0).

As a consequence, the pairing c(�) has a unique expansion
P

p>0

c�,pu�,p, where
c�,p is a sesquilinear pairing M 0

� ⌦M 00
� ! C (� > �1). Let us set c� := c�,0. Using

the relations in (6.3.1) and (6.3.5), we get
X

p>0

c�,p(�(E� �)m0,m00)u�,p = c(�(E� �)m0,m00) = �(t@t � �)c(m0,m00)

=
X

p>0

c�,p+1

(m0,m00)u�,p,

and therefore c�,p+1

(m0,m00) = c�,p(�(E � �)m0,m00). So, if we denote by N the
nilpotent operator �(E� �) (not to be confused with N = � 2⇡i(E� �)), we have

c(�)(m0,m00) =
X

p>0

c�(N
pm0,m00)u�,p =

X

p>0

c�(m
0, Npm00)u�,p

(the latter equality is a consequence of (6.3.1)). The calculation above also shows
that our pairing c� : M 0

� ⌦M 00
� ! C satisfies the relation c� � (N ⌦ Id) = c� � (Id⌦N).
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Using the power series expansion of the exponential function, we may write the above
formula in a purely symbolic way as

c(�)(m0,m00) =

8

<

:

c�(|t|2(� Id�N)m0,m00) if � > �1,

@t@tc�1

⇣

|t|�2N
� 1

N
m0,m00

⌘

if � = �1,
(m0

2 M 0
� , m

00
2 M 00

� ).

6.3.c. Sesquilinear pairing on nearby cycles. We have seen in Exercise 5.4.7(3)
a way to define the sesquilinear pairing gr�V c by means of a residue formula, if � > �1.
In the present setting, we can conclude:

Lemma 6.3.7. For every � > �1, the sesquilinear pairing on V �M0
⌦ V �M00 defined

by the formula

(m0,m00) 7�! Ress=���1

Z

�

|t|2sc(m0,m00)�(t) i

2⇡ dt ^ dt

(for some, or any � 2 C1
c

(�) such that � ⌘ 1 near 0) induces a well-defined sesquilin-
ear pairing

gr�V c : gr
�
V M

0
⌦ gr�V M

00
�! C

which coincides with c� via the identification M� ' gr�V M (M = M0,M00) of Proposi-
tion 6.2.21.

Remark 6.3.8. For m0
2 M 0

� and m00
2 M 00

� , we recover the equality gr�V c(m
0,m00) =

c�(m0,m00) (by using the identification M� = gr�V M) as already checked in Exercise
5.4.7(3), by means of the formula above for c(�). Indeed,

Ress=���1

Z

�

|t|2sc(�)(m0,m00)�(t) i

2⇡ dt ^ dt

= Res�=0

Z

�

c�(|t|
2(��1�N)m0,m00)�(t) i

2⇡ dt ^ dt

= c�
⇣

Res�=0

Z

�

|t|2(��1�N) �(t) i

2⇡ dt ^ dtm0,m00
⌘

,

and from Example 5.4.8 and Exercise 5.4.7(1) we have

Res�=0

Z

�

|t|2(��1�N) �(t) i

2⇡ dt ^ dt = 1.

6.4. Hodge D-modules on a Riemann surface and the Hodge-Saito theorem

What kind of an algebraic object do we get by considering V
mid

together with its
connection and its filtration? How to describe it axiomatically, as we did for variations
of Hodge structure? Is there a wider class of filtered D-modules which would give rise
to a Hodge theorem? We give an answer to these questions in this section.
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6.4.a. Polarized Hodge modules with pure support the origin. Let us start
with the simplest case. By a (polarized) C-Hodge module of weight w strictly sup-
ported on a point we simply mean a (polarized) C-Hodge structure (H,Q) of weight w
(see Section 2.4.a). It will be convenient here to adopt the simple presentation as a
filtered w-Hermitian pair H = ((H, F •H), c) (see Remark 2.4.20 and Proposition
2.4.37), and we omit Q = ((�1)w Id, Id) in the notation.

Let X be a Riemann surface and let ⌃ be a discrete set of points. Let ◆
⌃

: ⌃ ,! X

denote the inclusion. By a (polarized) C-Hodge module on X of weight w with
pure support ⌃ we mean the pushforward by ◆

⌃

of a (polarized) C-Hodge structure
L

x2⌃

Hx of weight w.
Before making explicit this pushforward functor, let us recall that the intrinsic

way to define the Dirac distribution attached to ⌃ is to consider it as a (1, 1)-current,
which pairs with test functions (C1 functions with compact support on X), by the
formula h�

⌃

, ⌘i =
P

x2⌃

⌘(x), while distributions pair with test (1, 1)-forms. Recall
also (see more details in Appendix A.4.d and Section 10.2.a) that the sheaf CX of
(1, 1)-currents is a right DX ⌦C DX -module: if u is a local current and ⌘ is a test
function, and if P is a local holomorphic or anti-holomorphic differential operator, we
set

hu · P, ⌘i := hu, P⌘i.

In order to correctly define the pushforward of the sesquilinear pairing c by using
the �

⌃

current, it will therefore be convenient to work within the framework of right
DX -modules. We will first consider the local case of the inclusion ◆ : {0} ,! �. Let
H be a polarized Hodge structure of weight w. We set the following.

• ◆⇤H is the skyscraper sheaf with stalk H at the origin.
• M = D◆⇤H is the right D

�

-module ◆⇤H[@t] (with the right action of t defined by
v@k

t · t = kv@k�1

t , and the right action of @t is the obvious one).
• The F -filtration on D◆⇤H is defined by

F pM = F p
D◆⇤H =

L

k>0

◆⇤F
p+kH · @k

t .

• The pairing D,D◆⇤c : M0
⌦CM00

! C
�

(sheaf of (1, 1)-currents on �) is defined by
D

�

⌦C D
�

-linearity from its restriction to ◆⇤H
0
⌦C ◆⇤H00 as follows:

D,D◆⇤c(v
0, v00) = c(v0, v00)�

0

(�
0

= Dirac current at 0).

We will fix later a rule of signs (10.3.16 ⇤) for which it will be natural to replace D,D◆⇤c
with

T◆⇤c := �D,D◆⇤c.

We then set M = H◆⇤H := ((M, F •M), T◆⇤c).
• We keep in mind the correspondence with triples as in Proposition 2.4.37.
Our aim is now to recover H from H◆⇤H by the pushforward X ! pt as considered

in Section 6.2.e.
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Exercise 6.4.1. Recover H from H◆⇤H by applying the following operations.
(1) H = Ker

�

t : H[@t] ! H[@t]
�

= gr�1

V H[@t].
(2) F •H = F •(H[@t]) \Ker t.
(3) c is the opposite of the coefficient on �

0

of the restriction of T◆⇤c to H ⌦H.

Lemma 6.4.2. Let us filter the deRham complex (see Example 6.2.27(2))

DR(D◆⇤H) = {0 ! D◆⇤H
· @t

����! D◆⇤H
•

! 0}

by setting

F p DR(D◆⇤H) = {0 ! F p+1

D◆⇤H
· @t

����! F p
D◆⇤H ! 0}.

Then F p DR(D◆⇤H) ' ◆⇤F
pH.

Proof. Clearly, @t is injective on F p+1

D◆⇤H. On the other hand, for k > 1, we have
F p+kH ⌦ @k

t = (F p+1+(k�1)H ⌦ @k�1

t ) · @t, hence H0F p DR(D◆⇤H) = ◆⇤F
pH.

Let M :=
L

x2⌃

H◆x⇤Hx be a polarized Hodge module of weight w on a compact
Riemann surface X, strictly supported on a finite set ⌃. According to Example
6.2.27(1), we thus have Hk(X,DRM) = 0 for k 6= 0, and H0(X,DRM) is filtered by

F pH0(X,DRM) := image
⇥

H0(X,F p DRM) ! H0(X,DRM)
⇤

.

Notice that at each point of x 2 ⌃, the map above is nothing but F pHx ! Hx,
hence is injective. Moreover, the complexes F p DRM and DRM are supported on ⌃,
so that their hypercohomology on X is nothing but the direct sum of the stalks of
H 0F p DRM or H 0 DRM at the points of ⌃.

Let us now express c from T◆⌃⇤c =: cM . Given m 2 H0(X,DRM), we can write
m =

L

x2⌃

mx and we can lift mx as a section of M, denoted in the same way.
Then mx =

P

k>0

mx,k@
k
t for a local coordinate t at x, with mx,k 2 Hx. Note

that the class of mx,k@
k
t is zero in H0(X,DRM) if k > 1. Doing this for m0,m00, we

obtain T◆⌃⇤c(m0,m00) = �

P

x2⌃

c(m0
x,j ,m

00
x,k)�x@

j
t @

k
t

for a local coordinate t at each x.
Given a (1, 1)-current u on X, its integral on X (or pushforward by aX : X ! pt) is
hu, 1i 2 C (since X is compact, 1 is a test function), and the rule of signs of (10.3.16 ⇤)
gives

Ta
0

X,⇤(T◆⌃⇤c)(m
0,m00) = �hT◆⌃⇤c(m

0,m00), 1i =
X

x2⌃

c(m0
x,0,m

00
x,0).

The following is now mostly tautological, but nevertheless interesting to emphasize.

Theorem 6.4.3 (Hodge-Saito, dimension zero). With the previous assumption, the nat-
ural map

H0(X,F p DRM) �! H0(X,DRM)

is injective and its image is denoted by F pH0(X,DRM). Moreover, the data
�

H0(X,DRM), F
•
H0(X,DRM), Ta

0

X,⇤cM
�

is a polarized Hodge structure of weight w (it is isomorphic to
L

x2⌃

Hx).
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6.4.b. Polarized C-Hodge modules with pure support �, left version

We now return to left DX -modules for convenience. Let M be a holonomic
D

�

-module with regular singularity at the origin, which is the middle extension of
its restriction to �⇤ (see Definition 6.2.16), that we assume to be a vector bundle
with connection. It follows from Proposition 6.2.20 that M = (V

mid

,r). Let F •M

be a coherent F -filtration of M (taken decreasing).

Definition 6.4.4 (Strict R-specializability). We say that the filtered D
�

-module
(M, F •M) is strictly R-specializable at the origin if the properties 5.4.4(1a) and (1b)
are satisfied. (See also Definition 7.3.24 together with Proposition 8.8.2.)

Definition 6.4.5 (Hodge module with pure support the disc, left version)
A left Hodge module of weight w with pure support � and singularity at the

origin at most consists of the data M :=
�

(M0, F •M0), (M00, F •M00), c
�

, where M0,M00

are regular holonomic D
�

-modules with singularity at the origin at most and pure
support � (see Definition 6.2.25), F •M is a coherent filtration (M = M0 or M00), and c
is a sesquilinear pairing M0

⌦C M00
! DbX , such that

(a) the residue of the connection on some (or any) logarithmic lattice of M has
real eigenvalues (equivalently, the eigenvalues of the monodromy of H have absolute
value equal to one),

(b) these data restrict to a variation of Hodge structure
�

(H0, F •H0), (H00, F •H00), c
�

of weight w on �⇤ (regarded as a variation of C-Hodge triple as in Definition 4.1.10),
(c) (M, F •M) is strictly R-specializable at the origin,
(d) for every � 2 (�1, 0], the object

gr�V M :=
�

(gr�V M
0, F

•
gr�V M

0), (gr�V M
00, F

•
gr�V M

00), gr�V c
�

,

together with N := (�N0,N00), is a Hodge-Lefschetz structure of weight w (the rule
for the sign follows (10.4.24 ⇤)).

In other words, we have taken the result of Schmid’s theorem 5.4.10 as the definition
for the local behaviour of a Hodge module (however, we do not assume here the
existence of a polarization, so we do not restrict to the case of (�1)w-Hermitian pairs
for the moment).

Remark 6.4.6 (Morphisms, adjunction, Tate twist). The notion of morphism is the
obvious one, as in the category of triples. A morphism ' : M

1

! M
2

is a pair
('0,'00), where '0 is a filtered morphism (M0

1

, F •M0
1

) ! (M0
2

, F •M0
2

) and '00 a fil-
tered morphism (M00

2

, F •M00
2

) ! (M00
1

, F •M00
1

), both satisfying the compatibility rela-
tion (2.4.24 ⇤⇤) in DbX .

Similarly, the adjunction functor M 7! M⇤ (resp. the Tate twist M(k, `)) is defined
as in Remark 2.4.25(6) (resp. (7)) and the category of Hodge modules with pure
support � is left invariant by these functors (up to the change of weight), according
to Remarks 2.4.29 and 3.2.26.
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Exercise 6.4.7. Let M be a left Hodge module of weight w with pure support the disc �
and let (gr0V M,N) be the associated Hodge-Lefschetz structure centered at w. Con-
sider the associated Hodge-Lefschetz middle extension quiver (see Definition 3.2.14).
Show that ImN has underlying vector spaces gr�1

V M0, gr�1

V M00, endowed with the
filtration induced on gr�1

V M as in (6.2.22).

Corollary 6.4.8. If (M, F •M) (M = M0 or M00) underlies a left Hodge module of
weight w and pure support �, then (M, F •M) ' (V

mid

, F •V
mid

) as defined by (5.4.2),
with V = M|�⇤ .

Proof. That M ' V
mid

follows from Definition 6.2.25. It remains to check that the fil-
trations coincide. By Exercise 5.4.4, it is enough to check that F •M \ V >�1M =

F pV>�1

mid

and F •M satisfies 5.4.4(1c), since we assume that (M, F •M) is strictly
R-specializable.

Let us first show that

F
•
M \ V >�1M = (j⇤j

�1F
•
M) \ V >�1M,

the latter term being equal to F pV>�1

mid

by (5.4.1). Let m be a local section of
(j⇤j

�1F pM \ V >�1M) \ (F qM \ V >�1M) for q > p. Then m defines a section of
(F qM\V >�1M)/(F pM\V >�1M) supported at the origin. Since the latter quotient
is O

�

-coherent, it follows that tNm is a local section of F pM \ V >�1M for some N ,
hence a local section of F pM \ V >�1+NM. Now, Property 5.4.4(1a) implies that m

is a local section of F pM \ V >�1M, hence the desired assertion.
It remains to check 5.4.4(1c). This amounts to proving that can is an epimorphism

in the category of filtered vector spaces. This follows from the property that it is a
morphism of Hodge-Lefschetz structures (see Exercise 3.2.11(2)).

Remark 6.4.9. Strict R-specializability, as defined by 6.4.4 and assumed in Definition
6.4.5, would not have been enough to prove Corollary 6.4.8. Hodge theory is used in
an essential way here, by means of Exercise 3.2.11, to ensure Property 5.4.4(1c).

Proposition 6.4.10. Let X be a Riemann surface. There is no nonzero morphism
M

1

! M
2

between left C-Hodge modules of weight w
1

, w
2

with pure support X if
w

1

> w
2

.

Proof. Let ⌃ be the union of the singular sets of M
1

and M
2

. The D-module part of
Im' has support in ⌃, by applying Proposition 2.4.5(2) at points of X r ⌃, but is
included in a D-module with pure support of dimension one, hence is zero.

Proposition 6.4.11 (Abelianity). Let X be a Riemann surface. The category HMX(X,w)

of left Hodge modules with pure support equal to X is abelian and any morphism is
strict with respect to the F -filtrations.

Proof. The question is local, so we can assume that X = � and that the only singu-
larity of both source and target of the morphism is the origin. Let ' : M

1

! M
2

be a
morphism. We will first show that Ker' and Coker' are also strictly R-specializable
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and have pure support �. We consider the following diagram of exact sequences in
MHS (see Exercise 6.4.7):

0 ! Ker(gr0V ')(1)
//

can
✏✏

gr0V M1

(1)
gr0V ' //

can
✏✏✏✏

N
1

⇢⇢

gr0V M2

(1) //

can
✏✏✏✏

N
2

⇢⇢

Coker(gr0V ')(1) ! 0

can
✏✏✏✏

0 ! Ker(gr�1

V ') //
� _

var
✏✏

gr�1

V M
1

gr�1

V '
//

� _

var
✏✏

gr�1

V M
2

//
� _

var
✏✏

Coker(gr�1

V ') ! 0

var
✏✏

0 ! Ker(gr0V ')
// gr0V M1

gr0V ' // gr0V M2

// Coker(gr0V ') ! 0

We have to prove that the left up can is an epimorphism and that the right down var is
a monomorphism. This amounts to showing that ImN

1

\Ker(gr0V ') = N
1

(Ker(gr0V '))

(because this is equivalent to Im can\Ker(gr�1

V ') = can(Ker(gr�1

V '))) and ImN
2

\

Im(gr0V ') = N
2

(Im(gr0V ')). This follows from Lemma 3.1.7 in the setting of Exercise
3.2.11(7).

If we consider ' on the D-module components of the Hodge module, that we
simply denote by M (so that we do not distinguish between '0 and '00), we clearly
have Ker(gr0V ') = gr0V (Ker') and similarly for Coker, and for gr�1

V , proving thus
that Ker' and Coker' are middle extensions.

It remains to prove that Ker' and Coker', as filtered D
�

-modules, are strictly
R-specializable at the origin. We note that gr�V ' is strict for every � 2 (�1, 0],
as well as gr�1

V ', since they are morphisms of mixed Hodge structures. It is then
straightforward to check that Ker gr0V ' (with filtration induced by that of gr0V M) is
equal to gr0V Ker' (with filtration on Ker' induced from that of M), and similarly
for Coker.

Corollary 6.4.12. Let ' be a morphism in HMX(X,w). Assume that it is injective on
the DX-module component. Then it is a monomorphism, i.e., the Hodge filtration on
the source of ' is the filtration induced by that on its target.

Definition 6.4.13 (Polarized Hodge module with pure support the disc, left version)
Let X be a Riemann surface and let M be a Hodge module of weight w with pure

support X and singularity in a discrete set ⌃ ⇢ X. A polarization is a morphism
Q : M ! M⇤(�w) (see Remark 6.4.6) whose restriction to X⇤ induces a polarization
of the corresponding variation of C-Hodge structure.

Remark 6.4.14. A polarized Hodge module of weight w is isomorphic to one of the
form ((M0, F •M0), (M00, F •M00), c) with polarization ((�1)w Id, Id), so that we will in
general consider it as a pair (M, F •M), c).

It follows from Schmid’s theorem 5.4.10 that a polarization Q as above induces, for
every � 2 S1, a polarization of the Hodge-Lefschetz structure (gr�V M,N) (� 2 (�1, 0])
centered at w, for each local coordinate t at a point of ⌃.
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Exercise 6.4.15. Same as Exercise 6.4.7 with polarization.

The definition of a polarized Hodge module consists therefore in taking Schmid’s
theorem 5.4.10 as a defining property. This leads to the definition of the category
pHMX(X,w) of left polarizable C-Hodge modules of weight w with pure support X:
this is the full sub-category of HMX(X,w) consisting of Hodge modules which admit
a polarization. However, the morphisms are not supposed to be compatible with a
given polarization.

Let ⌃ ⇢ X be a finite subset and let j denote the inclusion X⇤ = X r ⌃ ,
j

�! X.
Schmid’s theorem implies more precisely:

Corollary 6.4.16 (of Theorem 5.4.10). The restriction functor j⇤, from the category of
left polarizable C-Hodge modules with pure support X and singularity at ⌃ at most
to the category of polarizable variations of C-Hodge structure on X⇤ = X r ⌃ is an
equivalence of categories.

According to Exercise 4.1.14(2), we find:

Corollary 6.4.17. The category pHMX(X,w) is semi-simple.

The Hodge-Saito theorem. Let us now start with a polarized Hodge module (M,Q)
on a compact Riemann surface X (see Definition 6.4.13). We assume that it has
pure support X. Away from a finite set ⌃ ,

◆
�! X, it corresponds to a variation of

polarized Hodge structure of weight w. For M = M0 or M00, we have M = V
mid

and
the de Rham complex DRV

mid

is naturally filtered (see Formula 2.3.4), so that we
get in a natural way a filtration on its hypercohomology. Recall (see §6.2.d) that this
de Rham complex is a resolution of j⇤H. The Hodge-Zucker theorem 5.1.1 (together
with Remark 5.4.15(3)) implies the following theorem in a straightforward way.

Theorem 6.4.18 (Hodge-Saito, dimension one, left version). For (M,Q) and (M, F •M)

as above (M = M0 or M00),
(1) the filtered complex R�(X,F • DRM) is strict, i.e., for every k, p, the natural

morphism Hk(X,F p DRM) ! Hk(X,DRM) is injective,
(2) the data H1(X,DRM) equipped with the filtration induced by F p(DRM), to-

gether with the sesquilinear pairing induced c and the morphism induced by Q, form
a polarized Hodge structure of weight w + 1. (1)

6.5. Comments

Here come the references to the existing work which has been the source of inspi-
ration for this chapter.

1. We refer to Section 12.2.b for the general definition of the sesquilinear pairing and the polar-
ization “induced” by c and Q.


